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Aluthge transformations and invariant subspaces
of p-hyponormal operators
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Abstract. It is unknown at present whether every hyponormal operator has a non-
trivial invariant subspace. Many authors presented conditions for a hyponormal operator
to have nontrivial invariant subspaces. In this paper, we give a p-hyponormal version of
Nakamura’s result [7] by using the principal functions.
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1. Introduction

An (bounded linear) operator T on a Hilbert space H is said to be
p-hyponormal, if (TT^{*})^{p}\leq(T^{*}T)^{p} for a positive number p . If p=1 ,
then T is said to be hyponormal, and if p= \frac{1}{2} , then T is said to be semi-
hyponormal. We assume that 0<p \leq\frac{1}{2} . An operator T is called pure if it
has no nontrivial reducing subspace on which it is normal.

It is unknown at present whether every hyponormal operator has a
nontrivial invariant subspace. Putnam [8] and Apostol and Clancey [2]
presented some conditions for a hyponormal operator to have invariant
subspaces. Nakamura [7] improved these results. In this paper, we give
a p-hyponormal version of Nakamura’s result.

Let T=X+iY be a pure hyponormal operator, where X and Y are
self-adjoint. Then it is known that X and Y are absolutely continuous (see
[4, Chap. 2, Th. 3.2] ) . For a self-adjoint operator Z, let Z= \int tdG(t) be
the spectral resolution of Z . Then the absolutely continuous support E_{Z}

of Z is defined as a Borel subset of the real line (determined uniquely up
to a null set) having the least Lebesgue measure and satisfying G(E_{Z})=I .
Then Nakamura’s results are as follows.

Theorem A ([7], Theorem 1) Let T be a pure hyponormal operator and
T=X+iY be the Cartesian decomposition of T Suppose that there exists
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a real \mu_{0} such that the spectrum of T has non-empty intersection with each
of the open half-planes { z : Re z<\mu_{0} } and { z : Re z>\mu_{0} }, and

\int_{E_{X}}\frac{F(x)}{(x-\mu_{0})^{2}}dx<\infty

where F(x) is the linear measure of the vertical cross \sigma(T)\cap { z : Re z=x }.
Then T has a nontrivial invariant subspace.

Theorem B ([7], Theorem 2) In Theorem 1, the existence of a nontrivial
invariant subspace is also guaranteed if the integrability condition is replaced
by

\int_{E_{X}}\frac{1}{|x-\mu_{0}|}dx<\infty .

Let T=U|T| be the polar decomposition of T Put \tilde{T}=|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}} .
Let \tilde{T}=V|\tilde{T}| denote the polar decomposition of \tilde{T} Put \hat{T}=|\tilde{T}|^{\frac{1}{2}}V|\tilde{T}|^{\frac{1}{2}} .
Then \tilde{T} and \hat{T} are called the Aluthge transformation and the second Aluthge
transformation of T_{\backslash } respectively. It is well known that if T is p-hyponormal,
then \hat{T} is hyponormal by [1]. Also it is well known that \sigma(T)=\sigma(\tilde{T})=

\sigma(\hat{T}) .
The main results in this paper are the following:

Theorem 1 Let T be a pure p-hyponormal operator with dense range.
For the second Aluthge transformation \hat{T} of T, let \hat{T}=X_{2}+iY_{2} denote
the Cartesian decomposition of \hat{T} Suppose that there exists a real \mu_{0} such
that the spectrum of T has non-empty intersection with each of the open
half-planes { z : Re z<\mu_{0} } and { z : Re z>\mu_{0} }, and

\int_{E_{X_{2}}}\frac{F(x)}{(x-\mu_{0})^{2}}dx<\infty

where F(x) is the linear measure of the vertical cross \sigma(T)\cap { z : Re z=x }.
Then T has a nontrivial invariant subspace.

Theorem 2 In Theorem 1, the existence of a nontrivial invariant subspace
is also guaranteed if the integrability condition is replaced by

\int_{E_{X_{2}}}\frac{1}{|x-\mu_{0}|}dx<\infty .



