Another general inequality for $C R$-warped products in complex space forms

Bang-Yen Chen

(Received February 27, 2002)

Abstract

We prove that every $C R$-warped product $N_{T} \times N_{\perp}$ in a complex space form $\tilde{M}^{m}(4 c)$ of constant holomorphic sectional curvature $4 c$ satisfies a general inequality: $\|\sigma\|^{2} \geq 2 p\left\{\|\nabla(\ln f)\|^{2}+\Delta(\ln f)\right\}+4 h p c$, where $h=\operatorname{dim}_{\mathbf{C}} N_{T}, p=\operatorname{dim}_{\mathbf{R}} N_{\perp}$, and σ is the second fundamental form. We also completely classify $C R$-warped products in a complex space form which satisfy the equality case of this inequality.

Key words: $C R$-submanifold, $C R$-warped product, squared norm of second fundamental form, warping function, warped product, tensor product.

1. Introduction

A submanifold N of a Kähler manifold is called a $C R$-submanifold if there exists on N a differentiable holomorphic distribution \mathcal{D} whose orthogonal complementary distribution \mathcal{D}^{\perp} is a totally real distribution, i.e., $J \mathcal{D}_{x}^{\perp} \subset T_{x}^{\perp} N$ (cf. [1]). Throughout this paper we denote the complex rank of \mathcal{D} by h and the real rank of \mathcal{D}^{\perp} by p. The study of $C R$-submanifolds has been a very active field of research during the last two decades (see, for instance, $[1-4,6-9,11,13,14]$).

A $C R$-submanifold is called a $C R$-product if it is the direct product $N_{T} \times N_{\perp}$ of a holomorphic submanifold N_{T} and a totally real submanifold N_{\perp}. It was proved in [3] that a $C R$-product in a complex Euclidean space is a direct product of a holomorphic submanifold and a totally real submanifold of complex linear subspaces. It was also proved in [3] that there do not exist non-proper $C R$-products in complex hyperbolic spaces. Moreover, $C R$-products in the complex projective space $C P^{h+p+h p}$ are obtained from the Segre imbedding in a natural way.

Let B and F be two Riemannian manifolds with Riemannian metrics g_{B} and g_{F}, respectively, and f be a positive differentiable function on B. The warped product $B \times{ }_{f} F$ is the product manifold $B \times F$ equipped with the Riemannian metric $g=g_{B}+f^{2} g_{F}$. The function f is called the warping
function. A warped product is said to be proper if its warping function is non-constant. The warping function is the main structure of a warped product manifold. It is well-known that warped products play some important roles in differential geometry as well as in mathematical physics (cf. [12]).

It was shown in [4] that there do not exist warped products of the form: $N_{\perp} \times_{f} N_{T}$ in a Kähler manifold beside $C R$-products, where N_{\perp} is a totally real submanifold and N_{T} is a holomorphic submanifold. By contrast, it was also shown that there exist many $C R$-submanifolds which are warped products of the form $N_{T} \times_{f} N_{\perp}$ by reversing the two factors N_{T} and N_{\perp}. Such a warped product $C R$-submanifold is simply called a $C R$-warped product.

It was known in [4] that every $C R$-warped product satisfies a general inequality: $\|\sigma\|^{2} \geq 2 p\|\nabla(\ln f)\|^{2}$, where $\nabla(\ln f)$ is the gradient of $\ln f$ and σ is the second fundamental form. $C R$-warped products in complex space forms satisfying the equality case of this inequality have been completely classified in [4].

In this paper we prove that every $C R$-warped product $N_{T} \times{ }_{f} N_{\perp}$ in a complex space form $\tilde{M}^{m}(4 c)$ satisfies another general inequality:

$$
\begin{equation*}
\|\sigma\|^{2} \geq 2 p\left\{\|\nabla \ln f\|^{2}+\Delta(\ln f)\right\}+4 h p c, \tag{1.1}
\end{equation*}
$$

where Δ denotes the Laplacian operator of the $C R$-warped product.
For any three natural numbers h, p, α satisfying $\alpha \leq h$, we introduce a map $\phi_{\alpha}^{h p}: \mathbf{C}_{*}^{h} \times S^{p} \rightarrow \mathbf{C}^{\alpha p+h}, \mathbf{C}_{*}^{h}=\mathbf{C}^{h}-\{0\}$, in a way similar to Segre imbedding. We show that each $\phi_{\alpha}^{h p}$ is a $C R$-warped product in the complex Euclidean space $\mathbf{C}^{\alpha p+h}$ (Theorem 3.1). We also prove that, up to rigid motions, every $C R$-warped product in a complex Euclidean space satisfying the equality case of inequality (1.1) is one of the $\phi_{\alpha}^{h p}$ (Theorem 4.1). Finally, we prove that every $C R$-warped product satisfying the equality in a complex projective space or a complex hyperbolic space is obtained from a $\phi_{\alpha}^{h p}$ via the Hopf fibration (Theorems 5.1 and 6.1).

2. Preliminaries

Let M be a Riemannian n-manifold with inner product \langle,$\rangle and$ e_{1}, \ldots, e_{n} be an orthonormal frame fields on M. For differentiable function φ on M, the gradient $\nabla \varphi$ and the Laplacian $\Delta \varphi$ of φ are defined respectively by

$$
\begin{equation*}
\langle\nabla \varphi, X\rangle=X \varphi, \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \varphi=\sum_{j=1}^{n}\left\{e_{j} e_{j} \varphi-\left(\nabla_{e_{j}} e_{j}\right) \varphi\right\} \tag{2.2}
\end{equation*}
$$

for vector field X tangent to M, where ∇ is the Riemannian connection on M. If M is isometrically immersed in a Riemannian manifold \tilde{M}. Then the formulas of Gauss and Weingarten for M in \tilde{M} are given respectively by

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y) \tag{2.3}\\
& \tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{2.4}
\end{align*}
$$

for vector fields X, Y tangent to N and ξ normal to M, where $\tilde{\nabla}$ denotes the Levi-Civita connection on \tilde{M}, σ the second fundamental form, D the normal connection, and A the shape operator of M in \tilde{M}. The second fundamental form and the shape operator are related by $\left\langle A_{\xi} X, Y\right\rangle=\langle\sigma(X, Y), \xi\rangle$, where \langle,$\rangle denotes the inner product on M$ as well as on \tilde{M}.

The equation of Gauss is given by

$$
\begin{align*}
\tilde{R}(X, Y ; Z, W)= & R(X, Y ; Z, W)+\langle\sigma(X, Z), \sigma(Y, W)\rangle \\
& -\langle\sigma(X, W), \sigma(Y, Z)\rangle \tag{2.5}
\end{align*}
$$

for X, Y, Z, W tangent to M, where R and \tilde{R} denote the curvature tensors of M and \tilde{M}, respectively.

For the second fundamental form σ, we define its covariant derivative $\bar{\nabla} \sigma$ with respect to the connection on $T M \oplus T^{\perp} M$ by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=D_{X}(\sigma(Y, Z))-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right) \tag{2.6}
\end{equation*}
$$

The equation of Codazzi is

$$
\begin{equation*}
(\tilde{R}(X, Y) Z)^{\perp}=\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)-\left(\bar{\nabla}_{Y} \sigma\right)(X, Z) \tag{2.7}
\end{equation*}
$$

where $(\tilde{R}(X, Y) Z)^{\perp}$ denotes the normal component of $\tilde{R}(X, Y) Z$.
For a $C R$-submanifold M in a Kähler manifold \tilde{M} with complex structure J, we denote by ν the complementary orthogonal subbundle of $J \mathcal{D}^{\perp}$ in the normal bundle $T^{\perp} M$. Hence we have the following orthogonal direct sum decomposition:

$$
\begin{equation*}
T^{\perp} M=J \mathcal{D}^{\perp} \oplus \nu, \quad J \mathcal{D}^{\perp} \perp \nu \tag{2.8}
\end{equation*}
$$

We recall the following lemma from [3] for later use.

