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Approximation by Riemann sums in modular spaces

Carlo BARDARO, Julian MUSIELAK and Gianluca VINTI
(Received October 15, 1999)

Abstract. Here we give an estimation of the modular convergence of translated equidis-
tant Riemann sums to the integral of a function belonging to a modular space. Thus we
extend some previous results by Fominykh and Kaminska-Musielak.
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1. Introduction

The aim of this paper is to give a modular estimation for the error of
approximation of the integral of a function f belonging to a modular space,
by means of the sequence of translated equidistant Riemann sums of f , in
terms of its modular modulus of continuity (see [13], [3]). As a consequence
we obtain a modular approximation theorem for the integral of f .

This problem was studied by M.Yu. Fominykh in [8] in L^{p}[0,1] , 1\leq p<

\infty and, in [10], for multivariate functions defined on the hypercube [0, 1]^{n} ,
by A. Kaminska and J. Musielak, in Musielak-Orlicz spaces.

For a sake of simplicity our extension to modular spaces is given for
functions of one variable, but the extension to multivariate case gives no
further problems. Moreover here we take the interval Q=[0,1] as a basic
interval but the results remain valid also for a general bounded interval
[a, b] .

In Section 4 we give various examples of modular spaces for which
the theory here developed is applicable. We will also discuss examples of
modulars which haven’t an integral representation, thus proving that the
extension we give is meaningful.

We wish to recall here that related results for integrals of L^{p} functions
defined on the entire real line, were given by P.L . Butzer and R.L . Stens in
[6], and by Butzer and A. Gessingher in [7].
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2. Notations and definitions

Let Q=[0,1] and let us denote by L^{0}(Q) the space of all (Lebesgue)
measurable functions f : Qarrow \mathbb{R} . When it is necessary, we extend functions
over Q to the real line by l-periodicity.

Let \rho : L^{0}(Q)arrow[0, +\infty] be a modular, i.e., a functional with the
following assumptions:

1. \rho(f)=0\Leftrightarrow f=0 , a.e . in Q .
2. \rho(-f)=\rho(f) , for every f\in L^{0}(Q) .
3. \rho(\alpha f+\beta g)\leq\rho(f)+\rho(g) , for every f, g\in L^{0}(Q) and \alpha , \beta\in \mathbb{R}_{0}^{+} with

\alpha+\beta=1 .

If in place of 3. we have:

\rho(\sum_{i=1}^{n}\alpha_{i}f_{i})\leq M\sum_{i=1}^{n}\alpha_{i}\rho(Mf_{i}) ,

for every n\in \mathbb{N} , \alpha_{i}\geq 0 with \alpha_{1}+ +\alpha_{n}=1 , and f_{i}\in L^{0}(Q) , for every
i=1 , \ldots , n and for an absolute constant M\geq 1 , we will say that the
modular is discretely quasi convex. If moreover M=1 we will say that
the modular is (discretely) convex.

If \rho is a modular on L^{0}(Q) , we will denote by L^{\rho}(Q) the corresponding
modular space generated by \rho , i.e.

L^{\rho}(Q)=\{f\in L^{0}(Q) : \lim_{\lambdaarrow 0^{+}}\rho(\lambda f)=0\} .

It is well-known that L^{\rho}(Q) is a vector subspace of L^{0}(Q) and it is possible
to define on it the concept of “modular convergence” by the following way:
we say that a sequence of functions f_{n}\in L^{\rho}(Q) is modular convergent (or
\rho-convergent) to a function f\in L^{\rho}(Q) , if there is a \lambda>0 such that

\lim_{narrow+\infty}\rho(\lambda(f_{n}-f))=0 .

