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On strongly regular graphs with parameters
(k,0,2) and their antipodal double covers
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Abstract. Let I' be a strongly regular graph with parameters (k, A, u) = (¢% + 1,0, 2)
admitting G(= PGL(2, ¢?)) as one point stabilizer for odd prime power q. We show that
if G stabilizes a vertex z of I and acts on I'2(z) transitively, then ¢ = 3 holds and I is
the Gewirtz graph. Moreover it is shown that an antipodal double cover whose diameter
4 of a strongly regular graph with parameters (k, 0, 2) is reconstructed from a symmetric
association scheme of class 6 with parameters pz.‘k (0 < 4,3,k < 6) in the Section 3.

Key words: antipodal cover of strongly regular graph, association scheme, finite transitive
group.

1. Introduction

We are interested in the classification problems of distance regular
graphs with by = 1. Let I' be a distance regular graph with b, = 1 and
valency k > 2. If the diameter d(I") of T" is larger more than 4, then T is
isomorphic to the dodecahedron ([3, p.182]). In [1], M. Araya, A. Hiraki
and A. Jurisi¢ showed that if d(T") = 4, then I" is an antipodal double cover
of a strongly regular graph with parameters (k, A\, ) = (n? +1,0,2) for an
integer n not divisible by 4 and if d(I") = 3, then T is an antipodal cover of
a complete graph. Obviously an antipodal cover of a complete graph is a
distance regular graph with by = 1 if it’s diameter is 3.

The classification problems of antipodal covers of complete graphs are
very difficult. Because the existence of an antipodal distance regular (n —
2)-fold cover of the complete graph K, claims the existence of a projective
plane of order (n — 1) for an odd positive integer n, moreover an antipodal
distance regular (n — 1)-fold cover of K, is equivalent to the existence of a
Moore graph with the diameter 2 and the valency n. ([6], [7])

The strongly regular graphs with parameters (k, A\, u) = (5,0,2) and
(10,0,2) are known, the former one has an antipodal double cover with
d = 4, namely the Wells graph, the latter one (the Gewirtz graph) does not
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have an antipodal double cover with d = 4 ([3, p.372]). The existence or
nonexistence of strongly regular graphs with (n? 4 1,0,2) for n > 5 are not
known up to date. We have studied these graphs.

2. Strongly regular graphs with (¢ + 1,0,2) admitting
PGL(2,q?) for g = p©

In this section we prove the following theorem.

Theorem 2.1 Let T’ be a strongly reqular graph with parameters (¢ +
1,0,2) and G be a group isomorophic to PGL(2,q?) for an odd prime power
q = p¢. Suppose that G acts on T as G stabilizes a vertex oo of I' and G is
transitive on I'y(00). Then ¢ =3 and ' is the Gewirtz graph.

We denote the set of vertices of a graph I" by V(T'), the set {y € V(TI') |
d(z,y) = 1} by I'(z) and the set {y € V(') | d(z,y) = i} by [i(z) for
x € V() andi> 2.

Lemma 2.1 Let ' be a strongly reqular graph with parameters (g>+1,0, 2)
and oo be a vertex of I'. Then the eigenvalues and their multiplicities of
the induced subgraph I's(00) of T are the following.

0 -1 -2 q—1 —q—1

¢+ +q-2) | (F+1)(¢* —q—2)
4 4

m@) | 1 | ¢ (

Proof. Let A and A; be adjacency matrices of I' and I'2(00) respectively.

We note that the degrees of A and A; are 2 + ¢% + @ and 9—2—('1.;+—1)
respectively. Then A is written as

A X O
A=| Xt 0 1
ot 1t o

where X is a _qu_;j_-_@_) x (¢ + 1) submatix indicating the adjacency relation
between vertices of I';(00) and I'y(00), and 1 is the (g2 +1) x 1 all 1 matrix.

Let I,, be the unit matrix of degree n and J, ,, be the n x m all 1 matrix.
Since A% = (¢* + ) I + M + p(Jn — A — I,,) where n =2+ ¢° + ‘12(‘1 +1)
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A=0and g =2, we have A2 = —2A4 + (¢*> — 1)1, + 2J,,. Therefore
A2+ XX = 24, 4 (¢* — 1) I + 2Jm, (2.1)

_ ¢°(*+1) e _ 2
where m = +=5-=". Moreover since A1 X = 2Jp, ¢ — 2X where { = ¢° + 1,
we have

AL X XA = 4X X+ 4(¢* - 3) T (2.2)

Hence from and [2.2),
At 4243 — (¢® +3)A2 —8A; + 4(¢* - VI,
= 2(¢* — 4¢* + 3) T (2.3)
We can calculate easily that {2,—2,¢g — 1,—q — 1} are the roots of the
equation z* 4222 — (¢2+3)z? — 8z +4(¢? — 1) = 0. Therefore the eigenvalues
of A; are these values and ¢> — 1 whose multiplicity 1.
Let the multiplicities of the eigenvalues 2, —2, ¢ — 1 and —q — 1 be a,
2(,2
b, f and g respectively. Since the degree of A; is M, trace(A;) = 0,
trace(A?) = q2(q2+12)(q2_1), trace(A3) = 0, we have a = 0, b = ¢%, f =
2 2 2 2
(g +1)(Z t9=2) 4=l +1)(Z ~9=2) by solving the following linear equations.
¢*(¢° +1)
2
¢ —1+2a—2b+(q—1)f+(—¢—1)g=0

(*—1)% +4a+4b+ (¢*—2¢+1)f + (¢*+2¢+1)g =

4

l+a+b+f+g=

¢ (?+1)(¢*-1)

| (¢*~1)* +8a—8b+ (¢°—3¢°+3q—1)f + (—¢* — 3¢ =3¢ — 1)g = 0.
0

Let T be a strongly regular graph with parameters (¢° + 1,0,2) and
G be a group isomorophic to PGL(2,¢?) for an odd prime power g = p°.
Suppose that G acts on I' as G stabilizes a vertex oo of I' and transitively
on I'y(c0). We put

z = ( (1) _01 ) (mod Z(GL(2,¢%))) and H = Cg(2).

