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Finite sums of nilpotent elements in properly
infinite \bm{C}^{*}-algebras
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Abstract. We prove that A is the linear span of elements x\in A with x^{2}=0 if A

is stable or properly infinite. Moreover, we prove the same statement for any closed
tw0-sided ideal I of such C^{*} -algebras.
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1. Introduction

Recall that a C^{*}-algebra A is called stable if A is isomorphic to A\otimes K ,
and a unital C^{*} -algebra A is called properly infinite if there exist projections
e , f\in A such that e\sim f\sim 1 and ef=0, where A\otimes K is the tensor product
of A and the C^{*}-algebra K of compact operators on a separable infinite
dimensional Hilbert space, and e\sim f means that there exists a partial
isometry x\in A such that e=x^{*}x , f=xx^{*}- We prove that A is the
linear span of elements x\in A with x^{2}=0 (or in particular the linear span
of nilpotent elements of A) if A is stable or properly infinite. Moreover,
we prove the same statement for any closed tw0-sided ideal I of such C^{*}-

algebras. Denoting by [A, A] the linear span of commutators [a, b]=ab-ba ,
with a , b\in A , T. Fack proved in [2] that [A, A]=A if A is stable or properly
infinite. We also show the same statement for any closed tw0-sided ideal I
of such C^{*} -algebras.

The author would like to thank Prof. A. Kishimoto for some helpful
comments.

2. Main Results

For each C^{*} -algebra A, we denote by N(A) the linear span of elements
x\in A with x^{2}=0 . We have the following result;

Theorem 1 Let A be a properly infinite unital C^{*} -algebra. Then I=
N(I) for any closed twO-sided ideal I of A .
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When \{A_{k}\}_{k=1}^{\infty} is a sequence of C^{*} -algebras, we denote by \oplus_{k=1}^{\infty}A_{k} the
direct sum C^{*}-algebra \{\oplus_{k=1}^{\infty}a_{k} : a_{k}\in A_{k}, \lim_{karrow\infty}||a_{k}||=0\} . We also
denote by M_{n} the n\cross n matrix algebra, and by I_{n} the unit of M_{n} . We
begin with the following lemma;

Lemma 2 Let B be a C^{*} -algebra, and suppose that A=B\otimes(\oplus_{\ell=1}^{\infty}M_{3\ell}) .

Define E_{0}^{\ell}\in M_{3\ell} for \ell\in \mathbb{N} by

E_{0}^{\ell}= \frac{1}{\ell} (\begin{array}{lll}I_{\ell} 0 00 -\frac{1}{2}I_{\ell} 00 0 -\frac{1}{2}I_{\ell}\end{array})

Then x\otimes(\oplus_{\ell=1}^{\infty}E_{0}^{\ell})\in A is a element in N(A) for any x\in B .

Proof Define E_{m}^{\ell}\in M_{3\ell} for \ell\in \mathbb{N} , m=1,2,3 , 4 by

E_{1}^{\ell}= \frac{1}{\ell} (\begin{array}{lll}I_{\ell} I_{\ell} I_{\ell}-\frac{1}{2}I_{\ell} -\frac{1}{2}I_{\ell} -\frac{1}{2}I_{\ell}-\frac{1}{2}I_{\ell} -\frac{1}{2}I_{\ell} -\frac{1}{2}I_{\ell}\end{array}) ,

E_{2}^{\ell}= \frac{1}{\ell} (\begin{array}{lll}0 -I_{\ell} -I_{\ell}0 0 00 0 0\end{array}) ,

E_{3}^{\ell}= \frac{1}{\ell} (\begin{array}{lll}0 0 0\frac{1}{2}I_{\ell} 0 \frac{1}{2}I_{\ell}0 0 0\end{array})

E_{4}^{\ell}= \frac{1}{\ell}
(\begin{array}{lll}0 0 00 0 0\frac{1}{2}I_{\ell} \frac{1}{2}I_{\ell} 0\end{array})