This notion of convergence is weaker than the “norm-convergence” induced
by the Luxemburg norm generated by the modular (see [12]). This is equiv-
alent to say that the above limit relation is satisfied for any \lambda>0 . These
two notions of convergence are equivalent in the special case when the mod-
ular \rho has the \triangle_{2} property (see [12]). For a general theory of the modular
spaces we refer to [12].
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We will also need of the following definitions, concerning modular func-
tionals.
a. We say that a modular \rho is monotone if \rho(f)\leq\rho(g) whenever |f|\leq

|g| .

b . Let (\Omega, \Sigma, \mu) be a measure space and let L^{0}(\Omega) be the space of all
measurable functions, finite \mu- a.e . on \Omega . A modular \rho on L^{0}(\Omega) will
be called quasi-convex, if there exists a constant M\geq 1 such that

\rho(\int_{\Omega}p(t)h(t, \cdot)d\mu(t))\leq M\int_{\Omega}p(t)\rho(Mh(t, \cdot))d\mu(t)

for p\in L^{1}(\Omega) , p(t)\geq 0 , \int_{\Omega}p(t)d\mu(t)=1 and for h(\cdot, u)\in L^{0}(\Omega) and
u>0 . Arguing as in [5], it is easily shown that if \mu is atomless and
\rho is quasi-convex, then the modular \rho is discretely quasi-convex, with
the same constant M\geq 1 .

c . The modular \rho is finite if the characteristic function \chi_{A} of a measur-
able set A of finite Lebesgue measure, belongs to the modular space
L^{\rho}(Q) .

d . The modular \rho is absolutely finite if it is finite and moreover, for
every \epsilon>0 and every \lambda_{0}>0 there is a \delta>0 for which, for every
measurable subset A\subset Q with |A|<\delta , we have \rho(\lambda_{0}\chi_{A})<\epsilon .

e . The modular \rho is absolutely continuous if there is an \alpha>0 such
that for every f\in L^{0}(Q) with \rho(f)<+\infty the following condition
holds:

- For every \epsilon>0 , there exists a \delta>0 such that \rho(\alpha f\chi_{B})<\epsilon for
all measurable sets B\subset Q with |B|<\delta .

f. The modular \rho is \tau-bounded if there are a constant C\geq 1 and a
measurable nonnegative essentially bounded function h:\mathbb{R}arrow \mathbb{R} such
that:

\rho(f(\cdot-t))\leq\rho(Cf)+h(t) ,

for a.e . t\in \mathbb{R} and for every f\in L^{\rho}(Q) .
For the above concepts we refer to [13], [1], [2], [3].

We remark that the concept of quasi convexity for modulars is related
to the notion of quasi convexity for functions (see [9], [11], [4]). We recall
that a function \varphi : \mathbb{R}_{0}^{+}arrow \mathbb{R}_{0}^{+} is quasi convex if there is a constant M\geq 1
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(1)

such that, for every f\in L^{1}(Q) , we have:

\varphi(\int_{Q}|f(x)|dx)\leq M\int_{Q}\varphi(M|f(x)|)dx .

An analogous definition is applied to functions \varphi depending on parameters.
In this case we will say that such a function is quasi convex with constant
M\geq 1 , if it is so for all values of the parameters, and with the same
constant M .

Note that also for functions it is known a concept of discrete quasi
convexity, with a constant M\geq 1 , and it is defined in an obvious way. In
what follows the following assumption is of importance:

we will say that a modular \rho satisfies condition (*) if there is a constant
C’\geq 1 , such that for every n\in \mathbb{N} , g\in L^{\rho}(Q) , we have:

\sum_{k=0}^{n-1}\rho[g(\frac{+k}{n})]\leq n\rho(C’g)+\epsilon_{n} ,

where \{\epsilon_{n}\} is a sequence of nonnegative real numbers.
We define the \rho-modulus of continuity of a function f\in L^{\rho}(Q) by the

following functional:

\omega_{\rho}(f, \delta)=\sup\rho[f(\cdot+s)-f(\cdot)] ,
|s|\leq\delta

for \delta>0 .
Finally we will need of the following notation:
for every y\in Q and f\in L^{0}(Q) we denote by R_{n}(f, y) the translated
equidistant Riemann sums of f , i.e. we put:

R_{n}(f, y)= \frac{1}{n}\sum_{k=0}^{n-1}f(\frac{y+k}{n}) , y\in Q .