Aluthge transfom and invariant subspace 447

2. Aluthge transformation

Lemma 3 Let T=U|T| be an operator with ker |T|=\{0\} . If T has a
cyclic vector, then the Aluthge transformation \tilde{T} has also a cyclic vector
and satisfies ker|\tilde{T}|=\{0\} .

Proof Let x be a cyclic vector for T For any positive integer n ,

(\tilde{T})^{n}|T|^{\frac{1}{2}}=(|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}\cdot\cdot|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}})|T|^{\frac{1}{2}}=|T|^{\frac{1}{2}}T^{n} .

Let y be a vector such that ((\tilde{T})^{n}|T|^{\frac{1}{2}}x, y)=0 for n=0,1 , 2, . Then

(T^{n}x, |T|^{\frac{1}{2}}y)=0 .

Since x is a cyclic vector for T. |T|^{\frac{1}{2}}y=0 , so that |T|y=0 . Hence by the
assumption we have y=0. This implies that |T|^{\frac{1}{2}}x is a cyclic vector for \tilde{T}

Next we show ker |\tilde{T}|=\{0\} . Since ker|T|=\{0\} , we may assume that U
is isometry. Let \tilde{T}w=0 , so that |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}w=0 . Since ker|T|=\{0\} and
U is isometry, we have |T|^{\frac{1}{2}}w=0 , that is, w=0. Therefore, ker \tilde{T}=\{0\} .
Since ker \tilde{T}=ker|\tilde{T}| , we have ker |\tilde{T}|=\{0\} . \square

The following lemma improves [3, Lemma 2].

Lemma 4 Let T=U|T| be a pure p-hyponormal operator with dense
range. Then the Aluthge transformation \tilde{T} is pure (p+ \frac{1}{2}) -hyponormal

Proof It is well known that \tilde{T} is (p+ \frac{1}{2}) -hyponormal. Hence we may
only prove that \tilde{T} is pure. Since T is p-hyponormal and has a dense range,
ker T=ker|T|=kerT^{*}=\{0\} . Hence U is unitary. Let \mathcal{X} be a reducing
subspace of \tilde{T} such that \tilde{T} is normal on \mathcal{X} . Then for x\in \mathcal{X} ,

\tilde{T}(\mathcal{X})\subseteq \mathcal{X} , (\tilde{T})^{*}(\mathcal{X})\subseteq \mathcal{X} and (\tilde{T})^{*}\tilde{T}x=\tilde{T}(\tilde{T})^{*}x . (1)

If ((\tilde{T})^{*}\tilde{T})^{n}x=(\tilde{T}(\tilde{T})^{*})^{n}x for x\in \mathcal{X} , then by (1) we have

((\tilde{T})^{*}\tilde{T})^{n+1}x=((\tilde{T})^{*}\tilde{T})^{n}((\tilde{T})^{*}\tilde{T}x)=(\tilde{T}(\tilde{T})^{*})^{n}((\tilde{T})^{*}\tilde{T}x)

=(\tilde{T}(\tilde{T})^{*})^{n}(\tilde{T}(\tilde{T})^{*}x)=(\tilde{T}(\tilde{T})^{*})^{n+1}x .

Hence we have ((\tilde{T})^{*}\tilde{T})^{n}x=(\tilde{T}(\tilde{T})^{*})^{n}x for every non-negative integer n and
x\in \mathcal{X} . Since it holds that f((\tilde{T})^{*}\tilde{T})x=f(\tilde{T}(\tilde{T})^{*})x for every polynomial f ,
we have

(|T|^{\frac{1}{2}}U^{*}|T|U|T|^{\frac{1}{2}})^{p+\frac{1}{2}}x=(|T|^{\frac{1}{2}}U|T|U^{*}|T|^{\frac{1}{2}})^{p+\frac{1}{2}}x . (2)
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By Aluthge’s result [1], we have

(|T|^{\frac{1}{2}}U^{*}|T|U|T|^{\frac{1}{2}})^{p+\frac{1}{2}}\geq|T|^{2(p+\frac{1}{2})}\geq(|T|^{\frac{1}{2}}U|T|U^{*}|T|^{\frac{1}{2}})^{p+\frac{1}{2}} .

