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Estimates of spherical derivative of
meromorphic functions

Shinji YAMASHITA
(Received July 3, 2000)

Abstract. The spherical derivative f# = |f’|/(1 + |f|?) of f meromorphic in D =
{lz] < 1} is estimated from above and below in terms of various geometrical quantities, for
example, 6% (z, f), p(z, f), and pau(z, f), in several theorems. A necessary and sufficient
condition for (1 — |2|?) f#(2) to be bounded in D is that there exists r, 0 < r < 1, such

that f(w) # —1/f(2) for all z, w € D satisfying |w—z|/|1—Zw| < . Also, (1—|2|2)f#(z)
is bounded in D if and only if §#(2, f)/pau(z, f) is bounded in D minus the points z
where f#(z) = 0. Applications to evaluating the Poincaré density in a plane domain will
be considered.

Key words: normal meromorphic function; antipodal point; spherical and Poincaré dis-
tances; spherical derivative of meromorphic function; Poincaré density; Bloch function.

1. Introduction

Let a function f be meromorphic in the disk D = {|]z| < 1}. The
spherical derivative f#(z) of f at z € D is defined by f#(2) = |f/(2)]/(1 +
f(2)%), if f(2) # oo, and f#(2) = |(1/f)'(2)], if f(2) = co. Then f# =
(1/£)* in D, where the constant function oo is regarded as a meromorphic
function, so that co® = 0. One can prove that f# is continuous in D.
Actually we shall be mainly concerned with a kind of derivative of f, namely,

Os(2) = (1= |2°)f*(2), =2€D.

We call f normal if ®; is bounded in D; see for the details. Let
pa(z, f) be the maximum of 7, 0 < r < 1, such that f(w) # —1/f(z),
the antipodal point of f(z), for all w in the Apollonius disk, or the non-
Euclidean disk

< r}

A = {us |22
of center z and the non-Euclidean radins arctanhr. Such a p,(z, f) > 0

1—Zw
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does exist at each point z € D. Let
pa(f) = inf pa(2, f).

Then, po(f) > 0 if and only if there exists r, 0 < r < 1, such that f(w) #
—1/f(z) for each pair z,w € D with |w — z|/|1 — Zw| < 7.
Our beginning and fundamental result is the following

Theorem 1 A meromorphic function f defined in D is normal if and only

if pa(f) > 0.

In fact, the proof depends on the chain (I) of inequalities which will
appear in Section 3.

Sharp upper and lower estimates of ®7(z) will be given in terms of
geometrical quantities, in particular, p(z, f) and 6%(z, f), together with
analytic quantity (0/0z)log®s(z) at z with f#(z) # 0. Here, 20/0z =
(0/0x) — i(0/0y) and p(z, f) is the maximum of r, 0 < r < 1, such that
f is univalent in A(z,7); we set p(z, f) = 0 if f#(z) = 0. Furthermore,
6% (2, f) is the maximum of R > 0 such that the Riemann image surface of
D by f, covering C# = C U {oo}, contains the one-sheeted spherical cap
{w; |w— f(2)|/|1 4+ f(2)w| < R} of center f(z), in other words, the single-
valued branch F' of the inverse of f with F(f(z)) = z can be defined in the
cap; again, 07 (z, f) = 0 if f#(z) = 0. The Liouville theorem applied to the
inverse of f then shows that 6% (z, f) < +oo.

Set

o | O
Af(2) = (L [2) | - log @ (2)
z
for f at z € D with f#(z) # 0. For example, if f(z) # oo and f'(z) # 0,
then

(1.1)

5 = 1) TR
ézlogqv(z)— 1_|z|2+2 f’(z) 1+|f(z)|2'

Then, at each z € D with f#(z) # 0, one has

(4) @) < ( +Af<z>) 5 (2, f)

y
p(z, f)

and
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® (14 2) e < e,

Both inequalities (A) and (B) are sharp. In particular, at an arbitrary
point z € D one has

(C)  0%(2,f) < 24(2).

This is observed by C. Pommerenke without detailed equality condition.
Note that (C) is trivial at z € D with f#(z) = 0; in the other case, (C)
follows from (B). Our detailed equality condition for (C) will be clarified
later in Section 8.

In the specified case where f is univalent in the whole D we shall see
the sharp estimate

1
,Oa(Z, f) .
Indeed, f is then normal, and so the right-hand side of (D) is not greater

than p,(f)+(1/pa(f)) < +00. The inequality (D) would be of use for upper
and lower estimates of f#(z) with f#(0) = 1; see in Section 5.

(D) As(2) < palz, f) +

2. The spherical distance and the Poincaré distance

Elementary but necessary facts will be remembered in the present Sec-
tion. The sphere ¥ C R3 of diameter one touching the complex plane C =
R? at the origin, or the south pole of £, from above is identified with C#
with the aid of the stereographic projection (z1, 2, z3) — (z1 + iz2)/(1 —
x3) viewed from the north pole (0,0,1) of ¥, which itself is mapped to oco.
The spherical distance x(z,w) of z and w of C# is then given by

(z,w) = arctan i
X ) - +E’U) ’
where x(z,00) = arctan(1/|z|) with arctan(+oo) = 7/2, so that 0 <
x(z,w) < 7 /2. All the arcs

Cuter) = {

et+ z
1 —Zet

;OStS-I—oo}, ee€C, leg| =1,

connect z € C and the antipodal point z* = —1/zZ € C# of z along great
circles, whereas, for z € C and w € C with z # w # 2*, the arc
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t —
Clw)={ 222 0<t< | 22Y
1 —7Zet 1+ zw
with the definite ¢,
w— 2z zZ—w
£ = )
1+Ew/ 1+Ew‘

connects z and w on the arc C.(z, z*). In the case where z = co or w = 0
we need obvious change, specifically, co* = 0 and 0* = co. We then have

|d¢]
X\z,w) = 2.1

( ) /C(z,w) 1+ |CI2 ( )
for each pair z € C#, w € C# with z # w # z*; evidently,

T _ o _ |d¢]
9 - X(Z,Z ) - /C"s(z,z*) 1+ |C|2

foralle € C, |¢| = 1.
For a € C# and R, 0 < R < 400, the set

Cap(a, R) = {z € C¥; x(z,a) < arctan R},

where 0 < arctan R < 7/2, is the spherical cap of center a and of radius
arctan R. Hence, z € Cap(a, R) if and only if |(z —a)/(1 + @z)| < R. In
particular, Cap(a, +o0) = C#\ {a*}.

There are two distances in the open unit disk D; one is the pre-Poincaré
distance

Z—w

T(z,w) =

1 —wz
and the other is the Poincaré distance
o(z,w) = arctanh 7(z, w),

where arctanhx = (1/2)log{(1 +)/(1 —z)}, 0 < z < 1. One needs some
device for the proof of the triangle inequality for 7. For z # w one has

_ |d¢]
o(z,w) = [y(z’w) TP

where

et+ z
v(z,w) = {1+E€t;0§t57(z,w)},
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with (w — 2)/(1 — Zw) = e7(z,w), is the subarc on the circular arc (or,
possibly, the diameter) which is orthogonal to the unit circle 0D at the
points (z +¢€)/(1 + Z¢e) and (2 —€)/(1 — Ze).

