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LP(R™) boundedness for a class of g-functions
and applications

Guoen Hu
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Abstract. A class of g-functions related to the commutators of convolution opera-
tors are considered, a sufficient condition implying the LP(R™) boundedness for these
g-functions is obtained. As applications, some new results about the LP(R™) bound-
edness for the commutators of the Marcinkiewicz integrals and the maximal operators

corresponding to the commutators of homogeneous singular integral operators are estab-
lished.
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1. Introduction

As well-known, commutators generated by some classical operators and
BMO functions are of great interest in harmonic analysis and are useful in
the study of some related topics (see [2] and [13]). Thus, it is meaningful
to study the LP(R™) boundedness for these commutators. In their cele-
brated work [3], Coifman and Meyer observe that if T is standard Calderén-
Zygmund singular integral operator, then for b € BMO(R"), the LP(R")
boundedness for the commutator defined by

Tyf(z) = T(b(z) — ) f)(z)

can be obtained from the weighted LP(R") estimate with A, weights for the
operator T', where A, denotes the weight function class of Muckenhoupt (see
[14, Chapter V] for definition and properties of A,). Alvarez, Bagby, Kurtz
and Pérez developed the idea of Coifman and Meyer, and established
a generalized boundedness result for the commutators of linear operators.
Let E be a Banach space with norm | - ||, denote by M(FE) the set of
E-valued measurable functions on R™. For a weight function v on R” and
1 < p < o0, define the Banach space LP(FE, u(z)dz) by
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LP(E,u(z)dzx)
:{f1 f e M(E), |fllreu=)de) = (/Rn Hf(ai)\|%u(a:)d:c>l/p< oo}.

The result of Alvarez, Bagby, Kurtz and Pérez (see [1, Theorem 2.13))
states that if 1 < p, ¢ < oo and the linear operator T' is bounded from
LP(R™, w(z)dz) to LP(F, w(z)dzr) with bound independent of the weight w
for any w € A, then for u € Ay, b € BMO(R™) and positive integer k, the
k-th order commutator of T' defined by

Ty, v f(z) = T((b(z) — b)* f)(z)

is bounded from LP(R", u(z)dz) to LP(E,u(x)dr) with bound
C(n, k,p)HngMo(Rn). In [11], we considered the LP(R™) boundedness for
the commutators of convolution operators and proved the following result.

Theorem HSW Let K(z) be a function on R™\{0} and K;(z) =
K ()X {21<|z|<2i+1}(T), where X{oi<|z|<2s+1} 15 the characteristic function of
the set {27 < |z| < 271}, Suppose that there exist some constants C > 0,
a >k + 1 such that for each j € Z,
1K1 < C, [K;(€)] < Cmin {[27¢], log™(2 + |27€]) },
IVE; oo < €2,

where I/(\J denotes the Fourier transform of K;. Then for positive integer k,
b € BMO(R"™) and 2a/(2a— (k+1)) < p < 2a/(k + 1), the commutator

Thif(@) = [ (b(e) = b(w)" K (e - 1) )y

is bounded on LP(R™) with bound C(n,k,p, a)”b”]}%MO(R")'

This paper is a continuation of our previous works and [11], we
will consider the LP(R™) boundedness for a class of g-functions related to
the commutators of convolution operators. Let {K};ez be a sequence of
integrable functions on R™. Define the operator U; by

Ujf(z) = . Kj(xz —y)f(y)dy.

For b € BMO(R"™) and nonnegative integer k, the k-th order commutator
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of U; is defined by
Ujin, i f(2) = Uj ((b(z) — b(y))*f) (z),

(note that Uy, 0 = U;). The operators we consider here are of the form

b,k (f :<Z‘U,bkf )1/2 (1)

JEZ

We will see in Section 4 that the operator g x plays an important role in
the study of some maximal operators associated with the commutators of
convolution operators. Our main result can be stated as follows.