Then H is a dihedral group of order 2(q?> — 1) and |G : H| = @—Q. Since
there is a unique conjugacy class of involutions in G and any two subgroups
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of index 9@ are conjugate in G. Hence it holds that H is the stabilizer

Gy of a vertex v € I'y(00). Throughout the section we fix this vertex v.

Let w be a primitive element of the multiplicative group GF(q?)*. Put
D—{w" |1 <4< -1 } We may assume that 27! € D. We have
GF(¢*) = DU — DU{O} Set

I ( (1) X ) (mod Z(GL(2,¢%))),

o— 91
ro= () 0100 ) (mod ZGLE.A)

where o € D U {0}. We can verify the following lemma.

Lemma 2.2 The set {I} U {zq | « € DU {0}} is a complete repre-
sentative of double cosets H\G/H. Moreover it follows that Hx, H =
Hz_oH, Hx,H = Hz'H where € D\ {27!}, and |HzoH : H| =
i) _1) , |[Hzy1H : H| = 2(¢*> — 1) and |HzoH : H| = (¢* — 1) for any
o E D \ {271}

G acts naturally on G/H = {Hz | x € G}. It is easily shown that
(G,V(I'2(00))) = (G,G/H) as the permutation groups.

An orbital graph 'y of the permutation group (H,G/H) with respect
to an orbit Hx,H is defined as the following.

The set of vertices is G/H. A vertex Hz is adjacent to a vertex Hy if
and only if zy~! € Hz,H. Now we have the following lemma.

Lemma 2.3 The graph ['s(00) is isomorphic to an orbital graph T, for
a suitable element ag € D \ {271},

Proof. Take a vertex w € I'y(0co) which is adjacent to v. There is an
element z € G such that w = v* by our assumption. Pick up ag such that
z € HzooH. Then a mapping f defined by f(v¥) = Hy (y € G) gives an
isomorphism from I'y(00) onto Iy, . O

Here we denote the adjacency matrix of the graph Iy, by A It is well
known that the permutation character lg of (G,G/H) has q— distinct

irreducible characters of degree ¢ + 1, 9—4— distinct 1rreduc1ble characters
of degree q® — 1, 2 distinct irreducible characters of degree ¢ and a trivial
character as its irreducible constituent. G acts on G/H x G/H naturally. It
is also known that Ra = {(Hz,Hz) |z € G} and R, = {(Hz,Hy) |2y~ ! €
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HzoH} (o € DU{0}) are orbits of the permutation group (G,G/H xG/H).
Moreover X(G,G/H) = (G/H,{Rs | « € DU {0, A}}) is a symmetric
association scheme as lg is multiplicity free. Then A, is the adjacency
matrix of the association scheme X(G,G/H) corresponding to the relation
R,.

The eigenvalues and their multiplicities of A, are found from the first
eigenmatrix of X(G,G/H). To describe this matrix we define a certain
partition of elements of GF(g?) and a number of sums of the quadratic
character values of the multiplicative group GF(g?)*.

We set as the following.

A={)eGF(¢®*) | » #0, X is a nonsquare, A\ — 4 is a nonsquare}

(¢°)
© ={0cGF(¢*)|0+#0,4, 0 is a square, § — 4 is a square}
Il ={r € GF(¢*) | ® #0,4, 7 is a square, 7 — 4 is a nonsquare}
= ={6cGF(¢®) | €#0, £is a nonsquare, £ — 4 is a square}

2

Then we obtain |6 = 1 “’ Al = 10| = |E| = &2 and GF(¢?) = {0,4} U
OUAUIIUE. .
We set {1 = 1,52=qZS,A={)\i|1SiS€1},@={9z‘|1SiS

O}, I = {m; | lgzgfl},and5={£i|1§i§€1}.

Let § be a primitive (¢? 4+ 1)-th root of 1, € be a primitive (¢°> — 1)-th
root of 1 and x be the character of order 2 of GF(g?)* with x(0) = 0.

For a € GF(q?) and a positive integer m, we define po(a), pu1(m, a),
pa(m, a) as follows.

po(a) = (2a +2) + x(20 - 2)

+Z (Ni—20-2) + x(\i+2a-2))
+Z (6;—2a—2) + x(6;+2a—2))

pr(m,a) =2+ x(20 — 2) + x(2a +2)
4
T 32(2_')(()‘1'_20‘*2) - X()\i+2a—2))(5(2i_1)m+5“(2i—1)m)

1=1
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£2
1 | |
3 > (24 x(0i—20—2) + x(0;+20—2)) ()™ 4.~ ()m)
1=1

pa(m, a) = —x(2a - 2) — x(20 + 2)

&
1 . .
- 5 2 (2=x(6i—20-2) — x(&+2a-2)) (6 Im457@Dm)
1=1

5}
1 | |
D) Y (2+x(mi—2a—2) + x(mi+2a—2)) (8™ 4 5~ @0)m)
i=1

Now we have the following lemma.