Lemma 2.1 Let M be a CR-submanifold in a Kähler manifold \tilde{M}. Then we have
(1) $\left\langle\nabla_{U} Z, X\right\rangle=\left\langle J A_{J Z} U, X\right\rangle$,
(2) $A_{J Z} W=A_{J W} Z$, and
(3) $A_{J \xi} X=-A_{\xi} J X$,
for any vectors U tangent to M, X, Y in \mathcal{D}, Z, W in \mathcal{D}^{\perp}, and ξ in ν.
Let (x, u) be a point in a $C R$-warped product $N_{T} \times_{f} N_{\perp}$. Then, for each $X \in T_{x}\left(N_{T}\right)$, there is a unique vector in \mathcal{D} at (x, u) whose projection under $\pi_{T}: N_{T} \times_{f} N_{\perp} \rightarrow N_{T}$ is the vector X. In this way, one may regards a vector field U on N_{T} as a vector field U lying in the holomorphic distribution \mathcal{D} in a natural way. Similarly, one may also regard a vector field Z on N_{\perp} as a vector field in the totally real distribution \mathcal{D}^{\perp}.

For $C R$-warped products in Kähler manifolds we have the following [4].
Lemma 2.2 If $N_{T} \times_{f} N_{\perp}$ is a CR-warped product in a Kähler manifold \tilde{M}, then we have
(1) $\left\langle\sigma(\mathcal{D}, \mathcal{D}), J \mathcal{D}^{\perp}\right\rangle=0$;
(2) $\nabla_{X} Z=\nabla_{Z} X=(X \ln f) Z$;
(3) $\langle\sigma(J X, Z), J W\rangle=(X \ln f)\langle Z, W\rangle$
for any vector fields X on N_{T} and Z, W in N_{\perp}.
Recall that the Riemann curvature tensor of a complex space form $\tilde{M}^{m}(4 c)$ of constant holomorphic sectional curvature $4 c$ is given by

$$
\begin{align*}
& \tilde{R}(X, Y ; Z, W) \\
&=c\{ \langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle+\langle J X, W\rangle\langle J Y, Z\rangle \\
&-\langle J X, Z\rangle\langle J Y, W\rangle+2\langle X, J Y\rangle\langle J Z, W\rangle\} . \tag{2.9}
\end{align*}
$$

3. A class of $C R$-warped products in complex Euclidean space

Let $\mathbf{C}_{*}^{h}=\mathbf{C}^{h}-\{0\}$ and $j: S^{p} \rightarrow \mathbf{E}^{p+1}$ be the inclusion of the unit hypersphere S^{p} centered at the origin into \mathbf{E}^{p+1}. For a natural number $\alpha \leq h$ and a vector X tangent to \mathbf{C}_{*}^{α} at a point $z \in \mathbf{C}_{*}^{\alpha}$, we decompose X as $X=X_{z}^{\|}+X_{z}^{\perp}$, where $X_{z}^{\|}$is parallel to z and X_{z}^{\perp} is perpendicular to z.

For any given three natural numbers h, p, α satisfying $\alpha \leq h$, we introduce a map $\phi_{\alpha}^{h p}: \mathbf{C}_{*}^{h} \times S^{p} \rightarrow \mathbf{C}^{\alpha p+h}$ by

$$
\begin{equation*}
\phi(z, w)=\left(w_{0} z_{1}, \ldots, w_{p} z_{1}, \ldots, w_{0} z_{\alpha}, \ldots, w_{p} z_{\alpha}, z_{\alpha+1}, \ldots, z_{h}\right) \tag{3.1}
\end{equation*}
$$

for $z=\left(z_{1}, \ldots, z_{h}\right) \in \mathbf{C}_{*}^{h}$ and $w=\left(w_{0}, \ldots, w_{p}\right) \in S^{p} \subset \mathbf{E}^{p+1}$ with $\sum_{t=0}^{p} w_{t}^{2}=1$.
Theorem 3.1 For $1 \leq \alpha \leq h$ and $p \geq 1$, the map $\phi_{\alpha}^{h p}: \mathbf{C}_{*}^{h} \times S^{p} \rightarrow \mathbf{C}^{\alpha p+h}$ defined by (3.1) satisfies the following properties:
(1) $\phi_{\alpha}^{h p}: \mathbf{C}_{*}^{h} \times_{f} S^{p} \rightarrow \mathbf{C}^{\alpha p+h}$ is an isometric immersion with warping function: $f=\sqrt{\sum_{j=1}^{\alpha} z_{j} \bar{z}_{j}}$.
(2) $\phi_{\alpha}^{h p}$ is a CR-warped product.
(3) The second fundamental form σ of $\phi_{\alpha}^{h p}$ satisfies the equality:

$$
\begin{equation*}
\|\sigma\|^{2}=2 p\left\{\|\nabla(\ln f)\|^{2}+\Delta(\ln f)\right\} . \tag{3.2}
\end{equation*}
$$

Proof. For tangent vector fields X of \mathbf{C}_{*}^{h} and Z of S^{p}, we obtain from (3.1) that

$$
\begin{align*}
X \phi_{\alpha}^{h p} & =\left(X^{(1)} \otimes j, X_{\alpha+1}, \ldots, X_{h}\right), \tag{3.3}\\
Z \phi_{\alpha}^{h p} & =\left(z^{(1)} \otimes Z, 0, \ldots, 0\right), \tag{3.4}
\end{align*}
$$

where

$$
\begin{align*}
& X^{(1)} \otimes j=\left(w_{0} X_{1}, \ldots, w_{p} X_{1}, \ldots, w_{0} X_{\alpha}, \ldots, w_{p} X_{\alpha}\right), \tag{3.5}\\
& z^{(1)} \otimes Z=\left(Z_{0} z_{1}, \ldots, Z_{p} z_{1}, \ldots, Z_{0} z_{\alpha}, \ldots, Z_{p} z_{\alpha}\right), \tag{3.6}\\
& X^{(1)}=\left(X_{1}, \ldots, X_{\alpha}\right), \quad X^{(2)}=\left(X_{\alpha+1}, \ldots, X_{h}\right), \tag{3.7}\\
& X=\left(X^{(1)}, X^{(2)}\right), \quad Z=\left(Z_{0}, \ldots, Z_{p}\right), \quad z^{(1)}=\left(z_{1}, \ldots, z_{\alpha}\right) . \tag{3.8}
\end{align*}
$$

From (3.3) and (3.4) we know that the tangent space of $\mathbf{C}_{*}^{h} \times S^{p}$ at a point (z, w) is spanned by vectors given by (3.3) and (3.4). Since S^{p} is the unit hypersphere centered at the origin, it follows from (3.3) and (3.4) that the induced metric on $\mathbf{C}_{*}^{h} \times S^{p}$ via $\phi_{\alpha}^{h p}$ is the warped product metric $g=g_{0}+f^{2} g_{1}$ with warping function $f=\sqrt{\sum_{j=1}^{\alpha} z_{j} \bar{z}_{j}}$, where g_{0} and g_{1} denote the metrics of \mathbf{C}_{*}^{h} and S^{p}, respectively. This proves statement (1).

It follows from (3.3) that \mathbf{C}_{*}^{h} is immersed as a holomorphic submanifold of $\mathbf{C}^{\alpha p+h}$. From (3.3) and (3.4) we also know that S^{p} is immersed as a totally real submanifold of $\mathbf{C}^{\alpha p+h}$. Hence we have statement (2).