3. A modular estimation for approximation by Riemann sums

In order to state that R_{n}(f, \cdot)\in L^{\rho}(Q) , for every f\in L^{1}(Q)\cap L^{\rho}(Q) ,
we give the following proposition.

Proposition 1 Let \rho be a quasi convex modular on L^{0}(Q) with a constant
M\geq 1 satisfying (*) and let \lambda>0 be so small that \rho(\lambda C’Mf)<+\infty . Then
\rho(\lambda R_{n}(f, \cdot))<+\infty for every n\in \mathbb{N} . Moreover if \rho is finite, then for every
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n\in \mathbb{N} it results R_{n}(f, \cdot)-\int_{Q}f(x)dx\in L^{\rho}(Q) .

Proof. For the given \lambda>0 , by quasi convexity of the modular \rho in its
discrete form, we have for n=1,2 , . .

\rho(\lambda R_{n}(f, \cdot))=\rho(\frac{\lambda}{n}\sum_{k=0}^{n-1}f(\frac{+k}{n}))

\leq\frac{M}{n}\sum_{k=0}^{n-1}\rho(\lambda Mf(\frac{+k}{n}))

Thus by applying condition (*) to the function g(t)=\lambda Mf(t) we obtain

\rho(\lambda R_{n}(f, \cdot))\leq M\rho(\lambda C’Mf)+\frac{M}{n}\epsilon_{n} .

Finally by finiteness of \rho , the second part of the proposition easily follows.
\square

Now in order to state the main result of this paper we give the following:

Proposition 2 For f\in L^{1}(Q) , we have:

R_{n}(f, y)- \int_{Q}f(x)dx=\frac{1}{n}\sum_{k=0}^{n-1}g(\frac{y+k}{n}) ,

for any y\in Q , where g:Qarrow \mathbb{R} is defined by

g(t)=n \sum_{k=0}^{n-1}\chi_{Q_{k}}(t)\int_{Q_{k}}[f(t)-f(x)]dx ,

for every t\in Q , and Q_{k}=[k/n, (k+1)/n) , k=0,1 , , n-2 , Q_{n-1}=

[(n-1)/n, 1] .

Proof. We have:

R_{n}(f, y)- \int_{Q}f(x)dx=\frac{1}{n}\sum_{k=0}^{n-1}f(\frac{y+k}{n})-\int_{Q}f(x)dx

= \sum_{k=0}^{n-1}\int_{Q_{k}}[f(\frac{y+k}{n})-f(x)]dx
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= \frac{1}{n}\sum_{k=0}^{n-1}\int_{Q_{k}}n[f(\frac{y+k}{n})-f(x)]dx .

Now, for any 0\leq y\leq 1 , we have k/n\leq(y+k)/n\leq(k+1)/n , and so

g( \frac{y+k}{n})=n\int_{Q_{k}}[f(\frac{y+k}{n})-f(x)]dx .

Hence the assertion follows. \square

Now we are ready to prove the main result of this paper:

Theorem 1 Under the assumptions of Proposition 1, if moreover \rho is
monotone, we have

\rho[\lambda(R_{n}(f, \cdot)-\int_{Q}f(x)dx)]\leq M^{2}\omega_{\rho}[2\lambda C’M^{2}f, 2/n]+M\frac{\epsilon_{n}}{n} ,

(2)

for any \lambda>0 .

Proof. From Proposition 2, q_{11}asi convexity (in its discrete form) and prop-
erty (*) , we have for \lambda>0 ,

\rho[\lambda(R_{n}(f, \cdot)-\int_{Q}f(x)dx)]

\leq\frac{M}{n}\sum_{k=0}^{n-1}\rho[\lambda Mg((\cdot+k)/n)]\leq M\rho[\lambda MC’g]+\frac{M}{n}\epsilon_{n}

=M \rho[\lambda MC’n\sum_{k=0}^{n-1}\chi_{Q_{k}}(\cdot)\int_{Q_{k}}(f(\cdot)-f(x))dx]+\frac{M}{n}\epsilon_{n} .

