Calderón-Zygmund operators on weighted $H^p(\mathbb{R}^n)$

Yasuo Komori

(Received May 13, 2002)

Abstract. We consider the boundedness of Calderón-Zygmund operators from weighted $H^p(\mathbb{R}^n)$ to weighted $h^p(\mathbb{R}^n)$ (local Hardy space). We show Calderón's commutator is bounded from weighted H^p to weighted h^p .

Key words: Calderón-Zygmund operator, weighted Hardy space, local Hardy space.

1. Introduction

Consider the operator defined by

$$Tf(x) = \text{p.v.} \int_{\mathbb{R}^n} K(x, y) f(y) dy,$$

where K is a Calderón-Zygmund kernel (see Section 2).

Quek and Yang [10] proved that if kernel K(x, y) has some regularity then T is a bounded operator from $H_w^p(\mathbb{R}^n)$ to $H_w^p(\mathbb{R}^n)$ if $T^*1 = 0$.

In this paper we define the space $h_w^p(R^n)$ which is the local version of $H_w^p(R^n)$ and a weighted version of the local Hardy space $h^p(R^n)$ defined by Goldberg [4]. We show that if T^*1 belongs to Lipschitz class then T is a bounded operator from $H_w^p(R^n)$ to $h_w^p(R^n)$.

The author [8] proved the theorem when $w \equiv 1$ (see also [1], [2]).

2. Definitions and Notations

The following notation is used: For a set $E \subset R^n$ and a locally integrable function w, we denote the Lebesgue measure of E by |E| and $w(E) = \int_E w(x)dx$. We denote the characteristic function of E by χ_E . We write a ball of radius r centered at x_0 by $B(x_0, r) = \{x; |x - x_0| < r\}$.

First we shall define two maximal functions and some Hardy spaces.

Let φ be a fixed Schwartz function in $\mathcal{S}(\mathbb{R}^n)$ such that $\operatorname{supp}(\varphi) \subset B(0,1)$ and $\int \varphi(x)dx \neq 0$, then we define

$$f^{++}(x) = \sup_{t>0} \left| \int f(y)\varphi_t(x-y)dy \right|,$$
$$f^{+}(x) = \sup_{1>t>0} \left| \int f(y)\varphi_t(x-y)dy \right|,$$

where $\varphi_t(x) = t^{-n}\varphi(x/t)$.

Definition 1 (Fefferman-Stein's Hardy space [3])

$$H^p(\mathbb{R}^n) = \{ f \in \mathcal{S}'; \|f\|_{H^p} = \|f^{++}\|_{L^p} < \infty \}, \text{ where } 0 < p < \infty.$$

Definition 2 (local Hardy space [4])

$$h^p(R^n) = \{ f \in \mathcal{S}'; \|f\|_{h^p} = \|f^+\|_{L^p} < \infty \}, \text{ where } 0 < p < \infty.$$

Remark $||f||_{h^p} \le ||f||_{H^p}$.

Definition 3 (Lipschitz space)

$$\operatorname{Lip}_{\varepsilon}(R^n) = \left\{ f; \|f\|_{\operatorname{Lip}_{\varepsilon}} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\varepsilon}} < \infty \right\} \text{ for } 0 < \varepsilon < 1.$$

Remark $(H^p)^* = \text{Lip}_{n(1/p-1)}$ where n/(n+1) (For the duality, see [3] or [9], p. 54).

Before we define the weighted Hardy spaces we shall define Muckenhoupt A_q weight class (see [6], [12]).

Definition 4 Let $1 < q < \infty$. For a nonnegative locally integrable function w, we say $w \in A_q$ if

$$\left(\frac{1}{|B|}\int_B w(x)dx\right)\left(\frac{1}{|B|}\int_B w(x)^{-1/(q-1)}dx\right)^{q-1} \le C,$$

where C is a positive constant independent of a ball B.

We say $w \in A_1$ if

$$\frac{1}{|B|} \int_B w(x) dx \le C \underset{x \in B}{\text{essinf }} w(x).$$

We write $A_{\infty} = \bigcup_{q \geq 1} A_q$.

Remark $A_{q_1} \subset A_{q_2}$ if $q_1 < q_2$.