Lemma 2.4 The first eigenmatriz of the association scheme X(G,G/H)
is the following. (Here a € D\ {271})

RA R2—l RO Ra
2
-1
p1 1| 2(2-1)| 2 > -1
P2 1 -3 -1 9
0
Pg) 1 -2 M02( ) po()
o) (m.0)
q°+1 p1(m,0
2 & 1 —2 pi(m, a
I<m< O(m:even) 2 ( )
(m)
pq2_]
2 1| -2 |20 )
1<m< (m : odd) 2

Proof. W.M. Kwok gave the first eigenmatrix of the association scheme
corresponding to the permutation group (O(3,¢q), O(3,¢)/0%(2,q)) in[5]. It
follows that O(3,q) = {£1}xS0(3,q) and SO(3,q) = PGL(2,q), (G,G/H)
is isomorphic to (O(3,q)/{£1}, O(3,q)/({£1} x O*(2,q))) as permutation
groups. Therefore we can compute the first eigenmatrix of the association
scheme X(G,G/H) as the table of the lemma by using the table in [5].
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(cf. [5], p.48) O

From Lemma 2.3, I's(c0) = I'y,. Concerning the element g, we have
the following lemma.

Lemma 2.5 It follows that po(cp) = q—1 and pe(m,ap) = ¢—1 for any
odd number m such that 1 < m < 9—2—2:§.

Proof. We compare eigenvalues and their multiplicities in the table in
with those in the table of for « = ag. They co-
incide as a whole. Hence we have

C+D@+a=2) _ 241y 4o - 1)

4

where s is the number of m such that p;(m, ag) = ¢—1 and ¢t is the number
of m such that ps(m,ap) = ¢ — 1 in the case po(ap) = —¢ — 1 or

2 2

+1 —q—2
(q )(Q4 q ) =s(q2+1)+t(q2—1)

where s is the number of m such that p;(m,ay) = —q¢ — 1 and ¢t is the
number of m such that uz(m,ag) = —¢ — 1 in the case po(ap) =g — 1.

Suppose that (q2+1)(22+q—2) = s(¢> + 1) + t(¢> — 1). Then for each
odd prime divisor r of ¢> + 1, r dividezs t because that the greatest common
divisor of r and ¢?—1 is 1. Therefore 9—;1 divides t. However it is impossible

ift#0ast< 9%. Hence t = 0. Then s = -qfif——?. It contradicts to the
fact that s < qiT_S.

Suppose that (q2+1)(32_q_2) = 5(¢g® + 1) + t(g> — 1). Then similarly we
have t = 0. Then po(ag) = g— 1 and pe(m, ag) = g— 1 for any odd number
m. The lemma is proved. O

Lemma 2.6 Let £ and k be positive integers. Then the following equations
hold.

Z (5(2€—1)m + 6—(28——1)m) -1 (24)

2_
1<m<4 3 ! ,m:odd

z (5(2k)m + 5—(2k)m) -1 (2'5)

2_
1<m< 5 ! m:odd

Proof. Concerning the first equation, let d be the greatest common divisor
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of 2/ — 1 and ¢? + 1. Put s = % and n = 6~ We note that d is odd

and s is even. Obviously 7 is a primitive s-th root of 1. Hence nz = —1.
Then we have

Z (5(2€—l)m +5—(22—1)m)

2_
lgms%l,m:odd

: sd

— 4 >

= ( E n ) - N2
1<¢<sd—1,i:0dd

:(77+773+1+"'+7](d_1)s+1)(1+772+774+"‘+773_2)+1:1

asl+n+nt+. - +n2=0.

Concerning the second equation, let d be the greatest common divisor
of 2k and ¢ + 1. Put s = 9% and n = 62*. Then d is even and s is odd
and 7 is a primitive s-th root of 1. We have

Z (5(2k)m + 6—(2k)m)

2
1<m< gz;l,m:odd

d

= (G-1)a+Fntntt ) P T = -

asl+nl4+n?+---+np~l=0. O
The following lemma can be easily verified from Lemma 2.6.

Lemma 2.7 It follows that

2l Y e

- (q22— ) (x(2a0 +2) + x(2a0 — 2))
4
+ Z(X(ﬁz‘ — 200 — 2) + x(& + 200 — 2))
i=1
21

+ D (x(mi — 200 = 2) + x(mi + 200 — 2)).
1=1
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Proof of Theorem 2.1. From the definition of ug(ag) and we
have

po(ao) + 2 > p2(m, ao)
lgmgg%,mzodd
(¢* —3)

=~ (x(2a0 +2) + x(200 - 2))

51

+ Z(X(Ai — 200 — 2) + X()\i + 209 — 2))
=1
£2

+ Z(X(G’ — 200 — 2) + X(Oi + 200 — 2))
1=1
4

+ ) (x(& — 200 — 2) + x(& + 200 — 2))
1=1

121
+ Z(X(ﬂ'i — 200 — 2) + X(Tl'i + 209 — 2))
1=1

However since }, cqp(42) X(y) = 0 and GF(¢?) = {0,4lUOUAUIIUE, it
follows that

po(ao) + 2 > p2(m, ap)

2
1<m< 21 meodd

(¢ +1)
2

On the other hand from Lemma 2.5,

(x(2a0 +2) + x(2a0 — 2)) .

po(ao) + 2 > p2(m, o)

2
1<m< =1 miodd

2 2
~@-v+2(t a0 =" 6.

Hence we obtain that |x(2ao + 2) + x(2ap — 2)| = ¢ — 1. Therefore ¢ < 3.
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Then ¢ = 3 and I is the Gewirtz graph. ([3, p.372]). Thus Theorem 2.1 is
proved. ]

3. Reconstruction of the antipodal double cover I'* of a strongly
regular graph with A =0 and p = 2

We give the definition of association schemes.

