
Hokkaido Mathematical Journal Vol. 30 (2001) p. 195-204

On the areas of geodesic triangles on a surface

Eiji KANEDA and Kazuhiro KISO
(Received October 15, 1999)

Abstract. This paper treats geodesic triangles on tw0-dimensional orientable Rieman-
nian manifolds M. Fixing two vertices A and B , we can consider the area and the interior
angles of the geodesic triangle APAB as smooth functions of P . Applying the Laplace
operator to these functions, we obtain formulas for the area and interior angles of APAB.
It is shown that if M is of constant curvature, the area and interior angles of geodesic
triangles are harmonic.
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1. Notations and results

In the paper [1] they proved by direct calculations that the area func-
tion of geodesic triangles on the two dimensional sphere S^{2} is harmonic.
However, this is not true for general surfaces M. In this paper, we will
show formulas for the area and interior angles of geodesic triangles in \Lambda li

(Theorem 1), which extend the result in [1].
Let (M, g) be a tw0-dimensional orientable Riemannian manifold. Let

A , B be two points of M . We assume that there is a geodesically convex
open set D in M containing A and B. (Recall that an open set D in M
is called geodesically convex if any two points P , Q of D can be joined by
a unique geodesic segment PQ in D , which gives the distance between P
and Q. ) Let P\in D . We denote by \triangle PAB the compact, simply connected
subset of D bounded by geodesic segments PA , AB and BP. Such \triangle PAB

is called a small geodesic triangle.
Fixing A and B , we can consider the area of \triangle PAB as a function of

P\in D , which is denoted by S(P) . Similarly, the angle \angle APB may also
be considered as a function of P\in D , which is denoted by \Omega(P) . We show
in Theorem 1 the formula obtained by applying the Laplace operator to S
and \Omega .

To state Theorem 1 we prepare some notations concerning the geodesic
polar coordinates around A and B . Let \{U, (r, \theta)\} (resp. \{V, (5, \varphi ) \} ) be the
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geodesic polar coordinate centered at A (resp. B). Since D is geodesically
convex, both U and V cover D , i.e., D\subset U\cap V We assume that the
arguments \theta and \varphi are normalized in the following manner: (1) the 2-
vector \frac{\partial}{\partial r}\wedge\frac{\partial}{\partial\theta} and \frac{\partial}{\partial s}\wedge\frac{\partial}{\partial\varphi} define the same orientation on D , (2) \theta(B)=0 ,
\varphi(A)=\pi .

Let J=J(r, \theta) (resp. H=H(s , \varphi)) be the norm of the vector field \frac{\partial}{\partial\theta}

(resp. \frac{\partial}{\partial\varphi} ), i.e.,

J(r, \theta)=\sqrt{g(\frac{\partial}{\partial\theta},\frac{\partial}{\partial\theta})} , H(s, \varphi)=\sqrt{g(\frac{\partial}{\partial\varphi},\frac{\partial}{\partial\varphi})} .

Then Theorem 1 can be stated as follows:

Theorem 1 Let (M, g) be a twO-dimensional orientable Riemannian
manifold. Let D be a geodesically convex open set in M and let \triangle PAB

be a small geodesic triangle in D. Set \epsilon(P)=1 if 0<\theta(P)<\pi and
\epsilon(P)=-1 if \pi<\theta(P)<2\pi . Then it holds

(1) \Delta S(P)=\epsilon(P)\{\frac{1}{J}\frac{\partial}{\partial\theta}(\frac{1}{J}L_{A}(J))(P)-\frac{1}{H}\frac{\partial}{\partial\varphi}(\frac{1}{H}L_{B}(H))(P)\} .

(2) \Delta\Omega(P)=-\epsilon(P)(\frac{1}{J}\frac{\partial^{2}1ogJ}{\partial r\partial\theta}(P)-\frac{1}{H}[mathring]_{\frac{\partial^{2}1gH}{\partial s\partial\varphi}}(P)) .