For f meromorphic in D we have

e i XSG

3
|w—z|—0 lw - Z|

again the spherical derivative of f at z. One can prove that f#(z) # 0 if
and only if f(2) # oo and f/(z) # 0 or f has z as a simple pole. We now
have

x(f(w), f(2))

O(z) = i — 1
&)= o) w—zlm0  T(w, 2)

Set

v(f) = sup ®¢(2).
2€D

By definition f is normal if v(f) < 4o00. This is equivalent to saying that
a meromorphic function f is uniformly continuous as a mapping from the
metric space (D, o) into the metric space (C#,x). We can also replace
(D, o) with (D, ) in the preceding sentence. For example, if f does not
assume the three points of C#, then f is normal. This is a consequence of
the well-known Montel theorem on normal families.

3. Proof of Theorem 1

Let f be meromorphic in D and z € D. Then we always have r, 0 <
r < 1, such that f(w) is in the hemisphere Cap(f(z),1) for all w € A(z,r).
Hence

F(Q) # f(n)* forall ¢, neA(zr) (3.1)

Let p%(z, f) be the maximum of 7, 0 < 7 < 1, such that (3.1) holds. Then
pi(z, f) > 0 everywhere in D and

pa(f) = inf pa(2, f) < pa(f)

because p:(z, f) < pa(z, f) in D. Consequently, 0 < pX(f) < po(f) < 1.
immediately follows from the following chain of inequalities
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for f meromorphic in D;

() < ) <) 2N < 5,

where +00 =1/0,0 =1/ + oo and tanh(+o0) = 1.

(I) tanh

THE FIRST INEQUALITY IN (I). This is true in both cases v(f) = +oo
and v(f) = 0 because p};(f) =1 in the latter case. Suppose that 0 < v(f) <
+00. Then for each ¢, n in D with ¢ # n and f({) # f(n), one has

X(F(C), F(m)) = / dwl /R du|

r 1wl = Jrpgem) 1+ w]?

_ # (o ldw! < v |dw|
v[r(Cm) Frlwlaw < v(5) /Y(CJI) 1—|wf?
=v(f)o(¢m).

Here, I' is the geodesic, namely, I' = C(f(¢), f(n)) or Ce(f(C), f(n)) (le] =
1) according as f({) # f(n)* or f(¢) = f(n)* and further, Rf(7((,n)) is
the image of v((,7) lying on the Riemann image surface of D by f, which

connects f(¢) and f(n). Hence, for ¢, n € A(z, tanh{r/(4v(f))}), possibly,
¢ = n, we have

x(f(€), f(n))

X(F(©), £(2) +x(F(2), £ )
v(f)(0(¢2) +o(zm) < 3.

Consequently f(¢) # f(n)*, and then tanh{n/(4v(f))} < pi(z, f) every-
where in D. The first inequality in (I) now follows.

<
<

THE THIRD INEQUALITY IN (I). We may suppose that p,(f) > 0.
Then for each z € D and for all ¢, n € A(z, pa(f)/2), one has

¢ € Az, pa(f)/2) C A, pa(f)) C A0, paln, £)),

so that f(¢) # f(n)*. Therefore p,(f)/2 < p%(z, f) for all z € D. Hence
pa(£)/2 < P3(f)-

THE FOURTH INEQUALITY IN (I). We propose for the proof that
g'(0)] < 1 (3.2)

for g meromorphic in D with g(0) = 0 and p%(0,g) = 1 (hence, g is pole-
free in D). The equality holds in if and only if g(z) = ez, |¢| = 1.
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This proposition is attributed to T.-S. Shah [S] in [G, II, p.82, Problem 46];
hereafter our main reference for Univalent Function Theory is [G]. Unfortu-
nately, however, one, together with the present author, might have difficulty
in accessing the paper . For a rather easier reference, we recall here the
paper of N.A. Lebedev and I.M. Milin to whom the result appears to
be essentially due.

In fact, Lebedev and Milin proved the above proposition for g, further-
more, univalent in D; see [LM, p.397] where they claimed that “Theorem A
[LM, p.380] is valid for the class Sp.” Obviously the equality discussion
there should be restricted to the case n = 1. If we drop univalency of ¢ in
D, then we can find a simply connected, proper subdomain H of C such
that g(D) C H and ¢ # n* for all {, n € H. Let h be a conformal mapping
from D onto H with h(0) = 0. Then g =ho¢ with¢ =h log: D — D
holomorphic. The Schwarz inequality |¢’(0)| < 1, together with the equality
|#'(0)] =1 if and only if ¢(2) = ez, |¢| = 1, now proves the proposition.

The inequality p}(f) < 1/v(f) immediately follows from

@) P HP) <1, zeD.

For the proof we may suppose that f#(z) # 0 and f(z) # oo; when f(z) =
oo, consider the reciprocal 1/f. Set a = p%(z, f) (> 0) and set

) - £(2)
aw + 2z \’
1+an)

f<aw+z

1+ Zaw we D

9W0=1+_@W<

Then g(0) = 0 and p;(0, g) = 1. Hence a®¢(z) = |¢'(0)] < 1, or (II).
The equality holds in (II) at z if and only if

w—z
A'1—2w+ﬂ
1— 7\ ——

1 —-Zw

where A € C and p € C# are constants with [A| > 1. If 4 = oo, then

f(w) = (1 —Zw)/{M(w — 2)}. The function f of [3.3) maps D univalently
onto Cap(u, |A|).

THE “ONLY IF” PART. For g(w) = ew, |¢| = 1, we have with
A=¢/a and p = f(z).
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THE “IF” PART. A calculation shows that ®(z) = || for f of [3.3).
To prove 1/|A| < p*(z, f) we suppose that there exist {, n in A(z,1/|A|)
such that f(¢) = f(n)*. Setting

CI

T 1-%C T 1-7zn

one then observes that A’ = (An')* or |A|?¢'y’ = —1, together with |¢/| <
1/IA| and || < 1/|A|. We then arrived at a contradiction that 1 =
IAI2|¢’||n'] < 1. Consequently, 1/®(z) = 1/|)| < pk(z, f) and hence

1 < pa(z, [)®s(2) < 1,

so that the equality holds in (IT).

A holomorphic version of a normal meromorphic function is a Bloch
function. Later in Section 13 we shall observe the chain (III) of inequal-
ities analogous to (I). Incidentally, ineterested readers may go directly to
Section 13 except for Remark 7.

4. Estimate of As(2)
Suppose that f#(z) # 0 at z € D for f meromorphic in D. Then,

_1 "z f(&)f(2)
2 f'(z) 1+

(—% log f#(2)
if f(z) # oo, whereas
2 tog f#(2) = o log|(1/£)(2)] =
0z 0z
if f(z) = co. If f is nonconstant and if f#(z

: 0 ”
|wl—1§|n—+o e log f7(w) = oo.
Recall here A of (1.1) for a nonconstant f. Defining Af(2) = +oo at z € D
with f#(z) = 0 one can then observe that As is a continuous mapping from
D into [0, +o00] = C1(0, 00).
We begin with an upper estimate of Af(z) in terms of p(z, f) and the
smaller of this and p,(z, f), in notation,

pau(2, f) = min(p(z, ), palz, f)), z € D. (4.1)
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The function pey(2, f) of z € D is reasonable because the normality criterion
for a nonconstant f will be described in terms of this and §%(z, f) after the
forthcoming in Section 8. In short, f is normal if and only if
6% (2, f)/pau(2, f) is bounded in D minus the points z at which f#(z) = 0.

Theorem 2 For f meromorphic in D and for z € D with f#(z) # 0 we
have

Paul2, f) Pz f)
p(zaf) pau(za f)

To describe an equality condition for in an “if and only if” form
we first let K(z) = z/(1 — 2)? be the Koebe function and set

p(z, f)As(z) <

(4.2)

(1 —ez)?

for ¢ € C, |e| = 1. Then the rational function K. of z is, in particular,
univalent in D. Set

K. (z) =€K(ez) =

K.
1 2 ’
( ;p) oK.

Then H, . is a rational function of z and univalent in D with H; _. = K,
and

Hp,s =

O0<p<1, |¢]=1.