Strömberg and Torchinsky [11] defined the weighted Hardy spaces as follows.

Definition 5 (H_w^p) Let $w \in A_{\infty}$.

$$H_w^p(R^n) = \{ f \in \mathcal{S}'; \|f\|_{H_w^p} = \|f^{++}\|_{L_w^p} < \infty \}, \text{ where } 0 < p < \infty.$$

We define weighted local Hardy spaces as follows.

Definition 6 (h_w^p) Let $w \in A_{\infty}$.

$$h_w^p(R^n) = \{ f \in \mathcal{S}'; \|f\|_{h_w^p} = \|f^+\|_{L_w^p} < \infty \}, \text{ where } 0 < p < \infty.$$

Next we shall define Calderón-Zygmund operator.

Definition 7 Let T be a bounded linear operator from S to S'. T is called a standard operator if T satisfies the following conditions.

- (i) T extends to a continuous operator on L^2 .
- (ii) There exists a function K(x,y) defined on $\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n; x \neq y\}$ which satisfies $|K(x,y)| \leq \frac{C}{|x-y|^n}$.
- (iii) $(Tf,g) = \int \int K(x,y)f(y)g(x)dydx$ for $f,g \in \mathcal{S}$ with disjoint supports.

Definition 8 A standard operator T is called a δ -Calderón-Zygmund operator if K(x, y) satisfies

$$|K(x,y)-K(x,z)|+|K(y,x)-K(z,x)| \le C \frac{|y-z|^{\delta}}{|x-z|^{n+\delta}}$$

if 2|y-z| < |x-z|, for some $0 < \delta \le 1$.

Examples Let T be a classical singular integral operator defined by

$$Tf(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^n} f(y) dy,$$

where Ω satisfies the following conditions.

- (iv) $\Omega(rx) = \Omega(x)$ for r > 0, $x \neq 0$.
- (v) $\int_{S^{n-1}} \Omega(x) d\sigma = 0$ where $d\sigma$ is the induced Euclidean measure on S^{n-1} .
- (vi) $\Omega \in \operatorname{Lip}_{\delta}$.

Then T is a δ -Calderón-Zygmund operator.

The Hilbert transform and the Riesz transforms are 1-Calderón-Zygmund operators ($\delta = 1$).

Remark If T is a δ -Calderón-Zygmund operator and $w \in A_q$, then T is bounded on L_w^q where q > 1 (see [5], [7], p. 52 and [10]).

3. Theorems

Quek and Yang [10] obtained next result.

Theorem Let $1 \leq q < \frac{n+\delta}{n}$ and $\frac{nq}{n+\delta} . If <math>w \in A_q$ and T is a δ -Calderón-Zygmund operator such that $T^*1 = 0$ then T is a bounded operator from $H^p_w(R^n)$ to $H^p_w(R^n)$.

Remark T^* is an adjoint operator of T. T and T^* are simultaneously δ -Calderón-Zygmund operators. For the definition of T^*1 , see [12], p. 412.

We have the following:

Theorem 1 Let $1 \leq q < \frac{n+\delta}{n}$, $q \leq \frac{n+\varepsilon}{n}$, $\frac{nq}{n+\delta} and <math>\frac{nq}{n+\varepsilon} \leq p$. If $w \in A_q$ and T is a δ -Calderón-Zygmund operator such that $T^*1 \in \text{Lip}_{\varepsilon}$ then T is a bounded operator from $H^p_w(R^n)$ to $h^p_w(R^n)$.

Remark When $w \equiv 1$, that is q = 1, the conditions $\frac{n}{n+\delta} < p$ and $\frac{n}{n+\varepsilon} \leq p$ are the best possible (see [8], p. 70).

As a corollary of Theorem 1 we obtain the boundedness of Calderón's commutator.

Definition 9 Calderón's commutator is defined by

$$T_b f(x) = \text{p.v. } \int_{R^1} \frac{b(x) - b(y)}{(x - y)^2} f(y) dy.$$

Theorem 2 Let $w \in A_1$. If $b' \in L^{\infty} \cap \text{Lip}_{\varepsilon}$, then T_b is a bounded operator from $H_w^p(R^1)$ to $h_w^p(R^1)$ where $\frac{1}{1+\varepsilon} \leq p \leq 1$.