Then (E_{m}^{\ell})^{2}=0 , E_{0}^{\ell}= \sum_{m=1}^{4}E_{m}^{\ell} and \lim\ellarrow\infty||E_{m}^{\ell}||=0 for each m . Thus
x\otimes(\oplus_{\ell=1}^{\infty}E_{m}^{\ell})\in A , (x\otimes(\oplus_{\ell=1}^{\infty}E_{m}^{\ell}))^{2}=0 for each m and
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x \otimes(\oplus_{\ell=1}^{\infty}E_{0}^{\ell})=x\otimes(\oplus_{\ell=1}^{\infty}\sum_{m=1}^{4}E_{m}^{\ell})

= \sum_{m=1}^{4}x\otimes(\oplus_{\ell=1}^{\infty}E_{m}^{\ell})\in N(A) .

\square

Note that E_{0}^{\ell} equals \frac{1}{\ell}\{\sum_{i}^{\ell}=1e^{\ell}-i,i\frac{1}{2}\sum_{i=\ell+1}^{3\ell}e_{i,i}^{\ell}\} by denoting the matrix
units of M_{3\ell} by \{e_{i,j}^{\ell}\} .

Lemma 3 Let B be a C^{*} -algebra, and suppose that A=B\otimes K . Denote
by \{e_{i,j}\} the matrix units of K. T/ien x\otimes e_{1,1}\in N(A) for each x\in B .

Proof. Define a sequence (\lambda_{i})_{i=1}^{\infty} by

\lambda_{i}=\{\begin{array}{l}\frac{1}{4^{k-1}}\frac{1}{4^{k-1}} ( )\end{array} (4^{k-1}\leq i\leq 2\cdot 4^{k-1}-1)(24^{k-1}\leq i\leq 4\cdot 4^{k-1}-1)

,

for each i\in \mathbb{N} (i.e. (\lambda_{i})_{i=1}^{\infty}=(1, - \frac{1}{2}, - \frac{1}{2} , . .)).

Then

e_{1,1}= \sum_{i=1}^{\infty}\lambda_{i}e_{i,i}-\sum_{i=2}^{\infty}\lambda_{i}e_{i,i}

= \sum_{k=1}^{\infty}\sum_{i=4^{k-1}}^{4^{k}-1}\lambda_{i}e_{i,i}+\sum_{k=1}^{\infty}\sum_{i=2\cdot 4^{k-1}}^{2\cdot 4^{k}-1}(-\lambda_{i})e_{i,i}

= \sum_{k=1}^{\infty}\frac{1}{4^{k-1}}\{\sum_{i=4^{k-1}}^{2\cdot 4^{k-1}-1}e_{i,i}-\frac{1}{2}\sum_{i=2\cdot 4^{k-1}}^{4\cdot 4^{k-1}-1}e_{i,i\}}

+ \sum_{k=1}^{\infty}\frac{1}{2\cdot 4^{k-1}}\{\sum_{i=2\cdot 4^{k-1}}^{2\cdot 2\cdot 4^{k-1}-1}e_{i,i}-\frac{1}{2}\sum_{2i=2\cdot\cdot 4^{k-1}}^{4\cdot 2\cdot 4^{k-1}-1}e_{i,i}\} .

For each \ell\in \mathbb{N} , define *-monomorphisms \iota^{\ell} : M_{3\ell}arrow K by

\iota^{\ell}(e_{i,j}^{\ell})=e_{\ell+i-1,\ell+j-1} 1\leq i , j\leq 3\ell .
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Then

\iota^{\ell}(E_{0}^{\ell})=\frac{1}{\ell}\{\sum_{i=\ell}^{2\ell-1}e_{i,i}-\frac{1}{2}\sum_{i=2\ell}^{4\ell-1}e_{i,i}\}

and Ran(\iota^{4^{k-1}})\perp Ran(\iota^{4^{k’-1}}) , Ran(\iota^{2\cdot 4^{k-1}})\perp Ran(\iota^{2\cdot 4^{k’-1}}) for each k , k’\in