1+

pz
_ = <1
H, _1(z) ==’ 0<p<l,

so that Hp.(2) = —€Hp _1(—¢€z). Furthermore,
C* \ H,,(D) = {2t; p/(1+p)* <t <p/(1-p)’};

note that K(p) = p/(1 — p)? and —K(—p) = p/(1 +p)® for 0 < p < 1.
Calculation shows that

1
Hya0) = 0~ 120, 8,0)= 2 (5 1)

We further have p,(0, Hp.) = p for 0 < p < 1 because Hp(—p) = oo in
case 0 < p < 1.
Returning to our inequality we now have the equality in at
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z with f#(2) # 0 if and only if

1 w-=z
AH. -
p’e(p 1——Ew>+u

1 _ 9
1—mH,E<—. ad z)

p 1—Zzw

f(w) =

(4.3)

where A € C\ {0}, p € C#, ¢ € C, |¢| = 1, p and p of (0,1], all are
constants. Read
1 w—=z2
1 —\H,,. (- - 2=%
J$w) = Aty (5 22
in case p = o0.

Under the global condition that f# never vanishes in D, the equality
holds in if and only if p =1 in (4.3), so that f of (4.3) is univalent in
the whole D and p,(z, f) = p.

For f of (4.3) one can actually observe that p(z, f) = p and pau(z, f) =

pa(2, f) = pp. The latter follows from H,.(—p) = oo. Further calculation
for f of (4.3) shows that pAf(z) =p+ (1/p).

5. Proof of Theorem 2

Let S = S(1) be the family of f holomorphic and univalent in D satis-
fying
f(0)=f(0)-1=0. (5.1)

For 0 <p < 1, let S = S(p) be the family of f meromorphic and univalent
in D satisfying and f(z,) = oo at a point 2z, depending on f with
|20| = p. In particular, H, . € S(p) if 0 < p < 1. The Bieberbach and the
Komatu results both can be summarized in

Lemma 5.1 For f € S(p) with 0 < p <1, one has

Iﬂmﬂs2@+%). (5.2)

The equality holds in (5.2) if and only if f = Hp, |e| = 1.

The case p = 1 is Bieberbach’s second-coefficient theorem; see [G, I,
p.33, [Theorem 1||, whereas the case p < 1 is attributed to Y. Komatu
in [G, I, p.40, Theorem 7).
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Proof of Theorem 2. To show we may suppose that f(z) # co. We
next set p = p(z, f) > 0. Then the function '

per () 10

g(w) = : (5.3)
p(1—|2|2) f'(2) . PVt 2
1+ f(2)f (1 pr)
of w e D is in S(p) with
P = pau(z, £)/p = pau(z, f)/p(z, f). (5.4)
Since a short calculation shows that
pls(z) = 20 (5.5

the requested inequality follows from applied to g.
Suppose that the equality holds in at z with f#(z) # 0, where

f(z) # oo without loss of generality. Then g = Hp, |¢| =1, in with
p of [[5.4), so that we have (4.3) with u = f(z) and

N CEERYE
T+IfER

If f# is zero-free, then p in (4.3) must be one. Otherwise, f#(¢) = 0
for

‘= 1pi;:"é €D (5.6)
because H}f :(€) = 0. O
Corollary| to [Theorem 2 For f meromorphic in D and for z € D with
f#(2) # 0 one has

paulz, f)As(2) < 2 (5.7)

The equality holds in [5.7) at z with f#(z) # 0 if and only if p =1 in
(4.3) or H1 . = K_. there. Furthermore, in case f# never vanishes in D,
the equality holds if and only if f is of (4.3) with p=1 and p = 1.

First, follows from because

1 Pau(zaf)z 2
Af(z) < oz ) ( oz )2 +1) < _——Pau(Z,f)' (5.8)
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Suppose that the equality holds in (5.7). Then pa (2, f) = p(z, f) = p, and
p of must be one. Hence f is of (4.3) with p = 1. The converse is not
difficult to prove. The remaining part of the proof is now obvious.

Remark 1 Set
p(f) = inf p(2, f)

z€D

for f meromorphic in D and z € D. For f(z) = 22, one has v(f) < +oco and

p(f) = p(0, f) = 0. On the other hand, P. Lappan [L| found an f pole-free

in D with v(f) = +o0 and p(f) > 0. Hence there is no implication relation

between the inequalities v(f) < +o00 and p(f) > 0 even for holomorphic f.
We set, for f meromorphic with nonvanishing f# in D,

= su ! pau(z, f) p(z, f) sSup ————
B(f) B zeg p(z, f) ( p(Z, f) " pau(za f)> s zGlI; ,Dau(z, f)

When v(f) < +o0 and p(f) > 0 at the same time, we have
2

BU) S St pad)’

so that B(f) < 4+oo. It then follows from that
M) <B(f), zeD 59)
for f with v(f) < 400 and p(f) > 0.

Remark 2 Returning to (D) in Section 1 we now have this as a conse-
quence of [4.2). The equality holds there if and only if f is of (4.3) with
p = 1. Let M be the family of f meromorphic and univalent in D with
the normalization f#(0) = 1. Note that B(f) = pa(f) + (1/pa(f)) > 2 for
f € M. A problem is whether or not

sup B(f) < 400, or equivalently, inf p,(f) >0,
fEM femM

is valid. The answer is in the negative. Indeed, for H, . € M we have
pa(Hp,e) < pa(O, Hp,s) =p, 0<p<l1,

so that

inf pa(f) =0.
flélMp(f)
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It further follows from (I) that supsc o v(f) = +o00. See the forthcoming
Section 14.

We now have estimates of f# for f € M with the aid of [5.9). Namely,

1 — 12[\B&H)-1 B(f)-1
(L= [P0y (L PO
(T+]2) PO (T=1e) P05

for all f € M. The right-hand side of (5.10) should be compared with
f#(2) < v(f)(1 + |2])71/(1 = |2]), 2 € D, with the multiplier v(f). Note
that v(K) > 2; see Section 14. To achieve we note that ®(0) =1
and

z €D, (5.10)

(1—1¢I%)| gradlog ®4(2)| = 2A7(¢) < 2B(f), (€ D.

Hence for z = |z|e® € D\ {0} and ¢ = u +iv =re?, 0 < 7 < |2|, we have

2]
|log @f(2)| = ‘/ <cos€ - ;—ulog<1>f(g) +sin@ - ﬁlogdﬁ(())dr
0

ov
< & dlog & ¢ (Vdr < B(f) log 112
< [ leradion®(Q)ldr < B(7)log 1

whence for z # 0.