Theorem 1 Let k be a nonnegative integer, {K;}jez be a sequence of
integrable functions on R™. Suppose that there are some constants C > 0,
0<A<1/2 and a > k+1/2 such that for each j € Z

1Kl < €, |K;(€)| < Cmin {A]27¢], log™(2 + |27¢])},
IVE; oo < C29. (2)

Then for b € BMO(R") and any 0 < v < 1 such that av > k + 1/2,
the operator gy x defined by (1) is bounded on L*(R™) with bound
C(n,k,a,v)log™ a”+k+1/2( )HbHBMO Rn)-

Theorem 2 Let k be a nonnegative integer, {K;}jez be a sequence of
integrable functions on R™ such that supp K; C {z: 2/ < |z| < 27+1}.
Suppose that the mazimal operator

Mf(z) = sup ||K;| * f(z)|
JEZ

is bounded on LP(R™) for all 1 < p < oo, and that there exist some constants
C >0, a>k+1/2 such that for each j € Z,

1Kl < €, |K;(€)] < Cmin {|27¢], log™(2 + [27¢])},
IVE;llow < C2. (3)
Then for b € BMO(R™) and 4a/(4a — (2k + 1)) < p < 4a/(2k + 1), the
operator gy . is bounded on LP(R™) with bound C(n, k, p, O‘)”b”l}%MO(R")'
This paper is arranged as follows. In Section 2 and Section 3, we will
give the proof of and respectively. We will see that
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for A < 1/2 is very useful in the proof of Theorem 2. Section 4
is devoted to some applications of and [Theorem 2. We will con-
sider the LP(R™) boundedness for the maximal operator associated with the
commutator of homogeneous singular integral operator and the commutator
of the Marcinkiewicz integral.

Throughout this paper, C' denotes the constants that are independent of
the main parameters involved but whose values may differ from line to line.
For any locally integrable function f, we will denote by M f the standard
Hardy-Littlewood maximal function of f, and f# the Fefferman-Stein sharp
function of f (see [14, Chapter IV]). For a power exponent p with 1 <p <
oo, we denote the dual exponent of p by p/, that is, p’ = p/(p — 1).

2. Proof of Theorem 1
We begin with some preliminary lemmas.

Lemma 1 (see [10]) Let ¢ € C§°(R™) be a radial function such that
supp ¢ C {&: 1/4 < €| < 4} and

Y P27 =1, [¢#0.

leZ

Denote by S; the multiplier operator gl?(é’) = ¢(2“l§)f(§). For b €
BMO(R™) and positive integer k, denote by Si.p, 1 the k-th order commutator
of S; as defined in (1). Then the inequalities

H(Z Sied )| < €tk D)W niogen 11

and

H Z Sl;b,kfl”p < C(n, k’p)HbHIﬁMo(Rn)
l€Z

()|

leZ

holds for all 1 < p < oc.

Lemma 2 (see [10]) Let ms € C1{R™) (0 < § < o0) be a multiplier such
that suppms C {&: |€| < 6} and for some constants C, 0 < A < 1/2 and
a>1,

Imsllco < Cmin {46, log=*(2+6)}, ||[Vms||  <C
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Let Ts be the multiplier operator defined by 1/};”(5) = mg(&)f({). For pos-
itive intger k and b € BMO(R™), denote by Ts.p  the k-th order commu-

tator of Ts. Then for any 0 < € < 1, there exists a positive constant C =
C(n, k,e) such that

Tace.fll2 < CUolniony(49)'log (5 )17l if 6 < 10/V/A:

|56,k fll2 < CllbllBapo@n log > ¥ 2+ 0)|Ifll2, if 6> 1/VA.

Proof of [Theorem 1. We shall carry out the argument by induction on the
order k. If k = 0, the operator g , is exactly the operator g defined by

9(f)@) = (D13 f(@)P)

JET

1/2

We claim that g is bounded on L?(R") with bound C'log=®*1/2 (1). In fact,

by the Plancherel theorem, it suffices to show that for each & € R™\{0},
—~ 1
> IK©)) < Clog=2+t ().

A
JEL

Let jo be the integer such that 270 < |¢| < 270F1, Tt follows that

YAKEOP= > KO+ Y E©P
JEZL jg—jo-f-[log(vl——z)] j>—jo+[10g(717)]
<ca* Y My N g
i<[log() ] i>[log ()]
< CA + Clog2o+1 (1—2—) < Clog™2*! (—}1—)

where [a] denotes the integer part of the real number a. Now let k be a
positive integer, we assume that the estimate

—av-+rm 1 m
g8, (£)ll2 < Clog™ ™ 1/2( ) b\ oqmm 112

holds for all 0 < m < k — 1. Let S; be the multiplier operator defined in
Lemma 1. Define the operator S? by S2f(z) = Si(S;f)(z). Write

g6, fll2 = H(Z‘ZSIQ_J’Uj;b,kfF)I/QHQ, fe G (RY).