Now, with the substitution x=t+s, we obtain:

\int_{Q_{k}}|f(t)-f(x)|dx=\int_{Q_{k}-t}|f(t)-f(t+s)|ds

\leq\int_{-1/n}^{1/n}|f(t+s)-f(t)|ds

and so by monotonicity of \rho , we have:
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\rho[\lambda(R_{n}(f, \cdot)-\int_{Q}f(x)dx)]

\leq M\rho[\lambda C’Mn\sum_{k=0}^{n-1}\chi_{Q_{k}}(\cdot)\int_{-1/n}^{1/n}|f(\cdot+s)-f(\cdot)|ds]+\frac{M}{n}\epsilon_{n}

=M \rho[\lambda C’Mn\int_{-1/n}^{1/n}|f(\cdot+s)-f(\cdot)|ds\sum_{k=0}^{n-1}\chi_{Q_{k}}(\cdot)]+\frac{M}{n}\epsilon_{n} .

Now, since \sum_{k=0}^{n-1}\chi_{Q_{k}}(t)=1 for every t\in Q , we have, by quasi convexity
of \rho :

\rho[\lambda(R_{n}(f, \cdot)-\int_{Q}f(x)dx)]

\leq M\rho[(n/2)\int_{-1/n}^{1/n}2\lambda C’M|f(\cdot+s)-f(\cdot)|ds]+\frac{M}{n}\epsilon_{n}

\leq M^{2}(n/2)\int_{-1/n}^{1/n}\rho[2\lambda C’M^{2}|f(\cdot+s)-f(\cdot)|]ds+\frac{M}{n}\epsilon_{n}

\leq M^{2}\omega_{\rho}[2\lambda C’M^{2}f, 2/n]+\frac{M}{n}\epsilon_{n} ,

and so the assertion follows. \square

As a consequence of Theorem 1, we give the following approximation
result:

Theorem 2 Let \rho be a quasi convex, monotone, absolutely continuous,
absolutely finite and \tau -bounded modular on L^{\rho}(Q) . Let us suppose that \rho

satisfies (*) . If \epsilon_{n}/narrow 0 as narrow+\infty , then for every f\in L^{1}(Q)\cap L^{\rho}(Q)

we have:

R_{n}(f, \cdot)arrow\rho\int_{Q}f(x)dx , narrow+\infty .

Proof. The result follows from Theorem 1 and from the properties of the
modulus of continuity \omega_{\rho} , (see Theorem 2 in [3]). \square

4. Examples

Here we discuss some examples of modular spaces for which the previous
theory is applicable.
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I. Musielak-Orlicz spaces. Let \varphi : Q\cross \mathbb{R}_{0}^{+}arrow \mathbb{R}_{0}^{+} be a function such
that the following assumptions hold.

(\varphi.1) tarrow\varphi(t, u) is measurable and integrable over Q , for every u\in \mathbb{R}_{0}^{+}

(\varphi.2) uarrow\varphi(t, u) is continuous and nondecreasing for every t\in Q ,
\varphi(t, 0)=0 and \varphi(t, u)>0 , for each u\in \mathbb{R}_{0}^{+}

We will denote by \Phi the class of all functions \varphi which satisfy (\varphi.1) and
(\varphi.2) . If \varphi(t, u)=\overline{\varphi}(u) , for every t\in Q and u\in \mathbb{R}_{0}^{+} , then clearly (\varphi.1) is
satisfied, and if \overline{\varphi} is continuous and nondecreasing and \overline{\varphi}(0)=0,\overline{\varphi}(u)>0 ,
for u>0 , then \varphi\in\Phi . So we will denote again by \Phi the class of functions
\varphi depending only on u such that (\varphi.2) is satisfied.

For \varphi\in\Phi , we define the modular:

I_{\varphi}(f)= \int_{Q}\varphi(t, |f(t)|)dt , f\in L^{0}(Q) .