In the formulas in Theorem 1, for a differentiable function f on D we
mean by L_{A}(f) and L_{B}(f) the functions defined by

L_{A}(f)(Q)= \int_{AQ}fdr=\int_{0}^{r(Q)}f(r, \theta(Q))dr ,

L_{B}(f)(Q)= \int_{BQ}fds=\int_{0}^{s(Q)}f(s, \varphi(Q))ds ,

where Q is a point of D and AQ (resp. BQ) is the geodesic segment joining
A (resp. B) to Q .

It is remarkable that \Delta S(P) can be calculated by the local properties
of (M, g) around geodesic segments AP and BP. More strongly, \Delta\Omega(P) is
calculated by only the local property of (M, g) around P.

As a corollary of Theorem 1 we have

Corollary Assume that \frac{\partial J}{\partial\theta}=0 holds on a neighborhood of AP and that
\frac{\partial H}{\partial\varphi}=0 holds on a neighborhood of BP . Then, it holds \Delta S=\Delta\Omega=0 on



On the areas of geodesic triangles on a surface 197

a neighborhood of P. In particular, if (M, g) is of constant curvature, then
S and \Omega are harmonic.

Theorem 1 is also valid for somewhat large geodesic triangles not con-
tained in any geodesically convex set in M. We will prove this fact in \S 4.

2. Bi-angular coordinates for geodesic triangles

We now introduce a new coordinate called the bi-angular coordinate,
which is, in a sense, suitable to parametrize geodesic triangles APAB.

Let D_{+} and D_{-} be the domains in D given by

D_{+}=\{(r, \theta)\in D|0<\theta<\pi\} ,
D_{-}=\{(r, \theta)\in D|\pi<\theta<2\pi\}\tau

We define a locally constant function \epsilon on D_{+}\cup D_{-} by setting \epsilon(P)=1

if P\in D_{+} , \epsilon(P)=-1 if P\in D_{-} . Let P\in D_{+}\cup D_{-} . We denote by
\xi(P) and \eta(P) the interior angles at the vertexes A and B , respectively,
i.e., \xi(P)=\angle PAB and \eta(P)=\angle PBA . Since D is geodesically convex, it
can be easily shown that the angle \Omega(P)=\angle APB defined in \S 1 satisfies
0<\Omega(P)<\pi .

We first prove

Lemma 2 On the domain D_{+}\cup D_{-} , it holds

(1) \frac{\partial}{\partial s}=\cos\Omega\frac{\partial}{\partial r}+\epsilon\frac{\sin\Omega}{J}\frac{\partial}{\partial\theta} , \frac{\partial}{\partial\varphi}=H(-\epsilon sin \Omega\frac{\partial}{\partial r}+\frac{\cos\Omega}{J}\frac{\partial}{\partial\theta}) .

(2) ds=\cos\Omega dr+\epsilon J sin \Omega d\theta , d \varphi=\frac{1}{H} ( -\epsilon sin \Omega dr+J cos \Omega d\theta).

Proof. We note that the Riemannian metric g can be written in the form

g=dr^{2}+J^{2}d\theta^{2}=ds^{2}+H^{2}d\varphi 2 .

Let P\in D_{+}\cup D_{-} . Since the angle between the vectors ( \frac{\partial}{\partial r})_{P} and
( \frac{\partial}{\partial s})_{P} equals \Omega(P) , we have g(( \frac{\partial}{\partial r})_{P}, (\frac{\partial}{\partial s})_{P})=\cos\Omega(P) . Moreover, since
the angle between the vectors ( \frac{\partial}{\partial\theta})_{P} and ( \frac{\partial}{\partial s})_{P} equals \Omega(P)-\frac{\epsilon(P)}{2}\pi , we
have g (( \frac{\partial}{\partial\theta})_{P} , (\frac{\partial}{\partial s})_{P})=\epsilon(P)J(P) sin \Omega(P) . This proves the first equality
of (1). Similarly, we can show the second equality of (1).

