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On the connection of coefficient and structural
conditions about Fourier series
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Abstract. We extend the validity of some theorems treating the relations of coeffi-
cient and structural conditions with respect to Fourier series. The extension means that
the conditions given by means of the function x^{\beta} , \beta>0 , are replaced by concave or
Mulholland-type functions.

Key words: Fourier series, coefficient and structural condition, concave function, Mulhol-
land function, best approximation.

1. Introduction

Let f(x) be a 2\pi-periodic Lebesgue integrable to the pth power (p>1)
function and let

\frac{a_{0}}{2}+\sum_{n=1}^{\infty} ( a_{n} cos nx+b_{n} sin nx)

be its Fourier series. Denote

\rho_{n}:=(a_{n}^{2}+b_{n}^{2})^{1/2} and p’:= \frac{p}{p-1} .

In an old-time paper [4], among others, we proved the following result.

Theorem A Let w(x)(x\geq 1) be a positive and monotone function with
the property w(2n)\leq Aw(n)(A\geq 2, n=1,2, .) , moreover let 0<\beta\leq

p’

(i) If p\leq 2 then

\int_{0}^{1}t^{-2}w(\frac{1}{t})(\int_{0}^{2\pi}|f(x+2t)+f(x-2t)-2f(x)|^{p}dx)^{\beta/p}dt<\infty

(1.1)
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implies

\sum_{n=1}^{\infty}w(n)\{\sum_{k=n}^{\infty}\rho_{k}^{p’}\}^{\beta/p’}<\infty . (1.2)

(ii) If p\geq 2 and

\sum_{n=m}^{\infty}n^{-\beta}w(n)\leq Km^{1-\beta}w(m) , (1.3)

where K:=K(\beta, w) is a positive constant, then (1.2) implies

\int_{0}^{1}t^{-2}w(\frac{1}{t})(\int_{0}^{2\pi}|f(x+t)-f(x-t)|^{p}dx)^{\beta/p}dt<\infty . (1.4)

It is easy to see that in the particular case p=2 we can derive an
equivalence result from Theorem A, namely assuming the condition (1.3)
with 0<\beta\leq 2 , then the implication chain (1.4)\Rightarrow (1.1)\Rightarrow (1.2)\Rightarrow (1.4)
implies the following result.

Corollary A The conditions (1.1), (1.2) and (1.4) with p=2 are equiv-
alenl under the assumplion (1.3) with 0<\beta\leq 2 .

This assertion is a part of a theorem proved also in [4].
In a recent paper [5], among others, we generalized the part \beta\leq 1 of

the assertion (i) of Theorem A such that we replaced the function x^{\beta} in
(1.1) by an arbitrary increasing and concave function \varphi(x) and utilized the
quasi \delta-power-monotone sequences instead of monotone sequences.

In order to make easy to formulate our result we recall some definitions
and notations.

In the sequel we shall assume that K , K_{i} denote positive constants, and
may vary from occurance to occurance, K(\cdot) denotes such a constant which
depends only those parameters as indicated in the bracket.

We say that a sequence \gamma:=\{\gamma_{n}\} of positive terms is quasi \delta -power-
monotone increasing (decreasing) if there exists a constant K:=K(\delta, \gamma)\geq

1 such that

Kn^{\delta}\gamma_{n}\geq m^{\delta}\gamma_{m} (n^{\delta}\gamma_{n}\leq Km^{\delta}\gamma_{m})

holds for any n\geq m , m=1,2 ,
Now we can recall the mentioned result proved in [5], where we shall
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use the following function linked to a sequence \omega :=\{\omega_{n}\} of positive terms:

\omega(x):=\{
\omega_{n} , if x=n, n\geq 1 ,
linear on [n, n+1] .

Theorem B Let 1 <p\leq 2 , and let \omega :=\{\omega_{n}\} be a quasi \eta -power-
monotone decreasing sequence of positive numbers with some negative \eta ,
and simultaneously quasi \rho -power-monotone increasing with some \rho<1 . If
\varphi(u)(u\geq 0, \varphi(0)=0) is an increasing and concave function, furthermore

\int_{0}^{1}t^{-2}\omega(\frac{1}{t})\varphi(\{\int_{0}^{2\pi}|f(x+2t)+f(x-2t)-2f(x)|^{p}dx\}^{1/p})dt<\infty ,

(1.5)

(1.5)

then

\sum_{n=1}^{\infty}\omega_{n}\varphi(\{\sum_{k=n}^{\infty}i_{k}^{p’}\}^{1/p’})<\infty

holds.