One can then prove that if the first or the second equality holds in
at z # 0, then f is “similar” to Hp, for 0 < p <1 and |¢| = 1. More
precisely,

1
pa(C, f)

for all ( = re®, 0 < r < |z|, where z = |z|e®. On letting ¢ — 0 one has
Af(0) = B(f). Hence

Af(()zpa(Caf)—l_ :B(f)

1
pa(0, f)

so that Af(0) = pa(0, )+ (1/pa(0, f)). Since f € M, one has f = (AHp .+
1)/ (1 — EAHp), |A| = 1, p € C#, in view of (4.3) on setting z = 0. In
particular, under the assumption that the equality in the left or right in
holds at z # 0 for f, we have B(f) = pa(0, f)+ (1/pa(0, f)).
Unfortunately, we cannot proceed further since determination of B(f)
even for the specified extremal functions f = H. is interesting but dif-
ficult to obtain. Moreover, in view of the above one might conjecture

B(f) = As(0) < pa(0, f) +

< B(f),
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that B(H,.:) = p+ (1/p). In fact, this is false for H; 1 = K. Actu-

1

ally, pa(2,i{) < 1 for z € D except for the real interval [0, K ~1(4)], where
K~1(4) = (9 — /17)/8. Hence p,(K) < 1, so that B(K) > 2.
6. Riemann image surface; an upper estimate of ®;

The quantity 6% (z, f) defined in Section 1 appears in

Theorem 3 Let f be meromorphic in D and suppose that f#(z) # 0 at
a point z € D. Then

010 < (g + M) #Ga. ). (61)
Set
Fre=—2f _ 0<R<+o0, e€C, |e|=1.
’ 1+ ReK,

This is rational and univalent in D, together with
4 5
Fr.(D)=C"\ Z;R_4§tSR :

One can especially observe that

(1+p)?
p

The equality holds in at z € D with f#(z) # 0 if and only if there
exist four parameters p € (0,1], R € [0,400); e € C, |e] =1, A € C\ {0},
and p € C#, such that

)‘FR,e (l w_z>+ou'

p'l——Ew

1 w—2z)\
1 —1)\F — .
H R’5<p 1 >

— ZW

H,.=Fr, for R= >4, 0<p<Ll

fw) = (6.2)

Suppose that f# never vanishes in D in Theorem 3. Then the equality
holds in at z € D if and only if p = 1 further in 6.2).

Remark 3 Combining [4.2) and [6.1) one has

(p(z, f) + pau(?, f))2 s#
p(z, £)?pau(2, f)

®s(z2) < (2, f) (6.3)
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at z € D with f#(z) # 0. Moreover, one has ®;(z) < 46%(z, f)/pau(2, )
if f#(2) # 0. The equality holds in at z € D with f#(z) # 0 if and
only if f is of (4.3). If, furthermore, f# never vanishes in the whole D, then
p =11in (4.3) in addition.

7. Proof of Theorem 3

The following lemma occupies a central position in the proof of Theo-
rem 3.

Lemma 7.1 For f € S(p) with 0 <p <1, one has

2 i
oy < 5H0.1) (1)

The equality holds in if and only if f = Fr.,0 < R <4, e| =1,
in case p = 1, whereas f = H, . in case p < 1.

for p < 1 is essentially due to W. Fenchel [F]; see [G, II,
p.245, Theorem 33]; one needs little technique for the proof of the equality
condition, and so we include here the proof of for p < 1. For
the case p = 1, see, for example, [Y2, p.106, Lemma 3.1]. The proof of the
equality condition is considerably delicate in both cases.

For the proof of in case p < 1 we let ¢ € C# \ f(D) be
arbitrary. Then 0 # ¢ # oo and the function g = c¢f/(c— f) is in S with

9"(0) = f"(0) + 2. (712)
Hence

L _ O, 1O _, ., 1f"0)

STyt S2e (7.3)

by the Bieberbach inequality |¢g”(0)| < 4. Consequently,

2
[
= o

from which follows [7.1).

Suppose that the equality holds in and choose ¢ € C on the
boundary of f(D) such that |c| = §#(0, f). Then for g = c¢f/(c— f) for the
present ¢ the equality holds in [7.4), so that the right-most in is 1/|c|.

(7.4)
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Consequently, g = K., whence

= TTaor: (7.5)
Since f’(0) = 4e — (2/¢), it follows from
1
IV I
Ie| 2 c

that ¢ = |c[e. On the other hand, since f(e'p) = oo for some €', |'| = 1, it
follows that K(¢'p) = —c. Hence K(g€e'p) = —|c| < 0, so that e’p must be
negative, or, e’ = —1. We thus have |¢| = —K(—p), or
1_(+p)°
c p
We can now conclude from [7.6) that f = H,.
Conversely, for f = Hp ., we have

(7.6)

FON) = Ly and [7O1=2 (1),

(1+p)
We thus observe the equality in [7.1).

Proof of Theorem 3. There is no loss of generality in supposing that f(z) #
o0. Set p = p(z, f) and recall g of for which |¢"(0)] = 2pA(z) and

2 < 5#(0 g9) < 5#(Z,f)

4+ g"(0)| p®;(2)
by for the first inequality. Hence [6.1). Suppose that the equality
holds in [6.1). Then g = Fre, 0 < R < 4, or g = Hp . according as p =
pau(2, )/ p(z, f) of is one or less than one. If f# never vanishes in D,
then p = 1; otherwise f#({) = 0 for ¢ of [[5.6). Conversely if f is of [[6.2),
then one has g = Fre, 0 < R <4, or g = H,, for g of for the present
f. One can now easily prove the equality in [6.1). O

Combining and one has the following

Corollary to Theorem 3 Let f be meromorphic in D and let f#(z2) #
0 at a point z € D. Then

y4 1 1 #Z
¢”)52(MafY+%Aan)5(’”' (1)
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The equality condition is now easily obtained.

8. Lower estimtes of ®; or upper estimates of §#
We begin with

Theorem 4  Let f be meromorphic in D. Then at each z € D with
f*(2) #0,

®4(2)
5 (2, ) < ! .
=)= A
In particular, one always has (C) in Section 1. A consequence is that
if f is normal, then §%(z, f) is bounded. The converse is, however, false
[Po, p.6].
The equality holds in at z with f#(z) # 0 if and only if

(8.1)

w—2z
A 1—Ew+#
f(w) = TR (8.2)
1—71A- —
1 —Zw

where A € C\ {0} and p € C# are constants. For f of one has
6% (2, f) = ®4(2) = ||, Af(2) = 0, and pau(z, f) = 1.
An equality condition for (C) can be given in “if and only if” form. If

f#(z) # 0, then the equality holds in (C) if and only if holds. The
proof is now obvious.
Our next result is

Theorem 5 Let f be meromorphic in D. Then at each z € D,

§*(z, f) < i jp;“(zf}))z B4(2). (8.3)

The equality holds in at z with f#(z) # 0 if and only if f is of

(8-2). Again (C) is a consequence of [8.3).
It follows from and that

L #ed) g o g, 3 D)
1w ) MRS E (8.4)

for z € D with f#(z) # 0. The right-hand side of is observed also in
Remark 3. By the continuity of ® in the whole D one now has a criterion
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that a nonconstant and meromorphic function f is normal if and only if
there exists a constant ¢(f) > 0 such that

5#(2, f) < c(f)paulz, f)
for all z € D.

Remark 4 It seems reasonable to suspect that one of the right-hand sides

of and is always less than the other, so that is a consequence
of or the converse.

To observe that this is actually not the case we set
_ 1
14+ W(2)’
Y Z) — 4pau(z, f) 5

(1 + pau(za f))

for 2 € D with f#(z) # 0. Then for the specified function f(z) = 22 and
for 0 < z < 1, we have

W(z) = %Af(z), U(z) and

W(z) = %, d(z) = (22 + 1) (z* — 42% + 1),
pau($7 f) - p(ﬁB, f) =z, and Y(:U) - (1 j_xx)2 <L

Since ¢(z,) = 0 for z, = (V6 — v/2)/2 € (0,1), one immediately has
Y(z,) < 1= U(x,). On the other hand, U(z) — 2/3 and Y (z) — 1 as
z — 1 — 0. Hence there exists z;, z, < 1 < 1, such that Y(x) > U(z) for
allz, r1 <z < 1.