The assertion (2) is just the dual version of (1) and hence can be im-
mediately obtained by (1). \square



198 E. Kaneda and K. Kiso

As is easily seen, any point P of the domain D_{+} (or D_{-} ) can be com-
pletely parametrized by two angles (\xi(P), \eta(P)) , which is called the geodesic
bi-angular coordinate of D_{+} (or D_{-} ) with respect to the pair (A, B) . Con-
cerning this coordinate (\xi, \eta) , the vector fields \frac{\partial}{\partial\xi} , \frac{\partial}{\partial\eta} , the Riemannian met-
ric g and the area element dA are written as follows:

Proposition 3 (1) \frac{\partial}{\partial\xi}=J cot \Omega\frac{\partial}{\partial r}+\epsilon\frac{\partial}{\partial\theta}=\frac{J}{\sin\Omega}\frac{\partial}{\partial s} ,

\frac{\partial}{\partial\eta}=\frac{H}{\sin\Omega}\frac{\partial}{\partial r}=H cot \Omega\frac{\partial}{\partial s}-\epsilon\frac{\partial}{\partial\varphi} .

(2) g=( \frac{1}{\sin\Omega})^{2} ( J^{2}d\xi^{2}+2JH cos \Omega d\xi d\eta+H^{22}d\eta ).

(3) dA=- \epsilon\frac{JH}{\sin\Omega}d\xi\wedge d\eta .

Proof. Let P=(r, \theta)=(s, \varphi)\in D_{+}\cup D_{-} . Then we have \xi=\epsilon(\theta-\pi)+\pi ,
\eta=\epsilon(\pi-\varphi) and hence d\xi=\epsilon d\theta , d\eta=-\epsilon d\varphi . By (2) of Lemma 2,
we easily have dr=J cot \Omega d\theta+\frac{H}{\sin\Omega}d\eta . Putting this into the formulas
g=dr^{2}+J^{2}d\theta^{2} , dA=Jdr\wedge dO , we easily get (2) and (3).

theexpressionof\frac{o_{\partial}v(2}{\partial\xi}.Similarly,wecanettheexpreono’.\square 0,itfo11owsfrom)ofLemma2that\frac{\partial rS}{\partial\xi,g’}=Jot\Omega,=\frac{\frac{\partial\varphi}{},H\partial\xi}{sin,f\frac{\partial\Omega}{\partial\eta}}.ThisivesFina11y,wepretheassertion(l).ince\frac{\partial\theta}{\partial\xi,c’}=\epsilon\frac{\partial\xi}{s\partial\frac{\partial s\xi}{\partial\xi si}}=\epsilon,=-\in\frac{\partial\eta}{\partial\xi,g’}=

We now represent the Laplace operator \Delta in terms of the bi-angular
coordinate (\xi, \eta) .

Theorem 4 Let F be a differentiable function on D_{+}\cup D_{-} . Then:

\Delta F=\epsilon\{\frac{1}{J}\frac{\partial}{\partial\theta}(\frac{1}{J}\frac{\partial F}{\partial\xi})-\frac{1}{H}\frac{\partial}{\partial\varphi}(\frac{1}{H}\frac{\partial F}{\partial\eta})\}

Proof. Let \Delta_{0} be the differential operator given in the right side of the
above equality. By Proposition 3, we have \frac{\partial}{\partial\theta}=\epsilon ( \frac{\partial}{\partial\xi}-\frac{J}{H} cos \Omega\frac{\partial}{\partial\eta} ),
\frac{\partial}{\partial\varphi}=\epsilon (- \frac{\partial}{\partial\eta}+\frac{H}{J} cos \Omega\frac{\partial}{\partial\xi} ). Putting these equalities into \Delta_{0}F_{:} we have

\Delta_{0}F=\frac{1}{J^{2}H^{2}}(H^{2}\frac{\partial^{2}F}{\partial\xi^{2}}-2JH cos \Omega\frac{\partial^{2}F}{\partial\xi\partial\eta}+J^{2}\frac{\partial^{2}F}{\partial\eta^{2}})

+ (lower order derivatives).

By the definition of the Laplace operator \Delta , we know that the part of second
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order derivatives of \Delta F is just the same form stated above (see [4] and (2)
of Proposition 3). Therefore, if we set \Delta_{1}=\Delta-\Delta_{0} , then \Delta_{1} is a first order
differential operator. It may be written in the form

\underline{\wedge}_{1}F=u(\xi, \eta)\frac{\partial F}{\partial\xi}+v(\xi, \eta)\frac{\partial F}{\partial\eta}+w(\xi, \eta)F,

where u(\xi, \eta)=\Delta_{1}\xi , v(\xi, \eta)=\Delta_{1}\eta , w(\xi, \eta)=\Delta_{1}1;1 denotes the function
identically equals 1.