Naturally we also wanted to generalize the part \beta\geq 1 of the assertion
(ii) of Theorem A similarly as that of the assertion (i), that is, to replace
the function x^{\beta} by an increasing concave \varphi(x) , but without success.

Analyzing this unsuccessful attempt we have realized that the problem
lies in that the increase of a concave function can be very small contrary to
that of the function x^{\beta} with \beta>0 . Thus we have started to consider the
s0-called Mulholland functions, namely their increase can be also prescribed.

As it is well known a Mulholland class is determined by two parameters
as follows:

Given two numbers p\geq q\geq 0 , we shall write \varphi\in\triangle(p, q) if \varphi(t)

is a nonnegative function defined on [0, \infty) such that \varphi(0)=0 , t^{-p}\varphi(t)

is nonincreasing, and t^{-q}\varphi(t) is nondecreasing on (0, \infty) . Clearly \varphi(t) is
nondecreasing on (0, \infty) .

It is also plain that the function \varphi(t)=t^{\beta} belongs to the class \triangle(\beta, \beta) .
Hence it is also clear that the next step toward the generalizations is to
consider a class \triangle(\beta, \gamma) with 0<\gamma\leq\beta and thus we get functions having
very similar properties to the function x^{\beta} , or if 0<\beta\leq 1 then to any
concave function having increase large enough.
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On the other hand it is also obvious that every increasing concave func-
tion belongs to the class \triangle(1,0) , but not conversely. Namely a function
from the class \triangle(1,0) is not necessarily concave.

Perceiving this fact and analyzing the proof of Theorem B we have rec-
ognized that the proof of Theorem B given in [5] also holds for any function
\varphi\in\triangle(1,0) without any change. Thus we emerge to a mild generalization
of Theorem B.

In the present paper first we formulate this observation as Theorem 1,
and our further results will deal with functions \varphi which belong to a class
\triangle(\beta, \gamma) with 0<\gamma\leq\beta\leq 1 , or \varphi is such a function that the following
composite function

\varphi_{p}(x):=\varphi(x^{1-1/p})\equiv\varphi(x^{1/p’}) (1.7)

belongs to \triangle(\beta, \gamma) .
We know that an assumption given by (1.7) on the function \varphi is not

a beloved one, but useful. Namely our first three theorems generalize only
the part 0<\beta\leq 1 of the Theorem A, but it deals with the case 1<\beta\leq p’ ,
too.

It is clear that if \beta>1 then the function \varphi(x)=x^{\beta} is not any more
concave, but convex. On the other hand it is clear that x^{\beta}(\beta>1) also
belongs to a Mulholland class, e.g. to the class \triangle(\beta, 1) , and the functions
of this class have similar properties as x^{\beta} .

Then, if \varphi\in\triangle(\beta, 1) , unfortunately, we are not able to handle effectively
the methods of proof used earlier. However we have recognized that by
means of the function \varphi_{p}(x) defined in (1.7) our proofs work successfully,
moreover the proofs run word for word as in the proofs given in the case
0<\beta\leq 1 .

We remark that the proofs with \varphi_{p}(x) would be usable for the whole
range 0<\beta\leq p’ , but the conditions given immediately on \varphi are much easier
to survey than if they are formulated via \varphi_{p}(x) , therefore we give and prove
the cases 0<\beta\leq 1 and 1<\beta\leq p’ separately. Naturally we do not detail
or repeat all of the proofs. We shall detail the proof only at the extension
of Theorem 1, namely, as we have mentioned, the proof of Theorem 1 runs
as that of Theorem B , and here we do not recall it in the case 0<\beta\leq 1 .
The proof to be given for this theorem will use the condition given with \varphi_{p} ,
and it will be effective for the whole range 0<\beta\leq p’ .

Our theorems and their extensions in the special case \varphi(x)=x^{\beta} will
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reduce to the suitable parts of Theorem A, and they jointly cover the whole
range 0<\beta\leq p’ .

In my view, to prove the analogues of our theorems for an arbitrary
concave or convex function \varphi(x) , it is a hard task if you want that their
special cases \varphi(x)=x^{\beta} should reduce to the suitable parts of Theorem A.

2. Theorems

Theorem 1 Let 1<p\leq 2 , and let \omega:=\{\omega_{n}\} have the same meaning
and properties as in Theorem B. If \varphi\in\triangle(1,0) then the condition (1.5)
implies the inequality (1.6).