JE€Z 1ET
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Again by the Plancherel theorem, we see that for h € C3°(R"),

HZSZ ZZ/ S2h(€)S2h(€)dé
leZ

€7 dET
=S5 | OR@©) (Gul) e
€7 dEZ

=> Y /S, (x)S2h(z)dz

I€Z deZ: |d—1|<4

<cy % /151 (@) + |S2h(x)[?) dx

I€Z deZ:|d—1|<4

< CZHSzth-

l€Z
Therefore,
lgek (HI5 < CY D ISP Usie 13-
JEL IEL

With the aid of the formula

k
(b(z) — b(y)* =Y CF(b(z) — b(2))" ™ (b(2) = b(y)™,
=0 z,y, z € R",

the Fubini theorem and a straightforward computation gives that

k-1

Sf—jUj;b,kf(:E) = (Sl -3 bkf Z mSl —7;b,k— m( j;b,mf)(x)'

m=0
This in turn implies

lgo. e 12 < SN (SE U, 1 N5

JEZ IET
k-1

+0 3> ) ISt k-mUsinmf) |2
m=0 jeZ I€Z

together with our induction hypothesis says that for each m with
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0<m<k-1,
S S NSE b ke Uishm ) |I2
JETZ IeT
< Clblgnomn 2 U m I3

JEZ
—aQlV 1
< Clog 2241 () bl oz 111
To estimate the L?(R") bound for the operator (Sf*jUj)b,k, set m;(§) =

I/(\j(f), mg(f) = m;(£)p(277'¢), and define the operator U]l. by

——

ULF() = mi (&) F(9).
Obviously, supp mé-(Q*jﬁ) c {l¢] < 2*?} and
Hmé-(Z_j-)lIoo < Cmin {A42', log™*(2 + 21)}, HVmé-(2”j-)||oo <C.

Let bg be the operator defined by

ULF(€) = mh(2776) f(€).

The Fourier transform estimate for mé via states that for any
0 < v <1 and positive integer m,

rr m m 1 v
1055, mfll2 < ClbllBogen log™ (5 ) (427 1 £ll2

I < llog<—\/1—z>} 41

Note that if b € BMO(R"), then for any t > 0, b)(x) = b(tx) € BMO(R")
and ||b¢|lBmo®n) = I|bllsMo®n)- By dilation-invariance,

m m 1 v m
1S5, m S 12 < ClB|Baoen 1og™ (5 ) (A2 [6lssoqzm 1z

I < llog<—\/1~j>] +1. (4)

Since |m§(g)| < Cmin{A2!, 1} < C(A2')¥, the Plancherel theorem tells us
that

U3 fll2 < C(A2Y [ fl]2. (5)
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Observe that for f, h € C°(R™),

/ 2)(Si;Us)y 1 (2)de
i / Uf o (Stsib,k-m ) (z)dz..

It follows from the estimate (4) and (5) that

Z “ Sl—y ka2

J1€EZL
k
<C YN UL m(Sisink-m )5
m=0 jEZ
k
< C(A2 > 3 108> (5 ) IR0 S ISt-sin k- I3
m=0 JEZ

< C(A2 2 1og™ () o I1£18, 1< [log()] +1.

On the other hand, by Lemma 2 and the same argument as above, we can
obtain

S N(SE;U5), 1 flls < Clog2=o+8) (2 4+ 21) 1bl|Zk o m |1 £ 113

JEZ
10g<%)] +1

Recall that av > k + 1/2. Therefore,

ZZH Sl J kaQ

[ >

leZ jeZ
< Z ZH Sl] bka2
l>[10g(\/—)]+1]EZ
+ Z Z H Sl J b, ka2
zg[log(\/_)}ﬂﬂez

v ]' v
< CloliornAa® 10g® ()15 Y 2
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+OblERomnIfI3 > logr (2 4 2)
l>[log(ﬁ)}+l
2% 2(—avtk)+1 1 2
< OlIb|Fhocen 1o (51515

This finishes the proof of Theorem 1. O

3. Proof of Theorem 2

As in [16] and [11], let ¢ € C5°(R™) be a radial and nonnegative function

such that fRnw z)dr =1, suppy C {z: |z| < 1/4}. For j € Z and positive
integer [, set

bi(e) = 279Mp(290), Kl(a) = K, %y 1(a).