We will denote by L^{\varphi}(Q) the corresponding modular space.
We will say that \varphi\in\Phi is M-quasi convex, with M\geq 1 , if for any

g\in L^{1}(Q) , we have:

\varphi (t , \int_{Q}|g(s)|ds)\leq M\int_{Q}\varphi(t, M|g(s)|)ds ,

for any t\in Q , (see [9], [11]).
We will assume the following assumption: there is a constant C’\geq 1

such that

\varphi(nt-k, u)\leq\varphi(t, C’u)+\overline{\epsilon}_{k,n}(t) , (3)

for every n\in \mathbb{N} , k=0,1 , \ldots , n-1 , and where \overline{\epsilon}_{k,n} is an integrable function,
for every n\in \mathbb{N} , k=0,1 , \ldots , n-1 , (here we extend \varphi(\cdot, u) l-periodically
outside Q).

If \varphi satisfies (3) we will denote by \overline{\epsilon}_{n}(t) the function

\overline{\epsilon}_{n}(t)=n\sum_{k=0}^{n-1}\overline{\epsilon}_{k,n}(t) , t\in Q .

If \varphi\in\Phi satisfies (3), the corresponding modular I_{\varphi} satisfies condition (*) .
Indeed, with the notations of Section 2, we have
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\sum_{k=0}^{n-1}I_{\varphi}[f(\frac{+k}{n})]=\sum_{k=0}^{n-1}\int_{Q}\varphi(y, |f( \frac{y+k}{n})|)dy

narrow+\infty ,

= \sum_{k=0}^{n-1}n\int_{Q_{k}}\varphi(nt-k, |f(t)|)dt

\leq n\sum_{k=0}^{n-1}\int_{Q_{k}}\varphi(t, C’|f(t)|)dt+n\sum_{k=0}^{n-1}\int_{Q_{k}}\overline{\epsilon}_{k,n}(t)dt

=nI_{\varphi}(C’f)+ \int_{Q}\overline{\epsilon}_{n}(t)dt=nI\varphi(C’f)+\epsilon_{n} ,

where \epsilon_{n}:=\int_{Q}\overline{\epsilon}_{n}(t)dt .
Thus Theorem 1 can be applied to the modular I_{\varphi} whenever \varphi\in\Phi is

M-quasi convex and satisfies (3).
Let us assume now that \varphi is \tau-bounded, i.e. there is C\geq 1 and a

measurable funtion F : Q\cross Q – \mathbb{R}_{0}^{+} , such that:

\varphi(t-v, u)\leq\varphi(t, Cu)+F(t, v)

for every t , v\in Q , u\in \mathbb{R}_{0}^{+} and F is such that h(v):= \int_{Q}F(t, v)dt , v\in Q , is
a bounded function and h(v) -0 as varrow 0^{+} Here \varphi and f are extended 1-
periodically outside Q . If \varphi is \tau-bounded, then the corresponding modular
I_{\varphi} is also \tau-bounded, according to the definition given in Section 2.

Hence if \varphi\in\Phi is M-quasi convex, \tau-bounded and satisfies (3), then we
can apply Theorem 2 in order to obtain:

I_{\varphi}( \lambda(R_{n}(f, \cdot)-\int_{Q}f(x)dx))arrow 0 ,

for a suitable \lambda>0 .
In particular if \varphi(t, u)=\overline{\varphi}(u) , \varphi is obviously \tau-bounded, with constant

C=1 and F\equiv 0 , and satisfies (3) with C’=1 and \overline{\epsilon}_{k,n}\equiv 0 .
Thus, if \varphi\in\Phi and \varphi(t, u)=\overline{\varphi}(u) is M-quasi convex, then the previous

theory can be also applied for classical Orlicz spaces.

II . Here we discuss a modular functional which hasn’t an integral
representation.

