Smooth unique solutions for a modified Mullins-Sekerka model arising in diblock copolymer melts

Joachim Escher and Yasumasa Nishiura

(Received June 12, 2000; Revised November 15, 2000)

Abstract

Of concern is a modified Mullins-Sekerka model arising in diblock copolymer melts. As the new feature of this system a nonlocal inhomogeneous term is introduced. It is shown that the corresponding moving boundary problem is classically well posed.

Key words: Mullins-Sekerka flow, Hele-Shaw flow, Cahn-Hilliard equation, free boundary problem, diblock copolymer melt, convexity, curvature.

1. Introduction

In [18] a modified Cahn-Hilliard equation is proposed to study microphase separation of diblock copolymer. Let Ω be a bounded domain in \mathbb{R}^{n} with a smooth boundary $\partial \Omega$ and consider the following parabolic initial boundary value problem

$$
\left\{\begin{align*}
u_{t}+\Delta\left(\varepsilon^{2} \Delta u+W^{\prime}(u)\right)-\sigma\left(u-\bar{u}_{0}\right) & =0 & & \text { in } \Omega \times(0, \infty) \tag{1.1}\\
\partial_{\nu} u=\partial_{\nu} \Delta u & =0 & & \text { on } \partial \Omega \times[0, \infty) \\
u(0, \cdot) & =u_{0} & & \text { in } \Omega,
\end{align*}\right.
$$

where ε and σ are positive contants and W stands for a double-well potential with global minima at ± 1. Moreover, $\bar{u}_{0}:=\frac{1}{|\Omega|} \int_{\Omega} u_{0} d x$, with $|\Omega|$ being the Lebesgue measure of Ω, and $\partial_{\nu} u$ stands for the derivative of u with respect to the outer unit normal ν on $\partial \Omega$. In the case $\sigma=0$ system (1.1) reduces to the usual Cahn-Hilliard model, cf. [21]. However, if one considers separation of diblock copolymer, the effect of nonlocality should be taken into account, which stems from a long-range interaction of diblock copolymer. The third term of the left-hand side of the first equation above comes from the nonlocal term associated to Gibbs energy and the parameter σ is inversely proportional to the square of the total chain length of the

[^0]copolymer, cf. [20, 4, 18]. The effect of this term has a strong influence on the manner of phase separation, in fact there are a variety of stable patterns of microphase with scale $(\sigma / \varepsilon)^{1 / 3}$ which makes a strong contrast with the usual macrophase separation realized by the Cahn-Hilliard equation. It was proven rigorously in [19] for the one-dimensional case that the global minimizer has such a microphase order.

Introducing the scaling $x \mapsto(\sigma / \varepsilon)^{1 / 3} x$ and $t \mapsto \sigma t$ the formal singular limit of (1.1) as $\varepsilon \rightarrow 0$ and $\sigma \rightarrow 0$ leads to the following moving boundary problem, cf. [18]: Given a compact embedded hypersurface Γ_{0} in Ω that is the boundary of an open set Ω_{0}^{-}such that its closure $c l\left(\Omega_{0}^{-}\right)$is contained in Ω, find a family $\Gamma=\{\Gamma(t) ; t \geq 0\}$ of embedded hypersurfaces and a family of functions $v_{ \pm}(t): \Omega^{ \pm}(t) \rightarrow \mathbb{R}$ satisfying

$$
\left\{\begin{align*}
-\Delta v_{ \pm}(t) & = \pm 1-f(t) & & \text { in } \Omega^{ \pm}(t), t \geq 0 \tag{1.2}\\
v_{ \pm}(t) & =C \kappa(t) & & \text { on } \Gamma(t), t \geq 0 \\
V(t) & =\frac{1}{2}\left[\partial_{\nu} v(t)\right] & & \text { on } \Gamma(t), t>0 \\
\partial_{\nu} v_{+}(t) & =0 & & \text { on } \partial \Omega, t \geq 0 \\
\Gamma(0) & =\Gamma_{0} . & &
\end{align*}\right.
$$

Here $\Omega^{-}(t)$ and $\Omega^{+}(t)$ denote the regions in Ω separated by $\Gamma(t)$ and being diffeomorphic to Ω_{0}^{-}and Ω_{0}^{+}, respectively. Furthermore we use the notation

$$
f(t):=\frac{1}{|\Omega|}\left(\left|\Omega^{+}(t)\right|-\left|\Omega^{-}(t)\right|\right), \quad t \geq 0 .
$$

We write $V(t)$ for the normal velocity of Γ at time t and $\kappa(t)$ stands for the mean curvature of $\Gamma(t)$, with the sign convention that $V(t) \geq 0$ if Γ is expanding locally $\Omega_{-}(t)$ and $\kappa(t) \geq 0$ for a surface $\Gamma(t)$ being locally convex with respect to $\Omega_{-}(t)$. Finally,

$$
\left[\partial_{\nu} v(t)\right]:=\partial_{\nu} v_{+}(t)-\partial_{\nu} v_{-}(t)
$$

denotes the jump of the normal derivatives of $v_{ \pm}(t)$ across $\Gamma(t)$, where ν denotes the outer normal with respect to $\Omega_{-}(t)$ and C is a positive constant.