Applying (3.1) and (3.3)-(3.8) yields

$$
\begin{align*}
& X Y \phi_{\alpha}^{h p}=\left(\tilde{\nabla}_{X^{(1)}} Y^{(1)} \otimes j, \tilde{\nabla}_{X^{(2)}} Y^{(2)}\right), \tag{3.9}\\
& Z W \phi_{\alpha}^{h p}=\left(z^{(1)} \otimes \tilde{\nabla}_{Z} W, 0, \ldots, 0\right), \tag{3.10}
\end{align*}
$$

$$
\begin{equation*}
X Z \phi_{\alpha}^{h p}=\left(X^{(1)} \otimes Z, 0, \ldots, 0\right), \tag{3.11}
\end{equation*}
$$

for vector fields X, Y tangent to \mathbf{C}_{*}^{h} and Z, W tangent to S^{p}, where $\tilde{\nabla}$ denotes the Levi-Civita connection for Euclidean space as well as for complex Euclidean space.

From (3.3) (3.4) and (3.9) (3.11), we find

$$
\begin{equation*}
\sigma(X, Y)=\sigma(Z, W)=0, \quad \sigma(X, Z)=\left(X_{z^{(1)}}^{(1)} \perp \otimes Z, 0, \ldots, 0\right) \tag{3.12}
\end{equation*}
$$

for vector fields X, Y tangent to \mathbf{C}_{*}^{h} and Z, W tangent to S^{p}. Therefore, the squared norm of the second fundamental form is given by

$$
\begin{equation*}
\|\sigma\|^{2}=\frac{2 p(2 \alpha-1)}{f^{2}}, \quad f^{2}=\sum_{j=1}^{\alpha} z_{j} \bar{z}_{j} . \tag{3.13}
\end{equation*}
$$

On the other hand, it is straightforward to verify that

$$
\begin{equation*}
\|\nabla(\ln f)\|^{2}=\frac{1}{f^{2}}, \quad \Delta(\ln f)=\frac{2(\alpha-1)}{f^{2}} \tag{3.14}
\end{equation*}
$$

By combining (3.13) and (3.14) we obtain statement (3).

4. $C R$-warped products in complex Euclidean space

The purpose of this section is to prove the following.
Theorem 4.1 Let $\phi: N_{T} \times_{f} N_{\perp} \rightarrow \mathbf{C}^{m}$ be a $C R$-warped product in complex Euclidean m-space \mathbf{C}^{m}. Then we have
(1) The squared norm of the second fundamental form of ϕ satisfies

$$
\begin{equation*}
\|\sigma\|^{2} \geq 2 p\left\{\|\nabla(\ln f)\|^{2}+\Delta(\ln f)\right\} \tag{4.1}
\end{equation*}
$$

(2) If the CR-warped product satisfies the equality case of (4.1), then we have
(2.a) N_{T} is an open portion of \mathbf{C}_{*}^{h};
(2.b) N_{\perp} is an open portion of S^{p};
(2.c) There exists a natural number $\alpha \leq h$ and a complex coordinate system $\left\{z_{1}, \ldots, z_{h}\right\}$ on \mathbf{C}_{*}^{h} such that the warping function f is given by $f=$ $\sqrt{\sum_{j=1}^{\alpha} z_{j} \bar{z}_{j}} ;$
(2.d) Up to rigid motions of \mathbf{C}^{m}, the immersion ϕ is given by $\phi_{\alpha}^{h p}$ in a natural way; namely, we have

$$
\begin{equation*}
\phi(z, w)=\left(w_{0} z_{1}, \ldots, w_{p} z_{1}, \ldots, w_{0} z_{\alpha}, \ldots, w_{p} z_{\alpha}, z_{\alpha+1}, \ldots, z_{h}, 0, \ldots, 0\right) \tag{4.2}
\end{equation*}
$$

for $z=\left(z_{1}, \ldots, z_{h}\right) \in \mathbf{C}_{*}^{h}$ and $w=\left(w_{0}, \ldots, w_{p}\right) \in S^{p} \subset \mathbf{E}^{p+1}$.
Proof. Let $N_{T} \times N_{\perp}$ be a $C R$-warped product in a complex space form $\tilde{M}^{m}(4 c)$ of constant holomorphic sectional curvature $4 c$. Then the equation of Codazzi implies

$$
\begin{align*}
& \tilde{R}(X, J X, J Z, Z) \\
& \quad=\left\langle D_{J X} \sigma(X, Z)-\sigma\left(\nabla_{J X} X, Z\right)-\sigma\left(X, \nabla_{J X} Z\right), J Z\right\rangle \\
& \quad-\left\langle D_{X} \sigma(J X, Z)-\sigma\left(\nabla_{X} J X, Z\right)-\sigma\left(J X, \nabla_{X} Z\right), J Z\right\rangle \tag{4.3}
\end{align*}
$$

for vector fields X on N_{T} and Z on N_{\perp}. Since N_{T} is totally geodesic in $N_{T} \times_{f} N_{\perp}, \nabla_{X} Z$ and $\nabla_{J X} Z$ lie in \mathcal{D}^{\perp} and $\nabla_{X} J X$ and $\nabla_{J X} X$ lie in \mathcal{D}. Hence, by applying statements (2) and (3) of Lemma 2.2, we get

$$
\begin{align*}
2\langle X, X\rangle\langle Z, Z\rangle c= & -J X(\langle Z, Z\rangle J X \ln f)-\left\langle\sigma(X, Z), D_{J X} J Z\right\rangle \\
& -X(\langle Z, Z\rangle X \ln f)+\left\langle\sigma(J X, Z), D_{X} J Z\right\rangle \\
& +\left\{\left(J \nabla_{J X} X\right) \ln f-\left(J \nabla_{X} J X\right) \ln f\right\}\langle Z, Z\rangle \\
& +\left\{(X \ln f)^{2}+((J X \ln f))^{2}\right\}\langle Z, Z\rangle \tag{4.4}
\end{align*}
$$

Applying Lemma 2.2 we find

$$
\begin{align*}
& J X(\langle Z, Z\rangle J X \ln f)+X(\langle Z, Z\rangle X \ln f) \\
& \quad=\left\{(J X)^{2} \ln f+X^{2} \ln f+2(J X \ln f)^{2}+2(X \ln f)^{2}\right\}\langle Z, Z\rangle \tag{4.5}
\end{align*}
$$

Since $\tilde{M}^{m}(4 c)$ is Kählerian, we have

$$
\begin{equation*}
J \nabla_{X} Z=J \sigma(X, Z)=-A_{J Z} X+D_{X} J Z \tag{4.6}
\end{equation*}
$$

Applying (4.6) and statements (1), (2) and (3) of Lemma 2.2, we find

$$
\begin{align*}
\left\langle\sigma(J X, Z), D_{X} J Z\right\rangle & =\left\langle\sigma(J X, Z), J \nabla_{X} Z\right\rangle+\langle\sigma(J X, Z), J \sigma(X, Z)\rangle \\
& =(X \ln f)^{2}\langle Z, Z\rangle+\langle\sigma(J X, Z), J \sigma(X, Z)\rangle \tag{4.7}
\end{align*}
$$

for vector fields X in \mathcal{D} and Z in \mathcal{D}^{\perp}.
On the other hand, if we denote by $\sigma_{\nu}(X, Z)$ the ν-component of
$\sigma(X, Z)$, then, by applying statement (3) of Lemma 2.1, we also have

$$
\begin{align*}
& \langle\sigma(J X, Z), J \sigma(X, Z)\rangle=\left\langle\sigma(J X, Z), J \sigma_{\nu}(X, Z)\right\rangle \\
& \quad=\left\langle A_{J \sigma_{\nu}(X, Z)} J X, Z\right\rangle=\left\langle A_{\sigma_{\nu}(X, Z)} X, Z\right\rangle=\left\|\sigma_{\nu}(X, Z)\right\|^{2} \tag{4.8}
\end{align*}
$$