Let Y be a finite set. An symmetric association scheme with d class is
a pair (Y,R) such that
(i) R={Ro,Ri,...,Ry} is a partition of Y x Y;
(i) Rop={(z,z) |z €Y}
(iii) If (x,y) € R;, then (y,z) € R; for alli € {0,1,...,d};
(iv) There are numbers p;” such that for any pair (z,y) € R; the number

of z € Y with (z,2) € Ry, and (z,y) € R; equal p{”

The number n; = pg{j of z € Y with (z,z) € R; (which is independent
on r €Y) is called the valency of R;, moreover for any fixed j (1 < j < d-—1)
intersection numbers c;, a; and b; is defined as ¢; = p;:_l,l, a; = pgl and
bj = P§+1,1-

Now let I' be a strongly regular graph with parameters (k,0,2). In
this section we study about the structure of the second neighbourhood of

I' and antipodal double covers of them with d = 4. E.R. van Dam and A.
Munemasa proved the following theorem independently. ([4, pp.13-14], [8])

Theorem 3.1 Let I' be a strongly reqular graph with A = 0, u = 2 of
valency k with k > 5. Then the second neighbourhood of I' with respect to
any vertex generates a 3-class association scheme. Furthermore any scheme
with the same parameters can be constructed in this way from a strongly
reqular graph with the same parameters as T'.

Now we consider the antipodal double cover I'* with d(I'™*) = 4 of T.
From now on we assume that k > 7 through this section. The intersection
array of I'* is the following.

0 1 1 k-1 &k
=10 0 k-2 0 0
k k-1 1 1 0

Put Q = {1,2,...,k}. Let oo’ be a vertex of I'* and co™ be the unique
vertex in I'* such that d(co™,007) = 4. We set T™*(co™) = {1F,2F, ... kt}
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and T*(co™) = {17,27,...,k7}. Then we may assume that d(i*,i") = 4
for any ¢ € § without loss of generallity. We denote the set of vertices of
the subgraph I';(co™) by X. For each z € X, [I*(c0™) NI™(z)| = 1 and
IT*(c0™) NT*(z)| = 1 as ¢z = by = 1. Set [*(co™) NI™*(z) = {i*} and
(0o~ ) NI*(xz) = {j~}. There exists a bijection ¢ from X onto (£ x
)\{(z i) | i € Q} defined by ¢(z) = (i,5). Then we put i = p(z); and
( )2. We denote a unique element of I';(z) by 2/, then p(z)1 = ¢(z')2

o(x)2 = @(z')1. Moreover we set as follows.
A(z) ={y € X | d(z,y) = 1},
B(z) = {y € X | p(y)1 = ¢(z)2 or p(y)2 = ()1, y # '}
Alz)={ye X |d(@,y) =1},
B'(z) ={y € X [ p(y)h = ¢(@)1 or p(y)2 = p(z)2, T # Y}
C(z) =X\ (A(z) UB(z) UA'(z YUB'(z)U{z,2'})

We have the following theorem.

Theorem 3.2 We define relations on X as follows.

Ro={(z,2) [z e X},  Ri={(z,y)|ycAl)},

Ry ={(z,y) |y € B(x)}, Rs={(z,y)|yeC(z)},
Ry={(z,y) |y € B'(x)}, Rs={(z,y)|yec A(z)},

Re = {(z,z') | x € X}

Then X = (X, R;(0 < i < 6)) is a symmetric 6-association scheme whose

parameters are p; (0 < h,j,i < 6) where (Bn)ij = p}u in the following
matrices Bp(h =0,1,...,6).

[ 0 1 0 0 0 0 0 '\
k=2 0 1 1 0 0 0
o 2 1 2 1 0 0
Bo=I,Bi=| 0 k-5 k-5 k-8 k-5 k-5 0 |,
o o 1 2 1 2 0
o o0 o0 1 1 0 k-2
\ o o o o 0o 1 0)
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[ 0 0 1 0 0 0 0
0 2 1 2 1 0 0
2k — 4 2 1 2 k—3 2 0
By = 0 2k —10 k-5 2k—-12 k-5 2k—-10 0
0 2 k—3 2 1 2 2k — 4
0 0 1 2 1 2 0
\ 0 o 0o 0 1 0 0 )
B3 =
( 0 0 0 1 0 0 0 \
0 k—5 k—5 k—8 k—5 k—5 0
0 2k—10 k—5 2k—12 k—5 2k—10 0
(k—2)(k—5) (k—5)(k—8) (k—5)(k—6) k?—13k+48 (k—5)(k—6) (k—5)(k—8) (k—2)(k—5)
0 2k—10 k—5 2k—12 k—5 2k—10 0
0 k-5 k-5 k—8 k—5 k—5 0
\ 0 0 0 1 0 0 0 }
(Ba)ij = (B2)i6-j)» (Bs)ij = (B1)i(6—j),
(BG),] = (BO)i,(6—j) fO’I” 0 S ) S 6, 0 S _] S 6.

The following theorem asserts that the inverse of the statement in
[Iheorem 3.2 is also true.

Theorem 3.3 Let X = (X, R;(0 < i < 6)) be a symmetric 6-association
scheme with the same parameters as pf” in Theorem 3.2. Then the an-
tipodal double cover I'* with d(I'*) = 4 of a strongly regular graph with
parameters (k,0,2) can be constructed from X. Moreover the graph (X, R;)
is 1somorphic to the second neighbourhood of T* with respect to any vertex.