Let (\Omega, \Sigma, \mu) be a measure space and let \varphi : \Omega\cross Q\cross \mathbb{R}_{0}^{+}arrow \mathbb{R}_{0}^{+} be a
globally measurable function such that for any fixed \xi\in\Omega , the function
\varphi(\xi, \cdot, \cdot)\in\Phi . We will suppose that the function \sup_{\xi\in\Omega}\varphi(\xi, t, \cdot) is continu-
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ous at 0 for every t\in Q and there is \lambda_{0}>0 such that sup ess_{\xi\in\Omega}\varphi(\xi, \cdot, \lambda_{0})\in

L^{1}(Q) . By means of the previous assumptions, the functional

J_{\varphi}(f)= \sup ess_{\xi\in\Omega}\int_{Q}\varphi(\xi, t, |f(t)|)dt , f\in L^{0}(Q) ,

is a finite, monotone modular on L^{0}(Q) .
Next we will assume that \varphi(\xi, t, \cdot) is M-quasi convex for every \xi\in\Omega ,

t\in Q and putting for any k=0,1 , \ldots , n-1 , n\in \mathbb{N} , \eta\in\Omega ,

\epsilon_{k,n}(\eta)=\sup ess_{\xi\in\Omega} sup
ess_{t\in Q}\sup_{u\geq 0}

[ \varphi(\xi , nt-k,u)-\varphi(\eta ,t ,C’u) ],

for an absolute constant C’\geq 1 , we suppose that the function \epsilon_{k,n} belongs
to the space L^{\infty}(\Omega) . Under these assumptions we obtain, in particular,
that:

\varphi(\xi, nt-k, u) \leq\varphi(\eta, t, C’u)+\epsilon_{k,n}(\eta) , (4)

for every \xi , \eta\in\Omega , n\in \mathbb{N} , k=0,1 , . , n-1 , u\in \mathbb{R}_{0}^{+} and t\in Q . Then for
g\in L^{0}(Q) ,

\sum_{k=0}^{n-1}J_{\varphi}[g(\frac{+k}{n})]=\sum_{k=0}^{n-1} sup ess_{\xi\in\Omega}\int_{Q}\varphi(\xi, t , |g( \frac{t+k}{n})|)dt

= \sum_{k=0}^{n-1} sup ess_{\xi\in\Omega}n\int_{Q_{k}}\varphi(\xi, nt - k, |g(t)|)dt

\leq n\sum_{k=0}^{n-1}\int_{Q_{k}}\varphi(\eta, t, C’|g(t)|)dt+n\sum_{k=0}^{n-1}\int_{Q_{k}}\epsilon_{k,n}(\eta)dt

\leq nJ_{\varphi}(C’g)+\sum_{k=0}^{n-1}\epsilon_{k,n}(\eta) .

So, putting \epsilon_{n}:=\sup ess_{\eta\in\Omega}\sum_{k=0}^{n-1}\epsilon_{k,n}(\eta) , we obtain condition (*) , and
Theorem 1 is now applicable.

Now we will introduce some sufficient conditions in order to give a
modular approximation result, by applying Theorem 2.

In order to do that, let \varphi : \Omega\cross Q\cross \mathbb{R}_{0}^{+}arrow \mathbb{R}_{0}^{+} with the assumptions
introduced above. If, moreover, sup ess_{\xi\in\Omega}\varphi(\xi, \cdot, \lambda)\in L^{1}(Q) for any \lambda>0
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and for every f\in L^{0}(Q) for which J_{\varphi}(f)<+\infty , we have that the function

H( \cdot)=\sup ess_{\xi\in\Omega}\varphi(\xi, \cdot, |f(\cdot)|) , (5)

belongs to L^{1}(Q) , then J_{\varphi} is absolutely continuous and absolutely finite.
Next, let us suppose that

\varphi(\xi, t-v, u)\leq\varphi(\xi, t, Cu)+F(\xi, t, v) (6)

for an absolute constant C\geq 1 , for every \xi\in\Omega , t , v\in Q and u\in \mathbb{R}_{0:}^{+} and
where F(\xi, \cdot, \cdot) is globally measurable and the function

h(v)= \sup ess_{\xi\in\Omega}\int_{Q}F(\xi, t, v)dt , v\in Q ,

is in L^{\infty}(Q) and h(v)arrow 0 as varrow 0^{+}

Then it is easy to show that the modular J_{\varphi} is \tau-bounded. Hence
under all the assumptions on \varphi , we can apply Theorem 2 in order to get
the modular convergence of R_{n}(f, \cdot) towards the integral \int_{Q}fdt .