Combining (4.7) and (4.8) yields

$$
\begin{equation*}
\left\langle\sigma(J X, Z), D_{X} J Z\right\rangle=(X \ln f)^{2}\langle Z, Z\rangle+\left\|\sigma_{\nu}(X, Z)\right\|^{2} \tag{4.9}
\end{equation*}
$$

Similarly, we also have

$$
\begin{equation*}
\left\langle\sigma(X, Z), D_{J X} J Z\right\rangle=-(J X \ln f)^{2}\langle Z, Z\rangle-\left\|\sigma_{\nu}(X, Z)\right\|^{2} \tag{4.10}
\end{equation*}
$$

Because N_{T} is a holomorphic submanifold of a Kähler manifold and N_{T} is totally geodesic in $N_{T} \times{ }_{f} N_{\perp}$, we find

$$
\begin{equation*}
J \nabla_{J X} X=\nabla_{J X} J X, \quad J \nabla_{X} J X=-\nabla_{X} X \tag{4.11}
\end{equation*}
$$

Combining (4.4), (4.5) and (4.9) (4.11) we obtain

$$
\begin{align*}
2\langle X, X\rangle\langle Z, Z\rangle c= & \left\{\left(\nabla_{X} X+\nabla_{J X} J X\right) \ln f-X^{2} \ln f\right. \\
& \left.-(J X)^{2} \ln f\right\}\langle Z, Z\rangle+2\left\|\sigma_{\nu}(X, Z)\right\|^{2} \tag{4.12}
\end{align*}
$$

Assume that $\left\{X_{1}, \ldots, X_{2 h}\right\}$ is an orthonormal frame of N_{T} and $\left\{Z_{1}, \ldots, Z_{p}\right\}$ an orthonormal frame on N_{\perp}. Then (4.12) implies

$$
\begin{equation*}
2 \sum_{j=1}^{2 h} \sum_{t=1}^{p}\left\|\sigma_{\nu}\left(X_{j}, Z_{t}\right)\right\|^{2}=4 h p c-2 p \Delta(\ln f) \tag{4.13}
\end{equation*}
$$

On the other hand, statement (3) of Lemma 2.2 implies

$$
\begin{equation*}
\sum_{j=1}^{2 h} \sum_{t=1}^{p}\left\|\sigma_{J \mathcal{D}^{\perp}}\left(X_{j}, Z_{t}\right)\right\|^{2}=p\|\nabla \ln f\|^{2} \tag{4.14}
\end{equation*}
$$

where $\sigma_{J \mathcal{D}^{\perp}}\left(X_{j}, Z_{t}\right)$ denotes the $J \mathcal{D}^{\perp}$-component of $\sigma\left(X_{j}, Z_{t}\right)$. Combining (4.13) and (4.14) gives

$$
\begin{equation*}
2\left\|\sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right)\right\|^{2}=2 p\left\{\|\nabla \ln f\|^{2}+\Delta(\ln f)+2 h c\right\} \tag{4.15}
\end{equation*}
$$

where $\left\|\sigma\left(\mathcal{D}, \mathcal{D}^{\perp}\right)\right\|^{2}=\sum_{j=1}^{2 h} \sum_{t=1}^{p}\left\|\sigma\left(X_{j}, Z_{t}\right)\right\|^{2}$. Equation (4.15) implies

$$
\begin{equation*}
\|\sigma\|^{2} \geq 2 p\left\{\|\nabla(\ln f)\|^{2}+\Delta(\ln f)\right\}+4 h p c . \tag{4.16}
\end{equation*}
$$

In particular, if $\tilde{M}^{m}(4 c)$ is the complex Euclidean m-space, inequality (4.16) reduces to inequality (4.1).

Now, let us assume that $\phi: N_{T} \times_{f} N_{\perp} \rightarrow \mathbf{C}^{m}$ is a $C R$-warped product satisfying the equality case of (4.1). Then (4.15) and the equality case of (4.1) imply

$$
\begin{equation*}
\sigma(\mathcal{D}, \mathcal{D})=0, \quad \sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right)=0 \tag{4.17}
\end{equation*}
$$

Since N_{T} is totally geodesic in $N_{T} \times{ }_{f}$, the first equation in (4.17) and the totally geodesy of N_{T} in $N_{T} \times{ }_{f} N_{\perp}$ imply that N_{T} is isometrically immersed as a totally geodesic holomorphic submanifold of \mathbf{C}^{m}. Hence, N_{T} is a open portion of a complex Euclidean h-space \mathbf{C}^{h}.

For vector fields X in \mathcal{D} and Z, W in \mathcal{D}^{\perp}, Lemma 2.1 implies

$$
\begin{equation*}
\left\langle\nabla_{W} Z, X\right\rangle=\left\langle J A_{J Z} W, X\right\rangle=-\langle\sigma(J X, W), J Z\rangle \tag{4.18}
\end{equation*}
$$

Hence, by applying statement (2) of Lemma 2.2 and (4.18), we find

$$
\begin{equation*}
\left\langle\nabla_{W} Z, X\right\rangle=-(X \ln f)\langle Z, W\rangle \tag{4.19}
\end{equation*}
$$

On the other hand, if we denote by σ^{\perp} the second fundamental form of N_{\perp} in $M=N_{T} \times_{f} N_{\perp}$, we get $\left\langle\sigma^{\perp}(Z, W), X\right\rangle=\left\langle\nabla_{W} Z, X\right\rangle$. Combining this with (4.19) yields

$$
\begin{equation*}
\sigma^{\perp}(Z, W)=-\langle Z, W\rangle \nabla \ln f \tag{4.20}
\end{equation*}
$$

Hence, by applying (4.20) and the second equation of (4.17), we see that N_{\perp} is immersed as a totally umbilical submanifold of \mathbf{C}^{m}. Hence, N_{\perp} is an open portion of an ordinary p-sphere S^{p} (or \mathbf{R} when $p=1$).

If $p \geq 2$, we may assume that S^{p} is of radius one, by rescaling the warping function f if necessary. Consequently, $N_{T} \times{ }_{f} N_{\perp}$ is an open portion of $\mathbf{C}^{h} \times_{f} S^{p}$ (or $\mathbf{C}^{h} \times_{f} \mathbf{R}$ when $p=1$). Hence, we may choose a complex Euclidean coordinate system $\left\{z_{1}, \ldots, z_{h}\right\}$ on \mathbf{C}^{h} and a coordinate system $\left\{u_{1}, \ldots, u_{p}\right\}$ on S^{p} (or on \mathbf{R} if $p=1$) so that the metric tensor on $N_{T} \times{ }_{f} N_{\perp}$ is given by

$$
\begin{equation*}
g=\sum_{j=1}^{h} d z_{j} d \bar{z}_{j}+f^{2}\left\{d u_{1}^{2}+\cos ^{2} u_{1} d u_{2}^{2}+\cdots+\cos ^{2} u_{1} \cdots \cos ^{2} u_{p-1} d u_{p}^{2}\right\} \tag{4.21}
\end{equation*}
$$

where $z_{j}=x_{j}+i y_{j}, i=\sqrt{-1}$.

