Aluthge transformations and invariant subspaces of *p*-hyponormal operators

Muneo CHŌ^{*} and Tadasi HURUYA

(Received March 4, 2002; Revised April 18, 2002)

Abstract. It is unknown at present whether every hyponormal operator has a nontrivial invariant subspace. Many authors presented conditions for a hyponormal operator to have nontrivial invariant subspaces. In this paper, we give a p-hyponormal version of Nakamura's result [7] by using the principal functions.

Key words: hyponormal operator, p-hyponormal operator, invariant subspace.

1. Introduction

An (bounded linear) operator T on a Hilbert space \mathcal{H} is said to be p-hyponormal, if $(TT^*)^p \leq (T^*T)^p$ for a positive number p. If p = 1, then T is said to be hyponormal, and if $p = \frac{1}{2}$, then T is said to be semi-hyponormal. We assume that 0 . An operator <math>T is called pure if it has no nontrivial reducing subspace on which it is normal.

It is unknown at present whether every hyponormal operator has a nontrivial invariant subspace. Putnam [8] and Apostol and Clancey [2] presented some conditions for a hyponormal operator to have invariant subspaces. Nakamura [7] improved these results. In this paper, we give a p-hyponormal version of Nakamura's result.

Let T = X + iY be a pure hyponormal operator, where X and Y are self-adjoint. Then it is known that X and Y are absolutely continuous (see [4, Chap. 2, Th. 3.2]). For a self-adjoint operator Z, let $Z = \int t dG(t)$ be the spectral resolution of Z. Then the absolutely continuous support E_Z of Z is defined as a Borel subset of the real line (determined uniquely up to a null set) having the least Lebesgue measure and satisfying $G(E_Z) = I$. Then Nakamura's results are as follows.

Theorem A ([7], Theorem 1) Let T be a pure hyponormal operator and T = X + iY be the Cartesian decomposition of T. Suppose that there exists

²⁰⁰⁰ Mathematics Subject Classification : 47A15, 47B20.

^{*}This research is partially supported by Grant-in-Aid Scientific Research (No. 14540190).

a real μ_0 such that the spectrum of T has non-empty intersection with each of the open half-planes $\{z : \operatorname{Re} z < \mu_0\}$ and $\{z : \operatorname{Re} z > \mu_0\}$, and

$$\int_{E_X} \frac{F(x)}{(x-\mu_0)^2} \, dx < \infty$$

where F(x) is the linear measure of the vertical cross $\sigma(T) \cap \{z : \operatorname{Re} z = x\}$. Then T has a nontrivial invariant subspace.

Theorem B ([7], Theorem 2) In Theorem 1, the existence of a nontrivial invariant subspace is also guaranteed if the integrability condition is replaced by

$$\int_{E_X} \frac{1}{|x-\mu_0|} \, dx < \infty.$$

Let T = U|T| be the polar decomposition of T. Put $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. Let $\tilde{T} = V|\tilde{T}|$ denote the polar decomposition of \tilde{T} . Put $\hat{T} = |\tilde{T}|^{\frac{1}{2}}V|\tilde{T}|^{\frac{1}{2}}$. Then \tilde{T} and \hat{T} are called the Aluthge transformation and the second Aluthge transformation of T, respectively. It is well known that if T is *p*-hyponormal, then \hat{T} is hyponormal by [1]. Also it is well known that $\sigma(T) = \sigma(\tilde{T}) = \sigma(\hat{T})$.

The main results in this paper are the following:

Theorem 1 Let T be a pure p-hyponormal operator with dense range. For the second Aluthge transformation \hat{T} of T, let $\hat{T} = X_2 + iY_2$ denote the Cartesian decomposition of \hat{T} . Suppose that there exists a real μ_0 such that the spectrum of T has non-empty intersection with each of the open half-planes $\{z : \operatorname{Re} z < \mu_0\}$ and $\{z : \operatorname{Re} z > \mu_0\}$, and

$$\int_{E_{X_2}} \frac{F(x)}{(x-\mu_0)^2} \, dx < \infty$$

where F(x) is the linear measure of the vertical cross $\sigma(T) \cap \{z : \operatorname{Re} z = x\}$. Then T has a nontrivial invariant subspace.

Theorem 2 In Theorem 1, the existence of a nontrivial invariant subspace is also guaranteed if the integrability condition is replaced by

$$\int_{E_{X_2}} \frac{1}{|x-\mu_0|} \, dx < \infty$$

2. Aluthge transformation

Lemma 3 Let T = U|T| be an operator with ker $|T| = \{0\}$. If T has a cyclic vector, then the Aluthge transformation \tilde{T} has also a cyclic vector and satisfies ker $|\tilde{T}| = \{0\}$.