Denote by Vl the convolution operator whose kernel is K l, and Vl bk the
k-th order Commutator of Vl Define the operator g; p x by

936,k (f (E|Vlbkf )

JEZL
We have

Lemma 3 For any nonnegative integer m with 0 < m < k, gi.p.m 18
bounded on L?(R™) with bound C||b||BMO (®ny- Furthermore, for 0 <v <1
such that av >k +1/2,

l91:b,m(£) = gb,m(f)ll2 < ClIBIEMO@nI ™| |2

Proof. By the Minkowski inequality, we have
o\ 1/2
i, m () = g m(Dll2 < || (X Vi mf @) = UsiomF@F) |
JEZ

The Fourier transform estimate of K ; now states that

KL(E) = K5(8)] = K ()]l 1(€) — 1
< C'min{[27¢], log™*(2 + |27¢])} min{|27~¢], 1}
< Cmin{27127¢|, log=*(2 + |27¢])},



506 G. Hu

and
IVE! = VElloo < IVE ool = Lloo + 1 KGllool| Vb5 21l 0 < C27.

This together with says that for each 0 < m < k, b € BMO(R")
and 0 < v < 1 such that av > k +1/2,

91,6, m(f) = go,m (]2 < CU 2B E 1 gy | f 2

On the other hand, [Theorem 1 tells us that the operator gy »,, is bounded
on L?(R") with bound CHbHBMO (gn)- Lherefore, for each 0 <m <k, gi;p,m

is also bounded on L?(R™) with bound C“b”%MO(R“)' O

Lemma 4 For any nonnegative integer k and 1 < p < 0o, g, k @5 bounded
on LP(R™) with bound Clk+1/2||b||BMo (Rn)» and C depends only on n, p, k.

Proof. Without loss of generality, we may assume that [|b||pmomwn) = 1.
By the same argument as in the kernel estimate used in the proof of The-
orem 1 in [11], we can verify that there exists a positive constant A which

is independent of [, such that for each nonnegative integer m, R > 0 and
lyl < R/4,

Z | B(0, 2dR)| Z HKj( —y) - KJZ'<')HL(1ogL)2m,B(o,2d+1R)\B(o,2dR)

d>1 JEZL
IDILED / K\ (z—y) - K'(2)|d
§Al2m“, (6)

! l
HKj(‘ —y) - Kj(’)“L(logL)m,B(o,2d+1R)\B(o,2dR)

Kz —y) =K'z
:inf{)\>0: / ll,m(\ (@ —y) =K )I)
B(0,24+1R)\ B(0,2¢R) A

and U,,(t) = tlog™(2 +t) for t > 0 (see also [12, page 168]).

We first consider the LP(R™) bound of g;.5 x for 1 < p < 2. By the
Marcinkiewicz interpolation theorem, it is enough to show that for each
1 <p <2, gipk is a bounded mapping from LP(R") to weak LP(R") with
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bound C1¥*t1/2 that is, for each 1 < p < 2 and A > 0,
{z € R™: gip k(f)(z) > A} < CIFH2A)P| £,

For f € LP(R") and fixed A > 0, applying the Calderén-Zygmund decom-
position to |f|P at level M?, we can decompose f as f = fl+ fll = fl 4
>4 fil, where || f1]|3 < CA?7P| f||b, each fI! is supported on some cube Qg
the cubes Qg have disjoint interiors, [ fil(z)dz = 0, || fY]|h < CAP|Qq| and
> 4 1Qdl < CAP||f||P. Let x4 and ry be the center and the side length of
Qq. Set By = B(zq4, 4nrq) and E = UgBy, then |E| < CA7P||f||b. By the
L?(R™) boundedness of gi;b k, it is easy to see that

[{z € R™: g,k (f1)(z) > A} < CAP||f|I5.
Thus, it suffices to prove that

{z € RN\E: ik (fM)(z) > A} < CFHADP| flE, 1<p<2.
(7)

We shall carry out the argument by induction on the order k. If k = 0, then
gi:b, k 1s the operator

a(H@ = (LW

JEZ
Note that

{z e R"\E: a(fM(z) > A} C {:13 € R", sup |K; « (fM(2)| > l_1/2)\}
JEZL

U {x eRME: Y VM) (@) > zlﬂx},

JEZL
and

sup | K}« (f)(x)| < Csup (|K;| = (M ™)) (z).
JEZL JEZ
It follows that

{z e R sup KL (FM) (@) > 72 < o207 11,
JEZ
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The inequality (6) (with m = 0) now gives us that

’{x € R™\E: Z K (FY(2)] > ll/QAH

llﬂAIE:E:/ KL 5 (f31(2)|dz

d jEZ R™ By

1712\ -1 Kz — 245) — Kz — y)|dz| f(y)|d
< ;2;/@4 KLz — 20) — Kl(z — ) |da| f(y))dy

™\ By

< CIM2Y " 1Qql < CUMANTP| f|E,
d

and the estimate (7) holds for the case of k = 0.