If the first two equations in (1.2) are replaced by $\Delta v_{ \pm}(t)=0$ the resulting system

$$
\left\{\begin{align*}
\Delta v_{ \pm}(t) & =0 & & \text { in } \Omega^{ \pm}(t), t \geq 0 \tag{1.3}\\
v_{ \pm}(t) & =C \kappa(t) & & \text { on } \Gamma(t), t \geq 0 \\
V(t) & =\frac{1}{2}\left[\partial_{\nu} v(t)\right] & & \text { on } \Gamma(t), t>0 \\
\partial_{\nu} v_{+}(t) & =0 & & \text { on } \partial \Omega, t \geq 0 \\
\Gamma(0) & =\Gamma_{0} & &
\end{align*}\right.
$$

is known as the two-phase Mullins-Sekerka problem, cf. [5]-[10], [16], [17], [21]. The Mullins-Sekerka system (1.3) is a widely used model for phase separation and coarsening phenomena in a melted binary alloy. The nonlocal inhomogeneities $\pm 1-f(t)$ in (1.2) issued from the additional term $-\sigma\left(u-\bar{u}_{0}\right)$ in the first equation of (1.1) and takes care of the fact that we are dealing with diblock polymer.

As for the Mullins-Sekerka model, system (1.2) preserves the volume. More precisely, assume that (1.2) possesses smooth solutions and let

$$
\operatorname{vol}(t):=\left|\Omega_{-}(t)\right| \quad \text { for } t>0,
$$

be the volume inclosed by $\Gamma(t)$. Then the function vol is smooth with

$$
\frac{d}{d t} \operatorname{vol}(t)=\int_{\Gamma(t)} V(t) d \sigma(t)
$$

where $\sigma(t)$ denotes the surface measure on $\Gamma(t)$. Using (1.2) and Gauss' theorem we obtain

$$
\begin{aligned}
2 \int_{\Gamma} V d \sigma & =\int_{\Gamma} \partial_{\nu} v_{+} d \sigma-\int_{\Gamma} \partial_{\nu} v_{-} d \sigma \\
& =-\int_{\Omega^{+}} \Delta v_{+} d x-\int_{\Omega^{-}} \Delta v_{-} d x \\
& =\int_{\Omega^{+}}(1-f(t)) d x+\int_{\Omega^{-}}(-1-f(t)) d x=0
\end{aligned}
$$

so that the flow induced by (1.2) preserves the volume of $\Omega^{-}(t)$ and of $\Omega^{+}(t)$. This particularly implies that the term f, which depends a priori on the time variable, is (at least for smooth solutions) in fact constant in time.

In contrast to the classical Mullins-Sekerka model, it cannot be expected
that (1.2) decreases the area $A(t):=\int_{\Gamma(t)} d \sigma(t)$ of $\Gamma(t)$. Indeed, one has

$$
\frac{d}{d t} A(t)=(n-1) \int_{\Gamma(t)} \kappa(t) V(t) d \sigma(t),
$$

see [14], [9], and we find

$$
\begin{aligned}
\frac{C}{2} \int_{\Gamma} \kappa V d \sigma= & \int_{\Gamma} v_{+} \partial_{\nu} v_{+} d \sigma-\int_{\Gamma} v_{-} \partial_{\nu} v_{-} d \sigma \\
= & -\int_{\Omega^{+}} \operatorname{div}\left(v_{+} \nabla v_{+}\right) d x-\int_{\Omega^{-}} \operatorname{div}\left(v_{-} \nabla v_{-}\right) d x \\
= & -\int_{\Omega^{+}}\left|\nabla v_{+}\right|^{2} d x-\int_{\Omega^{-}}\left|\nabla v_{-}\right|^{2} d x \\
& +(1-f) \int_{\Omega^{+}} v_{+} d x-(1+f) \int_{\Omega^{-}} v_{-} d x
\end{aligned}
$$

so that there is no reason to expect that $d A(t) / d t$ is non-positive.
A further significant difference between (1.2) and (1.3) is concerned with the equilibria of these flows. Indeed, it follows from Alexandrovs characterization of Euclidean spheres (cf. [1]) that (1.3) admits only spheres as embedded equilibria. In contrast, spheres are in general not equilibria to (1.2). To see this, let Γ_{0} be a sphere of radius R and assume that $\Gamma(t)=\Gamma_{0}$, $t>0$ is a stationary solution to (1.2). Then the corresponding chemical potentials $-v_{ \pm}$have to satisfy the following elliptic boundary value problems

$$
\begin{aligned}
-\Delta v_{ \pm}(t) & = \pm 1-f(t) & & \text { in } \Omega^{ \pm} \\
v_{ \pm}(t) & =C / R & & \text { on } \Gamma_{0} \\
\partial_{\nu} v_{+}(t) & =0 & & \text { on } \partial \Omega, t \geq 0 .
\end{aligned}
$$