To show the theorem it suffices to prove u(\xi, \eta)=v(\xi, \eta)=w(\xi, \eta)=0 .
By use of the expression of \Delta in the geodesic polar coordinate (r, \theta) , we
have

\Delta\xi=\frac{1}{J}\{\frac{\partial}{\partial r}(J\frac{\partial\xi}{\partial r})+\frac{\partial}{\partial\theta}(\frac{1}{J}\frac{\partial\xi}{\partial\theta})\}

= \frac{1}{J}\{\frac{\partial}{\partial r}(J\frac{\partial(\epsilon\theta)}{\partial r})+\frac{\partial}{\partial\theta}(\frac{1}{J}\frac{\partial(\epsilon\theta)}{\partial\theta})\}

= \frac{\epsilon}{J}\frac{\partial}{\partial\theta}(\frac{1}{J})

u( \xi,\eta)=\Delta_{1}\xi=0Ontheotherhand.’ wecaneasilyhave\Delta_{0}\xi=\frac{\epsilon}{J,v},\frac{\partial}{(\xi\partial\theta}Similarly,wecana1soverify

,
\eta’=(\frac{1}{J,)})

.
w(\xi,\eta)=0Thisproves

.
This completes the proof of the theorem. \square

3. Multiple integration on geodesic triangles

Before proceeding to the proof of Theorem 1 we make some criteria
concerning the multiple integration on geodesic triangles from a somewhat
general viewpoint.

Let f be a differentiable function on D_{+}\cup D_{-} . Let us denote by V(f)
the function given by integrating f over APAB, i.e. ,

V(f)(P)= \int\int_{\triangle PAB}f dA, P\in D_{+}\cup D_{-} .

We first prove

Proposition 5 Let P\in D_{+}\cup D_{-} . Then

V(f)(P)= \int_{0}^{\xi(P)}L_{A}(Jf)(\xi, \eta(P))d\xi
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= \int_{0}^{\eta(P)}L_{B}(Hf)(\xi(P), \eta)d\eta .

To prove the proposition we show

Lemma 6 Let Q\in D_{+}\cup D_{-} . Then

L_{A}(f)(Q)= \int_{0}^{\eta(Q)}(\frac{Hf}{\sin\Omega})(\xi(Q), \eta)d\eta ,

L_{B}(f)(Q)= \int_{0}^{\xi(Q)}(\frac{Jf}{\sin\Omega})(\xi, \eta(Q))d\xi .

Proof. Let us show the first equality. We note that on the geodesic segment
AQ , \xi identically equals \xi(Q) . Therefore, by (2) of Lemma 2 we have
dr= \frac{H}{\sin\Omega}d\eta on AQ . Hence, we immediately have

L_{A}(f)(Q)= \int_{AQ}fdr=\int_{0}^{\eta(Q)}(\frac{Hf}{\sin\Omega})(\xi(Q), \eta)d\eta

The second equality can be similarly dealt with. \square

Proof of Proposition 5. In the bi-angular coordinate (\xi, \eta) , \triangle PAB is de-
noted by the subset \{(\xi, \eta)|0\leq\xi\leq\xi(P), 0\leq\eta\leq\eta(P)\} . Hence by (3) of
Proposition 3, we have

V(f)(P)= \int_{0}^{\xi(P)}(\int_{0}^{\eta(P)}(\frac{JH}{\sin\Omega}f)(\xi, \eta)d\eta)d\xi

= \int_{0}^{\eta(P)}(\int_{0}^{\xi(P)}(\frac{JH}{\sin\Omega}f)(\xi, \eta)d\xi)d\eta .

Consequently, our proposition follows from Lemma 6. \square

We now start the proof of Theorem 1.

Proof of Theorem 1. It is easily seen that the area function S is given by
S=V(1) , where 1 is the function identically equals 1. By Proposition 5
we have

\frac{\partial V(1)}{\partial\xi}=L_{A}(J) , \frac{\partial V(1)}{\partial\eta}=L_{B}(H) .