Proof. Let x be a cyclic vector for T. For any positive integer n,

$$(\tilde{T})^n |T|^{\frac{1}{2}} = \left(|T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} \cdots |T|^{\frac{1}{2}} U|T|^{\frac{1}{2}} \right) |T|^{\frac{1}{2}} = |T|^{\frac{1}{2}} T^n.$$

Let y be a vector such that $((\tilde{T})^n |T|^{\frac{1}{2}}x, y) = 0$ for n = 0, 1, 2, ... Then

$$\left(T^n x, |T|^{\frac{1}{2}}y\right) = 0.$$

Since x is a cyclic vector for T, $|T|^{\frac{1}{2}}y = 0$, so that |T|y = 0. Hence by the assumption we have y = 0. This implies that $|T|^{\frac{1}{2}}x$ is a cyclic vector for \tilde{T} .

Next we show ker $|\tilde{T}| = \{0\}$. Since ker $|T| = \{0\}$, we may assume that U is isometry. Let $\tilde{T}w = 0$, so that $|T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}w = 0$. Since ker $|T| = \{0\}$ and U is isometry, we have $|T|^{\frac{1}{2}}w = 0$, that is, w = 0. Therefore, ker $\tilde{T} = \{0\}$. Since ker $\tilde{T} = \ker |\tilde{T}|$, we have ker $|\tilde{T}| = \{0\}$.

The following lemma improves [3, Lemma 2].

Lemma 4 Let T = U|T| be a pure p-hyponormal operator with dense range. Then the Aluthge transformation \tilde{T} is pure $(p + \frac{1}{2})$ -hyponormal.

Proof. It is well known that \tilde{T} is $(p + \frac{1}{2})$ -hyponormal. Hence we may only prove that \tilde{T} is pure. Since T is p-hyponormal and has a dense range, ker $T = \ker |T| = \ker T^* = \{0\}$. Hence U is unitary. Let \mathcal{X} be a reducing subspace of \tilde{T} such that \tilde{T} is normal on \mathcal{X} . Then for $x \in \mathcal{X}$,

$$\tilde{T}(\mathcal{X}) \subseteq \mathcal{X}, \ (\tilde{T})^*(\mathcal{X}) \subseteq \mathcal{X} \quad \text{and} \quad (\tilde{T})^* \tilde{T}x = \tilde{T}(\tilde{T})^*x.$$
(1)

If $((\tilde{T})^*\tilde{T})^n x = (\tilde{T}(\tilde{T})^*)^n x$ for $x \in \mathcal{X}$, then by (1) we have

$$((\tilde{T})^*\tilde{T})^{n+1}x = ((\tilde{T})^*\tilde{T})^n((\tilde{T})^*\tilde{T}x) = (\tilde{T}(\tilde{T})^*)^n((\tilde{T})^*\tilde{T}x) = (\tilde{T}(\tilde{T})^*)^n(\tilde{T}(\tilde{T})^*x) = (\tilde{T}(\tilde{T})^*)^{n+1}x.$$

Hence we have $((\tilde{T})^*\tilde{T})^n x = (\tilde{T}(\tilde{T})^*)^n x$ for every non-negative integer n and $x \in \mathcal{X}$. Since it holds that $f((\tilde{T})^*\tilde{T})x = f(\tilde{T}(\tilde{T})^*)x$ for every polynomial f, we have

$$\left(|T|^{\frac{1}{2}}U^*|T|U|T|^{\frac{1}{2}}\right)^{p+\frac{1}{2}}x = \left(|T|^{\frac{1}{2}}U|T|U^*|T|^{\frac{1}{2}}\right)^{p+\frac{1}{2}}x.$$
(2)

By Aluthge's result [1], we have

$$(|T|^{\frac{1}{2}}U^*|T|U|T|^{\frac{1}{2}})^{p+\frac{1}{2}} \ge |T|^{2(p+\frac{1}{2})} \ge (|T|^{\frac{1}{2}}U|T|U^*|T|^{\frac{1}{2}})^{p+\frac{1}{2}}.$$
Put $A = (|T|^{\frac{1}{2}}U^*|T|U|T|^{\frac{1}{2}})^{p+\frac{1}{2}}, \quad B = |T|^{2(p+\frac{1}{2})}$ and $C = (|T|^{\frac{1}{2}}U|T|U^*|T|^{\frac{1}{2}})^{p+\frac{1}{2}}.$