Recall that $|f|<1$. Hence the strong maximum principle and the symmetry of v_{-}imply that there is a positive constant c such that $\partial_{\nu} v_{-}(x)=c$ for all $x \in \Gamma_{0}$. But Γ_{0} is an equilibrium. Thus $V=\left(\partial_{\nu} v_{+}-\partial_{\nu} v_{-}\right) / 2$ vanishes on Γ_{0}, so that

$$
\begin{equation*}
\partial_{\nu} v_{+}(x)=c \quad \text { for all } \quad x \in \Gamma_{0} . \tag{1.4}
\end{equation*}
$$

Observe that (1.4) is independent of the shape and position of $\partial \Omega$, which is not possible. Finally, in the forthcoming paper [12] it is shown that the flow induced by (1.2) does not preserve convexity, in agreement with the usual Mullins-Sekerka flow, cf. [15].

The unknowns Γ and $v_{ \pm}$are coupled through the system (1.2). However, if the position and the regularity of the moving boundary $\Gamma=\{\Gamma(t) ; t \in$ $[0, T)\}$ is known, the chemical potentials $-v_{ \pm}$are obtained by solving at each time $t \in[0, T)$ the elliptic boundary value problems

$$
\begin{aligned}
-\Delta v_{ \pm}(t) & = \pm 1-f(t) & & \text { in } \Omega^{ \pm}(t) \\
v_{ \pm}(t) & =C \kappa(t) & & \text { on } \Gamma(t) \\
\partial_{\nu} v_{+}(t) & =0 & & \text { on } \partial \Omega, \quad t \geq 0 .
\end{aligned}
$$

In this sense we call a family $\Gamma=\{\Gamma(t) ; t \in[0, T)\}$ of hypersurfaces a solution of (1.2).

To give a precise statement of our results, we have to introduce some notation. Given $\alpha \in(0,1), m \in \mathbb{N}$, and an open bounded subset U of \mathbb{R}^{n}, let $h^{m+\alpha}(U)$ denote the little Hölder space of order $m+\alpha$, i.e. the closure of $C^{\infty}(U)$ in the norm of the usual Banach space $C^{m+\alpha}(\bar{U})$. Given a sufficiently smooth manifold M, the space $h^{m+\alpha}(M)$ is defined by means of local coordinates.

Theorem 1 Let Γ_{0} be a compact, closed, embedded hypersurface in Ω of class $h^{2+\alpha}$. Then there exists a unique classical solution $\Gamma=\{\Gamma(t) ; t \in$ $[0, T)\}$ of problem (1.2) emerging from Γ_{0}. The mapping $[t \mapsto \Gamma(t)]$ is smooth on $(0, T)$ with respect to the C^{∞}-topology and continuous on $[0, T)$ with respect to the $h^{2+\alpha}$-topology. Moreover, if Γ_{0} is the $h^{2+\alpha}$-graph in normal direction over a smooth hyperface Σ, then the mapping $\left[\left(t, \Gamma_{0}\right) \mapsto\right.$ $\Gamma(t)]$ defines a local smooth semiflow on some open subset of $h^{2+\alpha}(\Sigma)$.

There is a different approach to moving boundary problems of type (1.3) which is based on introducing a regularizing term to get approximate solutions for these motions. Using energy estimates it is possible to pass to the limit in the regularized problem and to get the existence of a local weak solution to (1.3). In certain cases it is possible to prove a posteriori additional regularity of these weak solutions, cf. [5, 7]. However, for the modified Mullins-Sekerka model (1.2) the area functional fails to be a Ljapunov function for the corresponding flow, which is an essential task to get powerful energy estimates. In addition, the approach followed in [5, 7] does not produce any information about the uniqueness of solutions.

2. Existence and uniquness of classical solutions

In this section we transform the original problem to a nonlinear problem on the fixed domains $\Omega^{ \pm}$. After a natural reduction of this transformed problem we are left to solve a quasi-linear parabolic evolution equation for the moving boundary involving a nonlocal pseudo-differential operator of third order. We shall work out a quasi-linear structure of this propagator and we will see that the corresponding linear part can be represented as an elliptic pseudo-differential operator of third order. This rather precise linear analysis allows us then to apply the general theory of quasi-linear parabolic evolution equation due to H. Amann.