9. Proofs of Theorems 4 and 5
The bounded Koebe function kps for M, 1 < M < +o0 is defined by

kym(z) = MK (Kﬁ(j)) , z€D,

where K1 is the inverse of K in K(D). As a specified case, we have k1(z) =
z. Suppose that M > 1. At each { of the unit circle 0D one then has the
limit kp(¢) = lim,_,¢ kp(2) lying on the circle {n; |n| = M} or in the real,
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left-open interval

(—M,—M (zM—l—z\/Wl—))].

We actually have x € 0D with Im x > 0 such that xpr(x) = km(X) = —M.
Let I be the closed subarc of D bisected by —1, whose end-points are x
and . Then kps maps 0D \ I one to one and onto {n; |n| = M} \ {—-M}.
Let T be the open subarc of I connecting x and —1. Then for each ( € T
one observes that ku(¢) = kM () € (—M, kp(—1)).

We shall make use of Lemmata due to G. Pick [Pi]. Extremal functions
will be

ke M(2) =Expm(ez), le| =1,
so that k¢ 1(2) = 2.

Lemma 9.1 For f € S with |f| < M in D one has

f(0)] < 4 <1 - —]}/I—) . (9.1)

Note that M > 1 in the above because 1 = f’(0) < M by the Schwarz
lemma for f/M. The equality holds in if and only if f = ke pr. See
[G, I, p.38, Theorem 4].

Lemma 9.2 For f € S with |f| <M in D one has
—kpr(—1) < 6%(0, f). (9:2)

The equality holds in if and only if f = ke p. See [Y2, p.111,
Lemma 5.1]| for the details.
Since

—r(=1) =M (2M - 1-2/M(M - 1)),

we observe that

_ -1 2
_%QZZM—l—Q\/M(M~1)§W e Wy

where 0 < W <1< M < +00.

Proof of Theorem 4. We may suppose that f(z) # oo. Let ¢ be the inverse
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function of f in Cap(f(z),9), § = 6% (z, f), with ¢(f(2)) = z. Set
dw + f(2) ) B

o(w) = L@ ¢(1 — f(2)éw
WHIER z¢(5w_+ﬂi)_> ’

weD.  (9.4)

1 — f(2)0w

Then g € S and |g| < M = ®¢(2)/6. A laborious but simple calculation
with the aid of

$(f) _ )
¢ (f(z)  [(2)*
yields that

") _ SO+ 1F@OP) Ly e
S (R ) I PR

An appeal to for g now immediately produces that
Af(2) 1
A2 co(1-=

whence |(8.1).

Suppose that the equality holds in at z with f#(z) # 0. Then
g = Ke,m in (9.4) shows that

ow+ f(z) Ake p(w) + 2
(l—l-EAne,M('w)) weD,

(9.5)

1 — f(2)éw
where
4 S0 P
(1= 121%)f'(2)
with |A| = 1/M. Suppose that M > 1. For t € (—M, kp(—1)) we have

¢ € Y with sp(¢) = km(C) = t, so that ke pr(8¢) = ke ar(EC) = &t. Since
|Agt| = —t/M < 1, the identity shows that f has different values

—554_—}_—_{(2) and —_5EZ+_f(z)_
1 - f(z)0e¢ 1 — f(z)0g¢
at the same point
Aet + 2

1 + ZAzt

€ D.
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This contradiction shows that M must be one, so that k. p(w) = w. Since
|A| = 1, we now have with A = A6, |\| = 6, and u = f(z). Conversely,
for f of the equality holds in [8.1). O
Proof of Theorem 8. Without any loss of generality we may suppose that

f#(2) # 0 and f(z) # co. To the function g of (9.4) one may apply, this
time, to conclude that

—kpm(—1) < 5#(0,9) < Mpau(z, f),

where M = ®£(z)/d; note that f(z)* & Cap(f(z),d). On the basis of (9.3)
one has that

(1 + pau(Z, f))2
4pau(z, f)

Hence [8.3). Suppose that the equality holds in at z with f#(z) # 0.
Then g = k. pm. The same argument as in the proof of yields

that M =1 and so f is of [8.2). The converse is now obvious. O

< M.

10. Schwarzian derivative

For f nonconstant and meromorphic in a domain D in C#, the
Schwarzian derivative Sw(f) of f is a meromorphic function defined by

I3 (f_”)’,.1<f_")2

s =5 -3(%) =(5) -2 (%

in D\ {oo}. Consequently, Sw(f) has a point z € D\ {0} as a pole of order
exactly 2 if and only if f#(2) = 0, whereas, Sw(f)(z) # oo at 2 € D \ {00}

if and only if f#(z) # 0. One should be careful enough in case z is a simple
pole of f. If oo € D, then we define

Sw(f)(c0) = lim Sw(f)(2).

Z—0Q0

More exactly,
Sw(f)(00) = lim 22" Sw(g)(2) = 0,

where g(z) = f(1/z) for z near 0, so that Sw(f) is meromorphic in the

whole D. Furthermore, Sw(f) has oo as a zero of order 2 if and only if
#(0) =

97(0) = 0.
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A well known theorem of Z. Nehari reads that if f is meromorphic
in D and if

sup(1 — [2[*)?|Sw(f)(2)| < 2, (10.1)
zeD

then f is univalent in D. Furthermore, the constant 2 in the right of
is the best possible [H].

Theorem 6 Suppose that f#(z) # 0 at a point z € D for f meromorphic
in D. Then

0~ isuie <o { () 1 (102)

Again (C) in Section 1 follows. The equality holds in (10.2) at z with
f#(2) # 0 if and only if f is of [8.2). For f of both sides of (10.2) are

Z€ro.

A generalized function k. ar g of k. p with a nonnegative parameter R
appears in the proof of Theorem 6 as in the equality argument in the proofs
of Theorems 4 and 5. For

1
e€eC, lgl=1; 1< M < +oo; OSRS4(1_M)(<4)’

set

MK K(ez)
KeMR(2) =EMK™! (M(l — RK(sz))) , z€D.

Note that the present parameter R has the upper bound. Then k. =
Ke,M,0- Furthermore, k. 10(2) = ke 1(2) = 2. One can prove that x. p g €
S and moreover, the function k. p g maps D univalently onto the disk
{|z| < M} minus the union J4 U Jg of the sets

Ja={-gMs; A(M,R) <s<1} (10.3)
and

Jp = {EMs; B(M,R) < s < 1}, (10.4)
where

A(M,R) = % (M(4—R) - \/M2(4—R)2—4M(4—R)) >0
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and

B(M,R) = (MR +2-/M2R? 4MR> > 0.

1
2

Suppose that M > 1. Then, A(M,0) = —kp(—-1)/M < 1. If R > 0,
then B(M,R) = K~1(1/{MR}) < 1. We then have the open arc Yg(R),
R > 0, in the upper half of 0D with one end-point 1, which, as well as
its reflexion with respect to the real axis, is mapped onto the open interval
(MB(M, R), M) by the extension of k1 apr to D U 8D, which we denote
again by K1 M R.

Our proof of Theorem 6 depends, in fact, on

Lemma 10.1 Suppose tha f € S is bounded, |f| < M, in D. Then

Sw(f)(0)] < 6 (1 _ %) | (10.5)

The equality holds in [(10.5) if and only if f = k. m g See [Y2,
p.114, Lemma 6.1] for the detailed proof of Lemma 10.1. In case M =
1, Lemma 10.1 is trivial because f(z) = =.