\mathbb{N} , k\neq k’ , where Ran(\iota^{\ell}) is the range of \iota^{\ell}and\perp means the orthogonality
relation. Thus the maps

\iota_{1}=id_{B}\otimes(\oplus_{k=1}^{\infty}\iota^{4^{k-1}}) : B\otimes(\oplus_{k=1}^{\infty}M_{3\cdot 4^{k-1}})arrow A

\iota_{2}=id_{B}\otimes(\oplus_{k=1}^{\infty}\iota^{2\cdot 4^{k-1}}) : B\otimes(\oplus_{k=1}^{\infty}M_{3\cdot 2\cdot 4^{k-1}})arrow A

are well-defined homomorphisms and injective, where id_{B} is the identity
map on B . Since

\iota_{1}(N\{B\otimes(\oplus_{k=1}^{\infty}M_{3\cdot 4^{k-1}}))) ,

\iota_{2}(N\{B\otimes(\oplus_{k=1}^{\infty}M_{3\cdot 2\cdot 4^{k-1}})))\subseteq N(A) ,

it follows by Lemma 2 that

x\otimes e_{1.1}=\iota_{1}(x\otimes(\oplus_{k=1}^{\infty}E_{0}^{4^{k-1}}))

-\iota_{2}(x\otimes(\oplus_{k=1}^{\infty}E_{0}^{2\cdot 4^{k-1}}))\in N(A)

for each x\in B . \square

Proof of Theorem 1. Let e , f\in A be projectons such that e\sim 1\sim f .,
ef=0, and u , v\in A be isometries such that u^{*}u=v^{*}v=1 , uu^{*}=e and
vv^{*}=f . For each x\in I , since x=exe+ex(1-e)+(1-e)xe+(1 -

e)x(1-e) and ( 1 – e)xe , ex(1-e)\in N(I) , we only have to prove that
exe , (1-e)x(1-e)\in N(I) . Set e_{i} , f_{i}\in A for each i\in \mathbb{N} by

e_{i}=\{
v^{i-1}ue (i\geq 2)

e (i=1) ,

f_{i}=\{
u^{i-1}v(1-e) (i\geq 2)

1-e (i=1) .

Note that e_{i} ’s are partial isometries with mutually orthogonal range pr0-
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jection and with the same initial projection e , and that f_{i} ’s are partial
isometries with mutually orthogonal range projections and with the same
initial projection l–e. Define *-isomorphisms \varphi : eIe\otimes Karrow I , \psi : (1-
e)I(1-e)\otimes Karrow I by

\varphi(a\otimes e_{i,j})=e_{i}ae_{j}^{*} , a\in e/e , i , j\in \mathbb{N} ,

\psi(b\otimes e_{i,j})=f_{i}bf_{j}^{*} , b\in(1-e)I(1-e) , i , j\in \mathbb{N} .

Then \varphi(a\otimes e_{1,1})=a for each a\in eIe and \psi(b\otimes e_{1,1})=b for each b\in(1-

e)I(1-e) . Thus by Lemma 3,

exe=\varphi(exe\otimes e_{1,1})\in\varphi(N(eIe\otimes K))\subseteq N(I) ,

(1-e)x(1-e)=\psi((1-e)x(1-e)\otimes e_{1,1})

\in\psi(N((1-e)I(1-e)\otimes K))\subseteq N(I) .

\square

Corollary 4 Let B be a C^{*} -algebra such that the multiplier algebra M(B)
is properly infinite, and C be a C^{*} -algebra. If A=B\otimes C {for instance,

if A is a stable algebra, a tensor product with a Cuntz-algebra O_{n} ) then
I=N(I) for any closed twO-sided ideal I of A, where the tensor product
can be taken with respect to any C^{*} -norm.

Proof. The multiplier algebra M(A) of A is properly infinite and A is a
closed tw0-sided ideal of M(A) . Thus I is a closed tw0-sided ideal of M(A)
and I=N(I) by Theorem 1. \square

Recall that a unital C^{*} -algebra A is called infinite if there exists a
projection e\in A such that e\neq 1 , e\sim 1 .