Assume that Γ_{0} is a compact, closed hypersurface in Ω of class $h^{2+\alpha}$ and let $a_{0}:=\operatorname{dist}\left(\Gamma_{0}, \partial \Omega\right)$. Then we find a smooth hypersurface Σ, a positive constant $r>0$, and a function $\rho_{0} \in h^{2+\alpha}(\Sigma)$ such that

$$
X: \Sigma \times(-r, r) \rightarrow \mathbb{R}^{n}, \quad X(s, \lambda):=s+\lambda \nu(s)
$$

is a smooth diffeomorphism onto its image $Y:=\operatorname{im}(X)$ and such that $\theta_{\rho_{0}}(s):=X\left(s, \rho_{0}(s)\right)$ is a $C^{2+\alpha}$-diffeomorphism mapping Σ onto Γ_{0}. Here, ν denotes the outer normal at Σ. Of course Σ separates Ω in two domains Ω^{-}and Ω^{+}, with Ω^{-}being enclosed by Σ.

Let $T>0$ be fixed. We are looking for $\Gamma=\{\Gamma(t) ; t \in[0, T]\}$ in the form

$$
\Gamma(t):=\left\{x \in \mathbb{R}^{n} ; x=X(s, \rho(s, t)), s \in \Sigma\right\}
$$

with a function $\rho: \Sigma \times[0, T] \rightarrow \mathbb{R}$ to be determined. More precisely, let

$$
\mathcal{A}:=\left\{\hat{\rho} \in h^{2+\alpha}(\Sigma) ;\|\hat{\rho}\|_{C^{1}}<a\right\}
$$

denote a set of admissible parametrizations, where $a \in(0, r)$ will be chosen later. Given $\hat{\rho} \in \mathcal{A}$, let $\theta_{\hat{\rho}}:=\operatorname{id}_{\Sigma}+\hat{\rho} \nu$ and write $\Gamma_{\hat{\rho}}:=\operatorname{im}\left(\theta_{\hat{\rho}}\right)$. Obviously,

$$
\theta_{\hat{\rho}} \in \operatorname{Diff}^{2+\alpha}\left(\Sigma, \Gamma_{\hat{\rho}}\right), \quad \hat{\rho} \in \mathcal{A}
$$

provided $r>0$ is chosen sufficiently small. With this notation we try to find $\rho \in C([0, T], \mathcal{A})$ such that $\Gamma(t)=\Gamma_{\rho(t)}$ for $t \in[0, T]$. Clearly, each surface $\Gamma_{\rho(t)}$ separates Ω into an interior domain $\Omega_{\rho(t)}^{-}$and an exterior domain $\Omega_{\rho(t)}^{+}$, $t \in[0, T]$. In the following we fix $t \in[0, T]$ and supress it in our notation. It is convenient to express Γ_{ρ} as the level set of an appropriate function on \mathbb{R}^{n}. For this we decompose the inverse of X into $X^{-1}=(S, \Lambda)$, where
$S \in C^{\infty}(Y, \Sigma)$ denotes the metric projection of Y onto Σ and Λ stands for the signed distance function with respect to Σ. Obviously, we have $\Gamma_{\rho}=$ $N_{\rho}^{-1}(0)$ with $N_{\rho}=\Lambda-\rho \circ S$. Since we have to deal with elliptic boundary value problems in the domains $\Omega_{\rho}^{ \pm}$we need appropriate extensions of the diffeomorphism θ_{ρ} to $\Omega^{ \pm}$. For this we introduce the following construction which was first proposed in [13] to transform Stefan problems on fixed domains. Fix now $a \in(0, r / 4)$ and pick $\varphi \in C^{\infty}(\mathbb{R},[0,1])$ such that $\varphi(\lambda)=1$ if $|\lambda| \leq a$ and $\varphi(\lambda)=0$ if $|\lambda| \geq 3 a$, and such that $\sup \left|\varphi^{\prime}(\lambda)\right|<1 / a$. Given $\rho \in \mathcal{A}$, let

$$
\Theta_{\rho}(x):= \begin{cases}X(S(x), \Lambda(x)+\varphi(\Lambda(x)) \rho(S(x))) & \text { if } x \in Y \\ x & \text { if } x \notin Y\end{cases}
$$

Observe that $[\lambda \mapsto \lambda+\varphi(\lambda) \rho]$ is strictly increasing since $\left|\varphi^{\prime}(\lambda) \rho\right|<1$. Therefore we conclude that

$$
\begin{aligned}
& \Theta_{\rho} \in \operatorname{Diff}^{2+\alpha}(\Omega, \Omega) \cap \operatorname{Diff}^{2+\alpha}\left(\Omega^{ \pm}, \Omega_{\rho}^{ \pm}\right) \\
& \Theta_{\rho}\left|\Sigma=\theta_{\rho}, \quad \Theta_{\rho}\right| U=\operatorname{id}_{U}
\end{aligned}
$$

for some neighbourhood $U \subset \mathbb{R}^{n}$ of $\partial \Omega$. In order to economize our notation we use the same symbol θ_{ρ} for both diffeomorphims θ_{ρ} and Θ_{ρ}.