General facts about the Schwarzian derivative will also be needed. We
begin with the composed function g o f in a domain of C. If f(2) # oo,
then

Sw(g o f)(z) = Sw(g)(f(2)f'(2)* + Sw(f)(2).

Particularly if g is a M&bius transformation, g(¢) = (a( +b)/(c( + d), ad —
be # 0, then Sw(go f)(z) = Sw(f)(z). Furthermore if g = f~!, the inverse
of f and f(z) # oo, then
- Sw(f)(z)
1 —

Sw(f~)(f(2)) = )T
Proof of Theorem 6. We may suppose that f(z) # oo because Sw(f) =
Sw(1/f). For g of (9.4) with § = §%(z, f) again, we have

Sw(g)(0) = Sw(9)(f(2))8*(1 + | f(2)*)*

and

Sw(f)(z)

Su(8)(f(2)) =~
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so that (10.5) for g € S with |g| < M = ®(2)/d reads that

—1212)21Sw( F)(z
UMW )01 26 (1- 1)

Hence (10.2).
Suppose that the equality holds in (10.2) at z with f#(z) # 0. Then
g = Ke,M,R, 50 that, this time again,

dw + f(z) ( Ake mr(w) + 2 ) |

1~ F(2)6w ° \1+ZArcp p(w)

w € D, (10.6)

where

4= S0+ F@P) - |A] = 1/M.

(1—122)f"(2)
Suppose that M > 1. If R =0, then for t € (—M, kp(—1)) we have ( € T
with kp(¢) = kp(¢) =t. If R > 0, then for t € (MB(M, R), M) we have

¢ € TB(R) with Hl,M,R(C) = RI,M,R(C) = {.
The remaining part of the proof is established on following the same

argument as in the proof of with the obvious modification. O

Remark 5 Suppose that f is meromorphic with nonvanishing f# in D
and suppose further that

su q)f(z) < 2 =1.154
D oF(z, f) V3

Then f is univalent in D. This follows on combining and (10.2).
We note that, for an arbitrary ¢ > 0, there exists f € M such that

Dy(2)
weD 0% (2, f)

Indeed, choose p, 0 < p < 1, such that (14 p)?/p > c. Then for f = H, of
M,

> C.

24(0) _ (1+p)?
§#(0, f) p

> C.

11. Poincaré density

According to the Koebe uniformization theory a plane domain Q C C
whose complement C \ © contains at least two points admits a universal
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covering projection f from D onto £, in notation, f € Proj(f2), which is
holomorphic with nonvanishing derivative in D, in particular. Furthermore,
f is normal. We set

1
S T
where z = f(w); the choice of f € Proj(2) and w is immaterial as far as
z = f(w) is satisfied. We call Py(z) the Poincaré density of Q at z € ; the
Poincaré metric in 2 in the differential form is Pq(z)|dz|. For the specified
case Q@ = D one has Pp(¢) = 1/(1 — [¢|?); the integral of Pp(¢)|d(| along
v(2, w) defines the Poincaré distance o(z,w) in D.
Similarly, set for z = f(w) € Q,

pQ(Z) - p(’lU, f), PQ,a(z) = pa('w’ ), p;l,a(z) = pZ(w, f))
and pQ,au(z) = pau(w> f)

Then all are well defined in €2 and none of them depends on a particular
choice of f € Proj(?) and w as far as z = f(w) is satisfied. Since each
f € Proj(€) is normal, it follows from that

pa(Q) = zlgg% pQ, a( ) - pa(f) > 0,

or equivalently, by (I),

pa(Q) = Inf pg o(2) = p3(f) > 0.
Furthermore,
6%(z) = inf (-2
b= inf (2] = #(w.p

for z = f(w), where 8% is the boundary of Q in C¥#.

Recall here that the spherical distance x(z,w) is the line integral of
x(¢)|d¢]| along curve(s), where x(¢) = 1/(1+]|¢|?); see and its following.
We therefore call x(¢) the spherical density at { € C#, where x(c0) = 0.

As relations among the functions ®, x, and Pn, we have at z = f(w) €
Q for f € Proj(f2) that <I>f(w) x(z)/Pqa(z) and consequently,

1 x(2)
9z log Po(2)|

Ap(w) =
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We can now apply preceding theorems to an f € Proj(Q2) and translate
them in terms of Py and others.

For example, it follows from that
pQ(z) 0 X(Z) PO au(z) pQ(Z)

— = |=—1lo . + , z€ . 11.1
Pa(2) |92 Pa)| = pa(d) T poral?) -y

The equality holds at z € Q if and only if Q = f(D) C C, where

()

_ ¢—w
-2 )

f(¢) =

with four parameters 0 < p<1,e€ C, le|] =1, A € C\ {0}, and p € C#.
In this case Q is C# (or ¥) minus a circular arc containing co.

It follows from that

8, 2x(2)
0g (2) < 2Pq(z) + |(8/02) log(x(2)/ Pa(2))|’

The equality holds at z € Q if and only if €2 is a spherical cap Cap(z, R) C C
with 0 < R < +o00. In this case 6g(z) = x(2)/Pa(z) = R and (8/8z)(x(z)/
PQ(Z)) = 0.

A hyperbolic domain ©Q C C is said to be of finite type if p(Q2) =
inf,cq pa(z) = (= p(f)) is strictly positive. This notion was essentially
introduced in [Y1]. We prove here that  is of finite type if and only if

¢ 98 (2)Pa(2)
2eQ X(Z)

The infimum is not greater than 1 because (C) holds for f € Proj(Q).
Suppose that p(£2) > 0. Then

z e (11.2)

> 0. (11.3)

G/U.QE. au .
pau(€d) = inf paau(z) >0

Hence it follows from that

x(2) 1 1
5% (2) Po(2) =2 (p(ﬂ) T e @)

so that we have (11.3). Conversely suppose [11.3). Then it follows from

><+oo,
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that there exists ¢, 0 < ¢ < 1, with
4pgu(2, f) < 4p(2, f)
7= )
(1+ pau(z, )"~ (14 p(2, )

at each z € ). Hence p(Q2) > (2—c— 21— c)/c>0.
Since

c <

1|8

~ Po(z) |022 Po(z)

at z = f(w) € Q for f € Proj(Q), it follows from (10.2) that
1

2
x(2) 3
Po(2) : 3{(53(Z)P9(z)> 1}' (114)

The equality holds in (11.4) if and only if § is a spherical cap Cap(z,R) C
C, 0 < R < +o00; both sides of (11.4) are zero in this case.

Finally, the quantity v(Q2) = v(f) for f € Proj(Q) is called the normal
constant of Q in [Y3, p.302]; this is independent of a particular choice of
f. It is known, for example, that I/(C \ {0, 1}) <4.487.... An immediate
consequence of (I) is then that

(@) < PO < pul®) < 2030 <

5 (1 [wP)|Sw(f)(w)

9* 1
022 Po(2)

tanh

12. Univalent meromorphic function

As estimates of ®f(z) of the type somewhat different from previous
ones we propose here

Theorem 7 Let f be meromorphic and univalent in D. Suppose that

f(w) = f(2)*. Then

(1 — 7(2,w)

2\ 2

T(z, w)?’

(12.1)

Note that 7(z, w) = pa(z, f) = pa(w, f) < 1 in this case.
To describe an equality condition for the right-hand side of we
set

Go(2) = pz(1 — p2)

Pz O<p<l1.
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Then the rational function G, of z maps D univalently onto C# minus the
subarc on the circle {|z| = p} bisected by —p and having the end-points

p (2p2 14 2p/1 ——p2i> .