Then for each $x \in \mathcal{X}$, by (2) we have

$$Ax = Bx = Cx. (3)$$

We assume that $A^n y = B^n y = C^n y$ for each $y \in \mathcal{X}$. Since $Bx \in \mathcal{X}$,

$$A^{n+1}x = A^n A x = B^n A x = B^n B x \ (= B^{n+1}x)$$

= $C^n B x = C^n C x = C^{n+1} x.$

Hence by (3) we have $A^n x = B^n x = C^n x$ for every non-negative integer nand $x \in \mathcal{X}$. From the above, since we have f(A)x = f(B)x = f(C)x for every polynomial f and $x \in \mathcal{X}$, similarly we obtain

$$|T|^{\frac{1}{2}}U^*|T|U|T|^{\frac{1}{2}}x = |T|^2x = |T|^{\frac{1}{2}}U|T|U^*|T|^{\frac{1}{2}}x \in \mathcal{X}.$$
(4)

From (4) we have

$$\ker \tilde{T} \cap \mathcal{X} = \ker(\tilde{T})^* \cap \mathcal{X} = \ker |T| \cap \mathcal{X} = \{0\}.$$

Since \mathcal{X} is a reducing subspace of \tilde{T} and |T|,

$$\overline{\tilde{T}(\mathcal{X})} = \overline{(\tilde{T})^*(\mathcal{X})} = \mathcal{X} = \overline{|T|(\mathcal{X})} = \overline{|T|^{\frac{1}{2}}(\mathcal{X})}.$$
(5)

Since ker $|T| = \{0\}$, from (4), we have

$$U^*|T|^{\frac{1}{2}}\tilde{T}x = |T|^{\frac{3}{2}}x = U|T|^{\frac{1}{2}}(\tilde{T})^*x.$$
(6)

From (5) and (6), it holds that

 $U^*|T|^{\frac{1}{2}}(\mathcal{X}) \subseteq \mathcal{X} \quad \text{and} \quad U|T|^{\frac{1}{2}}(\mathcal{X}) \subseteq \mathcal{X},$

so that $U^*(\mathcal{X}) \subseteq \mathcal{X}$ and $U(\mathcal{X}) \subseteq \mathcal{X}$. Hence \mathcal{X} is a reducing subspace of |T| and U. From (5), we have

$$|T||T|^{\frac{1}{2}}x = U|T|U^*|T|^{\frac{1}{2}}x.$$

By (5), we have $|T|y = U|T|U^*y$ for $y \in \mathcal{X}$. Therefore, \mathcal{X} is a reducing subspace of T such that T is normal on \mathcal{X} . This completes the proof. \Box

3. Proofs of theorems

In order to give proofs of the main results, we need the following theorem.

Theorem C ([6, Theorem 1.15]) For an operator T = U|T|, T has a nontrivial invariant subspace if and only if so does \tilde{T} .

Proof of Theorem 1. If T has no cyclic vectors, then T has a nontrivial invariant subspaces. Hence we may assume that T has a cyclic vector and is pure. By Lemma 3, all T, \tilde{T} and \hat{T} have dense ranges.

By Aluthge's result, \tilde{T} is a semi-hyponormal operator. It follows from Lemma 4 that \hat{T} is a pure hyponormal operator. Since $\sigma(\hat{T}) = \sigma(T)$, \hat{T} is a hyponormal operator satisfying Theorem A. Hence \hat{T} has a nontrivial invariant subspace. Therefore by Theorem C, T has a nontrivial invariant subspace.

A similar argument implies Theorem 2.

References

- [1] Aluthge A., On p-hyponormal operator for 0 . Integr. Equat. Oper. Th. 13 (1990), 307–315.
- [2] Apostol C. and Clancey K., Local resolvents of operators with one-dimensional selfcommutator. Proc. Amer. Math. Soc. 58 (1976), 158-162.
- [3] Chō M., Huruya T. and Yamazaki T., Mosaic and principal functions of loghyponormal operators. J. Math. Soc. Japan 55 (2003), 255-268.
- [4] Clancey K., Seminormal operators. Lecture Notes in Math. Vol. 742, Springer-Verlag, New York, 1979.
- [5] Duggal B.P., p-hyponormal operators and invariant subspaces. Acta Sci. Math. (Szeged) 64 (1998), 249–257.
- [6] Jung I.B., Ko E. and Pearcy C., Aluthge transforms of operators. Integr. Equat. Oper. Th. 37 (2000), 437-448.
- [7] Nakamura Y., Principal functions and invariant subspaces of hyponormal operators. Hokkaido Math. J. 12 (1983), 1–9.
- [8] Putnam C.R., Invariant subspaces of operators having nearly disconnected spectra. Operator theory and functional analysis, Res. Notes in Math. **38**, Pitman, 1979.
- [9] Xia D., Spectral theory of hyponormal operators. Birkhäuser Verlag, Basel (1983).

M. Chō and T. Huruya

Muneo Chō Department of Mathematics Kanagawa University Yokohama 221-8686 Japan E-mail: chiyom01@kanagawa-u.ac.jp

Tadasi Huruya Faculty of Education and Human Sciences Niigata University Niigata 950-2181 Japan E-mail: huruya@ed.niigata-u.ac.jp

450