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Calderon-Zygmund operators on weighted H?(R™)

Yasuo KOMORI
(Received May 13, 2002)

Abstract. We consider the boundedness of Calderén-Zygmund operators from weighted
HP(R™) to weighted hP(R™) (local Hardy space). We show Calderén’s commutator is
bounded from weighted HP to weighted hP.
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1. Introduction

Consider the operator defined by

Tf(z) =p.v. o K(z,y)f(y)dy,
where K is a Calderén-Zygmund kernel (see Section 2).

Quek and Yang proved that if kernel K (z,y) has some regularity
then T is a bounded operator from H%,(R") to HL(R") if T*1 = 0.

In this paper we define the space hf,(R™) which is the local version of
H{,(R™) and a weighted version of the local Hardy space h?(R") defined by
Goldberg [4]. We show that if T*1 belongs to Lipschitz class then T is a
bounded operator from HE,(R") to hL,(R™).

The author [8] proved the theorem when w = 1 (see also [1], [2]).

2. Definitions and Notations

The following notation is used: For aset E C R"™ and a locally integrable
function w, we denote the Lebesgue measure of E by |E| and w(E) =
Jz w(z)dz. We denote the characteristic function of E by xz. We write a
ball of radius r centered at xo by B(zo,r) = {z;|z — zo| < r}.

First we shall define two maximal functions and some Hardy spaces.

Let ¢ be a fixed Schwartz function in S(R™) such that supp(¢) C B(0, 1)
and [ p(z)dz # 0, then we define
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/f y)ee(z —y)dy|,
/f y)pi(z —y)dy|,

Definition 1 (Fefferman-Stein’s Hardy space [3])

HP(RM) ={fe S |fllgr = 1f T |lzr < o0}, where 0 < p < oo.

f++ = sup

t>0

= sup
1>t>0

where () =t p(z/t).

Definition 2 (local Hardy space [4])
RW(R™) ={f €S [|fllwe = | fT|lzr < 00}, where 0 < p < oo.
Remark || fllw» < |[f]l5»-

Definition 3 (Lipschitz space)

Lip, (R") = {f; 1y, = sup L =S W)

z -y <oo} for 0 <e< 1.
THY -

Remark (HP)* = Lip,(;/,—1) where n/(n +1) < p < 1 (For the duality,

see [3] or [9], p.54).

Before we define the weighted Hardy spaces we shall define Mucken-
houpt A, weight class (see [6], [12]).

Definition 4 Let 1 < ¢ < co. For a nonnegative locally integrable func-
tion w, we say w € Ay if

i o) G ) <

where C' is a positive constant independent of a ball B.
We say w € A, if

<
IB‘/ dx C’esmgfw( x).

z€
We write As = J,>1 4g-

Remark A, C A, if ¢1 <.
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Stromberg and Torchinsky defined the weighted Hardy spaces as
follows.

Definition 5 (HL) Let w € Ay

H{(R™) = {f € S5 I fllag, = 11/ [lzp, < oo}, where 0 <p < 0.

We define weighted local Hardy spaces as follows.
Definition 6 (h},) Let w € Ay

o (BR™) = {f € S5 1 fllwg, = 1f "Il , < 00}, where 0 < p < oo.
Next we shall define Calderén-Zygmund operator.

Definition 7 Let T be a bounded linear operator from S to S’. T is called
a standard operator if T satisfies the following conditions.

(i) T extends to a continuous operator on LZ.

(ii) There exists a function K(z, y) defined on {(z,y) € R" x R™; z # y}
which satisfies |K(z, y)| < ToF yl”'

(iii) (Tf,9) = [[ K(z,y)f(y)g(x)dydz for f,g € S with disjoint supports.

Definition 8 A standard operator T is called a §-Calderén-Zygmund op-
erator if K (z,y) satisfies

p é
K (@)~ K@, )+ K (n2)= Kz )] < 02

if 2|y — 2| < |z — 2|, for some 0 < § < 1.

Examples Let T be a classical singular integral operator defined by

where () satisfies the following conditions.
(iv) Q(ra:)—Q( ) forr >0, 2 #0.
f gn—1 x)do = 0 where do is the induced Euclidean measure on S?~!.
(Vl) Qe L1p5.
Then T is a §-Calderén-Zygmund operator.
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The Hilbert transform and the Riesz transforms are 1-Calderdn-
Zygmund operators (6 = 1).