(2.1)

Theorem 2 Let us assume that p\geq 2,0<\gamma\leq\beta\leq 1 and that the
function \varphi(u) belongs to the class \triangle(\beta, \gamma) . Furthermore let us assume that
the sequence \omega:=\{\omega_{n}\} is quasi \eta -power-monotone decreasing with some
\eta>1-\gamma . Then

\sum_{n=1}^{\infty}\omega_{n}\varphi((\sum_{k=n}^{\infty}\rho_{k}^{p’})1/p’)<\infty

implies

\int_{0}^{1}t^{-2}\omega(\frac{1}{t})\varphi((\int_{0}^{2\pi}|f(x+t)-f(x-t)|^{p}dx)^{1/p})dt<\infty .

(2.2)

We underline that if \varphi(u):=u^{\beta} , then \varphi\in\triangle(\beta, \beta) clearly holds, and
thus with \omega_{n}:=w(n) Theorem 2 reduces to the part (ii) of Theorem A in
the special case \beta\leq 1 , namely the assumption (1.3) holds if and only if the
sequence \{w(n)\} is quasi \eta-power-monotone decreasing with some \eta>1-\beta

( \gamma=\beta if \varphi\in\triangle ( \beta , \beta)), see e.g. Corollary 2 in [6], here recalled as Lemma 4.
In the case p=2 we can connect the results of the Theorems 1 and 2,

and the outcome is the following theorem.

Theorem 3 Let 0<\gamma\leq\beta\leq 1 . If the function \varphi(x) belongs to the class
\triangle(\beta, \gamma) and the sequence \omega:=\{\omega_{n}\} is quasi \eta -power-monotone decreasing
with some \eta>1-\gamma , and simultaneously quasi \rho -power-monotone increasing
with some \rho<1 , then the following conditions
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\int_{0}^{1}t^{-2}\omega(\frac{1}{t})\varphi((\int_{0}^{2\pi}|f(x+t)-f(x-t)|^{2}dx)^{1/2})dt<\infty ,

(2.3)

\int_{0}^{1}t^{-2}\omega(\frac{1}{t})\varphi((\int_{0}^{2\pi}|f(x+2t)+f(x-2t)-2f(x)|^{2}dx)^{1/2})dt<\infty

(2.5)

(2.4)

and

\sum_{n=1}^{\infty}\omega_{n}\varphi((\sum_{k=n}^{\infty}\rho_{k}^{2})1/2)<\infty

are equivalent.

As we have mentioned the function \varphi(x)=x^{\beta}(0<\beta\leq 1) belongs to
the class \triangle(\beta, \beta) . Thus if the sequence \omega satisfies the conditions given in
Theorem 3 on \omega , then the sequence w_{n}:=\omega_{n} satisfies (1.3). Consequently
Theorem 3 for 0<\beta\leq 1 , but not for 1<\beta\leq 2 , can be considered as
an extension of the Corollary A from the class \triangle(\beta, \beta) to the wider class
\triangle(\beta, \gamma) with 0<\gamma<\beta\leq 1 .

Now let us consider the following quadratic moduli of continuity:

\omega^{(2)}(f, \delta):=\sup_{0\leq t\leq\delta}\{\int_{0}^{2\pi}[f(x+t)-f(x-t)]^{2}dx\}^{1/2} ,

\omega_{2}^{(2)}(f, \delta):=\sup_{0\leq t\leq\delta}\{\int_{0}^{2\pi}[f(x+2t)+f(x-2t)-2f(x)]^{2}dx\}^{1/2} ,

w^{(2)}(f, \delta):=\{\frac{1}{\delta}\int_{0}^{\delta}(\int_{0}^{2\pi}[f(x+t)-f(x-t)]^{2}dx)dt\}^{1/2} ,

w_{2}^{(2)}(f, \delta):=\{\frac{1}{\delta}\int_{0}^{\delta}(\int_{0}^{2\pi}[f(x+2t)+f(x-2t)-2f(x)]^{2}dx)dt\}^{1/2}

If \Omega(f, \delta) denotes one of the moduli of continuity defined above, then
we can enlarge the equivalence chain given in Theorem 3 as follows:
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Corollary 1 Under the assumptions of Theorem 3 the conditions (2.3),
(2.4), (2.5),

\sum_{n=1}^{\infty}\omega_{n}\varphi ( \Omega (f, \frac{1}{n}))<\infty (2.6)

and

\sum_{n=1}^{\infty}\omega_{n}\varphi(E_{n}(f, 2))<\infty (2.7)

are equivalent, where E_{n}(f, 2) denotes the best trigonometric approximation

of f by trigonometric polynomials of order at most (n-1) in the space L^{2} .