We are now prepared to transform problem (1.2) into a problem on the fixed domains $\Omega^{ \pm}$. Given $v_{ \pm} \in C\left(\bar{\Omega}_{\rho}^{ \pm}\right)$and $u_{ \pm} \in C\left(\bar{\Omega}^{ \pm}\right)$, we write

$$
\theta_{\rho}^{*} v_{ \pm}:=v_{ \pm} \circ \theta_{\rho} \quad \text { and } \quad \theta_{*}^{\rho} u_{ \pm}:=u_{ \pm} \circ \theta_{\rho}^{-1}
$$

for the pull-back and push-forward operator, respectively, induced by θ_{ρ}. We now set

$$
\begin{aligned}
A_{ \pm}(\rho) u_{ \pm} & :=-\theta_{\rho}^{*}\left(\Delta\left(\theta_{*}^{\rho} u_{ \pm}\right)\right) \\
B_{ \pm}(\rho) u_{ \pm} & :=\frac{1}{2} \gamma_{ \pm} \theta_{\rho}^{*}\left(\nabla\left(\theta_{*}^{\rho} u_{ \pm}\right) \mid \nabla N_{\rho}\right)
\end{aligned}
$$

for $u_{ \pm} \in C^{2}\left(\bar{\Omega}^{ \pm}\right)$, where $\gamma_{ \pm}$stands for the restriction operator of $C^{1}-$ functions on $\bar{\Omega}^{ \pm}$to Σ. Furthermore, let

$$
f(\rho):=\frac{1}{|\Omega|}\left(\left|\Omega_{\rho}^{+}\right|-\left|\Omega_{\rho}^{-}\right|\right) \quad \text { and } \quad K(\rho):=C \theta_{\rho}^{*} \kappa_{\rho},
$$

where κ_{ρ} denotes the mean curvature of Γ_{ρ}. Finally, the normal velocity V
of $\Gamma=\left\{\Gamma_{\rho(t)} ; t \in[0, T]\right\}$ can be expressed as

$$
V(s, t)=-\left.\frac{\partial_{t} N_{\rho}(x, t)}{\left|\nabla N_{\rho}(x, t)\right|}\right|_{x=\theta_{\rho(t)}(s)}=\left.\frac{\partial_{t} \rho(s, t)}{\left|\nabla N_{\rho}(x, t)\right|}\right|_{x=\theta_{\rho(t)}(s)},
$$

for $(s, t) \in \Sigma \times(0, T]$. Observe that the outer unit normal ν at Γ_{ρ} is given as $\nabla_{x} N_{\rho} /\left|\nabla_{x} N_{\rho}\right|$. Hence, writing $u_{ \pm}:=\theta_{\rho}^{*} v_{ \pm}$, problem (1.2) is transformed into

$$
\left\{\begin{align*}
A_{ \pm}(\rho) u_{ \pm} & = \pm 1-f(\rho) & & \text { in } \Omega^{ \pm}, t \geq 0 \tag{2.1}\\
u_{ \pm} & =K(\rho) & & \text { on } \Sigma, t \geq 0 \\
\partial_{t} \rho & =B_{+}(\rho) u_{+}-B_{-}(\rho) u_{-} & & \text {on } \Sigma, t>0 \\
\partial_{\nu} u_{+} & =0 & & \text { on } \partial \Omega, t \geq 0 \\
\rho(\cdot, 0) & =\rho_{0} . & &
\end{align*}\right.
$$

It is not difficult to verify that problem (1.2) and problem (2.1) are equivalent. Note that the unknowns ρ and $u_{ \pm}$are still coupled through (2.1). To obtain an equation for ρ only, we need the following result. Fix $0<\gamma<$ $\beta<\alpha<1$ and let $U:=h^{2+\beta}(\Sigma) \cap \mathcal{A}$.

Lemma 2.1 Let $\sigma \in[\gamma, \beta]$ be fixed. Then
a) $\left(A_{ \pm}, B_{ \pm}\right) \in C^{\infty}\left(U, \mathcal{L}\left(h^{1+\sigma}\left(\Omega^{ \pm}\right), h^{\sigma-1}\left(\Omega^{ \pm}\right) \times h^{\sigma}(\Sigma)\right)\right.$.
b) Given $\rho \in U$, we have

$$
\left(A_{ \pm}(\rho), \gamma_{ \pm}, \partial_{\nu}\right) \in \operatorname{Isom}\left(h^{1+\sigma}\left(\Omega^{ \pm}\right), h^{\sigma-1}\left(\Omega^{ \pm}\right) \times h^{1+\sigma}(\Sigma) \times h^{\sigma}(\partial \Omega)\right)
$$

c) $\quad f \in C^{\infty}(U, \mathbb{R})$.