Therefore, by Theorem 4 we obtain (1) of Theorem 1.
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We now prove (2). Let K be the Gaussian curvature of g . Applying
the Gauss-Bonnet formula to the geodesic triangle \triangle QAB (Q\in D_{+}\cup D-) ,
we have

\Omega(Q)=V(K)(Q)-\xi(Q)-\eta(Q)+\pi .

Applying \Delta to both sides, we get

\Delta\Omega=\epsilon\{\frac{1}{J}\frac{\partial}{\partial\theta}(\frac{1}{J}L_{A}(JK))-\frac{1}{H}\frac{\partial}{\partial\varphi}(\frac{1}{H}L_{B}(HK))\}

- \epsilon\{\frac{1}{J}\frac{\partial}{\partial\theta}(\frac{1}{J})-\frac{1}{H}\frac{\partial}{\partial\varphi}(\frac{1}{H})\}

Since K=- \frac{1}{J}\frac{\partial^{2}J}{\partial r^{2}}=-\frac{1}{H}\frac{\partial^{2}H}{\partial s^{2}} and \frac{\partial J}{\partial r}(A)=\frac{\partial H}{\partial s}(B)=1 (see [4]), we have

L_{A}(JK)(Q)=- \int_{0}^{r(Q)}\frac{\partial^{2}J}{\partial r^{2}}(r, \theta(Q))dr=-\frac{\partial J}{\partial r}(Q)+1 ,

L_{B}(HK)(Q)=- \int_{0}^{s(Q)}\frac{\partial^{2}H}{\partial s^{2}}(s, \varphi(Q))ds=-\frac{\partial H}{\partial s}(Q)+1 .

Therefore we have

\Delta\Omega=-\epsilon\{\frac{1}{J}\frac{\partial}{\partial\theta}(\frac{1}{J}\frac{\partial J}{\partial r})-\frac{1}{H}\frac{\partial}{\partial\varphi}(\frac{1}{H}\frac{\partial H}{\partial s})\}

This proves (2) of Theorem 1.
Finally we prove Corollary of Theorem 1. If \frac{\partial J}{\partial\theta}=0 on a neighborhood

of AP, then it is clear that \frac{\partial L_{A}(J)}{\partial\theta}=0 holds around P. Similarly, if \frac{\partial H}{\partial\varphi}=0

on a neighborhood of BP, \frac{\partial L_{B}(H)}{\partial\varphi}=0 holds on a neighborhood of P. Then
by Theorem 1 we have \Delta S=\Delta\Omega=0 around P. If (M, g) is of constant
curvature, then by the symmetry around A (resp. B) we know that J (resp.
H) does not depend on the argument \theta (resp. \varphi). Consequently, we have
\frac{\partial J}{\partial\theta}=\frac{\partial H}{\partial\varphi}=0 . This shows the corollary. Moreover, it is easily seen that
under the same condition the interior angles \xi and \eta satisfy \Delta\xi=\Delta\eta=0

(see the formulas in the proof of Theorem 4). \square

4. Somewhat large geodesic triangles

We now consider geodesic triangles not contained in any geodesically
convex open set in M.
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Let A, B and P be three points of M such that there is no geodesically
convex open set of M containing all A , B and P simultaneously. We assume
that A and B are not so distant, i.e., A and B are joined by a geodesic
segment AB; and the geodesic polar coordinates \{U, (r, \theta)\} and \{V, (s, \varphi)\}

centered at A and B have a non-trivial intersection and P\in U\cap V We
join P to A (resp. B) by the geodesic segment AP (resp. BP) originated at
A (resp. B). The geodesic triangle bounded by AP, BP and AB is called
a somewhat large geodesic triangle, which may contain more complicated
figures than those considered in \S 2.

We say that our geodesic triangle defined above is in good condition if it
satisfies the following: (1) The curve composed of AP, BP and AB divide
M into two distinct domains and at least one of them is compact. One of
the compact domains of this division is denoted by APAB. (In case both
sides are compact, then any side can be selected as \triangle PAB as desired. The
interior angles \xi(P) , \eta(P) and \Omega(P) may exceed \pi .) (2) \Omega(P)\neq 0 , \pi .