Corollary 5 If A is a simple unital infinite C^{*} -algebra then A=N(A)

Proof. By [1], A is properly infinite. Thus A=N(A) by Theorem 1. \square

If we do not assume that A is simple in Corollary 5 then the conclusion
does not follow in general. For instance, the Toeplitz algebra \mathfrak{T} is a unital
infinite C^{*} -algebra with a closed tw0-sided ideal K, and the quotient C^{*}-

algebra \mathfrak{T}/K is isomorphic to C(S) , where C(S) is the C^{*} -algebra of complex
continuous functions on S and S=\{z\in \mathbb{C} : |z|=1\} . Then N(\mathfrak{T})=K\neq

\mathfrak{T} . For N(K)=K by Corollary 4, and N(\mathfrak{T}/K)=N(C(S))=\{0\} . Thus
N(\mathfrak{T})\subseteq Ker(\pi)=K=N(K)\subseteq N(\mathfrak{T}) since \pi(N(\mathfrak{T}))\subseteq N(\mathfrak{T}/K)=\{0\} ,
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where \pi is the quotient map from \mathfrak{T} onto \mathfrak{T}/K .
Finally we consider the relation between [A, A] and N(A) .

Proposition 6 For any C^{*} -algebra A, N(A)\subseteq[A, A] .

Proof. For each x\in A with x^{2}=0 , set x=u|x| , where |x|=(x^{*}x)^{\frac{1}{2}}

and u in the double dual A^{**} of A is the partial isometry of the polar-
decomposition of x . Then since u|x|^{\frac{1}{2}}\in A ,

x=[u|x|^{\frac{1}{2}}, |x|^{\frac{1}{2}}]\in[A, A] .

\square

Corollary 7 Let A be a properly infinite C^{*} -algebra. Then I=[I, I] for
any closed twO-sided ideal I of A .

Proof. By Theorem 1 and Proposition 6, I=N(I)\subseteq[I, I]\subseteq I . \square

Corollary 8 Let B be a C^{*} -algebra such that the multiplier algebra M(B)
is properly infinite, and C be a C^{*} -algebra If A=B\otimes C then I=[I, I]
for any closed twO-sided ideal I of A, where the tensor product can be taken
with respect to any C^{*} -norm.

Proof. The multiplier algebra M(A) is properly infinite and A is a closed
tw0-sided ideal of M(A) . Thus I is a closed tw0-sided ideal of M(A) and
I=[I, I] by Corollary 7. \square

References

[1 ] Cuntz J., The structure of multiplication and addition in simple C^{*} algebras. Math.
Scand. 40 (1977), 215-233.

[2] Fack T., Finite sums of commutators in C^{*} -algebras. Ann. Inst. Fourier, Grenoble
32 (1982), 129-137.

[3] Marcoux L.W., On the closed Lie ideals of certain C^{*} -algebras. J. Integr. Equat.
Oper. Th. 22 (1995), 463-475.

[4] Marcoux L.W. and Murphy G.J., Unitanly-invanant linear spaces in C^{*} -algebaras.
Proc. Amer. Math. Soc. 126 (1998), 3597-3605.

[5] Pedersen G., C^{*} -algebras and their Automorphism Group. Academic Press, Lon-
don/NewYork/ San Francisco (1979).

[6] Thomsen K., Finite sums and products of commutators in inductive limit C^{*}-

algebras. Ann. Inst. Fourier. Grenoble 43 (1993), 225-249.
[7] Wegge-Olsen N.E., K- Theorem and C^{*} -Algebras. Oxford University Press, Oxford/

New York/ Tokyo (1993).



Finite sums of nilpotent elements in C^{*} -algebras 281

Department of Mathematics
Graduate School of Science
Hokkaido University
Sapporo 060-0810, Japan
E-mail: kataoka@math.sci.hokudai.ac.jp


	1. Introduction
	2. Main Results
	Theorem 1 ...

	References