Proof. Assertions a) and b) follow from Lemma 2.2 in [9].
To see c), observe that

$$
f(\rho)=\frac{1}{|\Omega|}\left(\int_{\Omega^{+}}\left|\operatorname{det} D \theta_{\rho}\right| d x-\int_{\Omega^{-}}\left|\operatorname{det} D \theta_{\rho}\right| d x\right)
$$

for $\rho \in U$.
Given $\rho \in U$, define

$$
S_{ \pm}(\rho):=\left(A_{ \pm}(\rho), \gamma_{ \pm}, \partial_{\nu}\right)^{-1}(\cdot, 0,0) \in \mathcal{L}\left(h^{\sigma-1}\left(\Omega^{ \pm}\right), i^{1+\sigma}\left(\Omega^{ \pm}\right)\right)
$$

and

$$
T_{ \pm}(\rho):=\left(A_{ \pm}(\rho), \gamma_{ \pm}, \partial_{\nu}\right)^{-1}(0, \cdot, 0) \in \mathcal{L}\left(h^{1+\sigma}(\Sigma), h^{1+\sigma}\left(\Omega^{ \pm}\right)\right) .
$$

Observe that, given $\hat{f}_{ \pm} \in h^{\sigma-1}\left(\Omega^{ \pm}\right)$and $\hat{\rho} \in h^{1+\sigma}(\Sigma)$, the functions $w_{ \pm}(\rho):=S_{ \pm}(\rho) \hat{f}_{ \pm}+T_{ \pm}(\rho) \hat{\rho}$ are the unique solutions in $h^{1+\sigma}\left(\Omega^{ \pm}\right)$of

$$
\begin{aligned}
A_{ \pm}(\rho) w_{ \pm} & =\hat{f}_{ \pm} & & \text {in } \Omega^{ \pm} \\
\gamma_{ \pm} w_{ \pm} & =\hat{\rho} & & \text { on } \Sigma \\
\partial_{\nu} w_{+} & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Let us now introduce the operator $\Phi: U \cap h^{3+\alpha}(\Sigma) \rightarrow h^{\alpha}(\Sigma)$, defined by

$$
\begin{aligned}
\Phi(\rho):= & B_{+}(\rho)\left[T_{+}(\rho) K(\rho)+S_{+}(\rho)(1-f(\rho))\right] \\
& -B_{-}(\rho)\left[T_{-}(\rho) K(\rho)-S_{-}(\rho)(1+f(\rho)] .\right.
\end{aligned}
$$

Then problem (2.1) and the abstract evolution equation

$$
\begin{equation*}
\frac{d}{d t} \rho=\Phi(\rho), \quad \rho(0)=\rho_{0} \tag{2.2}
\end{equation*}
$$

are equivalent in the following sense: Let $\rho_{0} \in h^{3+\alpha}(\Sigma)$ be given and assume that

$$
\rho \in C\left([0, T], h^{3+\alpha}(\Sigma) \cap U\right) \cap C^{1}\left([0, T], h^{2+\alpha}(\Sigma)\right)
$$

is a solution to (2.2). Then the triple ($\rho, u_{ \pm}$) with

$$
u_{ \pm}:=T_{ \pm}(\rho) K(\rho)+S_{ \pm}(\rho)(\pm 1-f(\rho))
$$

is a solution to (2.1); and vice-versa: if ($\rho, u_{ \pm}$) is a solution to (2.1) then the above construction shows that ρ is a solution to (2.2).

Although the nonlocal and nonlinear operator Φ consists already in a sum of four terms, we shall introduce a further splitting of Φ. This splitting is motivated by the fact that the mean curvature operator K carries a quasi-linear structure in the following sense:

Lemma 2.2 There exist functions

$$
P \in C^{\infty}\left(U, \mathcal{L}\left(h^{3+\gamma}(\Sigma), h^{1+\gamma}(\Sigma)\right) \quad \text { and } \quad Q \in C^{\infty}\left(U, h^{1+\beta}(\Sigma)\right)\right.
$$

such that

$$
K(\rho)=P(\rho) \rho+Q(\rho) \quad \text { for } \quad \rho \in U \cap h^{3+\gamma}(\Sigma) .
$$

A proof of Lemma 2.2 can be found in [9], Lemma 3.1.
We now introduce the quasi-linear principal part Π of $-\Phi$ by setting

$$
\Pi(\rho) \rho:=\left[B_{-}(\rho) T_{-}(\rho)-B_{+}(\rho) T_{+}(\rho)\right] P(\rho) \rho
$$

and (correspondingly) the lower order part

$$
\begin{aligned}
F(\rho):= & {\left[B_{+}(\rho) T_{+}(\rho)-B_{-}(\rho) T_{-}(\rho)\right] Q(\rho) } \\
& +B_{+}(\rho) S_{+}(\rho)(1-f(\rho))+B_{-}(\rho) S_{-}(\rho)(1+f(\rho))
\end{aligned}
$$