Equation (4.21) and a straightforward computation imply that the LeviCivita connection on $N_{T} \times{ }_{f} N_{\perp}$ satisfies

$$
\begin{align*}
\nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial}{\partial x_{k}}= & \nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial}{\partial y_{k}}=\nabla_{\frac{\partial}{\partial y_{j}}} \frac{\partial}{\partial y_{k}}=0, \quad j, k=1, \ldots, h \tag{4.22}\\
\nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial}{\partial u_{t}}= & \frac{f_{x_{j}}}{f} \frac{\partial}{\partial u_{t}}, \quad j=1, \ldots, h ; \quad t=1, \ldots, p \tag{4.23}\\
\nabla_{\frac{\partial}{\partial y_{j}}} \frac{\partial}{\partial u_{t}}= & \frac{f_{y_{j}}}{f} \frac{\partial}{\partial u_{t}}, \quad j=1, \ldots, h ; \quad t=1, \ldots, p \tag{4.24}\\
\nabla_{\frac{\partial}{\partial u_{s}}} \frac{\partial}{\partial u_{t}}= & -\tan u_{s} \frac{\partial}{\partial u_{t}}, \quad 1 \leq s<t \leq p \tag{4.25}\\
\nabla_{\frac{\partial}{\partial u_{t}}} \frac{\partial}{\partial u_{t}}= & -\prod_{s=1}^{t-1} \cos ^{2} u_{s} \sum_{k=1}^{h}\left(f f_{x_{k}} \frac{\partial}{\partial x_{k}}+f f_{y_{k}} \frac{\partial}{\partial y_{k}}\right) \\
& +\sum_{q=1}^{t-1}\left(\frac{\sin 2 u_{q}}{2} \prod_{s=q+1}^{t-1} \cos ^{2} u_{s}\right) \frac{\partial}{\partial u_{q}}, \quad t=1, \ldots, p \tag{4.26}
\end{align*}
$$

From equations (4.17), (4.22), (4.25) and (4.26), we know that the immersion ϕ satisfies

$$
\begin{align*}
\phi_{z_{j} z_{k}}= & \phi_{z_{j} \bar{z}_{k}}=\phi_{\bar{z}_{j} \bar{z}_{k}}=0, \quad j, k=1, \ldots, h \tag{4.27}\\
\phi_{u_{s} u_{t}}= & -\tan u_{s} \phi_{u_{t}}, \quad 1 \leq s<t \leq p \tag{4.28}\\
\phi_{u_{t} u_{t}}= & -\prod_{s=1}^{t-1} \cos ^{2} u_{s} \sum_{k=1}^{h}\left(f f_{x_{k}} \phi_{x_{k}}+f f_{y_{k}} \phi_{y_{k}}\right) \\
& +\sum_{q=1}^{t-1}\left(\frac{\sin 2 u_{q}}{2} \prod_{s=q+1}^{t-1} \cos ^{2} u_{s}\right) \phi_{u_{q}}, \quad t=1, \ldots, p, \tag{4.29}
\end{align*}
$$

where $\phi_{z_{j} \bar{z}_{k}}=\partial \phi / \partial z_{j} \partial \bar{z}_{k}, \ldots$, etc., and

$$
\begin{equation*}
\frac{\partial}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right), \quad \frac{\partial}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right) \tag{4.30}
\end{equation*}
$$

Solving (4.27) gives

$$
\begin{equation*}
\phi\left(z_{1}, \ldots, z_{h}, u_{1}, \ldots, u_{p}\right)=\sum_{j=1}^{h} A_{j}\left(u_{1}, \ldots, u_{p}\right) z_{j}+B\left(u_{1}, \ldots, u_{p}\right) \tag{4.31}
\end{equation*}
$$

for some \mathbf{C}^{m}-valued functions A_{1}, \ldots, A_{h}, B. From (4.29) with $t=1$, we find

$$
\begin{equation*}
\phi_{u_{1} u_{1}}=-\frac{1}{2} \sum_{k=1}^{h}\left(\frac{\partial f^{2}}{\partial x_{k}} \phi_{x_{k}}+\frac{\partial f^{2}}{\partial y_{k}} \phi_{y_{k}}\right) \tag{4.32}
\end{equation*}
$$

Substituting (4.31) into (4.32) yields

$$
\begin{equation*}
\sum_{j=1}^{h} \frac{\partial^{2} A_{j}}{\partial u_{1}^{2}} z_{j}+\frac{\partial^{2} B}{\partial u_{1}^{2}}=-\sum_{j=1}^{h} \frac{\partial f^{2}}{\partial \bar{z}_{j}} A_{j} \tag{4.33}
\end{equation*}
$$

Case (1): $\quad \sum_{j=1}^{h}\left(\partial f^{2} / \partial \bar{z}_{j}\right) A_{j}$ is independent of z_{1}, \ldots, z_{h}.
In this case, (4.33) implies

$$
\begin{align*}
& \frac{\partial^{2} A_{j}}{\partial u_{1}^{2}}=0, \quad j=1, \ldots, h \tag{4.34}\\
& \frac{\partial^{2} B}{\partial u_{1}^{2}}=-\sum_{j=1}^{h} \frac{\partial f^{2}}{\partial \bar{z}_{j}} A_{j} \tag{4.35}
\end{align*}
$$

Solving (4.34) gives

$$
\begin{gather*}
A_{j}\left(u_{1}, \ldots, u_{p}\right)=D_{j}\left(u_{2}, \ldots, u_{p}\right) u_{1}+E_{j}\left(u_{2}, \ldots, u_{p}\right) \\
j=1, \ldots, h, \tag{4.36}
\end{gather*}
$$

for some vector functions $D_{j}\left(u_{2}, \ldots, u_{p}\right), E_{j}\left(u_{2}, \ldots, u_{p}\right)$. Applying (4.31) and (4.36) yields $\left\langle\phi_{z_{j}}, \phi_{z_{j}}\right\rangle=\left|D_{j}\right|^{2} u_{1}^{2}+2\left\langle D_{j}, E_{j}\right\rangle u_{1}+\left|E_{j}\right|^{2}$, where \langle, denotes the standard Euclidean inner product on \mathbf{C}^{h}. On the other hand, (4.21) gives $\left\langle\phi_{z_{j}}, \phi_{z_{j}}\right\rangle=1$ which is independent of u_{1}. Thus, we obtain $D_{1}=\cdots=D_{h}=0$. Hence, (4.36) reduces to

$$
\begin{equation*}
A_{j}\left(u_{1}, \ldots, u_{p}\right)=E_{j}\left(u_{2}, \ldots, u_{p}\right), \quad j=1, \ldots, h \tag{4.37}
\end{equation*}
$$

From (4.35) and (4.37), we find

$$
\begin{equation*}
B=-\frac{1}{2} \sum_{j=1}^{h} \frac{\partial f^{2}}{\partial \bar{z}_{j}} E_{j}\left(u_{2}, \ldots, u_{p}\right) u_{1}^{2}+F\left(u_{2}, \ldots, u_{p}\right) u_{1}+G\left(u_{2}, \ldots, u_{p}\right) \tag{4.38}
\end{equation*}
$$

for some vector functions F, G. Thus, we obtain from (4.31), (4.37) and (4.38) that

$$
\begin{equation*}
\phi=\sum_{j=1}^{h} E_{j}\left(z_{j}-\frac{1}{2} \frac{\partial f^{2}}{\partial \bar{z}_{j}} u_{1}^{2}\right)+F u_{1}+G \tag{4.39}
\end{equation*}
$$

Substituting (4.39) into (4.28) with $s=1$ and $1<t \leq p$ gives

$$
\begin{align*}
& \frac{1}{2} \sum_{j=1}^{h} \frac{\partial f^{2}}{\partial \bar{z}_{j}} \frac{\partial E_{j}}{\partial u_{t}} u_{1}-\frac{\partial F}{\partial u_{t}} \\
& \quad=\tan u_{1}\left\{\sum_{j=1}^{h} \frac{\partial E_{j}}{\partial u_{t}} z_{j}-\frac{1}{2} \sum_{j=1}^{h} \frac{\partial f^{2}}{\partial \bar{z}_{j}} \frac{\partial E_{j}}{\partial u_{t}} u_{1}^{2}+\frac{\partial F}{\partial u_{t}} u_{1}+\frac{\partial G}{\partial u_{t}}\right\} \tag{4.40}
\end{align*}
$$

Since E_{j}, F, G and $\partial f^{2} / \partial \bar{z}_{j}$ are independent on the variable u_{1}, equation (4.40) implies $\partial E_{j} / \partial u_{t}=\partial F / \partial u_{t}=\partial G / \partial u_{t}=0$ for $j=1, \ldots, h$ and $t=2, \ldots, p$. Thus, $E_{1}, \ldots, E_{h}, F, G$ are constant vectors in \mathbf{C}^{m}.