Proof. If $b' \in L^{\infty}$ then T_b is bounded on L^2 (see [12], p. 408) and a 1-Calderón-Zygmund operator $(\delta = 1)$. We can write $T_b^*1(x) = -H(b')(x)$ where H is the Hilbert transform. Since H is bounded on Lip_{ε} (see [12], p. 214), we have $T_b^*1(x) \in \text{Lip}_{\varepsilon}$. By Theorem 1 we obtain the desired result.

Ш

4. Lemmas

4.1. Weight

First we shall show two elementary lemmas about weight functions without proof (see [6] or [12], p. 226).

Lemma 1 If $w \in A_q$ then w satisfies the following:

$$\frac{w(B(x_0,r))}{w(B(x_0,s))} \le C \left(\frac{|B(x_0,r)|}{|B(x_0,s)|}\right)^q \quad \text{for all } r > s \quad \text{and} \quad x_0 \in \mathbb{R}^n.$$

where C is a positive constant independent of r, s and x_0 . Especially

$$w(B(x_0, 2^j r)) \le C \ 2^{nqj} \ w(B(x_0, r)).$$

Lemma 2 Let f be a nonnegative locally integrable function. If $w \in A_q$ then

$$\frac{1}{|B(x_0,r)|} \int_{B(x_0,r)} f(x) dx \le \left(\frac{C}{w(B(x_0,r))} \int_{B(x_0,r)} f(x)^q w(x) dx\right)^{1/q}.$$

4.2. Atom

Next we shall define atom on H_w^p and show the atomic decomposition of H_w^p .

Definition 10 Let $1 \le q \le \infty$. A function a(x) is a (H_w^p, q) -atom centered at x_0 if there exists a ball $B(x_0, r)$ such that the following conditions are satisfied

$$supp(a) \subset B(x_0, r), \tag{1}$$

$$||a||_{L_w^q} \le w(B(x_0, r))^{1/q - 1/p},$$
 (2)

$$\int a(x)dx = 0. (3)$$

The following Lemma 3 is trivial.

Lemma 3 If a function a(x) is a (H_w^p, ∞) -atom supported in $B(x_0, r)$, then $||a||_{H^{p_1}} \leq C_{n,p_1} |B(x_0, r)|^{1/p_1} w(B(x_0, r))^{-1/p}$ where $\frac{n}{n+1} < p_1 \leq 1$ and C_{n,p_1} is a constant depending only on n and p_1 .

Lemma 4 ([5], [11], p. 111) Let $1 \le q < \frac{n+1}{n}$, $\frac{nq}{n+1} and <math>p < q$. If $w \in A_q$ and a function a(x) is a (H_w^p, q) -atom, then $||a||_{H_w^p} \le C_{n,p,q,w}$ where $C_{n,p,q,w}$ is a constant depending only on n, p, q and w.

Proof. We assume $supp(a) \subset B(x_0, r)$. By using L_w^q -boundedness of the Hardy-Littlewood maximal function and Kolmogorov's inequality (see [12], p. 104), we obtain

$$\int_{B(x_0,2r)} a^{++}(x)^p w(x) dx$$

$$\leq C_{n,p,q,w} w(B(x_0,2r))^{1-q/p} ||a||_{L_w^q}^p \leq C_{n,p,q,w} \quad \text{if } w \in A_q.$$

If $x \notin B(x_0, 2r)$ we have

$$a^{++}(x) \le C \frac{r^{n+1}w(B(x_0,r))^{-1/p}}{|x-x_0|^{n+1}}.$$

By Lemma 1, we obtain

$$\int_{|x-x_0| \ge 2r} a^{++}(x)^p w(x) dx$$

$$= \sum_{j=1}^{\infty} \int_{2^j r \le |x-x_0| < 2^{j+1}r} a^{++}(x)^p w(x) dx$$

$$\le C_n w (B(x_0, 2r))^{-1} \sum_{j=1}^{\infty} 2^{-(n+1)pj} w (B(x_0, 2^{j+1}r))$$

$$\le C_{n,w} \sum_{j=1}^{\infty} 2^{(-(n+1)p+nq)j} \le C_{n,p,q,w},$$

where p > nq/(n+1).