Now let k be a positive integer. We assume that the inequality (7) holds
for all 1 < p < 2 and integer m with 0 < m < k — 1. Denote by mp,(b) the
mean value of b on the ball B;. Write

(b(z) = b(y))" = (b(z) — mp,(b))"

It follows that for j, [ € Z,

Vi M) =3 (b(@) — mp,(0) Vi)
d
k—1

= 3 GV (3 (60) — ma, ) ) ).

m=0 d

Therefore, by the Schwarz inequality,
g6,k (f1)(z)

< (Z(Z b - a1V @)

JEZ

Loy (S Vo (3000 = mao) " N[

m=0 JEZ
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(ZZ“’ |2k|szH |Z|Vz )

JEZ d

k-1
+C 3 giem (X (60) = ms, () 1)
m=0

d

< (s S IVA@N) (5 32 o) = o, PV A e)))
d

JEZ d

k-1
+C Y ginm (Y (60) = mp, () ).
m=0

d

Choose pg, 1 < pp < p, and set r = p/pg. For each 0 < m < k — 1, our
induction hypothesis states that

Haz € Rn\E: gl;b,m(z (b(-) _ de(b))k—m H)( ) . /\}‘
d
aim (3 (00) = ms, )" 1) |7
d
lm+1/2)\ )Po Z (b(-) — mp,( ))k_mfclll| gg

r o\
Cum T LI ( / b(y) — 1, (6)| <P ay

< CImHAATP Ilfllﬁ-

< )\_pO

Obviously,

erR”\E: <§1€1§Z|le }l‘(m){)l/
(303 Ibtw) — mis, PV 5 E) " > )|

J€Z d

I{xeR"\E ZZH) '2szf11( )|>lk+1/2/\H

JEZ d
U H:c € R"™: 3‘2% Vi ()] > l‘k—1/2/\}|.

Recall that the cubes Q4 have disjoint interiors, straightforward computa-
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tion yields
Hx € R™: supz IVJlféI(:cﬂ > l"k—l/Q)\}’
€z

< () igg(lKﬁl 1Y) HZ
d
< o@my| S < caa s
d

Thus the proof of the inequality (7) for k& can be reduced to proving that

{z e RNE: 33 b(@) — ma, (0) V) fil(@) > 174/}
JEZ d
< CFATNP| £, (8)
By the kernel estimate (6), the same argument as in the proof of
in leads to that for any y € Qq,

Z/ Bd(b)i%lKé(zz—y) -K;(x—a:d)lda: < Okt
JEL R™ \Bd
(9)

Therefore,

S / 1b(z) — mp, (b) V! £ (2) | da

]EZ Rn \Bd

<y / mp, (b) — b(z)|* / K (@ —y) — KL (z—4)| | f(y)|dy da

JEZL R™\ By Qd

< CrPH /Q ) dy < CP*FIAQu,
d

which in turn shows that

H“’GR"\E YD lb(z) —mp,(0)*|V} fi (= )|>l’“+1/2AH

JjEZ d
<Ry 1YY / ) — mp, (O VE £ (@) da
d jEZ \Bd
< G2 N 1Qql < CIFHAP| £,
d
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This establishes the inequality (8).

Since that the operator g;. x is not linear, we don’t automatically get

the LP(R™) boundedness of g;.p x for 2 < p < oo by duality argument. We
claim that

1(9(f)#lloo < C1M2|| flloo, f € LF(R™) (10)

and for any 1 < s < co and positive integer k,

k-1

(gl;b,k(f))#(x) < Cs Z Ms(Ql;b,m(f))(‘r)

m=0

+CFY2 | fllo, feLP®RM,  (11)

where (5 is a positive constant depending only on s, Mgh(x) =

(M(\h\s)(x))l/s. We only prove the inequality (11), the inequality
can be proved in the same way. For each z € R", let B = B(x, R) be a
ball containing x, with center xp and the radius R. Denote by Mpg(b) the
mean value of b on B. Write

VE b kh(y) = V} ((ms(b) — b)°h) (y)
k—1
= ep(ms(d) — (b)) " VEy mh(y).
m=0

For f € L§°(R™), decompose f as

F@) = FW)Xpg. 4 (¥) + FU)Xan\ ey, ary (V) = FL(y) + f2(y).