We now start with a short sketch of the proof. First, we consider the
graph T = (X, R4). It is shown that the parameters of this graph are those
of the graph deleting the diagonal vertices of the k x k-grid. We reconstruct
the graph T isomorphic to the k x k-grid from r by adding a set of pairs of
maximal cliques as new vertices to the vertices of I. Lastly using the graph
T, an extended graph I'* of the graph (X, R;) is constructed.

We use the following notation here. Let IV = (V(I”), E(I")) be a finite
connected graph and d' be the metric of IV. For two vertices z, y of I
such that d'(z,y) = i, we denote the cardinalities of the sets {z € V(I") |
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d(z,2) =i—-1,d(z,y) =1}, {z e V(") | d'(z,2) = i + 1, d'(2,9) = 1}
and {z € V(I") | d'(z,2) =1, d'(2,y) = 1} by ci(z,y), bi(z,y) and a;(z,y)
respectively. Moreover we denote the valency of a vertex = by k(z), and if
I'" is regular we denote the valency of T” by k(I").

We state four lemmas to prove the theorem.

We note that kg = k¢ = 1, ky = ks = k — 2, kg = kg = 2k — 4 and
k3 = (k — 2)(k — 5). Therefore we have |X| = k(k — 1). We note pj,; =
(Br)i,j = (Bo—h)i6—j = pg:fm. for V4, h, i. For any element x € X there
exists a unique element ' € X such that (z,2') € Rg as pjg = 1. We
consider a bijection 9 on X defined by ¢(x) = 2’ for any x € X. It is clear

~

that 1?2 = idx. We denote the metric of I" by j.

Lemma 3.1 The graph Tisa regular graph with the valency 2k—4, d(f‘) =

3,a1(") = k-3, b1(I') = k—2 and ax(T') = 2k—6. Suppose that p(z,y) = 2.

If y & T'(¢(x)), then co(z,y) = 2 and if y € T(Y(z)), then cz(x,y) = 1.
We have also T'3(z) = {¢(x)} for any x € X.

Proof. 1t is easily verified that Tisa regular graph of the valency 2k — 4

as p2,4 = 2k — 4. Now pfl,4 # 0 for i € {1,2,3,4,5}. Therefore there is

an element z € X such that p(z,2) = 1 and p(z,y) = 1 for elements z, y

such that (z,y) € R; (i = 1,2,3,4 or 5). Moreover p(z,v(x)) = 3 holds.

Therefore we have d(f) = 3 and p(x,y) = 3 holds if and only if y = ¢(z).
Here we note that

(z,y) € R4y if and only if (¢(z),y) € Ry (3.1)

as pg,i = ( for ¢ # 2 and pg’i = 0 for ¢ # 4. Therefore we have

p(xz,y) =1 if and only if p(v(x),¥(y)) = 1. (3.2)

We have a1 (T') = k—3 and b (T') = k—2 as Pi4= k—3and D 1<i<5(ia) Piy=
k —2. Let z, y be elements in X such that j(z,y) = 2 and y & I'(¢(z)).
Then ca(z,y) = 2, az(z,y) = 2k — 6 and ba(z,y) = 0 as pj, = 2 and
Zl_<_h§5(h¢4) p;'LA =2k—6for: =1,3,5 and from (3.1). Let z, y be elements
in X such that j(z,y) = 2 and y € I'(¢9(z)). Then (z,y) € Ry from (3.1).
Therefore we have ca(x,y) =1, bo(z,y) = 1 and az(z,y) = 2k — 6 as pZA =
P4 =1and > 1<h<s(hza) Ph a4 = 2k — 6. We also have c3(z,¢(z)) = 2k — 4
for any x € X. This completes the proof of the lemma. 0
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Lemma 3.2 Let © be an element of X. Then I'(z) is a disjoint union of
two cliques of the same cardinality k — 2.

Proof. Letz € X and y € I'(z). Since ai(z,y) = k — 3 and k(T) = 2k — 4,
we may assume

~

F(x) = {yaylay27 ey Yk—3521522, .. ~7zk—2}a {y17y27 .. 7yk——3} - F(y)

and {z1,292,...,2k_2} C Da(y). Set S = {y,y1,92,...,Yk—3} and T =
{z1,22,...,2k—2}. Let z be any element of T'. Since ca(y, 2) < 2, p(z,y) =
p(z,2) =1and SNI(z) C [(y) NI (2), it follows that |SNT(z)| < 1. Then
we have |T NT(z)| > k — 4 since a1(z, z) = k — 3. However it follows that
k — 3 elements excluding z are contained in T. Therefore |T NTy(z)| < 1.
Suppose that TN fg(z) # (. Then there exists an element u € T where
p(z,u) = 2. Therefore T'\ {z,u} C T'(z). Moreover |T NT5(u)| < 1 as same
as [T NTy(z)| < 1. Hence we obtain T NTy(u) = {z}. Therefore it follows
that = and every elements of T except z and u are contained in I'(z) NT'(w).
It implies £ — 3 < 2 since ca(2,u) < 2. Thus k < 5, which contradicts our
assumption. Hence we have T NT5(z) = @ and any element of T except z is
adjacent to z. However since z is any element of T', T is a clique. Similarly
S is a clique. Thus the lemma is proved. 0

We denote the set SU {z} and T U {z} by C1(z) and Ca(z). We note
that |C)(z)| = |Ca(z)| = k—1. Obviously Cj(z) is a maximal clique of T for
¢ = 1,2. Any maximal clique of I is equal to C;(x) for an element z € X
and i € {1,2}. We denote the set of maximal cliques of ' by M C’(f) Put
D={CUy(C)|C e MC()}.