To be more precise, G, = f3 o fo 0 f1, where

A0 = =8 witn b= L2 VTP

T 1K p
__p (._L). _p(¢-1)
PO == (c-7)i mo=2E

We set Gpe(z) = EGp(ez) for € € C with |e| = 1. Specifically, Gp . € S(p).
The equality in the right of holds if and only if

70 = e
L RAGe (1 ~zc)

where A € C\ {0}, p € C#, e € C, |e] =1, and p, 0 < p < 1, all are
constants. In particular, f(w) = f(z)* for w = (Ep+ 2)/(1 + Zép). For f of
(12:2), the equality ®¢(z) = |A| is valid, so that ®¢(w) = (p?|A])~".

The equality in the left of holds if and only if

¢—z
AH. —
p,e(l_zc + i
_ (=%
1 u/\H,5<1_EC
where A € C\ {0}, p € C¥, e € C, |e] = 1, and p, 0 < p < 1, all are

constants. In particular, f(w) = f(2)* for w = (Ep+ 2)/(1 + Z€p). For f of

(12.3), the equality ®;(2) = || is valid, so that ®(w) = (1 — p?)?/(p?A}).
We recall here the result of Komatu on S(p) [K, p.278, (4.4)] on which
depends; see [G, II, p.263].

(12.2)

Q)= (12.3)

Lemma 12.1 Suppose that f(z,) = oo for f € S(p) with 0 < p < 1, so
that |zo| = p. Then

p2

P(1—p") < |Res(f. 20| < 72

-, (12.4)
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where

Res(f, 2,) = lim (z — 2,) f(2).

The equality in the left (right, respectively) of [12.4) holds if and only
if f=Gpe (f = Hpg, respectively); see [K, p.279, (4.8)].
Before passing to the proof of let us note that

1/ Res(f, 20) = (1/)'(20) (12.5)
for f € S(p) with f(2,) = 00, |2| = p < 1. We then have ®(z,) = (1 —
p°)/| Res(f, 2)|.

Proof of Theorem 7. We may suppose, without loss of generality, that 0 #
f(2) # oo. Indeed, otherwise, consider (f — b)/(1+ bf) for a constant b €
C\{0}. Set T(¢) = (( +2)/(1 +2(), ¢ € D, and choose n € D such that
w = T(n). Then |n| = 7(z,w). Set

_ 1+ foT() - £(2)
W= T =PrE 157010

Then g € S(p) with g(n) = co and p = |n|. It follows therefore from
for g and z, = n that

(eD

———1 = l , = 2 FF ()T
| Res(g, n)| ((g) (77){ P4 (2) f7(w)|T"(n)]

_ 25(2)®05(w) _ 24(2)2s(w)

1—p2 — 1-p2 °

Here we make use of

Fw) = f(o)2 = LHIEP) A+ 17 w)P)

|f(2)] | f(w)]
= (141 + |f(w)?)

and
L= PT )] =1- TP =1—|w|

One now takes advantage of (12.4) for g, z, = 1, and p = 7(2,w) to have
12.1). It is now an exercise to have the described equality condition. O
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Remark 6 A consequence of the left of is that

AP

if pa(z, f) < 1; this is obviously true in case p,(z, f) = 1. It then follows
that

v(f)2+4—-v(f
W22 vI) <y
if f is meromorphic and univalent in D.
We can translate these results in terms of v(€2) and p,(£2) for a simply
connected domain §2 # C.

13. Bloch function

What are reasonable holomorphic versions of (I) and (II) in Section 3?
The situation appears to be very much different. For f holomorphic in D
we set

B(f) = sup (1= |2[*)|f'(2)]

z€D

and call f Bloch if B(f) < +o0.

Let p,(z, f) be the maximum of r, 0 < r < 1, such that ef(w) 4 ef(2) £ 0
for all w € A(z,7), whereas let p¥(z, f) be the maximum of 7, 0 < r < 1,
such that

ef (O 4 ef M £ 0 (13.1)

for all {, n € A(z, 7).
Since

0<pi(2 f) <pulz, f) <1, z€D,
it follows that
0<po(f) <pulf) <1,
where
pu(f) zlg[f)pw(z,f) and  p;,(f) zlgDpw(z,f)

Theorem 8 A holomorphic function f defined in D is Bloch if and only
if pu(f)>0.
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For the proof it suffices to observe that

T 4

2507 < po(f) < pu(f) <205(f) < 6

for f holomorphic in D.

(IIT)  tanh

THE FIRST INEQUALITY IN (III). We may suppose that 0 < 8(f) <
+o00o. Then for all {, n € D, one has

[ Tm f(¢) = Im f ()| < |£(C) = f(m)] < B(fa(¢,m).
Hence, for all ¢, n € A(z,r) with 7 = tanh(7/(28(f))), one further has

[ Tm f(¢) = Im f(n)| < B(f)(0(C, 2) + o(2,m)) < .

Hence (13.1) is true, and consequently,

tanh — — < pf(z, f),

26(f)

whence the first follows.

THE THIRD INEQUALITY IN (III). We may suppose that pu(f) > 0.
For z € D and for all ¢, n € A(z, pu(f)/2), we have ¢ € A, pu(n, f)), so

that is valid. Hence
pu(f)/2 < pi(z, f),
from which the third follows.
THE FOURTH INEQUALITY IN (III). We shall make use of
(IV) Pz A= [2P)If'(2)| <2, zeD

for f holomorphic in D.

For the proof of (IV) we may suppose that a = p¥ (2, f) > 0. Then for
each fixed z € D, the function

o) = exp (£ ({422 ) - 1(2)

of w € D satisfies g(0) = 1 and g(¢) + g(n) # 0 for all ¢, n in D. In other
words, g is a Gel’fer function [G, II, p.73]. Hence the holomorphic function
h = (g —1)/(g + 1) is a Bieberbach-Eilenberg function in the sense that
h(0) = 0 and h(¢)h(n) # 1 for all {, n in D; see [G, II, p.61]. It then follows
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from the Eilenberg theorem [G, II, p.63, Theorem 31] that |A’(0)| < 1 and,
moreover, |h/(0)| = 1 if and only if h(w) = ew, |e| = 1. Consequently,
g'(0 2| (0 2
(1—|Z|2)|f,(z)| — l ( )I — l ( )| <=

a a a
whence (IV). The equality holds in (IV) at z if and only if

w— 2z
1+€'1 =
f(w) =log w—_zg)—l—,u, eeC, |el=1, and peC.
1—
¢ 1—-2zw

(13.2)

Indeed, suppose that the equality holds in (IV). Then h(w) = ew, € €
C, |e| =1, so that

2 (= gw) = (£ (1 - 1)

1—cw 1+ Zaw

for all w € D. If a < 1, then we have a contradiction on letting w — .
Hence a = 1, whence we have (13.2) with u = f(z). The converse is obvious.
The fourth inequality in (III) now immediately follows from (IV).