Let Q be a point of U\cap V sufficiently close to P. Then \triangle QAB is defined
in the same manner as above. We promise that \triangle QAB is synchronized
with APAB, i.e., \triangle QAB can be continuously deformed to \triangle PAB and is
homeomorphic to APAB. Accordingly, the area of \triangle QAB and the interior
angle \Omega(Q) can be considered as continuous functions of Q .

We now show that the formulas in Theorem 1 also hold for our some-
what large geodesic triangles in good condition. As in \S 1 we may assume
that \frac{\partial}{\partial r}\wedge\frac{\partial}{\partial\theta} and \frac{\partial}{\partial s}\wedge\frac{\partial}{\partial\varphi} define the same orientation of M . Since \Omega(P)\neq 0 , \pi ,
the bi-angular coordinate (\xi, \eta) is effective on a sufficiently small neighbor-
hood W of P. It can be verified that Lemma 2 and hence Theorem 4 are
valid even in the case where \Omega(P)>\pi . Here \epsilon(P) is determined as follows:
\epsilon(P)=1 (resp. \epsilon(P)=-1 ) if the interior angle \xi(P) is measured in the
positive (resp. negative) direction with respect to the argument \theta . In other
words, \epsilon(P) is determined by the ratio between d\theta and d\xi at P .

Let f be a differentiate function on a neighborhood of APAB. As in
\S 3, we denote by V(f)(Q) the value given by integrating f over AQAB.
Since the bi-angular coordinate (\xi, \eta) does not cover the whole interior of
\triangle PAB , V(f) cannot be expressed in terms of the coordinate (\xi, \eta) , however,
the partial derivatives of V(f) can be calculated. In fact, we can prove the
following equalities:

\frac{\partial V(f)}{\partial\xi}=L_{A}(Jf) , \frac{\partial V(f)}{\partial\eta}=L_{B}(Hf) .
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Let Q\in W For a real number \sigma sufficiently close to 0 we define a
point Q_{\sigma}\in W by setting \xi(Q_{\sigma})=\sigma+\xi(Q) and \eta(Q_{\sigma})=\eta(Q) . If \sigma>0

then we easily have \triangle Q_{\sigma}AB=\triangle QAB\cup\triangle Q_{\sigma}AQ and if \sigma<0 we have
\triangle Q_{\sigma}AB=\triangle QAB\backslash \triangle Q_{\sigma}AQ . Consequently, we have

V(f)(Q_{\sigma})=V(f)(Q)+ \int_{0}^{\sigma}(\int_{0}^{r(Q_{\tau})}(Jf)(r, \theta(Q_{\tau}))dr)d\tau .

Therefore, we easily get

\frac{\partial V(f)}{\partial\xi}(Q)=\int_{0}^{r(Q)}(Jf)(r, \theta(Q))dr=L_{A}(Jf)(Q) .

Similarly, we can get

\frac{\partial V(f)}{\partial\eta}(Q)=L_{B}(Hf)(Q) .

Now in the almost same manner as in \S 3, we can get the formula (1) in
Theorem 1 for our somewhat large geodesic triangles in good condition.
The formula (2) can be also shown by the extended form of Gauss-Bonnet
formula

\Omega(Q)=V(K)(Q)-\xi(Q)-\eta(Q)-2 \pi\chi(\triangle QAB)+3\pi .

where \chi(\triangle QAB) denotes the Euler characteristic of the triangle \triangle QAB

(see [2]). Since \triangle QAB is homeomorphic to \triangle PAB , \chi(\triangle QAB) is identically
equal to \chi(\triangle PAB) around P. Consequently, we get the formula (2).

We can resume the above result in the following

Theorem 7 Let \triangle PAB be a somewhat large geodesic triangle in a twO-
dimensional orientable Riemannian manifold (M, g) . If \triangle PAB is in good
condition, then the formulas (1) and (2) hold for APAB, where \epsilon(P) is
determined by the ratio of d\theta and d\xi at P .

Finally, we note that Corollary in \S 1 is also holds for a somewhat large
geodesic triangle in good condition.
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