We note that C Ny(C) = 0 for any C € MC(T). For i € {1,2} we
have y € C;(x) if and only if C;(z) = C;(y) for j =1 or 2, as we see in the
proof of Lemma 3.2. Hence we have |[MC(T)| = %l—_-)%—' = 2k and |D| = k. For
i € {1,2} we have ¢(C;(z)) = Cj(¢(x)) for some j from (3.2). Hence we
may assume ¥ (C;(x)) = Ci(v(x)) without loss of generality. We have the
following lemma about D.

Lemma 3.3 (1) Let z be any element of X. Then there exist eractly
two elements of D containing x.

(2) Let z, y be any elements of X such that p(x,y) = 1. Then there
ezists exactly one element of D containing x and y.

(3) Let z, y be any elements of X such that p(x,y) = 2 and y €
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T(¢(z)). Then there exists ezactly one element of D containing = and y.
(4) Let Dy and Dy be distinct elements of D. Then |Dy N Dy| = 2.
(5) Let D be an element of D and x be an element of X such that
& D. Then |T'(z)ND|=2.

Proof. (1), (2) and (3) are trivial from Lemma 3.2.

(4): Let D; and D9 be distinct elements of D. Then there are elements
a and b of X such that D; = C1(a) Uy(Ci(a)) and Dy = C;(b) Uy(C1(b)).
Now we will prove that D; N Do # 0.

Firstly suppose that p(a,b) = 1. If a € C1(b), then a € Ci(a) N Cy(b).
Therefore D1 N Dy # (. Similarly if b € Cy(a), then also Dy N Dy # 0.
Hence we may assume a € Co(b) and b € Cz(a). Then j(a, (b)) = 2 and
p(¥(a), (b)) = 1. Therefore there is a unique element v € X which is
adjacent to a and ¢(b) from Lemma 3.1. If u € Ci(a)NC1(1(b)), then D1 N
Dy # (. Hence we may assume u € Cy(a) or u € Ca(¢(b)). If u € Cs(a),
then u is adjacent to b. Therefore p(b, 9 (b)) = 2, a contradiction. Similarly
if u € Co(¥(b)), then p(a,¥(a)) = 2, also a contradiction.

Secondly suppose that p(a,b) = 2 and p(a, (b)) = 2. Then there are
exactly two elements u,v € X which are adjacent to both a and b and there
are exactly two elements u’, v’ € X which are adjacent to both a and (b)
from Lemma 3.1. Then u is not adjacent to v and v’ is not adjacent to v'.
Therefore we may assume (i): u € Ci(a), v € Co(a), u € C1(b) and v € Cy(b)
or (ii): u € C1(a), v € Ca(a), u € Ca(b) and v € C;(b). If the case (i) occurs,
then we have D; N Dy # 0. Thus we may assume the case (ii). Similarly we
may assume u’' € Ci(a), v € Cso(a), v’ € Co(¢(b)) and v’ € Cy(3(b)). Then
u is adjacent to u' and u is adjacent to ¥ (u’). Therefore p(u', ¥ (u’)) = 2.
This is a contradiction. Thus it is proved that D; N Dy # .

Since C1(a) # C1(b), |C1(a) N Cy(b)] < 1 from (2). However Ci(a) N
C1(b) # 0 and C1(a) N Ci(¥(b)) # @ are not compatible. Because if com-
patible, there is an element u € Ci(a) N C1(b) and an element v € Cy(a) N
C1(9(b)). Then p(u,¥(u)) = 2, a contradiction. Moreover 1(D;) = D; for
i=1,2, and D1 N Dy = (Ci(a) N C1(b)) U(C1(a) NC1(3(b))) U (C1(¥(a)) N
C1(b)) U (C1(¥(a)) N C1(x(b))). Hence |Dy N Dy| = 2. Thus (4) is proved.

(5): Let D € D and z € X such that x ¢ D. For any j € {1,2},
D # Cj(z) Uy(Cj(x)) as © ¢ D. Therefore |D N (Cj(z) Uy(Ci(x)))| = 2
from (4). Moreover ¥(D) = D. Hence |D N Cj(z)| = 1, which means that

~

|DNT(x)| =2. Thus (5) is proved. O
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We now define a graph T on the set X UD as follows:

two elements of X are adjacent in T if and only if they are
adjacent in F x € X is adjacent to D € D in T whenever
z € D, and no distinct two elements of D are adjacent in T.

The metric of the graph T is denoted by p.
Lemma 3.4 The graph T is isomorphic to the Hamming graph H(2, k)

Proof. Let = be any element of X, then there exist exactly two elements of
D containing x and v (z). Therefore p(z, ¥ (x)) = 2 by the definition above.
Hence we have d(T) = 2.

For any z € X, there exist exactly two elements of D containing z from
(1) of Lemma 3.3. Moreover, since k(I') = 2k — 4, the valency of z in the
graph T is 2k —2. Moreover for any D € D, since D contains exactly 2(k—1)
elements of X, the valency of D in T is 2k — 2. Thus k(T) = 2k — 2.

Let z, y be elements of X such that p(z,y) = 1. Then there exists
exactly one element of D containing z and y from (2) of Lemma 3.3. On
the other hand exactly £ — 3 elements of X are adjacent to z and y as
a1(T) = k—3. Hence it follows a;(z,y) =k —2in [.Letx€ X and D € D
be adjacent in L. Then z € D. We have |IDNT(x)| = k—2. Hence it follows

a1(z,D)=k—2in L. Thus a;(T) = k — 2.