Put A=(|T|^{\frac{1}{2}}U^{*}|T|U|T|^{\frac{1}{2}})^{p+\frac{1}{2}} . B=|T|^{2(p+\frac{1}{2})} and
C=(|T|^{\frac{1}{2}}U|T|U^{*}|T|^{\frac{1}{2}})^{p+\frac{1}{2}} .

Then for each x\in \mathcal{X} . by (2) we have

Ax=Bx=Cx . (3)

We assume that A^{n}y=B^{n}y=C^{n}y for each y\in \mathcal{X} . Since Bx\in \mathcal{X} ,

A^{n+1}x=A^{n}Ax=B^{n}Ax=B^{n}Bx(=B^{n+1}x)

=C^{n}Bx=C^{n}Cx=C^{n+1}x .

Hence by (3) we have A^{n}x=B^{n}x=C^{n}x for every non-negative integer n
and x\in \mathcal{X}r From the above, since we have f(A)x=f(B)x=f(C)x for
every polynomial f and x\in \mathcal{X} , similarly we obtain

|T|^{\frac{1}{2}}U^{*}|T|U|T|^{\frac{1}{2}}x=|T|^{2}x=|T|^{\frac{1}{2}}U|T|U^{*}|T|^{\frac{1}{2}}x\in \mathcal{X} . (4)

From (4) we have

ker \tilde{T}\cap \mathcal{X}=ker(\tilde{T})^{*}\cap \mathcal{X}=ker|T|\cap \mathcal{X}=\{0\} .

Since \mathcal{X} is a reducing subspace of \tilde{T} and |T| ,

\overline{\tilde{T}(\mathcal{X})}=\overline{(\tilde{T})^{*}(\mathcal{X})}=\mathcal{X}=\overline{|T|(\mathcal{X})}=|T|^{\frac{1}{2}}(\mathcal{X}) . (5)

Since ker |T|=\{0\} , from (4), we have

U^{*}|T|^{\frac{1}{2}}\tilde{T}x=|T|^{\frac{3}{2}}x=U|T|^{\frac{1}{2}}(\tilde{T})^{*}x . (6)

From (5) and (6), it holds that

U^{*}|T|^{\frac{1}{2}}(\mathcal{X})\subseteq \mathcal{X} and U|T|^{\frac{1}{2}}(\mathcal{X})\subseteq \mathcal{X} .

so that U^{*}(\mathcal{X})\subseteq \mathcal{X} and U(\mathcal{X})\subseteq \mathcal{X} . Hence \mathcal{X} is a reducing subspace of |T|

and U . From (5), we have

|T||T|^{\frac{1}{2}}x=U|T|U^{*}|T|^{\frac{1}{2}}x .

By (5), we have |T|y=U|T|U^{*}y for y\in \mathcal{X} . Therefore, \mathcal{X} is a reducing
subspace of T such that T is normal on \mathcal{X} . This completes the proof. \square
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3. Proofs of theorems

In order to give proofs of the main results, we need the following the0-
rem.

Theorem C ([6, Theorem 1.15]) For an operator T=U|T| , T has a
nontrivial invariant subspace if and only if so does \tilde{T}

Proof of Theorem 1. If T has no cyclic vectors, then T has a nontrivial
invariant subspaces. Hence we may assume that T has a cyclic vector and
is pure. By Lemma 3, all T,\tilde{T} and \hat{T} have dense ranges.

By Aluthge’s result, \tilde{T} is a semi-hyponormal operator. It follows from
Lemma 4 that \hat{T} is a pure hyponormal operator. Since \sigma(\hat{T})=\sigma(T),\hat{T}

is a hyponormal operator satisfying Theorem A. Hence \hat{T} has a nontrivial
invariant subspace. Therefore by Theorem C , T has a nontrivial invariant
subspace. \square

A similar argument implies Theorem 2.
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