Note that (mp(b) — b)kf, € L2(R™). By the L?(R™) boundedness of g;, we
can take yo € B(zo, R) such that |g;((mp(b) — b)kfg)(yo)\ < 00. Write

< g [ (T Vit @) - Vim0 0 flen) )

JEZ

k=1
gCT;)@/BMB@)—b(y)lk*mgl;b,m(f)(y)dy

+ L gl((mB(b) — b)kfl)(y)dy
|B| /B
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IBI (ZW ((ma(5) - )" f2) (v)
Vi (ms) - ) ) o))
=14+ 114111

By the Holder inequality,
ol 1 (k )s! 1/s'
I<C ——/ mp(b) — b(y)|'"*~"™% dy
,;)(IBI Ims(b) ~ b(y) )
1 s, \1/s
_ - d
(IB!/B(gl’b’ (f) ) y)

The L?(R™) boundedness of g; now says that

1 L 1/2
e / OB @)Pdy) " < Ol fl

Similar to the inequality (9), we have that for each y € B(xg, R)

9

5 [ o 500 =B PHIRYy — 2) — Kilan — 2

Thus, for y € B,
S IV (b) = b)" £2) () — V] (ms(5) = )° £2) (w0) |

JEZL
<2sup||K*f2||oo[ SOIK Y 2) - K (yo - 2)|

JEZ
x |mp(b) — b(2) [ fa(2)|dz
< CPM|fI15,

which shows that
I < CI** V2| £l o,

and gives the inequality (11).
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We can now conclude the proof of by proving that g;.p 1 is
bounded on LP(R") with bound Cl*+1/2 when 2 < p < co. Again we shall
use the induction argument on the order k. If k = 0, the estimate and
the L?(R™) boundedness of g; via the well-known interpolation theorem of
Fefferman-Stein (see [14, Chapter IV]) give us the desired result directly.
Now let k be a positive integer, and the estimate

lg; 6, m(Hllp < CU™ 2| £l 2 < p < o0
hold for all 0 < m < k — 1. Our goal is to show that
1916, £(F)llp < Clk+l/2Hpra 2 <p<oo.

By the Marcinkiewicz interpolation theorem, the relationship of the Hardy-
Littlewood maximal operator and sharp function ([14, Chapter V]), and a

standard density argument, it is enough to show that for each 2 < p < o
and A > 0,

[{z € R™: (g1.6.(£)) () > A}
< CF2AIP | fIB, f € CF(R™). (12)

For each given f € C°(R") and A > 0, perform the Whitney decompo-
sition of the set {x € R™: M(|f|P)(z) > (I~*+1/2)\)P} into a union of
non-overlapping cubes {Qq}. We can write f(z) = f'(z) + fY(z), where
Il < CUER 7l < Cll £160) = o 110, it )
ported on Qqg, and [ |fil(z)|Pdx < C(I=*+1/2D\)P|Qq|. Since f € CP(R™),
there exists a compact set E such that {z: M(|f]P)(z) > (I~*+1/2\)P}
E, and thus f' has compact support. Choose 1 < s < oo such that 2 <
p/s < oo. By the inequality (11) and our induction hypothesis, it follows
that

{z € R™: (g, u(£1))7 (2) > (C+ 1)AY]

= l{x Cs li:l Ms(gb,mfl)(w) > )\}’
m=0

k-1
< OXP Y Mg, m NI < AP £,

m=0

The LQ(R") boundedness of g;.; i states that
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[{z € R™, (gi;p,k(f)*(z) > A}
<A (gun kD FIE < O3 FY13
< CIH2R| (5 M (7)) > (/2

< CATP| fII5.
Combining the estimates above leads to the inequality [12). O

Proof of [Theorem 2. We only consider the case of 2 < p < 4a/(2k + 1).
For 4a/(4a — 2k — 1) < p < 2, the proof is very similar. Let g;.;  be the
same as above. By Lemma, 3,

g2t b,k (f) = g1 £ (F)ll2 < 2(_ay+k+1/2)lHbHEMO(Rn)HfHZ- (13)
Therefore, the series
0
9bk = G1;b,k t+ Z (92l+1;b,k - gzl;b,k) (14)
1=0

converges strongly in the L?(IR™)-operator norm. On the other hand, invok-
ing [Lemma 4, we can obtain

l92;5,k ()l < CVH2 bl grto@m | fllps 1< p < o0,

and so

g2t b, k(f) = gor+1. 5, £ (F)llp
< C2(k+1/2)l“bl|l§M0(Rn)Hf”p, 1 <p<oo. (15)