Let z, y be elements of X such that g(z,y) = 2. If y = 9(z), then
obviously ca(z,y) = 2 in T' because there are exactly two elements of D
containing z and ¢(x). Ify € f’(z/}(:c)), then there exists exactly one element
of D containing = and y from (3) of Lemma 3.3.

Moreover there exists exactly one element of X which is adjacent to
and y as cp(z,y) = 1 in I from Cemma 3.1. Therefore co(x,y) =2 in T. If
y & f‘(d)(r)), then there is no element of D containing z and y. However
there exist exactly two elements of X which are adjacent to 2 and y as
ca(z,y) = 2 in T. Therefore ca(z,y) = 2 in T. Let Dy, Dy be distinct
elements of D. Then |D; N Dy| = 2 from (4) of Lemma 3.3. Therefore
c2(Dy, D) =2 in . Let D be an element of D and x be an element of X
such that ¢ D. Then |I'(z) N D| = 2 from (5) of [Lemma 3.3. Therefore
¢2(D,z) =2 in . Hence eo(T) = 2.

Thus the graph T has the same parameters as those of the Hamming
graph H(2,k). (cf. [9]). This completes the proof of the lemma. 0

Proof of [Theorem 3.3. From there exists a bijection ¢: X U
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D — Q x Q2 such that (D) = {(4,7) | : € Q} and (z,y) € Ry if and only
if p(z)1 = @(y)1 or p(z)2 = ¢(y)2 for any z,y € X (z # y).

We can now construct the antipodal double cover I'* of a strongly regu-
lar graph with parameters (k,0,2). Let Q% be the set {1%,2%,... k*} and
(2~ be the set {17,27,...,k7}. The set of vertices of I'™* is V(I'*) = X U
QT UQ~ U {oot}.

The adjacency of I'* is defined as the follows:

oot adjacent to i* and oo~ adjacent to i~ for any i € ,
for x,y € X, x and y are adjacent iff (z,y) € Ry,

z € X and 1T € QF are adjacent iff p(z); = i,

z € X and j~ € Q7 are adjacent iff p(x); = 5.

The metric of the graph I'* is denoted by p. Then we have the following
statement.

p(z,y) =2 if (z,y) € Ry (3-3)

We can verify that I'* is a distance regular graph whose intersection
array is (k,k—1,1,1;1,1,k — 1, k) in the sequel. For any x € {o0*}UQt U
(27, it is clear that k(xz) = k from the definitions. For any =z € X, there
are exactly k — 2 elements of X which are adjacent to x as p(l)’1 =k — 2.
Moreover z is adjacent to only one element o(z){ in @ and ¢(z); in Q-
respectively. Therefore k(z) = k. Thus k(I'™*) = k.

We note that the bijection ¢ is a graph isomorphism from T onto the
Hamming graph H(2,k) on £ x Q such that o(D) = {(i,i) | i € Q}. More-
over in the subgrph of H(2, k) which is deleted the vertices {(i,1) | i € Q},
there exists exactly one vertex at distance 3 from a vertex (i,7), namely
(7,7). This implies the following statement.

¢(z) = (1,7) if and only if @(¢(z)) = (4,1) (3.4)
We have the following lemma.

Lemma 3.5 Let z, y be elements of X such that o(x) = (3,7) and o(y) =
(¢,h). Then the following (1) and (2) hold.

(1) If p(z,y) =1, then {i,5} N {¢,h} = 0.

(2) If t & {i,j}, then there exists exactly one element u € X such
that p(z,u) = 1 and p(u); =t and exactly one element v € X such that
p(z,v) =1 and p(v)2 =t.
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Proof. (1): Suppose that o(z) = (3,7), ¢(y) = (¢,h) and p(z,y) = 1.
Then (z,y) € Ry. If i = £or j = h, then (z,y) € R4. This is a contradiction.
If i = horj=¢ then (z,9(y)) € Ry from (3.4). Therefore (z,y) € R
from (3.1), also a contradiction. Therefore {3,;j} N {¢,h} = 0.

(2): Suppose that o(z) = (i,5) and t € {i,5}. If p(x,a) = 1 and
p(z,b) = 1, then p(a); # ©(b)1 and p(a)z # @(b)2 as p}; = 0. On the
other hand |{z € X | p(x,2) = 1}| =k — 2 as p(l’,1 = k — 2. Hence from (1),
Q\{i,7} ={e(2)1 | z € X, p(x,z) = 1}. It means that there exists exactly
one u € X such that ¢(u); = t. Similarly there exists exactly one v € X
such that ¢(v)2 = t. The lemma is proved. O

Lemma 3.6 It follows that ci(I'*) = b3(T'™), co(I'*) = bo(I™), c3(T'™*) =
b1(T'*) and c4(T*) = bo(['*). Moreover the diameter of T is 4.

Proof. Since pil # 0, p‘il # 0 and p?,l = 0 we have
plx,y) =2 if (z,y) € RaUR3 (3.5)
plz,y) >2 if (z,y) € Rs (3.6)
Fix any ¢ € X, we set as the following.

Alz) ={y € X | (z,y) € R1},

B(z)={y € X |y #¢(z), p(¥)1 = p(z)2 or p(y)2 = ¢(z)1},
B'(z)={ye X |y#=, o)1 = p(x)1 or p(y)2 = ¢(z)2},
Al(z)={ye X |(z,y) € Rs} and

C(z) = X \ (A(z) U B(z) U B'(z) U A'(z) U {y()}).

We note that y € B'(x) if and only if (z,y) € R4 and y € B(z) if and
only if (z,y) € R from (3.1) and (3.4). Hence it follows that y € C(z) if
and only if (x,y) € Rs.