Remark If T is a §-Calderén-Zygmund operator and w € Ag, then T is
bounded on L, where ¢ > 1 (see [5], [7], p. 52 and [10]).

3. Theorems
Quek and Yang obtained next result.

Theorem Let1§q<%ﬂandﬁ%<p§1. If we Ay and T is
a 0-Calderon-Zygmund operator such that T*1 = 0 then T is a bounded

operator from HE(R™) to HL(R™).

Remark T* is an adjoint operator of T. T and T* are simultaneously
6-Calderén-Zygmund operators. For the definition of T*1, see [12], p. 412.

We have the following:

Theorem 1 Let1<q<”+5,q_ :€,n+5<p<1cmd - <p. If
w € Ay and T is a 0-Calderon-Zygmund operator such that T*l € Lip,

then T z's a bounded operator from HE,(R") to hﬁ,(R”).

Remark When w =1, that is ¢ = 1, the conditions 7= < p and =

n+s - p
are the best possible (see [8], p. 70).

As a corollary of we obtain the boundedness of Calderén’s

commutator.

Definition 9 Calderén’s commutator is defined by

Ty f(z) = p-v. /R 19%)—;_—;)(731) (y)dy

Theorem 2 Let w € A;. If b’ € L*®NLip,, then T} is a bounded operator
from HE(R') to hy(R') where 1z <p < 1.

Proof. If ¥ € L™ then T} is bounded on L? (see [12], p.408) and a 1-
Calder6n-Zygmund operator (6 = 1). We can write T)1(z) = —H(V')(x)
where H is the Hilbert transform. Since H is bounded on Lip, (see [12],
p.214), we have T;1(z) € Lip,. By we obtain the desired result.

Ul
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4. Lemmas

4.1. Weight
First we shall show two elementary lemmas about weight functions with-

out proof (see [6] or [12], p. 226).

Lemma 1 If w € A, then w satisfies the following:

w(B(zo,T)) <c (|B(ac0,7')|

q
orall T>s and xn€ R".
w(Bl(z0,5)) |B<xo,s>|> J 0

where C is a positive constant independent of r, s and xg. Especially
w(B(zg,2r)) < C 2% w(B(xo,T)).

Lemma 2 Let f be a nonnegative locally integrable function. If w € A,
then

/q
Teme /Bm,r) fla)de < (zu‘wfi—o,m /Bm,,ﬂ f WW"”)I '

4.2. Atom

Next we shall define atom on HY, and show the atomic decomposition
of HE.

Definition 10 Let 1 < g < oo. A function a(x) is a (H%, q)-atom centered
at xo if there exists a ball B(xg,r) such that the following conditions are
satisfied

supp(a) C B(zo, 1), (1)
lallLs < w(B(zo,r))/971/P, (2)

/ a(z)dz = 0. (3)

The following Lemma 3 is trivial.

Lemma 3 If a function a(z) is a (HI, 00)-atom supported in B(xo,T),
then |la||ge1 < Crp, | B(xo, 7)|YPrw(B(zg, 7)) ~1/P where 27 <p <1and
Chp, s a constant depending only on n and p;.

Lemma 4 ([5], [11], p.111) Let 1<q< 2 2 <p<1land p<q. If
w € Ay and a function a(x) is a (HY, q)-atom, then ||a| gr < Cp pqw where

Crpquw 5 a constant depending only on n, p, ¢ and w.
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Proof. 'We assume supp(a) C B(zg,7). By using Li-boundedness of the
Hardy-Littlewood maximal function and Kolmogorov’s inequality (see [12],
p. 104), we obtain

/ att(z)Pw(z)dz
B(zo,2r)

< Chp pq,ww(B(zo, 2r))1—q/PHa]|I£gu < Crpgw if we A,
If x ¢ B(zg,2r) we have

rHlay(B(xg, r))"1/P
|CC — .’Iloln'H ’

att(z) <C
By [Lemma 1|, we obtain

/ att (z)Pw(z)dx
|z—z0|>27

/ att (2)Pw(z)dx
2ir<|z—zq|<2Itlr

Crw(B(zo,2r)) 122 (n+1)p3 4y ( B(xo, 2771 7))

Mg

IN

j=1

where p > ng/(n +1). O

Proposition (The atomic decomposition of HY, [5], [11]) Let1 < q <
2l gnd 2L <p < 1. If we Ay and f € HL(R") then f can be written
as f= Z )\ ja; where a; is (HE,, oo)-atom and 32, [M|P ~ || fI%e

4.3. Molecule

We shall define atom and molecule on h},(R™) and prove some proper-
ties.