Extensions The assertions of the Theorems 1, 2, 3 and Corollary 1 will
uphold if among their assumptions we replace the condition given on the

function \varphi(x) by the same condition on the composite function \varphi_{p}(x) defined
in (1.7).

As an example we formulate the extension of Theorem 1 as follows.

Theorem 1* Let 0<p\leq 2 , and let \omega:=\{\omega_{n}\} have the same meaning
and properties as in Theorem B. If \varphi_{p}\in\triangle(1,0) then the condition (1.5)
implies (1.6).

3. Lemmas

We shall apply the following lemmas

Lemma 1 ([7, p.314]) If \varphi\in\triangle(p, q) for some 0\leq q\leq p and t_{m}\geq 0 for
all m, then

\epsilon^{p}\varphi(t)\leq\varphi(\epsilon t)\leq\epsilon^{q}\varphi(t) for 0\leq\epsilon\leq 1 and t\geq 0 , (3.1)

and

\varphi(\sum_{m=0}^{\infty}t_{m})\leq\sum_{m=0}^{\infty}\varphi(t_{m}) for 0<p\leq 1 . (3.2)

Lemma 2 ([1, p.348]) If f\in L^{2} then

[\omega^{(2)} (f, \frac{1}{n} ) ]^{2} \leq\frac{8\pi}{n^{2}}\sum_{k=1}^{n}k\sum_{\nu=k}^{\infty}\rho_{\nu}^{2} .
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Lemma 3 ([3. p.241]) If f\in L^{2} then

w_{2}^{(2)} (f, \frac{1}{n})\geq E_{n}(f, 2) .

Lemma 4 ([6, 11]) A positive sequence \{\gamma_{n}\} bounded by blocks, that is,
if the inequalities

\alpha_{1}\min(\gamma_{2^{k}}, \gamma_{2^{k+1}})\leq\gamma_{n}\leq\alpha_{2}\max(\gamma_{2^{k}}, \gamma_{2^{k+1}})

hold for any 2^{k}\leq n\leq 2^{k+1} , k=1,2 , . with 0<\alpha_{1}\leq\alpha_{2}<\infty , is quasi
\delta -power-monotone increasing (decreasing) with a certain negative (positive)
exponent \delta if and only if the inequality

\sum_{n=1}^{m}\gamma_{n}n^{-1}\leq K\gamma_{m} ( \sum_{n=m}^{\infty}\gamma_{n}n^{-1}\leq K\gamma_{m})

holds for any natural number m .

Lemma 5 Let us assume that the sequence \omega:=\{\omega_{n}\} of positive numbers
is quasi \eta -power-monotone decreasing with some negative \eta and simultane-
ously quasi p-power-monotone increasing with some \rho<1 . Then there exist
constants K(\omega)\geq 1 , A=A(\omega)\geq 2 and an increasing sequence \{p_{m}\} of
integers such that p_{0}=0 and for all m\geq 0 the inequalities

A^{m} \leq\sum_{n=p_{m}+1}^{p_{m+1}}\omega_{n}\leq A^{m+1} , (3.3)

and for m\geq 1

p_{m+1}\leq K(\omega)p_{m} (3.4)

hold.

The assertions of Lemma 5 can be found in the proof of Theorem 3 of
[5] implicitely.

4. Proof of the theorems

Proof of Theorem 2. By the Hausdorff-Young theorem (see [8, p.lOl]) we
obtain that
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\{\int_{0}^{2\pi}|f(x+t)-f(x-t)|^{p}dx\}^{1/p}\leq K\{\sum_{k=1}^{\infty}i_{k}^{p’}| sin kt|^{p’}\}^{1/p’}

Hence, since the function \varphi(u)\in\triangle(\beta, \gamma) and u^{1/p’} is concave, using the
inequality (3.2), we obtain that

\int_{0}^{1}t^{-2}\omega(\frac{1}{t})\varphi(\{\int_{0}^{2\pi}|f(x+t)-f(x-t)|^{p}dx\}^{1/p})dt

\leq K_{1}\sum_{m=0}^{\infty}\int_{2^{-m-1}}^{2^{-m}}t^{-2}\omega(\frac{1}{t})\varphi(\{\sum_{k=1}^{\infty}\rho_{k}^{p’}| sin kt|^{p’}\}^{1/p’})dt