Note that for functions \varphi(\xi, t, u)\equiv\overline{\varphi}(\xi, u) , condition (6) is obviously
satisfied with C=1 and F\equiv 0 .

Particular cases of J_{\varphi} are modulars of the following forms:

J_{\varphi}’(f)= \sup_{m\in \mathbb{Z}}\int_{Q}\varphi(m, t, |f(t)|)dt

J_{\varphi}’(f)= \sup_{\in\xi[a,b[}\int_{Q}\varphi(\xi, t, |f(t)|)dt ,

where [a , b[\subset \mathbb{R} and b\in\overline{\mathbb{R}} .

III. Modulars connected with strong summability
Let W be an abstract set of indices and \mathcal{W} be a filter of subsets of W

Let m be a measure on the interval [a , b[\subset \mathbb{R} , where b may also be equal to
+\infty , defined on the \sigma-algebra of all Lebesgue measurable subsets of [a, b[1

Let \{a_{w}(\cdot)\}_{w\in W} be a family of Lebesgue measurable functions defined on
[a , b [ with nonnegative values and such that the following conditions hold:

(a) \int_{a}^{b}a_{w}(x)dm(x)\leq 1 , for w\in W .

(b) For any finite subset F\subset W . there is \overline{w}\in W such that a_{\overline{w}}(x)\geq a_{w}(x) ,
for every x\in[a, b[, w\in F\tau



264 C. Bardaro, J. Musielak and G. Vinti

(c) If 0\leq g(x)\nearrow s\in\overline{\mathbb{R}^{+}}.

, then \int_{a}^{b}a_{w}(s)g(s)dmarrow \mathcal{W}s , where the symbol
arrow \mathcal{W} means convergence with respect to the filter \mathcal{W} .

(d) For every Lebesgue measurable subset G\subset[a, b[of measure m(G)>0 ,
there is a measurable subset G_{1} , with m(G_{1})>0 and an index \overline{w}\in W

such that a_{\overline{w}}(x)>0 , m-almost everywhere.

Let f\in L^{0}(Q) and let \{\varphi(\xi, \cdot)\}_{\xi\in[a,b[} be a family of functions of \Phi such
that \varphi is Lebesgue measurable with respect to \xi\in[a, b] , for every u\in \mathbb{R}_{0}^{+}

and \lim_{\xiarrow b^{-}}\varphi(\xi, u)=\overline{\varphi}(u)<+\infty , for every u\geq 0 .
Putting

J_{\varphi}( \xi, f)=\int_{Q}\varphi(\xi, |f(t)|)dt , f\in L^{0}(Q) ,

we define the functional

A_{\varphi}(f)= \sup_{w\in W}\int_{a}^{b}a_{w}(\xi)J_{\varphi}(\xi, f)dm(\xi) ,

for any f\in L^{0}(Q) such that J_{\varphi}(\cdot, f) is measurable in [a , b [. Under the
above conditions on the family \{a_{w}\}_{w\in W} , A_{\varphi} is a monotone modular with
assumption (*) . Indeed, we first remark that for any n\in \mathbb{N} , g\in L^{0}(Q) ,

\sum_{k=0}^{n-1}J_{\varphi} ( \xi , |g( \frac{+k}{n})|)=\sum_{k=0}^{n-1}\int_{Q}\varphi(\xi, |g( \frac{t+k}{n})|)dt

= \sum_{k=0}^{n-1}n\int_{Q_{k}}\varphi(\xi, |g(t)|)dt=nJ_{\varphi}(\xi, g) .

