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Certain sufficient conditions for univalence
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Abstract. In this work some integral operators are studied and the author determines
conditions for the univalence of these integral operators.
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1. Introduction

Let U=\{z : |z|<1\} be the unit disk in the complex plane and let A
be the class of functions which are analytic in the unit disk normalized with
f(0)=f’(0)-1=0.

Let S the class of the functions f\in A which are univalent in U .

2. Preliminary results

In order to prove our main results we will use the theorems presented
in this section.

Theorem A [2] Assume that f\in A satisfies condition

| \frac{z^{2}f’(z)}{f^{2}(z)}-1|<1 , z\in U, (1)

then f is univalent in U

Theorem B[3] Let \alpha be a complex number, Re \alpha>0 and f(z)=z+
a_{2}z^{2}+ is a regular function in U. If

\frac{1-|z|^{2{\rm Re}\alpha}}{{\rm Re}\alpha}|\frac{zf’(z)}{f(z)},|\leq 1 , (2)

for all z\in U , then for any complex number \beta , Re \beta\geq{\rm Re}\alpha the function

F_{\beta}(z)=[ \beta\int_{0}^{z}u^{\beta-1}f’(u)du]\frac{1}{\beta}=z+ (3)
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is regular and univalent in U.

The Schwarz Lemma [1] Let the analytic function f(z) be regular in
the unit circle |z|<1 and let f(0)=0 . If, in |z|<1 , |f(z)|\leq 1 then

|f(z)|\leq|z| , |z|<1 (4)

where equality can hold only if f(z)=Kz and |K|=1 .

3. Main results

Theorem 1 Let g\in A and \gamma be a complex number such that Re \gamma\geq 1 .

If
|zg’(z)|\leq 1 , z\in U (5)

and

| \gamma|\leq\frac{3\sqrt{3}}{2} , (6)

then the function

T_{\gamma}(z)=[ \gamma\int_{0}^{z}u^{\gamma-1}(e^{g(u)})^{\gamma}du]\frac{1}{\gamma} (7)

is in the class S .

Proof. Let us consider the function

f(z)= \int_{0}^{z}(e^{g(u)})^{\gamma}du (8)

which is regular in U .
The function

p(z)= \frac{1}{|\gamma|}\frac{zf’(z)}{f(z)}, (9)

where the constant |\gamma| satisfies the inequality (6), is regular in U .
From (9) and (8) it follows that

p(z)= \frac{\gamma}{|\gamma|}zg’(z) (10)

Using (10) and (5) we have

|p(z)|<1 (10)
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for all z\in U . From (10) we obtain p(0)=0 and applying Schwarz-Lemma
we obtain

\frac{1}{|\gamma|}|\frac{zf’(z)}{f(z)},|\leq|z| (12)

for all z\in U, and hence, we obtain

(1-|z|^{2})| \frac{zf’(z)}{f(z)},|\leq|\gamma||z|(1-|z|^{2}) (13)

Let us consider the function Q : [0, 1]arrow Re , Q(x)=x(1-x^{2}) , x=|z| .
We have

Q(x) \leq\frac{2}{3\sqrt{3}} (14)

for all x\in[0,1] . From (14), (13) and (6) we obtain

(1-|z|^{2})| \frac{zf’(z)}{f(z)},|\leq 1 (15)

for all z\in U . From (8) we obtain f’(z)=(e^{g(z)})^{\gamma} Then, from (15) and
Theorem B for Re \alpha=1 it follows that the function T_{\gamma} is in the class S .

\square

Theorem2and|\gamma-1|\leq\frac{Letg\in 54}{35+13\sqrt{13}}.IfA,satisfy(1)

, \gamma be a complex number with Re \gamma\geq 1

|g(z)|<1 , z\in U, (16)

then the function

H_{\gamma}(z)=[ \gamma\int_{0}^{z}u^{2\gamma-2}(e^{g(u)})^{\gamma-1}du]\frac{1}{\gamma} (17)

is in the class S .

Proof We observe that

H_{\gamma}(z)=[ \gamma\int_{0}^{z}u^{\gamma-1}(ue^{g(u)})^{\gamma-1}du]\frac{1}{\gamma} (18)

Let us consider the function

p(z)= \int_{0}^{z}(ue^{g(u)})^{\gamma-1} du. (19)
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The function p is regular in U.
From (19) we obtain

\frac{p’(z)}{p’(z)}=(\gamma-1)\frac{zg’(z)+1}{z} (20)

and hence, we have

(1-|z|^{2})| \frac{zp’(z)}{p(z)},|=|\gamma-1|(1-|z|^{2})|zg’(z)+1| (21)

for all z\in U . From (21) we get

(1-|z|^{2})| \frac{zp’(z)}{p(z)},|\leq|\gamma-1|(1-|z|^{2})(|\frac{z^{2}g’(z)}{g^{2}(z)}|\frac{|g^{2}(z)|}{|z|}+1)

(22)

for all z\in U .
By the Schwartz Lemma also |g(z)|\leq|z| , z\in U and using (22) we

obtain

(1-|z|^{2})| \frac{zp’(z)}{p(z)},|\leq|\gamma-1|(1-|z|^{2})(|\frac{z^{2}g’(z)}{g^{2}(z)}-1||z|+|z|+1)

(23)

for all z\in U .
Since g satisfies the condition (1) then from (23) we have

(1-|z|^{2})| \frac{zp’(z)}{p(z)},|\leq|\gamma-1|(1-|z|^{2})(2|z|+1) (24)

for all z\in U .
Let us consider the function G : [0, 1]arrow\Re , G(x)=(1-x^{2})(2x+1) ,

x=|z| .
We have

G(x) \leq\frac{35+13\sqrt{13}}{54} (25)

for all x\in[0,1]

Since | \gamma-1|\leq\frac{54}{35+13\sqrt{13}} , from (25) and (24) we conclude that

(1-|z|^{2})| \frac{zp’(z)}{p(z)},|\leq 1 (26)
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for all z\in U .
Now (26) and Theorem B for Re \alpha=1 imply that the function H_{\gamma} is

in the class S. \square
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