\leq K_{2}\sum_{m=0}^{\infty}2^{m}\omega_{2^{m}}\varphi(\{\sum_{k=1}^{2^{m}-1}\rho_{k}^{p’}k^{p’}2^{-mp’}\}^{1/p’}+\{\sum_{k=2^{m}}^{\infty}\rho_{k}^{p’}\}^{1/p’})

\leq K_{3}\sum_{m=0}^{\infty}2^{m}\omega_{2^{m}}\varphi(\sum_{\nu=0}^{m-1}2^{\nu-m}\{\sum_{k=2^{\nu}}^{2^{\nu+1}-1}\rho_{k}^{p’}\}^{1/p’})

(4.1)+K_{3} \sum_{m=0}^{\infty}2^{m}\omega_{2^{m}}\varphi(\{\sum_{k=2^{m}}^{\infty}i_{k}^{p’}\}^{1/p’}) .

Here the second sum is finite by (2.1). Next we estimate the first sum
utilizing again (3.2) and (3.1) with q=\gamma .

\sum_{m=0}^{\infty}2^{m}\omega_{2^{m}}\varphi(\sum_{I/=0}^{m-1}2^{\nu-m}\{\sum_{k=2^{\nu}}^{2^{\nu+1}-1}d_{k}^{y’}\}^{1/p’})

\leq\sum_{m=0}^{\infty}2^{m}\omega_{2^{m}}\sum_{\nu=0}^{m-1}2^{(\nu-m)\gamma}\varphi(\{\sum_{k=2^{\nu}}^{2^{\nu+1}-1}\rho_{k}^{p’}\}^{1/p’})

(4.2)\leq\sum_{l/=0}^{\infty}2^{\nu\gamma}\varphi(\{\sum_{k=2^{\nu}}^{2^{\nu+1}-1}\rho_{k}^{p’}\}^{1/p’})\sum_{m=\nu}^{\infty}2^{m(1-\gamma)}\omega_{2^{m}} .

Now if we use the decreasing part of Lemma 4 with \gamma_{n}:=n^{1-\gamma}\omega_{n} , then we
get that

\sum_{m=\nu}^{\infty}2^{m(1-\gamma)}\omega_{2^{m}}\leq K2^{\nu(1-\gamma)}\omega_{2^{\nu}} . (4.3)
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Utilizing this estimation we get that the last sum in (4.2) is less than

K \sum_{\nu=0}^{\infty}2^{\nu}\omega_{2^{\nu}}\varphi(\{\sum_{k=2^{\nu}}^{2^{\nu+1}}\rho_{k}^{p’}\}^{1/p’}) ,

(4.6)

and this is obviously finite by (2.1).
The estimations (4.1) and (4.2) thus imply the implication (2.1)\Rightarrow (2.2);

and this was to be proved. \square

Proof of Corollary 1. By the classical theorem of Gram [2]

E_{n}^{2}(f, 2)= \pi\sum_{k=n}^{\infty}\rho_{k}^{2} , (4.4)

thus (2.5) and (2.7) are obviously equivalent. It is also clear that

\frac{1}{2}w_{2}^{(2)} (f, \frac{1}{n})\leq\Omega(f, \frac{1}{n})\leq 2\omega^{(2)}(f , \frac{1}{n}) (4.5)

holds. In order to verify the implication (2.7)\Rightarrow (2.6), by (4.5) it is sufficient
to show that (2.7) implies

\sigma_{1}:=\sum_{n=1}^{\infty}\omega_{n}\varphi (\omega^{(2)} (f, \frac{1}{n}))<\infty .

Using the abbreviation E_{n}:=E_{n}(f, \frac{1}{n}) . (3.1), (3.2), (4.3), (4.4) and
the Lemma 2 we obtain that

\sigma_{1}\leq K\sum_{n=1}^{\infty}\omega_{n}\varphi(\{\frac{1}{n^{2}}\sum_{k=1}^{n}kE_{k}^{2}\}^{1/2})

\leq K_{1}\sum_{m=0}^{\infty}\sum_{n=2^{m}}^{2^{m+1}}\omega_{n}\varphi(\{\sum_{\nu=0}^{m}\sum_{k=2^{\nu}}^{2^{\nu+1}}\frac{k}{n^{2}}E_{k}^{2}\}^{1/2})