From (4.39) we also have

$$
\begin{equation*}
\phi_{u_{1}}=-\sum_{j=1}^{h} \frac{\partial f^{2}}{\partial \bar{z}_{j}} E_{j} u_{1}+F \tag{4.41}
\end{equation*}
$$

On the other hand, using (4.21) we find $\left\langle\phi_{u_{1}} \phi_{u_{1}}\right\rangle=f^{2}$ which is a nonconstant function independent of u_{1}. Hence, (4.41) implies

$$
\sum_{j=1}^{h}\left(\partial f^{2} / \partial \bar{z}_{j}\right) E_{j}=0
$$

Thus, $f^{2}=|F|^{2}$ is constant which contradicts to properness of the $C R$ warped product.
Case (2): $\quad \sum_{j=1}^{h}\left(\partial^{2} f^{2} / \partial \bar{z}_{j}\right) A_{j}$ depends on z_{1}, \ldots, z_{h}.
In this case, by taking the derivative of (4.33) with respect to $\partial / \partial z_{j}$, we find

$$
\begin{equation*}
\frac{\partial^{2} A_{j}}{\partial u_{1}^{2}}=-\sum_{k=1}^{h} \frac{\partial^{2} f^{2}}{\partial z_{j} \partial \bar{z}_{k}} A_{k}, \quad j=1, \ldots, h \tag{4.42}
\end{equation*}
$$

On the other hand, by applying (4.31), we find $\phi_{z_{j}}=A_{j}\left(u_{1}, \ldots, u_{p}\right)$. Thus, A_{1}, \ldots, A_{h} form an orthonormal frame according to (4.21). There-
fore, by using the fact that $\partial^{2} A_{j} / \partial u_{1}^{2}$ and A_{1}, \ldots, A_{h} are independent of z_{1}, \ldots, z_{h}, we know from (4.42) that $\partial^{2} f^{2} / \partial z_{k} \partial \bar{z}_{j}, j, k=1, \ldots, h$, are constant. Thus, we may put

$$
\begin{equation*}
\frac{\partial^{2} f^{2}}{\partial z_{j} \partial \bar{z}_{k}}=\gamma_{j \bar{k}}, \quad j, k=1, \ldots, h \tag{4.43}
\end{equation*}
$$

for some constants $\gamma_{j \bar{k}}$.
Solving (4.43) yields

$$
\begin{equation*}
f^{2}\left(z_{1}, \ldots, z_{h}\right)=\sum_{j, k=1}^{h} \gamma_{j \bar{k}} z_{j} \bar{z}_{k}+H+K \tag{4.44}
\end{equation*}
$$

for some functions H, K satisfying

$$
\begin{equation*}
\frac{\partial H}{\partial \bar{z}_{j}}=\frac{\partial K}{\partial z_{j}}=0, \quad j=1, \ldots, h \tag{4.45}
\end{equation*}
$$

Equation (4.43) implies that $\left(\gamma_{j \bar{k}}\right)$ is a Hermitian matrix, that is $\bar{\gamma}_{j \bar{k}}=$ $\gamma_{k \bar{j}}$. Therefore, the Spectral Theorem in matrix theory implies that there is a unitary matrix which diagonalizes $\left(\gamma_{j \bar{k}}\right)$. Hence, there exists a suitable complex Euclidean coordinate system $\left\{z_{1}, \ldots, z_{h}\right\}$ on \mathbf{C}^{h} such that (4.44) reduces to the form:

$$
\begin{equation*}
f^{2}=\sum_{j=1}^{h} b_{j} z_{j} \bar{z}_{j}+H\left(z_{1}, \ldots, z_{h}\right)+K\left(z_{1}, \ldots, z_{h}\right) \tag{4.46}
\end{equation*}
$$

Since f is a real-valued function, we may put

$$
\begin{equation*}
H=X+i Y, \quad K=U-i Y \tag{4.47}
\end{equation*}
$$

for some real-valued functions X, Y, U. From (4.45) and (4.47), we obtain the following Cauchy-Riemann equations:

$$
\begin{equation*}
\frac{\partial X}{\partial x_{j}}=-\frac{\partial Y}{\partial y_{j}}, \quad \frac{\partial Y}{\partial x_{j}}=\frac{\partial X}{\partial y_{j}}, \quad \frac{\partial U}{\partial x_{j}}=\frac{\partial Y}{\partial y_{j}}, \quad \frac{\partial Y}{\partial x_{j}}=-\frac{\partial U}{\partial y_{j}} \tag{4.48}
\end{equation*}
$$

From (4.48) we find that $H+K=X+U$ is constant, say δ. Hence, (4.46) becomes $f^{2}=\sum_{j=1}^{h} b_{j} z_{j} \bar{z}_{j}+\delta$. We may assume $\delta=0$ by applying a suitable translation on \mathbf{C}^{m} if necessary. Thus, we have

$$
\begin{equation*}
f^{2}=\sum_{j=1}^{h} a_{j}^{2} z_{j} \bar{z}_{j} \tag{4.49}
\end{equation*}
$$

for some real numbers $a_{1}, \ldots, a_{h} \geq 0$, since $f>0$. Combining (4.33) and (4.49) yields

$$
\begin{align*}
\frac{\partial^{2} A_{j}}{\partial u_{1}^{2}} & =-a_{j}^{2} A_{j}, \quad j=1, \ldots, h \tag{4.50}\\
\frac{\partial^{2} B}{\partial u_{1}^{2}} & =0 \tag{4.51}
\end{align*}
$$

Since $f>0$, there exists at least one a_{j} greater than zero. Without loss of generality, we may assume

$$
\begin{equation*}
a_{1}, \ldots, a_{\alpha}>0, \quad a_{\alpha+1}=\cdots=a_{h}=0 \tag{4.52}
\end{equation*}
$$

for some natural number $\alpha \leq h$. From (4.50), (4.51) and (4.53), we obtain

$$
\begin{align*}
& A_{j}=D_{j}\left(u_{2}, \ldots, u_{p}\right) \cos \left(a_{j} u_{1}\right)+E_{j}\left(u_{2}, \ldots, u_{p}\right) \sin \left(a_{j} u_{1}\right) \tag{4.53}\\
& A_{k}=D_{k}\left(u_{2}, \ldots, u_{p}\right) u_{1}+E_{k}\left(u_{2}, \ldots, u_{p}\right) \tag{4.54}\\
& B=F\left(u_{2}, \ldots, u_{p}\right) u_{1}+G\left(u_{2}, \ldots, u_{p}\right) \tag{4.55}
\end{align*}
$$

for $j=1, \ldots, \alpha$, and $k=\alpha+1, \ldots, h$.
Substituting (4.53), (4.54) and (4.55) into (4.31) gives

$$
\begin{align*}
\phi= & \sum_{j=1}^{\alpha}\left(D_{j}\left(u_{2}, \ldots, u_{p}\right) \cos \left(a_{j} u_{1}\right)+E_{j}\left(u_{2}, \ldots, u_{p}\right) \sin \left(a_{j} u_{1}\right)\right) z_{j} \\
& +\sum_{k=\alpha+1}^{h}\left(D_{k}\left(u_{2}, \ldots, u_{p}\right) u_{1}+E_{k}\left(u_{2}, \ldots, u_{p}\right)\right) z_{k} \tag{4.56}\\
& +F\left(u_{2}, \ldots, u_{p}\right) u_{1}+G\left(u_{2}, \ldots, u_{p}\right)
\end{align*}
$$

