Certain sufficient conditions for univalence

Virgil Pescar
(Received March 13, 2002)

Abstract

In this work some integral operators are studied and the author determines conditions for the univalence of these integral operators.

Key words: integral operator, univalence.

1. Introduction

Let $U=\{z:|z|<1\}$ be the unit disk in the complex plane and let A be the class of functions which are analytic in the unit disk normalized with $f(0)=f^{\prime}(0)-1=0$.

Let S the class of the functions $f \in A$ which are univalent in U.

2. Preliminary results

In order to prove our main results we will use the theorems presented in this section.

Theorem A [2] Assume that $f \in A$ satisfies condition

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1, \quad z \in U \tag{1}
\end{equation*}
$$

then f is univalent in U.
Theorem B [3] Let α be a complex number, $\operatorname{Re} \alpha>0$ and $f(z)=z+$ $a_{2} z^{2}+\cdots$ is a regular function in U. If

$$
\begin{equation*}
\frac{1-|z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1, \tag{2}
\end{equation*}
$$

for all $z \in U$, then for any complex number $\beta, \operatorname{Re} \beta \geq \operatorname{Re} \alpha$ the function

$$
\begin{equation*}
F_{\beta}(z)=\left[\beta \int_{o}^{z} u^{\beta-1} f^{\prime}(u) d u\right]^{\frac{1}{\beta}}=z+\cdots \tag{3}
\end{equation*}
$$

is regular and univalent in U.
The Schwarz Lemma [1] Let the analytic function $f(z)$ be regular in the unit circle $|z|<1$ and let $f(0)=0$. If, in $|z|<1,|f(z)| \leq 1$ then

$$
\begin{equation*}
|f(z)| \leq|z|, \quad|z|<1 \tag{4}
\end{equation*}
$$

where equality can hold only if $f(z)=K z$ and $|K|=1$.

3. Main results

Theorem 1 Let $g \in A$ and γ be a complex number such that $\operatorname{Re} \gamma \geq 1$. If

$$
\begin{equation*}
\left|z g^{\prime}(z)\right| \leq 1, \quad z \in U \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
|\gamma| \leq \frac{3 \sqrt{3}}{2} \tag{6}
\end{equation*}
$$

then the function

$$
\begin{equation*}
T_{\gamma}(z)=\left[\gamma \int_{0}^{z} u^{\gamma-1}\left(e^{g(u)}\right)^{\gamma} d u\right]^{\frac{1}{\gamma}} \tag{7}
\end{equation*}
$$

is in the class S.
Proof. Let us consider the function

$$
\begin{equation*}
f(z)=\int_{0}^{z}\left(e^{g(u)}\right)^{\gamma} d u \tag{8}
\end{equation*}
$$

which is regular in U.
The function

$$
\begin{equation*}
p(z)=\frac{1}{|\gamma|} \frac{z f^{\prime \prime}(z)}{f^{\prime(z)}} \tag{9}
\end{equation*}
$$

where the constant $|\gamma|$ satisfies the inequality (6), is regular in U.
From (9) and (8) it follows that

$$
\begin{equation*}
p(z)=\frac{\gamma}{|\gamma|} z g^{\prime}(z) \tag{10}
\end{equation*}
$$

Using (10) and (5) we have

$$
\begin{equation*}
|p(z)|<1 \tag{11}
\end{equation*}
$$

for all $z \in U$. From (10) we obtain $p(0)=0$ and applying Schwarz-Lemma we obtain

$$
\begin{equation*}
\frac{1}{|\gamma|}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq|z| \tag{12}
\end{equation*}
$$

for all $z \in U$, and hence, we obtain

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq|\gamma||z|\left(1-|z|^{2}\right) \tag{13}
\end{equation*}
$$

Let us consider the function $Q:[0,1] \rightarrow \operatorname{Re}, Q(x)=x\left(1-x^{2}\right), x=|z|$. We have

$$
\begin{equation*}
Q(x) \leq \frac{2}{3 \sqrt{3}} \tag{14}
\end{equation*}
$$

for all $x \in[0,1]$. From (14), (13) and (6) we obtain

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1 \tag{15}
\end{equation*}
$$

for all $z \in U$. From (8) we obtain $f^{\prime}(z)=\left(e^{g(z)}\right)^{\gamma}$. Then, from (15) and Theorem B for $\operatorname{Re} \alpha=1$ it follows that the function T_{γ} is in the class S.