Interpolation the inequalities (13) and gives us that for any 6 > 0,

lg21+1,5,£(F) = 21,5, £ (F) I
< C9Hb”]]%MO(R")2(_2ay/p+k+l/2+0)lHf”p’ 2 <p< oo
For each given p with 2 < p < 4a/(2k + 1), we can choose § > 0 and
0 < v < 1 such that 2av/p > k+ 1/2+ 6. Thus, the series converges

in the LP(IR™)-operator norm, and the operator g  is bounded on LP(R").
This completes the proof of [Theorem 2. O

4. Some applications

In this section, we will give some applications of the theorems we have
established. We begin with the maximal operator defined by
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Mo f(@) =supr™ [ Jb(o) = b(w) M0z - )7 (o)l dy,
r>0 lz—y|<r

where €2 is homogeneous of degree zero, integrable on the unit sphere S™~ !,

b € BMO(R™) and k is a positive integer. We can prove that

Corollary 1 Let Q be homogeneous of degree zero, integrable on S™ 1,
b€ BMO(R™). If k is a even number and for some o > k +1/2,

1 «
Qo)1 dé
giﬁﬁlfgn-l' (©)] °g<w d) < o2, (16)

then Maq.p  is bounded on LP(R™) with bound C“b“BMO gy Jor 4o/ (4o —
2k—1) < p < 4a/(2k+1). If k is a odd number and satzsﬁes (16) for some
a > k+3/2, then Mq.p i is bounded on LP(R™) with bound Cl]bHBMO (R")
for 4a/(4a — 2k — 3) < p < 4a/(2k + 3).

Proof. We first consider the case that k is even. Let A = [|Ql;/[S""!| and
Q(z) = |Q(z)| — A. Note that Q has mean value zero on S™!. Set K i(z) =
ﬁ(m)|x|*"x{2351x_y|<2j+1} By the estimate of Grafakos and Stefanov [9],
we know that if () satisfies (16) for some o > 1, then Kj satisfies the
Fourier transform estimate (3) for the same a. Denote by U; the convolution

operator whose kernel is K;. Write

K|z — y)|

Moy f(x) < Csnp /| o (0 =0 T Sy
< (X sl H@)”
JEZ
s Caspr™ [ (o) - b)) 150y
r>0 lz—yl<r

Note that the commutator

Myef(@) =supr™ [ Jb(a) ~ b(w)I1 ) dy
r>0 |lz—y|<r
(see [8]) and the operator
Mof@) =swpr [ oG- ylSwldy

r>0

are all bounded on LP(R") for 1 < p < oc. for even number k
now follows from directly.
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Now let k£ be an odd positive integer. By the Holder inequality,

Mo b,k f(z) < (Mayp, k41 f (2 ))k/ kH)(M fla) Y,

Another application of the Holder inequality gives the desired result for odd
number k. U

We now turn our attention to the maximal operator associated with
the commutator of homogeneous singular operator defined by

Ty i f(x) = sup ‘ /|x yl>6 (y))k%f(y)dy :

e>0

We have

Corollary 2 Let Q0 be homogeneous of degree zero, integrable on S™~!
and have mean value zero, k be a nonnegative integer and b € BMO(R™).
Suppose that ) satisfies the inequality (16) for some a > k + 3/2. Then
Ty i s bounded on LP(R") with bound CHbHBMO & for da/(da—2k—3) <
p < 4da/(2k+ 3).

Proof. Our argument will proceed by induction on k. If k = 0,
can be obtained from in [6]. Now we assume that is

true for all integer m with 0 <m < k—1. Let K;(x) = %E(I_Q;L)‘X{nglm|<2l+1}($)
and define the operator

Tiosf@)= [ ()~ b))

By Corollary 1 it suffices to consider the operator sup; ‘ Z?i] Thb’kf(a:)‘.
Take n € S(R™) such that n(x) = 1 when |z| < 1 and set n;(z) = n(2/z).
Let ®; € S(R™) such that ®;(§) = 7;(£). Denote by W; the convolution

operator whose kernel is ®; and le the convolution operator whose kernel
is K; — ®; x K;. Write

00 7j—1
> Tibkf(x) = ®; * (Tb,kf -y Tl;b,kf) (z)
=

l=—00

+ (ZTl;b,kf(x) — @ * (ZTl;b’kf) (‘T)>
=5 I=j
=L (F)(z) + I;(f) ().