By differentiating (4.56) with respect to z_{k}, we obtain $\phi_{z_{k}}=D_{k} u_{1}+$ E_{k} for $k=\alpha+1, \ldots, h$. Thus, $\left\langle\phi_{z_{k}}, \phi_{z_{k}}\right\rangle=\left|D_{k}\right|^{2} u_{1}^{2}+2\left\langle D_{k}, E_{k}\right\rangle+\left|E_{k}\right|^{2}$. Comparing this with (4.21) yields $D_{\alpha+1}=\cdots=D_{h}=0$. Therefore, (4.56) becomes

$$
\begin{align*}
\phi= & \sum_{j=1}^{\alpha}\left(D_{j}\left(u_{2}, \ldots, u_{p}\right) \cos \left(a_{j} u_{1}\right)+E_{j}\left(u_{2}, \ldots, u_{p}\right) \sin \left(a_{j} u_{1}\right)\right) z_{j} \\
& +\sum_{k=\alpha+1}^{h} E_{k}\left(u_{2}, \ldots, u_{p}\right) z_{k}+F\left(u_{2}, \ldots, u_{p}\right) u_{1}+G\left(u_{2}, \ldots, u_{p}\right) \tag{4.57}
\end{align*}
$$

From (4.28) with $s=1, t>1$ and (4.57), we find

$$
\begin{align*}
\sum_{j=1}^{\alpha} a_{j}\left(\frac{\partial D_{j}}{\partial u_{t}} \sin \left(a_{j} u_{1}\right)\right. & \left.-\frac{\partial E_{j}}{\partial u_{t}} \cos \left(a_{j} u_{1}\right)\right) z_{j}+\frac{\partial F}{\partial u_{t}} \\
=\tan u_{1}\left\{\sum _ { j = 1 } ^ { \alpha } \left(\frac{\partial D_{j}}{\partial u_{t}}\right.\right. & \left.\cos \left(a_{j} u_{1}\right)+\frac{\partial E_{j}}{\partial u_{t}} \sin \left(a_{j} u_{1}\right)\right) z_{j} \\
& \left.+\sum_{k=\alpha+1}^{h} \frac{\partial E_{k}}{\partial u_{t}} z_{k}+\frac{\partial F}{\partial u_{t}} u_{1}+\frac{\partial G}{\partial u_{t}}\right\} \tag{4.58}
\end{align*}
$$

which implies $\partial E_{k} / \partial u_{t}=\partial F / \partial u_{t}=\partial G / \partial u_{t}=0, k=\alpha+1 \ldots, h, t=$ $2, \ldots, p$. Hence, $E_{\alpha+1}, \ldots, E_{h}, F$ and G are constant vectors. Equation (4.58) also implies

$$
\begin{align*}
& a_{j} \frac{\partial D_{j}}{\partial u_{t}} \sin \left(a_{j} u_{1}\right)-a_{j} \frac{\partial E_{j}}{\partial u_{t}} \cos \left(a_{j} u_{1}\right) \\
& \quad=\tan u_{1}\left\{\frac{\partial D_{j}}{\partial u_{t}} \cos \left(a_{j} u_{1}\right)+\frac{\partial E_{j}}{\partial u_{t}} \sin \left(a_{j} u_{1}\right)\right\}, j=1, \ldots, \alpha \tag{4.59}
\end{align*}
$$

which are equivalent to

$$
\begin{align*}
& \frac{\partial D_{j}}{\partial u_{t}}\left\{\left(a_{j}-1\right) \sin \left(\left(a_{j}+1\right) u_{1}\right)-\left(a_{j}+1\right) \sin \left(\left(a_{j}-1\right) u_{1}\right)\right\} \\
& \quad=\frac{\partial E_{j}}{\partial u_{t}}\left\{\left(a_{j}-1\right) \cos \left(\left(a_{j}+1\right) u_{1}\right)+\left(a_{j}+1\right) \cos \left(\left(a_{j}-1\right) u_{1}\right)\right\} \tag{4.60}
\end{align*}
$$

for $j=1, \ldots, \alpha$. By letting $u_{1}=0$, we get $\partial E_{j} / \partial u_{t}=0$. Thus, $E_{1}, \ldots, E_{\alpha}$ are constant vectors. Consequently, we obtain from (4.57) that

$$
\begin{align*}
\phi=\sum_{j=1}^{\alpha} & \left(D_{j}\left(u_{2}, \ldots, u_{p}\right) \cos \left(a_{j} u_{1}\right)+E_{j} \sin \left(a_{j} u_{1}\right)\right) z_{j} \\
& +\sum_{k=\alpha+1}^{h} E_{k} z_{k}+F u_{1}+G \tag{4.61}
\end{align*}
$$

where $E_{1}, \ldots, E_{h}, F, G$ are constant vectors. From (4.61) we obtain

$$
\begin{align*}
& \phi_{x_{j}}=D_{j} \cos \left(a_{j} u_{1}\right)+E_{j} \sin \left(a_{j} u_{1}\right), \quad j=1, \ldots, \alpha \tag{4.62}\\
& \phi_{y_{j}}=i D_{j} \cos \left(a_{j} u_{1}\right)+i E_{j} \sin \left(a_{j} u_{1}\right), \quad j=1, \ldots, \alpha \tag{4.63}\\
& \phi_{x_{k}}=E_{k}, \quad k=\alpha+1, \ldots, h \tag{4.64}
\end{align*}
$$

$$
\begin{align*}
& \phi_{y_{k}}=i E_{k}, \quad k=\alpha+1, \ldots, h, \tag{4.65}\\
& \phi_{u_{1}}=\sum_{j=1}^{\alpha} a_{j}\left(E_{j} \cos \left(a_{j} u_{1}\right)-D_{j} \sin \left(a_{j} u_{1}\right)\right) z_{j}+F . \tag{4.66}
\end{align*}
$$

By applying (4.21) and (4.62), we find

$$
\begin{align*}
2 \delta_{j \ell}= & \left\langle D_{j}, D_{\ell}\right\rangle\left(\cos \left(\left(a_{j}+a_{\ell}\right) u_{1}\right)+\cos \left(\left(a_{j}-a_{\ell}\right) u_{1}\right)\right) \\
& +\left\langle E_{j}, E_{\ell}\right\rangle\left(\cos \left(\left(a_{j}-a_{\ell}\right) u_{1}\right)-\cos \left(\left(a_{j}+a_{\ell}\right) u_{1}\right)\right) \\
& +\left\langle D_{j}, E_{\ell}\right\rangle\left(\sin \left(\left(a_{j}+a_{\ell}\right) u_{1}\right)-\sin \left(\left(a_{j}-a_{\ell}\right) u_{1}\right)\right) \\
& +\left\langle D_{\ell}, E_{j}\right\rangle\left(\sin \left(\left(a_{j}+a_{\ell}\right) u_{1}\right)+\sin \left(\left(a_{j}-a_{\ell}\right) u_{1}\right)\right) \tag{4.67}
\end{align*}
$$

for $j, \ell=1, \ldots, \alpha$.
Since $\cos \left(\left(a_{j}-a_{\ell}\right) u_{1}\right), \cos \left(\left(a_{j}+a_{\ell}\right) u_{1}\right)$ and $\sin \left(\left(a_{j}+a_{\ell}\right) u_{1}\right)$ are independent functions, (4.67) implies $\left\langle D_{j}, E_{\ell}\right\rangle+\left\langle D_{\ell}, E_{j}\right\rangle=0$ for $j, \ell=1, \ldots, \alpha$. By setting $u_{1}=0$, (4.67) also yields $\left\langle D_{j}, D_{\ell}\right\rangle=\delta_{j \ell}$. Thus, by combining these with (4.67), we have $\left\langle E_{j}, E_{\ell}\right\rangle=\delta_{j \ell}$. Consequently, we obtain

$$
\begin{gather*}
\left\langle D_{j}, D_{\ell}\right\rangle=\left\langle E_{j}, E_{\ell}\right\rangle=\delta_{j \ell}, \quad\left\langle D_{j}, E_{\ell}\right\rangle+\left\langle E_{j}, D_{\ell}\right\rangle=0 \\
1 \leq j, \ell \leq \alpha \tag{4.68}
\end{gather*}
$$