Theorem 2 Let $g \in A$, satisfy (1), γ be a complex number with $\operatorname{Re} \gamma \geq 1$ and $|\gamma-1| \leq \frac{54}{35+13 \sqrt{13}}$. If

$$
\begin{equation*}
|g(z)|<1, \quad z \in U \tag{16}
\end{equation*}
$$

then the function

$$
\begin{equation*}
H_{\gamma}(z)=\left[\gamma \int_{0}^{z} u^{2 \gamma-2}\left(e^{g(u)}\right)^{\gamma-1} d u\right]^{\frac{1}{\gamma}} \tag{17}
\end{equation*}
$$

is in the class S.
Proof. We observe that

$$
\begin{equation*}
H_{\gamma}(z)=\left[\gamma \int_{0}^{z} u^{\gamma-1}\left(u e^{g(u)}\right)^{\gamma-1} d u\right]^{\frac{1}{\gamma}} \tag{18}
\end{equation*}
$$

Let us consider the function

$$
\begin{equation*}
p(z)=\int_{0}^{z}\left(u e^{g(u)}\right)^{\gamma-1} d u \tag{19}
\end{equation*}
$$

The function p is regular in U .
From (19) we obtain

$$
\begin{equation*}
\frac{p^{\prime \prime}(z)}{p^{\prime}(z)}=(\gamma-1) \frac{z g^{\prime}(z)+1}{z} \tag{20}
\end{equation*}
$$

and hence, we have

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z p^{\prime \prime}(z)}{p^{\prime}(z)}\right|=|\gamma-1|\left(1-|z|^{2}\right)\left|z g^{\prime}(z)+1\right| \tag{21}
\end{equation*}
$$

for all $z \in U$. From (21) we get

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z p^{\prime \prime}(z)}{p^{\prime}(z)}\right| \leq|\gamma-1|\left(1-|z|^{2}\right)\left(\left|\frac{z^{2} g^{\prime}(z)}{g^{2}(z)}\right| \frac{\left|g^{2}(z)\right|}{|z|}+1\right) \tag{22}
\end{equation*}
$$

for all $z \in U$.
By the Schwartz Lemma also $|g(z)| \leq|z|, z \in U$ and using (22) we obtain

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z p^{\prime \prime}(z)}{p^{\prime}(z)}\right| \leq|\gamma-1|\left(1-|z|^{2}\right)\left(\left|\frac{z^{2} g^{\prime}(z)}{g^{2}(z)}-1\right||z|+|z|+1\right) \tag{23}
\end{equation*}
$$

for all $z \in U$.
Since g satisfies the condition (1) then from (23) we have

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z p^{\prime \prime}(z)}{p^{\prime}(z)}\right| \leq|\gamma-1|\left(1-|z|^{2}\right)(2|z|+1) \tag{24}
\end{equation*}
$$

for all $z \in U$.
Let us consider the function $G:[0,1] \rightarrow \Re, G(x)=\left(1-x^{2}\right)(2 x+1)$, $x=|z|$.

We have

$$
\begin{equation*}
G(x) \leq \frac{35+13 \sqrt{13}}{54} \tag{25}
\end{equation*}
$$

for all $x \in[0,1]$
Since $|\gamma-1| \leq \frac{54}{35+13 \sqrt{13}}$, from (25) and (24) we conclude that

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z p^{\prime \prime}(z)}{p^{\prime}(z)}\right| \leq 1 \tag{26}
\end{equation*}
$$

for all $z \in U$.
Now (26) and Theorem B for $\operatorname{Re} \alpha=1$ imply that the function H_{γ} is in the class S.

References

[1] Nehari Z., Conformal Mapping. Mc Graw-Hill Book Comp., New York, 1952 (Dover. Publ. Inc., 1975).
[2] Ozaki S. and Nunokawa M., The Schwarzian derivative and univalent functions. Proc. Amer. Math. Soc. 33 (2) (1972), 392-394.
[3] Pascu N.N., An improvement of Becker's univalence criterion. Proceedings of the Commemorative Session Simion Stoilow, Braşov, 1987, 43-48.
[4] Pommerenke C., Univalent functions. Gottingen, 1975.

Department of Mathematics
Faculty of Sciences
"Transilvania" University of Braşov
2200 Braşov, Romania
E-mail: g.mailat@unitbv.ro