CUTZY) gy
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Observe that

i—1
I(I)j * Z Kl(x)’ < CQ_jn/(l + |2_jx|)"+1

l=—

(see [5]) and that

(5 maar)or= (a0 5 1), o
—ZC}J‘WJM m( Z Tit,mf ) (2).
It follows that o
j‘gg“ z)| < :;) My, k- (To,m f) (@) + My ke (Ty 1 f) (@)

+ CMb,kf(x) + C'M(Tb’ kf)(x).

in tells us that T} x is bounded on LP(R™) for 2a/(2a — k —
1) < p < 2a/(k+1). Thus, sup;cz |I;(f)(z)| is bounded by an operator
that is bounded on LP(R™) with bound CHb”BMO(R") for 4a/(4da—2k—3) <
p < 4a/(2k +3). To estimate sup,cz |I1;(f)(x)|, write

I £ (a kaf ) - (25 iTz)bkf(fE)

l=j '

+ Z Cy'Wiib kem ({2 Tl;b,mf) (z)
m=0 I=j

o o]

—ijbkf +ch ik m(anmf)

=

For each 0 < m < k — 1, it is easy to see that

sup W';b,k—m(ZTl;b,mf) (CU)‘ < CMpp k- (Ty 1 f) ().
=

JET

Thus, it suffices to estimate the LP(R™) norm of sup ¢z | dle; W]l bykf(a:)‘.
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Write

since K; — ®;_; * K, satisfies the Fourier transform (2) with A = 27/, by
Theorem 1, we know that

(12t P) ], < oo 12 bl ol (17
JEZ

It follows from that
, o\ 1/2
| (W) 7| < Cllbluiogs 11
JEZ

da/(4a — 2k —1) < p < da/(2k +1). (18)

Interpolation the inequalities (17) and yields that for 2 < p < 4a/(2k+
1),

[sup (W, o] < Crmesimm@esni e stoyy o £,
J

(19)

For each fixed 2 < p < 4a/(2k + 3), we can take y > 0 and 0 < v < 1, such
that 2av(1/p — (2k +1)/(4a)) > 1 + 6p. Summing over the inequality (19)
for all integers | > 0 gives the desired result. For the case of 4a/(4a — 2k —
3) < p < 2, the proof is very similar and is omited. This finishes the proof

of Corollary 2 0

At the end of this section, we consider the commutator of the
Marcinkiewicz integral. For ¢ > 0, b € BMO(R") and nonnegative inte-
ger k, let

Pt @)= [ 0@ ) S

= y‘n_lf(y)dy,
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and define the operator

pe; b,k f(T) = (/000 [Frio,kf(2)

For k = 0, this is the higher-dimensional Marcinkiewicz integral introduced
by Stein and has been considered by many authors recently (see [4] and
[7]). For j € Z and ¢t € [1, 2], let

U-,;b,kfa::/ b(x)—b — dy.
It ( ) 2i-1t<o—y|<2it ( ( ) (y)) |$ — y!"‘l f(y) Yy
The Minkowski inequality states that

pe b,k f ()

<y [ <b<x>—b<y)>’“|“(°’” T [ 5) "

- Z 2] o 0 00 ] )

(S 1 O )
4 Z/ Uj, 15, kf () !dt>

JEZ

For each ¢ € [1, 2] and 4a/(4da — 2k — 1) < p < 4a/(2k + 1), by
and rescaling,

o\ 1/2 .
| (3 w50k F) . < Cllblsnson 171
JEZ P
If 2 <p<4a/(2k+1), it follows from the Minkowski inequality that

2
(] S inanssta) < NS o)

< ClblEon I 13-
Furthermore, repeating the proof of [Theorem 2, with some suitable modifi-
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cations, we can prove that for 4a/(4da — 2k — 1) < p < 4a/(2k + 1),

2 /
(= / U s f@[dt) | < Clblasoenl 1
JEZ

Therefore, we have

Corollary 3 Let Q be homogeneous of degree zero, integrable on S™ 1
and have mean value zero, k be a nonnegative integer and b € BMO(R").
Suppose that § satisfies the inequality (16) for some o > k + 1/2. Then
po;b, k8 bounded on LP(R™) with bound CHb”If%MO(Rn) for all 4a/(4da—(2k+
1)) <p<da/(2k+1).
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