Proposition (The atomic decomposition of H_w^p , [5], [11]) Let $1 \leq q < \frac{n+1}{n}$ and $\frac{nq}{n+1} . If <math>w \in A_q$ and $f \in H_w^p(R^n)$ then f can be written as $f = \sum_{j=1}^{\infty} \lambda_j a_j$ where a_j is (H_w^p, ∞) -atom and $\sum_{j=1}^{\infty} |\lambda_j|^p \sim ||f||_{H_w^p}^p$.

4.3. Molecule

We shall define atom and molecule on $h_w^p(\mathbb{R}^n)$ and prove some properties.

Definition 11 Let $1 \le q \le \infty$. A function a(x) is a (h_w^p, q) -atom centered at x_0 if there exists a ball $B(x_0, r)$ of radius $r \ge 1$ such that the conditions (1) and (2) are satisfied.

The following Lemma 5 is essentially proved in [4] when $w \equiv 1$.

Lemma 5 Let $\frac{n}{n+1} and <math>p < q$. If $w \in A_q$ and a function a(x) is a (h_w^p, q) -atom, then $||a||_{h_w^p} \le C_{n,p,q,w}$.

Proof. We assume $\operatorname{supp}(a) \subset B(x_0, r)$, then $a^+(x) = 0$ if $x \notin B(x_0, 2r)$. So we can prove the lemma by the same argument with the proof of Lemma 4.

Lemma 6 Let $1 \le q < \frac{n+1}{n}$, $\frac{nq}{n+1} , <math>p < q$ and $w \in A_q$. Let a(x) be a function such that there exists a ball $B(x_0, r)$, 0 < r < 2, which satisfies the conditions (1), (2) and

$$\left| \int a(x)dx \right| \le r^{n(q-1)/p} \left(\frac{|B(x_0, r)|}{w(B(x_0, r))} \right)^{1/p}. \tag{3'}$$

Then $||a||_{h_w^p} \leq C_{n,p,q,w}$.

Proof. We write

$$a(x) = (a(x) - a_B)\chi_B(x) + a_B\chi_B(x) = a_1(x) + a_2(x),$$

where $B = B(x_0, r)$ and $a_B = \frac{1}{|B|} \int_B a(y) dy$.

By using Lemma 2, we have

$$\int |a_{1}(x)|^{q} w(x) dx
\leq C_{q} \left(\int_{B(x_{0},r)} |a(x)|^{q} w(x) dx
+ \left(\frac{1}{|B(x_{0},r)|} \int_{B(x_{0},r)} |a(x)| dx \right)^{q} w(B(x_{0},r)) \right)
\leq C_{n,q,w} \int_{B(x_{0},r)} |a(x)|^{q} w(x) dx
\leq C_{n,q,w} w(B(x_{0},r))^{1-q/p}.$$

So a_1 is a constant multiple of (H_w^p, q) -atom, and we have $||a_1||_{H_w^p} \leq C_{n,p,q,w}$ by Lemma 4.

$$\operatorname{supp}(a_2) \subset B(x_0,2)$$
 and

$$||a_2||_{L_w^q} \le |a_B|w(B)^{1/q} \le C_n \frac{|B(x_0,r)|^{q(1/p-1/q)}}{w(B(x_0,r))^{1/p-1/q}}.$$

Г

By Lemma 1,

$$\left(\frac{|B(x_0,r)|^q}{w(B(x_0,r))}\right)^{1/p-1/q} \le C_{n,p,q,w} \left(\frac{|B(x_0,2)|^q}{w(B(x_0,2))}\right)^{1/p-1/q}
\le C_{n,p,q,w} \ w(B(x_0,2))^{1/q-1/p}.$$

Therefore a_2 is a constant multiple of (h_w^p, q) -atom. By Lemma 5 we have $||a_2||_{h_w^p} \leq C_{n,p,q,w}$.