Now since piﬁ = pggZ =0fori € {0,1,2,3,4,6}, we obtain the following
statement.

(z,y) € Ry if and only if (z,9(y)) € Rs (3.7)

Suppose that ¢(x) = (¢,5). Then we have I'*(z) = A(z) U{i*,5~} and
3(z) = B(z) U C(z) U B'(z) U (QF\ {i*, 57} U (@~ \ {i7,57}) U {oo™}
from (3.3), (3.5) and (2) of [Lemma 3.5. Moreover I'j(z) N T*(y) # 0 for
any y € A'(z). Hence I'}(r) = A'(x)U{i~,j*} from (3.6) and p(l"’2 =pf, =
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p$ 4 = 0. We also have I'j(z) = {¢(z)}.

For any i € Q, I*(i1) = {z € X | p(z)1 = i} U {oot}, T5(iT) = {z €
X | p(z)1 # i and p(z)e # i} U QT \ {ith U (Q7\ {i"}) as pj, # 0 and
pi1 # 0. Moreover T3(i") = {z € X | p(x)2 = i} U{oo"} as pi, # 0
and T%(iT) = {i~}. We obtain the similar results concerning I'; (:7) for
t =1,2,3,4. Therefore d(I'*) = 4.

From the facts above and (3.1), (3.4) and (3.7), I'*(z) = I3(¥(x)),
I'5(z) = T5((x)) and T%(z) = T*(¢(x)) for any x € X. Therefore we have
e (T*) = b3(T), ca(T*) = bo(T™), c3(I™*) = b1(I™) and c4(T™) = bo(I'"). The
lemma is proved. O

Theorem 3.3 follows from if we prove that by (I™*) = k-1
and by(I'™*) = 1. There are no triangle whose vertices are all in X as p%,l =
0. Suppose that p(x,y) = 1 for z,y € X. Then ¢(x); # ¥(y)1 and P(z)2 #
Y(y)2 from (1) of Lemma 3.5. Thus there are no triangle containing z, y as
the vertices. Hence a;(I'*) = 0, which implies b;(I'*) = k — 1.

Suppose that p(z,y) = 2 for z,y € X. Theny € B(z)UC(z)UB'(z). If
y € B(z)UC(x), then co(z,y) =1 asp | = p} | = 1. If y € B'(z), then also
co(x,y) = 1 though p‘il = 0 since either ¢(z); = p(y)1 or ¢(x)2 = P(y)2.
Suppose that p(x,i") = 2 for € X. Then there is a unique element v € X
such that p(z,u) = 1 and p(u,i") = 1 from (2) of Lemma 3.5. Therefore
co(x,it) = 1. Similarly co(z,57) = 1 for z, j such that p(z,j7) = 2.
Obviously c(cot,z) = 1 and ca(0co™,z) = 1 for any x € X, co(i™,57) =
1, c2(i7,57) = 1 and co(it,57) = 1 for any i # j. Hence co(T*) = 1,

which implies bo(I'™*) = 1 from Lemma 3.6l This completes the proof of
Theorem 3.3/ U

Remark Let z be any vertex of I'*. Eigenvalues of the subgraph I';(x)

are k—2. vk, -1 +vk —1,0, =2, —Vk and —1 — vk — 1. Moreover their
(k=1)(k=2) k(VE-T+)(VE-I-D) 1 1 p _ 1 (k=D(k=2)
4 ’ 4 ) ) ) 4

respectively.

multiplicities are 1,

k(vVk—1-2 k—1+1
and MYEL=A(/E=TH)

Acknowledgment The author thanks Prof. Akihiro Munemasa for his
valuable discussions during the preparation of this article and thanks the
referees for their helpful comments and suggestions.



450

[1]
[2]

(4]
[5]

[6]

(7]

(9]

N. Nakagawa

References

Araya M., Hiraki A. and Jurisi¢ A., Distance-Regular Graphs with by = 1 and
Antipodal Covers. Europ. J. Combin. 18 (1997), 243-248.

Bannai E. and Ito T., Algebraic Combinatorics 1. Benjamin-Cummings, California,
1984.

Brouwer A.E., Cohen A.M. and Neumaier A., Distance-Regular Graphs. Springer-
Verlag, Berlin, Heidelberg, 1989.

van Dam E.R., Three-class association schemes. Preprint.

Kwok W.M., Character Table of a Controlling Association Scheme Defined by the
General Orthogonal Group O(3,q). Graphs. Combin. 7 (1991), 39-52.

Gardiner A.D., Antipodal covering graphs. J. Combin. Theory Ser. B,16 (1974),
255--273.

Godsil C.D., Covers of Complete Graphs. Advanced Studies in pure Mathematics
24, Kinokuniya, Tokyo, 1996.

Munemasa A., Strongly regular graphs with parameters (k,\, ) = (k,0,2). Private
communication.

Shrikhande S.S., The uniqueness of the Lo association scheme. Ann. Math. Statist.
30 (1959), 781-798.

Department of Mathematics

Faculty of Science and Technology
Kinki University

Higashi-Osaka, Osaka 577-8520
Japan

E-mail: nakagawa@math.kindai.ac.jp

Present address:
Department of Mathematics
Ohio State University

231 West 18th Avenue
Columbus Ohio 43210-1174
U.S. A.



	1. Introduction
	2. Strongly regular graphs ...
	Theorem 2.1 ...

	3. Reconstruction of the ...
	Theorem 3.1 ...
	Theorem 3.2 ...
	Theorem 3.3 ...

	References