Definition 11 Let 1 < ¢ < co. A function a(z) is a (hf,, q)-atom centered
at x¢ if there exists a ball B(zg, ) of radius r > 1 such that the conditions
(1) and (2) are satisfied.

The following is essentially proved in [4| when w = 1.
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Lemma 5 Let # <p<1<gqgandp<gq. If we A; and a function
a(z) is a (hL,, q)-atom, then ||a||hﬁ, < Cnpguw-

Proof. We assume supp(a) C B(xo,r), then a*(z) = 0if x ¢ B(xp, 2r). So
we can prove the lemma by the same argument with the proof of Lemma 4.
U

Lemma 6 Let1§q<%l,n—’:‘&<p§1,p<qandw€Aq. Let a(z) be

a function such that there exists a ball B(xg,7), 0 < r < 2, which satisfies
the conditions (1), (2) and

I/a(x)dx < rn(q—l)/p< [B(iUo,T)l))l/p. (3)

w(B(zo, )
Then ||a||pe < Cnpgw-

Proof. We write

a(z) = (a(z)—ap)xB(r)+apxs(z) = a1(z)+az(x),

where B = B(zg,7) and ag = ﬁ [ a(y)dy.
By using Lemma 2, we have

[ @tz

< Gy </B(a:0,r) la(z)|%w(z)dx
+(Eé;ﬂBmMMWWﬂ%ﬂWmMO

<Cogu [ fa@)lw(a)ds
B(zg,r)
< Chgw w(B(a:O,r))l_q/p.

So a; is a constant multiple of (HZ, ¢)-atom, and we have ||a;|| gz < Cy,
by Lemma 4.
supp(az) C B(xg,2) and

Pyq,W

| B(xg, 7)|9(1/P=1/0)
w(B(zo, 7)) /P14’

lazl g, < lapho(B)Y7 <

Cn
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By Lemma 1,
[Blao,r)|” \ 77 _ |B(zo,2)|7 \ /P78
w(B(zo, 7)) = \w(B(ao,2)

< Cn,p,q,w w(B(an 2))1/q—l/p.

Therefore ay is a constant multiple of (h},, ¢)-atom. By we have
“a?”hﬁ, < Cn,p,q,w- O

Definition 12 Let § > 0 and w € A;. A function M(z) is a large
(h%,, g, 8)-molecule centered at zg if there exists a ball B(xg,r),r > 1, such
that the conditions (M;) and (M3) are satisfied:

1/q
z)|fw(x)dz w(B(zg, 7)) 1/171/P)
o) ([ @futee) < w8, )

T"+5w(B($0, T))—l/p
|z — 2| *?

(M) |[M(z)| < where |z — zo| > 2r.

A function M (z) is a small (h%,, ¢, §)-molecule centered at zq if there exists
a ball B(zg,r),0 < r < 1, such that the conditions (M;), (Ms) are satisfied
and the following condition (Mgs) is satisfied:

_ B(xo,7)| \*'?
M M (z)dz| < rMa-1)/p (‘—’ :
o) | [ ] < w(Blzo, 7))
Remark For the definition of HP-molecule, see [9], p. 83.

Lemma 7 Let1<q<";5, n7f5<p<1andp<q If we Ay and a

function M(x) is a large or small (hY,, q,8)-molecule centered at B(xg,T),
then ”M”hﬁ < Cnypgsw-

Proof. Let Eg = {a:; |z — x| < 2r} and E; = {z;2r < |z — 20| <
20+ j =1,2,3,..., and let Xj( ) = xg;(2), X;(z) = ﬁXEj(f), m; =
‘Ele y)dy, m; = fE y)dy and M;(z) = (M(x) — m;)x;(x).

We write

o0 oo oo

M(z) = ZMj(I)‘FZ’H’Lij(J?) = ZM](IE)+
- =0 =0 '

J

m;X;(z)-

WK

Il
o



Calderdn-Zygmund operators on weighted HP(R™) 681

Let Nj = ) ;2 my and we write

£) =Y M)+ Y Nj(x;(x) - Xj-1(2)) + Noxo(z)
7=0

j=1
=I+I1I+1I1

We shall show [[I||gz < Crpgéw, H1[lgr < Cnpgéw and [[I1T]|py <
Cnp.gbw-

First we estimate I.

It is clear that supp(M;) C B(zo,2'*!r), [ M;(z)dz = 0.