Definition 12 Let $\delta > 0$ and $w \in A_q$. A function M(x) is a large (h_w^p, q, δ) -molecule centered at x_0 if there exists a ball $B(x_0, r), r \geq 1$, such that the conditions (M_1) and (M_2) are satisfied:

(M₁)
$$\left(\int_{|x-x_0|<2r} |M(x)|^q w(x) dx\right)^{1/q} \le w(B(x_0,r))^{(1/q-1/p)},$$

(M₂)
$$|M(x)| \le \frac{r^{n+\delta}w(B(x_0,r))^{-1/p}}{|x-x_0|^{n+\delta}}$$
 where $|x-x_0| \ge 2r$.

A function M(x) is a small (h_w^p, q, δ) -molecule centered at x_0 if there exists a ball $B(x_0, r), 0 < r < 1$, such that the conditions $(M_1), (M_2)$ are satisfied and the following condition (M_3) is satisfied:

$$(\mathcal{M}_3) \quad \left| \int M(x) dx \right| \leq r^{n(q-1)/p} \left(\frac{|B(x_0, r)|}{w(B(x_0, r))} \right)^{1/p}.$$

Remark For the definition of H^p -molecule, see [9], p. 83.

Lemma 7 Let $1 \leq q < \frac{n+\delta}{n}$, $\frac{nq}{n+\delta} and <math>p < q$. If $w \in A_q$ and a function M(x) is a large or small (h_w^p, q, δ) -molecule centered at $B(x_0, r)$, then $\|M\|_{h_w^p} \leq C_{n,p,q,\delta,w}$.

Proof. Let $E_0 = \{x; |x - x_0| < 2r\}$ and $E_j = \{x; 2^j r \le |x - x_0| < 2^{j+1}r\}, j = 1, 2, 3, \ldots$, and let $\chi_j(x) = \chi_{E_j}(x), \ \tilde{\chi}_j(x) = \frac{1}{|E_j|}\chi_{E_j}(x), \ m_j = \frac{1}{|E_j|}\int_{E_j} M(y)dy, \ \tilde{m}_j = \int_{E_j} M(y)dy \ \text{and} \ M_j(x) = (M(x) - m_j)\chi_j(x).$

We write

$$M(x) = \sum_{j=0}^{\infty} M_j(x) + \sum_{j=0}^{\infty} m_j \chi_j(x) = \sum_{j=0}^{\infty} M_j(x) + \sum_{j=0}^{\infty} \tilde{m}_j \tilde{\chi}_j(x).$$

Let $N_j = \sum_{k=j}^{\infty} \tilde{m}_k$ and we write

$$M(x) = \sum_{j=0}^{\infty} M_j(x) + \sum_{j=1}^{\infty} N_j(\tilde{\chi}_j(x) - \tilde{\chi}_{j-1}(x)) + N_0\tilde{\chi}_0(x)$$

= $I + II + III$.

We shall show $||I||_{H_w^p} \le C_{n,p,q,\delta,w}$, $||II||_{H_w^p} \le C_{n,p,q,\delta,w}$ and $||III||_{h_w^p} \le C_{n,p,q,\delta,w}$.

First we estimate I.

It is clear that supp $(M_j) \subset B(x_0, 2^{j+1}r), \int M_j(x)dx = 0.$

By using the condition (M_1) , the estimate of M_0 is the same as was given in the proof of Lemma 6 (the estimate of a_1) and we have

$$\int |M_0(x)|^q w(x) dx \le C_{n,q,w} \ w(B(x_0, 2r))^{1-q/p}.$$

Therefore we have $||M_0||_{H_w^p} \leq C_{n,p,q,w}$ by Lemma 4.

Using the condition (M_2) and Lemma 1, we have for $j \geq 1$,

$$|M_{j}(x)| \leq 2^{(-n-\delta)j} w(B(x_{0},r))^{-1/p}$$

$$\leq 2^{(-n-\delta)j} \left(\frac{w(B(x_{0},2^{j+1}r))}{w(B(x_{0},r))} \right)^{1/p} w(B(x_{0},2^{j+1}r))^{-1/p}$$

$$\leq C_{n,w} 2^{(-n-\delta+nq/p)j} w(B(x_{0},2^{j+1}r))^{-1/p}.$$

By Lemma 4, we have $||M_j||_{H_w^p} \le C_{n,p,q,w} \ 2^{(-n-\delta+nq/p)j}$.