Clearly, we have $\Phi(\rho)=-\Pi(\rho) \rho+F(\rho)$, so that problem (2.2) is equivalent to

$$
\begin{equation*}
\frac{d}{d t} \rho+\Pi(\rho) \rho=F(\rho), \quad \rho(0)=\rho_{0} \tag{2.3}
\end{equation*}
$$

Using Lemma 2.1 and Lemma 2.2 it is not difficult to verify that the mappings

$$
\Pi: U \rightarrow \mathcal{L}\left(h^{3+\gamma}(\Sigma), h^{\gamma}(\Sigma)\right) \quad \text { and } \quad F: U \rightarrow h^{\beta}(\Sigma)
$$

are well-defined and smooth. In order to solve equation (2.3) we need parameter dependent a priori estimates for the principal part Π of $-\Phi$. In order to formulate these crucial estimates, let us introduce the following notation. Given two Banach spaces E and F such that E is dense and continuously embedded in F, let $\mathcal{H}(E, F)$ consist of all $A \in \mathcal{L}(E, F)$ such that $-A$, viewed as an unbounded operator in F, generates a strongly continuous analytic semigroup on F. It is known that a linear operator $A: E \subset$ $F \rightarrow F$ belongs to $\mathcal{H}(E, F)$ if and only if there exist $\omega \in \mathbb{R}$ and $\kappa \geq 1$ such that $\omega+A \in \operatorname{Isom}(E, F)$ and the following parameter dependent a priori estimate

$$
|\lambda|\|x\|_{F} \leq \kappa\|(\lambda+A) x\|_{F}, \quad x \in E, \quad \lambda \in \mathbb{C} \quad \text { with } \quad \operatorname{Re} \lambda \geq \omega
$$

holds true. Based on the Mikhlin-Hörmander Fourier multiplier theorem, representation formulas of Poisson operators and subtle perturbation techniques the following result can be shown, cf. [9], p.641.

Theorem 2.3 Given $\rho \in U$, we have

$$
\Pi(\rho) \in \mathcal{H}\left(h^{3+\gamma}(\Sigma), h^{\gamma}(\Sigma)\right)
$$

We are now prepared to prove our main result.

Proof of Theorem 1. Let Γ_{0} satisfy the hypotheses and choose Σ and ρ_{0} as above. Recall that \mathcal{A} is open in $h^{2+\gamma}(\Sigma)$.
a) We first show that equation (2.3) has a unique solution ρ belonging to

$$
C([0, T), \mathcal{A}) \cap C^{\infty}\left((0, T), C^{\infty}(\Sigma)\right)
$$

with $T=T\left(\rho_{0}\right)>0$ being the maximal interval of existence. Indeed, set $E_{0}:=h^{\gamma}(\Sigma)$ and $E_{1}:=h^{3+\gamma}(\Sigma)$, and let $E_{\theta}:=\left(E_{0}, E_{1}\right)_{\theta, \infty}^{0}, \theta \in(0,1)$ denote the continuous interpolation spaces between E_{0} and E_{1}, cf. [3]. It is known (cf. [22]) that the scale of small Hölder spaces is stable under continuous interpolation. Hence letting $\theta_{0}:=(2+\beta-\gamma) / 3, \theta_{1}:=(2+\alpha-$ $\gamma) / 3$, and $\theta:=(\beta-\gamma) / 3$, we find

$$
E_{\theta_{1}}=h^{2+\alpha}(\Sigma), \quad E_{\theta_{0}}=h^{2+\beta}(\Sigma), \quad E_{\theta}=h^{\beta}(\Sigma)
$$

Consequently, Lemma 2.1 and Lemma 2.2 yields $(\Pi, F) \in C^{\infty}\left(U, \mathcal{L}\left(E_{1}, E_{0}\right) \times\right.$ $\left.E_{\theta}\right)$. Due to Theorem 2.3 we can now apply Theorem 12.1 in [2] to obtain a unique $T=T\left(\rho_{0}\right)>0$ and a unique solution

$$
C([0, T), \mathcal{A}) \cap C\left((0, T), h^{3+\gamma}(\Sigma)\right) \cap C^{1}\left((0, T), h^{\gamma}(\Sigma)\right)
$$

of the evolution equation (2.3). The fact that this solution actually belongs to $C^{\infty}\left((0, T), C^{\infty}(\Sigma)\right)$ follows from the same bootstrapping argument presented in [9], p. 634 .
b) Let ρ be the above constructed solution to (2.3) and define

$$
\Gamma(t):=\Gamma_{\rho(t)}=\left\{x \in \mathbb{R}^{n} ; x=X(s, \rho(t)(s)), s \in \Sigma\right\}, \quad t \in[0, T),
$$

and

$$
\begin{array}{rl}
v_{ \pm}(t):=\theta_{*}^{\rho(t)}\left[S_{ \pm}(\rho(t))(\pm 1-f(\rho(t)))+T_{ \pm}(\rho(t)) K(\rho(t))\right], \\
t & t \in[0, T) .
\end{array}
$$