By using the condition (M;), the estimate of Mo is the same as was
given in the proof of (the estimate of a;) and we have

/|M0(93)|qw(:r)d3: < Chqw w(B(zo, 7))/,
Therefore we have ||Mo||ge < Cppgw by Lemma 4.
Using the condition (Mj) and Lemma 1I, we have for j > 1,
|Mj(2)| < 2077 9w(B(zo,r)) P
8 B(zg,2771r)) 1p . ~
< o(=n—0)j w( ) Blxa.29t1 1/p
<20 (MEEE ) w2
< Cpy 207770414/P) y(B(zg, 29717)) 7P,
By Lemma 4, we have || M;| g < Cppgw 207"0F19/P),

Since p > ng/(n+4), we obtain Y22, |M;|%p < Crpgswand ||I]gp <
CnypaQ76’w'

Next we estimate I1.

Let A;(x) = N;(xj(z) — X;-1(2)).
It is clear that supp(A;) C B(zo, 2 "!r), [ Aj(z)dz = 0. By the same
estimate with I we have

4l < o™ [ M(2)lde
27— 1r<|z—zg|<2t1

< Cpp 2070492 (B(ao, 27 r)) TP
SO we obtain Z]O?__l HAJ”I;{g S Cn,p,q,é,w and ”II“HP S Cn,p,q,é,w-

Finally we estimate I11.
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It is clear that supp(NoXo) C B(xo, 2r).
By the same estimate with I (see also the proof of Lemma 4)), we have

Mool € s / M () |dz
<— M(x d:c+/ M(x dm)
|B($Oa 2T)| </|:c—:co|<2r l ( )‘ |z—z0|>2r7 | ( )|
S Cn,p,q,&,w 'LU(B(CC(), 27.))—1/19. (4)

If r > 1, by (4) and we have HNO)ZO“h{JU < Cn,p’q’g,w.
If r < 1, using the condition (Mg3), we have

_ _ B(zo,7)| \'”
Noso(zVdz| = | [ M < qnlg-1)/p [ _1B(@o, )|
'/ oXo(z)dx ‘/ (x)dx| <r w(Blzo. )]
B(zg, 2r)| 1/p
< Cp o (2r)Ma-D/P | ) .
< o (ry e (2ol )
By (4), (5) and Lemma 6 we have || NoXol|pz < Chpq.6.0-
So we obtain || I1I||pr < Chpg.6.0- O

5. Proof of Theorem 1

Applying the interpolation theorem between L2 and HY, or hf,, we may
assume p < 1, so we may assume p < q. By the atomic decomposition of HZ,,
it suffices to show that there exists Cppgesw,r > 0 such that ||Tall,e <
Crpae,6w,T, for every (HE, oo)-atom a, where Cpp 45071 i a positive
constant depending only on n, p, ¢, €, 6§, w and || T|Lip, -

We assume (HY, 0o)-atom a is supported in B(zg,r). We shall show
that if » > 1 then T'a(z) is a constant multiple of a large (h%,, g, §)-molecule,
and r < 1 then Ta(z) is a constant multiple of a small (h%,, ¢, §)-molecule.

We have to check that if r > 1 then T'a satisfies (M) and (Ms), and if
r < 1 then Ta satisfies three conditions of Definition 12.

Since T is bounded on L2 ([7], p. 52), we have

</|$_‘T01527‘ |Ta($)|qw(m)da;> a

1/2q
a\x 2 w\r)axr w Z r 1/2q
= (/Im—:c0|52r|T ( )| ol )d ) (Blo, 2r)
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< Cn,q,wHauLfg w(B(zo, 27"))1/2(1
< Cn,gqu w(B(zo, )47 '/2. (6)

If |z — xo| > 2r, we have

Ta(z)| = [ [ )~ K - awaydy

r"+ow(B(zg, 1)) /P

<C :
— n |$ _ I0|n+6 (7)

If > 1, by (6), (7) and Lemma 7, we have ||Tal|sz < Cpp g.6w-
If r < 1, by the duality of H™("t€) and Lip, and Lemma 3, we have

} / Ta(z)dz

= [(Ta,1)| = [(a, T"1)| < Cullaf| grn/nt) 1T 1| Lip,

< Cul| T*1Lip, | B(zo, )| ™/ w(B(ao, 7)) /P

. B(xg,r 1/p nlo—
< i, (ZE1)” e,

because p > ng/(n + ¢€).

By (6), (7), (8) and [Lemma 7], we obtain ||Ta||h% < ChpqedwT-
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