Remark 7 The domain constants p,(2) = pu(f) and p5(Q) = pi(f)
both are well defined in © with the aid of f € Proj(£2) in the sense that the
choice of f is immaterial. Set

1
N inf.eq Pa(z)’
Then 3(Q) = B(f), f € Proj(), and 0 < B(2) < +o00. As the case {2 =

{2;Rez > 0} shows, it is possible that 5({2) = +oo. For general hyperbolic
domain €2 one then has

o S P < @) <200 € s

B(%)

tanh

14. Absolute constants

We proved in Remark 2 in Section 5 that

sup v(f) = +oo.
feM
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For S C M, in contrast, we are here able to prove that

v(S) =sup v(f) < E(a) =3.4569... . (14.1)
fes

In the above

0<z<1, (14.2)

3]- 29 3]. 29
_ 3z i 1 I — =0.4102...
1¢4(V27 ) '¢4<V27+1>+ﬂ- 0.4102...,

so that =(a) = maxg<z<1 =(z). The proof of depends on two forth-
coming inequalities. For the first we let f € S and set g(w) = 1/f(z), w =
1/z. Then g is meromorphic and univalent in Cap(oco,1) = {w; 1 < |w| <
+o00} such that limp,—te g(w)/w = 1. It then follows from Loewner’s
inequality [D, p.127, Corollary 6] that

w?

jw]? =1

with

lg'(w)] < 1 < |w| < +oo,

which is reduced to the first inequality

f'(2) 2
1— |23 |55 2|2 <1, ze€ D; 14.3
(1= 1) | 753 (14.3)
the left-hand side is 1 at 2 = 0. On the other hand, the familiar inequality
]

1f(D) < K(l2]) = 7— 3 (14.4
( =17 )

for z € D holds [G, I, p.68, Theorem 8]. Hence the second is that

1 |f(2)

< Z(]2]);
FET+7EE = 5
the left-hand side is again 1 at z = 0. It then follows from and

f'(2) 1 _ )17

—_— 2.
72| TP

®r(z) = (1- |2

that

<I>f(z) < =Z(|2]), z€D.



184 S. Yamashita

Since

max =(z) = =(a),

where 2(a — 1)3 + a = 0, we finally have [14.1).
As for the lower estimate of v(S) we have

v(S) > v(K) > max ®k(zr) = max (1—2%)°

=2.561...
~ 0<z<1 0<z<1 (1 — )4 4 z? 561,

the maximum actually being attained at § = 0.340. .. for which
28* —133° + 128> - 98 +2 =0.

It is of interest to determine the exact value of v(.5).
For S(p), 0 < p < 1, the situation is not very much different. Namely,

v(S(p)) = sup v(f) <C(p), (14.5)
feS(p)

where

C(p) = Jmax Ep(2),

2
— p
= = , 0<z<1
A KT i

For the proof of (14.5) we have only to remember a counter part of
for S(p), namely,

f(2)] < [Hp1(l2])] = p— |z|1|)|(i|—pIZl)

for f € S(p) and z € D; see [KS, Theorem 3] and [G, II, p.248, Theorem 40].
The definition of S(p) in is slightly different. If f(2,) = oo for f of
our S(p), 2, = €p, then g(z) = £f(e2) is in S(p) defined in [KS]. We have
C(p) =5, (a(p)), where the constant a = a(p), 0 < a(p) < 1, satisfies the
equation

2p%a® — 3p(1 + p?)a? + (p* + 5p* + 1)a — p(1 + p*) = 0.
Note that 1 < 1/p% < C(p).
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As for the lower estimate of v(S(p)) we have, in a similar manner, that

v(8(p)) 2 v(Hp,-1) 2 max ®p, ()
201 _ 2.2)2
= max p(1-2) :
0<z<1 (p — z)*(1 — px)? + p°z?
Remark 8 Let g(w) = 1/f(2), w = 1/z, again for f € S(p), 0 < p < 1.
It follows from [D, p.127, Corollary 6] that

w 2 _
E <l 1< ol < o
so that
(1= < (1 - [?) %2 P, zeD.

On the other hand, it is known for f € S(p) that
plz|

(1+plz])(p+ [2])

see [G, I, p.68, Theorem 8] for p = 1, whereas, see [F], [KS], and [G, II,

p.248, (90)] for 0 < p < 1. It is indeed an exercise to have the left-hand
side of

= —Hp1(=[2]) <1f(2)], 2 € D;

p*(1 — |2]?)?
(14 pl2])2(p + |2])% + p?|2|?

p2

1—plz|)2(p — |2])% + p?|2|?’

for f € S(p), 0 < p < 1. In particular, let z, be the pole of f € S(p),
0 < p<1, andset z =z, in the above. One then again has the left-hand

side of (12.4).

S<1>f(z)S( z €D,

References

[D]  Duren P.L., Univalent Functions. Springer, New York, 1983.

[F]  Fenchel W., Bemerkungen dber die im Einheitskreis meromorphen schlichten Funk-
tionen. Sitzsber. Preuss. Akad. Wiss. Phys.-Math. K1. H22/23 (1931), 431-436.

[G] Goodman A.W., Univalent Functions. Volumes I and II. Mariner Publ. Co., Tampa,
Florida, 1983.



186

H]
[KS]
K]
L]
[LM]
[LV]
[N]

[Pi]

[Po]

[Y1]

[Y2]

[Y3]

S. Yamashita

Hille E., Remarks on a paper by Zeev Nehari. Bull. Amer. Math. Soc. 55 (1949),
552-553.

Kirwan W.E. and Schober G., Eztremal problems for meromorphic univalent func-
tions. J. Analyse Math. 30 (1976), 330-348.

Komatu Y., Note on the theory of conformal representation by meromorphic func-
tions. I and II. Proc. Japan Acad. 21 (1945), 269-284.

Lappan P., A non-normal locally uniformly univalent function. Bull. London Math.
Soc. 5 (1973), 291-294.

Lebedev N.A. and Milin .M., On coefficients of some classes of analytic functions.
(in Russian) Mat. Sbornik 28 (70) (1951), 359-400.

Lehto O. and Virtanen K.I., Boundary behaviour and normal meromorphic func-
tions. Acta Math. 97 (1957), 47-65.

Nehari Z., The Schwarzian derivative and schlicht functions. Bull. Amer. Math.
Soc. 55 (1949), 545-551.

Pick G., Uber die konforme Abbildung eines Kreises auf ein schlichtes und zugleich
beschranktes Gebiet. Sitzsber. Kaiserl. Akad. Wiss. Wien. Math.-Naturwiss. K.
Abt. ITa 126 (1917), 247-263.

Pommerenke C., Estimates for normal meromorphic functions. Ann. Acad. Sci.
Fenn. Ser. A. I. Math. 476 (1970), 10 pp.

Shah T.-S., On the moduli of some classes of analytic functions. (in Chinese) Acta
Math. Sinica 5 (1955), 439-454. (Math. Rev. 17 (1956), 724)

Yamashita S., Univalent analytic functions and the Poincaré metric. Kodai Math.
J. 13 (1990), 164-175.

Yamashita S., The derivative of a holomorphic function and estimates of the
Poincaré density. Kodai Math. J. 15 (1992), 102-121.

Yamashita S., The Pick version of the Schwarz lemma and comparison of the
Poincaré densities. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 19 (1994), 291-322.

Department of Mathematics

Tokyo Metropolitan University
Minami-Osawa, Hachioji

Tokyo 192-0397, Japan

E-mail: yamashin@comp.metro-u.ac.jp



	1. Introduction
	Theorem 1 ...

	2. The spherical distance ...
	3. Proof of Theorem 1
	4. Estimate of \Lambda_{f}(z)
	Theorem 2 ...

	5. Proof of Theorem 2
	6. Riemann image surface; ...
	Theorem 3 ...

	7. Proof of Theorem 3
	8. Lower estimtes of \Phi_{f} ...
	Theorem 4 ...
	Theorem 5 ...

	9. Proofs of Theorems ...
	10. Schwarzian derivative
	11. Poincar\'e density
	12. Univalent meromorphic ...
	Theorem 7 ...

	13. Bloch function
	Theorem 8 ...

	14. Absolute constants
	References