Since $p > nq/(n+\delta)$, we obtain $\sum_{j=0}^{\infty} \|M_j\|_{H_w^p}^p \le C_{n,p,q,\delta,w}$ and $\|I\|_{H_w^p} \le C_{n,p,q,\delta,w}$.

Next we estimate II.

Let
$$A_j(x) = N_j(\tilde{\chi}_j(x) - \tilde{\chi}_{j-1}(x)).$$

It is clear that $\operatorname{supp}(A_j) \subset B(x_0, 2^{j+1}r), \int A_j(x)dx = 0$. By the same estimate with I we have

$$||A_j||_{L^{\infty}} \le C_n (2^j r)^{-n} \int_{2^{j-1}r \le |x-x_0| < 2^{j+1}r} |M(x)| dx$$

$$\le C_{n,w} 2^{(-n-\delta+nq/p)j} w(B(x_0, 2^{j+1}r))^{-1/p}.$$

So we obtain $\sum_{j=1}^{\infty} ||A_j||_{H_{iw}^p}^p \leq C_{n,p,q,\delta,w}$ and $||II||_{H^p} \leq C_{n,p,q,\delta,w}$.

Finally we estimate III.

It is clear that supp $(N_0\tilde{\chi}_0) \subset B(x_0, 2r)$.

By the same estimate with I (see also the proof of Lemma 4), we have

$$||N_0\tilde{\chi}_0||_{L^{\infty}} \leq \frac{1}{|B(x_0, 2r)|} \int |M(x)| dx$$

$$\leq \frac{1}{|B(x_0, 2r)|} \left(\int_{|x-x_0|<2r} |M(x)| dx + \int_{|x-x_0|\geq 2r} |M(x)| dx \right)$$

$$\leq C_{n,p,q,\delta,w} \ w(B(x_0, 2r))^{-1/p}. \tag{4}$$

If $r \geq 1$, by (4) and Lemma 5 we have $||N_0 \tilde{\chi}_0||_{h_w^p} \leq C_{n,p,q,\delta,w}$. If r < 1, using the condition (M₃), we have

$$\left| \int N_0 \tilde{\chi}_0(x) dx \right| = \left| \int M(x) dx \right| \le r^{n(q-1)/p} \left(\frac{|B(x_0, r)|}{w(B(x_0, r))} \right)^{1/p}$$

$$\le C_{n,w} (2r)^{n(q-1)/p} \left(\frac{|B(x_0, 2r)|}{w(B(x_0, 2r))} \right)^{1/p}.$$
 (5)

By (4), (5) and Lemma 6 we have $||N_0\tilde{\chi}_0||_{h_w^p} \leq C_{n,p,q,\delta,w}$. So we obtain $||III||_{h^p} \leq C_{n,p,q,\delta,w}$.

5. Proof of Theorem 1

Applying the interpolation theorem between L_w^2 and H_w^p or h_w^p , we may assume p < 1, so we may assume p < q. By the atomic decomposition of H_w^p , it suffices to show that there exists $C_{n,p,q,\varepsilon,\delta,w,T} > 0$ such that $||Ta||_{h_w^p} \le C_{n,p,q,\varepsilon,\delta,w,T}$, for every (H_w^p, ∞) -atom a, where $C_{n,p,q,\varepsilon,\delta,w,T}$ is a positive constant depending only on $n, p, q, \varepsilon, \delta, w$ and $||T||_{\text{Lip}_{\varepsilon}}$.

We assume (H_w^p, ∞) -atom a is supported in $B(x_0, r)$. We shall show that if $r \geq 1$ then Ta(x) is a constant multiple of a large (h_w^p, q, δ) -molecule, and r < 1 then Ta(x) is a constant multiple of a small (h_w^p, q, δ) -molecule.

We have to check that if $r \geq 1$ then Ta satisfies (M_1) and (M_2) , and if r < 1 then Ta satisfies three conditions of Definition 12.