Then it is not difficult to verify that $\Gamma=\{\Gamma(t) ; t \in[0, T)\}$ together with $v_{ \pm}$form the unique solution to (1.2).

References

[1] Alexandrov A.D., Uniqueness theorems for surfaces in the large I. (Math. Rev. 19, 167), Vestnik Leningrad Univ. 11 (1956), 5-7.
[2] Amann H., Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. in H.J. Schmeisser, H. Triebel, editors, Function Spaces, Differential Operators and Nonlinear Analysis, Teubner, Stuttgart, Leipzig, (1993), 9-126.
[3] Amann H., Linear and Quasilinear Parabolic Problems, Vol. I. Birkhäuser, Basel, 1995.
[4] Bahiana M. and Oono Y., Phys. Rev. 41 (1990), 6763.
[5] Chen X., The Hele-Shaw problem and area-preserving curve shortening motion. Arch. Rational Mech. Anal. 123 (1993), 117-151.
[6] Chen X., Hong J. and Yi F., Existence, uniqueness, and regularity of classical solutions of the Mullins-Sekerka problem. Comm. Partial Differential Equations 21 (1996), 1705-1727.
[7] Elliott C.M. and Garcke H., Existence results for diffusive surface motion laws. Adv. Math. Sci. Appl. 7 (1997), 467-490.
[8] Escher J. and Simonett G., On Hele-Shaw models with surface tension. Math. Res. Lett. 3 (1996), 467-474.
[9] Escher J. and Simonett G., Classical solutions for Hele-Shaw models with surface tension. Adv. Differential Equations 2 (1997), 619-642.
[10] Escher J. and Simonett G., Classical solutions for the quasi-stationary Stefan Problem with surface tension. Proc. Differential Equations, Asymptotic Analysis, and Mathematical Physics, Mathematical Research 100 (1997), 98-104.
[11] Escher J. and Simonett G., A center manifold analysis for the Mullins-Sekerka model. J. Differential Equations 143 (1998), 267-292.
[12] Escher J. and Mayer U.F., Loss of convexity for a modified Mullins-Sekerka model arising in diblock copolymer melts. Arch. Math. 77 (2001), 434-448.
[13] Hanzawa E.I., Classical solutions of the Stefan problem. Tôhoku Math. J. 33 (1981), 297-335.
[14] Lawson H.B., Lectures on Minimal Surfaces. Publish or Perish, Berkeley, 1980.
[15] Mayer U.F., Two-sided Mullins-Sekerka flow does not preserve convexity, in Proceeding of the Third Mississippi State Conference on Difference Equations and Computational Simulations. Electron. J. Diff. Equ., Conference 01 (1997), 171-179.
[16] Mullins W.W. and Sekerka R.F., Morphological stability of a particle growing diffusion or heat flow. J. Appl. Math. 34 (1963), 323-329.
[17] Mullins W.W., Theory of thermal grooving. J. Appl. Phys. 28 (1957), 333-339.
[18] Nishiura Y. and Ohnishi I., Some mathematical aspects of the micro-phase separation in diblock copolymer. Physica D 84 (1995), 31-39.
[19] Ohnishi I., Nishiura Y., Imai M. and Matsushita Y., Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term. Chaos 9 (1999), 329-341.
[20] Ohta T. and Kawasaki K., Equilibrium morphology of block copolymer melts. Macromolecules 19 (1986), 2621-2632.
[21] Pego R.L., Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London Ser. A 422 (1989), 261-278.
[22] Triebel H., Theory of Function Spaces. Birkhäuser Verlag, Basel, 1983.

Joachim Escher
Institute of Applied Mathematics
University of Hannover
D-30167 Hannover, Germany
E-mail: escher@ifam.uni-hannover.de

Yasumasa Nishiura

Laboratory of Nonlinear Studies
Research Institute for Electronic Science
Hokkaido University
Sapporo 060-0810, Japan
E-mail: nishiura@aurora.es.hokudai.ac.jp

[^0]: 2000 Mathematics Subject Classification : 35R35, 35J05, 35B50, 53A07.
 The first author is grateful to Prof. Y. Giga and to Dr. K. Ito for their kind hospitality and for the stimulating discussions during his stay at Hokkaido University.