\leq K_{2}\sum_{m=0}^{\infty}2^{m}\omega_{2^{m}}\sum_{\nu=0}^{m}2^{(\nu-m)\gamma}\varphi(E_{2^{\nu}})

=K_{2} \sum_{\nu=0}^{\infty}2^{\nu\gamma}\varphi(E_{2^{\nu}})\sum_{m=\nu}^{\infty}2^{m(1-\gamma)}\omega_{2^{m}}

\leq K_{3}\sum_{\nu=0}^{\infty}2^{\nu}\omega_{2^{\nu}}\varphi(E_{2^{\nu}})\leq K_{4}\sum_{n=1}^{\infty}\omega_{n}\varphi(E_{n}) ,
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thus, by (2.7), we verified (4.6), and herewith the implication (2.7)\Rightarrow (2.6),

too.
To prove the implication (2.6)\Rightarrow (2.7) it is enough to show (2.7) follows

from

\sum_{n=1}^{\infty}\omega_{n}w_{2}^{(2)} (f, \frac{1}{n})<\infty ,

but this, by Lemma 3 and (2.6), clearly holds.
Let us associate the equivalence (2.6)\Leftrightarrow (2.7) with the equivalence chain

(2.3)\Leftrightarrow (2.4)\Leftrightarrow (2.5) proved in the Theorem 3, and considering the obvious
equivalence (2.5)\Leftrightarrow (2.6) (see (4.4)), the proof of Corollary 1 is complete.

\square

Proof of Theorem 1^{*}r Using the property (3.2) of \varphi_{p}(x) , and (3.3) we ob-
tain that

\sum_{n=1}^{\infty}\omega_{n}\varphi(\{\sum_{k=n}^{\infty}\rho_{k}^{p’}\}^{1/p’})\equiv\sum_{n=1}^{\infty}\omega_{n}\varphi_{p}(\sum_{k=n}^{\infty}i_{k}^{p’})

(4.7)

\leq\sum_{m=0}^{\infty}\sum_{n=p_{m}+1}^{p_{m+1}}\omega_{n}\sum_{\nu=m}^{\infty}\varphi_{p}(\sum_{k=p_{\mathcal{U}}+1}^{p_{\nu}+1}i_{k}^{p’})

\leq\sum_{\nu=0}^{\infty}\varphi_{p}(\sum_{k=p_{\nu}+1}^{p_{\nu+1}}i_{k}^{p’})\sum_{m=\nu}^{\infty}A^{m+1}

\leq A^{2}\sum_{\nu=0}^{\infty}A^{\nu}\varphi(\{\sum_{k=p_{\nu}+1}^{p_{\nu+1}}\rho_{k}^{p’}\}^{1/p’}) .

Next the Hausdorff-Young theorem gives that

\{\sum_{k=1}^{\infty}d_{k}^{J’}| sin kt|^{2p}’\}^{1/p’}

\leq\{\int_{0}^{2\pi}|f(x+2t)+f(x-2t)-2f(x)|^{p}dx\}^{1/p}

This and (1.5) imply that
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(4.8)I:= \int_{0}^{1}t^{-2}\omega(\frac{1}{t})\varphi(\{\sum_{k=1}^{\infty}\rho_{k}^{p’}| sin kt|^{2p}’\}^{1/p’})dt<\infty .

On the other hand

I \geq\sum_{m=1}^{\infty}\int_{1/p_{m+1}}^{1/p_{m}}t^{-2}\omega(\frac{1}{t})\varphi(\{\sum_{k=p_{m-1}+1}^{p_{m}}\rho_{k}^{p’}| sin kt|^{2p}’\}^{1/p’})dt .

(4.10)

(4.9)

By (3.4), the products kt , appearing in the integrals above, satisfy

0<c \leq\frac{p_{m-1}}{p_{m+1}}\leq kt\leq\frac{p_{m}}{p_{m}}=1 ,

thus (4.8) and (4.9) yield that

\sum_{m=1}^{\infty}\varphi(\{\sum_{k=p_{m-1}+1}^{p_{m}}\rho_{k}^{p’}\}^{1/p’})\int_{1/p_{m+1}}^{1/p_{m}}t^{-2}\omega(\frac{1}{t})dt<\infty .

Since, by (3.3),

\int_{1/p_{m+1}}^{1/p_{m}}t^{-2}\omega(\frac{1}{t})dt\geq A^{m} ,

thus, (4.7) and (4.10) prove the implication (1.5)\Rightarrow (1.6).
This completes the proof. \square
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