Since T is bounded on L_w^{2q} ([7], p. 52), we have

$$\left(\int_{|x-x_0| \le 2r} |Ta(x)|^q w(x) dx\right)^{1/q} \\
\le \left(\int_{|x-x_0| \le 2r} |Ta(x)|^{2q} w(x) dx\right)^{1/2q} w(B(x_0, 2r))^{1/2q}$$

$$\leq C_{n,q,w} \|a\|_{L_w^{2q}} \ w(B(x_0, 2r))^{1/2q}
\leq C_{n,q,w} \ w(B(x_0, r))^{1/q - 1/p}.$$
(6)

If $|x - x_0| \ge 2r$, we have

$$|Ta(x)| = \left| \int (K(x,y) - K(x-x_0))a(y)dy \right|$$

$$\leq C_n \frac{r^{n+\delta}w(B(x_0,r))^{-1/p}}{|x-x_0|^{n+\delta}}.$$
(7)

If $r \geq 1$, by (6), (7) and Lemma 7, we have $||Ta||_{h_w^p} \leq C_{n,p,q,\delta,w}$. If r < 1, by the duality of $H^{n/(n+\varepsilon)}$ and Lip_{ε} and Lemma 3, we have

$$\left| \int Ta(x)dx \right| = |(Ta,1)| = |(a,T^*1)| \le C_n ||a||_{H^{n/(n+\varepsilon)}} ||T^*1||_{\text{Lip}_{\varepsilon}}$$

$$\le C_n ||T^*1||_{\text{Lip}_{\varepsilon}} |B(x_0,r)|^{(n+\varepsilon)/n} w(B(x_0,r))^{-1/p}$$

$$\le C_n ||T^*1||_{\text{Lip}_{\varepsilon}} \left(\frac{|B(x_0,r)|}{w(B(x_0,r))} \right)^{1/p} \cdot r^{n(q-1)/p}, \tag{8}$$

because $p \ge nq/(n+\varepsilon)$.

By (6), (7), (8) and Lemma 7, we obtain $||Ta||_{h_m^p} \leq C_{n,p,q,\epsilon,\delta,w,T}$.

Acknowledgement The author would like to thank the referee for his/her most helpful suggestions.

References

- [1] Alvarez J., H^p and weak H^p continuity of Calderón-Zygmund type operators. Lecture Notes in Pure and Applied Mathematics 157 (1994), 17–34, Marcel Dekker, Inc.
- [2] Alvarez J. and Milman M., H^p continuity properties of Calderón-Zygmund-type operators. J. of Math. Anal. and Appl. 118 (1986), 63–79.
- [3] Fefferman C. and Stein E.M., Hardy spaces of several variables. Acta Math. 129 (1972), 137–193.
- [4] Goldberg D., A local version of real Hardy spaces. Duke Math. J. 46 (1979), 27-42.
- [5] García-Cuerva J. and Kazarian K.S., Calderón-Zygmund operators and unconditional bases of weighted Hardy spaces. Studia Math. 109 (1994), 255–276.
- [6] García-Cuerva J. and Rubio De Francia J., Weighted Norm Inequalities and Related Topics. North Holland, Amsterdam, 1985.
- [7] Jouné J.-L., Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integrals of Calderón. Lecture Notes in Math. 994, Springer-Verlag, 1983.

- [8] Komori Y., Calderón-Zygmund operators on $H^p(\mathbb{R}^n)$. Sci. Math. Japonicae **53** (2001), 65-73.
- [9] Lu S.Z., Four Lectures on Real H^p Spaces. World Scientific, 1995.
- [10] Quek T. and Yang D., Calderón-Zygmund-type operators on weighted weak Hardy spaces over \mathbb{R}^n . Acta Math. Sinica, English Series **16** (2000), 141-160.
- [11] Strömberg J. and Torchinsky A., Weighted Hardy Spaces. Lecture Notes in Math 1381, Springer-Verlag, 1989.
- [12] Torchinsky A., Real-Variable Methods in Harmonic Analysis. Academic Press, 1986.

School of High Technology and Human Welfare Tokai University 317 Nishino Numazu Shizuoka 410-0395, Japan E-mail: komori@wing.ncc.u-tokai.ac.jp