Let now \{\overline{\epsilon}_{n}\}_{n} be a sequence of positive numbers such that n\overline{\epsilon}_{n}arrow 0^{+} Then
there are w_{k,n}\in W such that

J:= \sup_{w\in W}\int_{a}^{b}a_{w}(\xi)J_{\varphi}(\xi, |g( \frac{+k}{n})|)dm(\xi)

\leq\int_{a}^{b}a_{w_{k,n}}(\xi)J_{\varphi}(\xi, |g(. \frac{+k}{n})|)dm(\xi)+\overline{\epsilon}_{n} .

Now from (b) there is w_{n}\in W such that a_{w_{k,n}}(\xi)\leq a_{w_{n}}(\xi) , for every k=
0,1 , . n-1 , and so

J \leq\int_{a}^{b}a_{w_{n}}(\xi)J_{\varphi}(\xi, |g( \frac{+k}{n})|)dm(\xi)+\overline{\epsilon}_{n} .
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Thus

\sum_{k=0}^{n-1}A_{\varphi}(g(\frac{+k}{n}))

\leq\sum_{k=0}^{n-1}\int_{a}^{b}a_{w_{n}}(\xi)J_{\varphi}(\xi, |g( \frac{+k}{n})|)dm(\xi)+n\overline{\epsilon}_{n}

= \int_{a}^{b}a_{w_{n}}(\xi)\sum_{k=0}^{n-1}J_{\varphi}(\xi, |g(. \frac{+k}{n})|)dm(\xi)+n\overline{\epsilon}_{n}

=n \int_{a}^{b}a_{w_{n}}(\xi)J_{\varphi}(\xi, g)dm(\xi)+n\overline{\epsilon}_{n}

\leq nA_{\varphi}(g)+\epsilon_{n} ,

where \epsilon_{n}:=n\overline{\epsilon}_{n} . Hence (*) is satisfied with C’=1 . Moreover if the
function \varphi(x, \cdot) is quasi convex with a constant M\geq 1 , then it is easy to
show that A_{\varphi} is also a quasi convex modular, with the same constant. Thus
Theorem 1 is now applicable to the modular A_{\varphi} .

Now, in order to apply also Theorem 2 to A_{\varphi} , we discuss the \tau-bounded-
ness, absolute finiteness and absolute continuity of the modular A_{\varphi} .

At first, by extending the function g outside Q with period 1, it is easy
to show that the modular A_{\varphi} is translation invariant, i.e. A_{\varphi}(g(\cdot+v))=

A_{\varphi}(g) , for every v\in Q ; this means that A_{\varphi} is \tau-bounded with C=1 and
h(v)\equiv 0 .

Absolute finiteness and absolute continuity of A_{\varphi} are studied in [1].
Here we report some sufficient conditions in order to obtain these properties
(for further details see [1]).

In order to do that, we write [a , b[=[a, c[\cup[c, b [, for c\in ] a , b [ and we
shall make different assumptions on \varphi(x, u) for x\in[a, c [ and x\in[c, b[ .

Let us suppose that for every function f\in L^{0}(Q) such that A_{\varphi}(f)<

+\infty the function:

H( \cdot)=\sup_{y\in[a,c[}\varphi(y, |f(\cdot)|)

is integrable over Q . Moreover we assume that \varphi is of monotone type in
[c, b [ i.e. there are two disjoint sets R_{1} , R_{2}\subset \mathbb{R}_{0}^{+} with R_{1}\cup R_{2}=\mathbb{R}_{0}^{+} . such
that:
(a) \varphi(x, u) is a nonincreasing function of x\in[c, b [, for every u\in R_{1} .
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(b) \varphi(x, u) is a nondecreasing function of x\in[c, b [, for every u\in R_{2} .
Finally, we will assume that the family \{\varphi(x, u)\}_{x\in[a,b[} is equicontinuous at
u=0.

Then (see [1]) the modular A_{\varphi} is absolutely continuous and absolutely
finite. Thus Theorem 2 can be applied to A_{\varphi} under the above assumptions.

In [1] there are described other interesting particular cases of A_{\varphi} .
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