Similarly, by differentiating (4.67) with respect to u_{1}, we find

$$
\begin{equation*}
a_{\ell}\left\langle D_{j}, E_{\ell}\right\rangle+a_{j}\left\langle D_{\ell}, E_{j}\right\rangle=0, \quad j, \ell=1, \ldots, \alpha \tag{4.69}
\end{equation*}
$$

Also, from (4.21), (4.62) and (4.63), we find

$$
\begin{align*}
& \left\langle D_{j}, i D_{\ell}\right\rangle=\left\langle E_{j}, i E_{\ell}\right\rangle=\delta_{j \ell}, \quad\left\langle D_{j}, i E_{\ell}\right\rangle+\left\langle E_{j}, i D_{\ell}\right\rangle=0 \tag{4.70}\\
& a_{\ell}\left\langle D_{j}, i E_{\ell}\right\rangle+a_{j}\left\langle D_{\ell}, i E_{j}\right\rangle=0, \quad j, \ell=1, \ldots, \alpha \tag{4.71}
\end{align*}
$$

From (4.21) and (4.62)-(4.65), we also have

$$
\begin{equation*}
\left\langle E_{k}, D_{j}\right\rangle=\left\langle E_{k}, E_{j}\right\rangle=\left\langle E_{k}, i D_{j}\right\rangle=\left\langle E_{k}, i E_{j}\right\rangle=0 \tag{4.72}
\end{equation*}
$$

for $j=1, \ldots, \alpha ; k=\alpha+1, \ldots, h$.
Equations (4.21), (4.49), (4.66), (4.68) and (4.70) imply

$$
\begin{aligned}
\sum_{j=1}^{\alpha} a_{j}^{2} z_{j} \bar{z}_{j}= & \sum_{j=1}^{\alpha} a_{j}^{2} z_{j} \bar{z}_{j} \\
& +2 \sum_{j=1}^{\alpha} a_{j}\left\langle\left(E_{j} \cos \left(a_{j} u_{1}\right)-D_{j} \sin \left(a_{j} u_{1}\right)\right) z_{j}, F\right\rangle+|F|^{2}
\end{aligned}
$$

Thus, we obtain $F=0$. Therefore, (4.61) reduces to

$$
\begin{equation*}
\phi=\sum_{j=1}^{\alpha}\left(D_{j}\left(u_{2}, \ldots, u_{p}\right) \cos \left(a_{j} u_{1}\right)+E_{j} \sin \left(a_{j} u_{1}\right)\right) z_{j}+\sum_{k=\alpha+1}^{h} E_{k} z_{k}+G \tag{4.73}
\end{equation*}
$$

where E_{1}, \ldots, E_{h}, G are constant vectors.
Using (4.60) we know that either D_{j} is a constant vector or $a_{j}=1$. Without loss of generality, we may assume that $a_{1}, \ldots, a_{r} \neq 1$ and $a_{r+1}=$ $\cdots=a_{\alpha}=1$. Then, D_{1}, \ldots, D_{r} are constant vectors; hence (4.73) reduces to

$$
\begin{align*}
\phi= & \sum_{j=1}^{r}\left(D_{j} \cos \left(a_{j} u_{1}\right)+E_{j} \sin \left(a_{j} u_{1}\right)\right) z_{j} \\
& +\sum_{j=r+1}^{\alpha}\left(D_{j}\left(u_{2}, \ldots, u_{p}\right) \cos u_{1}+E_{j} \sin u_{1}\right) z_{j} \\
& +\sum_{k=\alpha+1}^{h} E_{k} z_{k}+G \tag{4.74}
\end{align*}
$$

where $D_{1}, \ldots, D_{r}, E_{1}, \ldots, E_{h}, G$ are constant vectors satisfying (4.68) (4.72).

Substituting (4.49) and (4.74) into (4.29) with $t=2$ yields

$$
\begin{align*}
\sum_{j=r+1}^{\alpha} \cos u_{1} \frac{\partial^{2} D_{j}}{\partial u_{2}^{2}} z_{j} & =-\cos ^{2} u_{1} \sum_{j=1}^{\alpha} a_{j}\left(D_{j} \cos \left(a_{j} u_{1}\right)+E_{j} \sin \left(a_{j} u_{1}\right)\right) z_{j} \\
& -\sin u_{1} \cos u_{1} \sum_{j=1}^{\alpha} a_{j}\left(D_{j} \sin \left(a_{j} u_{1}\right)-E_{j} \cos \left(a_{j} u_{1}\right)\right) z_{j} \tag{4.75}
\end{align*}
$$

where $a_{r+1}=\cdots=a_{\alpha}=1$.
If $r>1$, then (4.75) implies

$$
\begin{align*}
& \cos u_{1}\left(D_{j} \cos \left(a_{j} u_{1}\right)+E_{j} \sin \left(a_{j} u_{1}\right)\right) \\
& \quad+\sin u_{1}\left(D_{j} \sin \left(a_{j} u_{1}\right)-E_{j} \cos \left(a_{j} u_{1}\right)\right)=0, \quad j=1, \ldots, r \tag{4.76}
\end{align*}
$$

Since $a_{1}, \ldots, a_{r} \neq 1$, equation (4.76) implies $D_{1}=\cdots=D_{r}=E_{1}=\cdots=$ $E_{r}=0$ which is a contradiction. Therefore, $a_{1}=\cdots=a_{\alpha}=1$. Hence, (4.75) implies $\partial^{2} D_{j} / \partial u_{2}^{2}=-D_{j}$ for $j=1, \ldots, \alpha$. Solving these equations
gives

$$
D_{j}=F_{j}\left(u_{3}, \ldots, u_{p}\right) \cos u_{2}+G_{j}\left(u_{3}, \ldots, u_{p}\right) \sin u_{2}
$$

Consequently, (4.73) becomes

$$
\begin{array}{r}
\phi=\sum_{j=1}^{\alpha}\left\{F_{j}\left(u_{3}, \ldots, u_{p}\right) \cos u_{1} \cos u_{2}+G_{j}\left(u_{3}, \ldots, u_{p}\right) \cos u_{1} \sin u_{2}\right. \\
 \tag{4.77}\\
\left.+E_{j} \sin u_{1}\right\} z_{j}+\sum_{k=\alpha+1}^{h} E_{k} z_{k}+G
\end{array}
$$

By substituting (4.77) into (4.28) with $s=2$ and $t>2$, we know that G_{j} are constant vectors. Continuing these procedures sufficiently many times, we obtain

$$
\begin{align*}
& \phi\left(z_{1}, \ldots, z_{h}, u_{1}, \ldots, u_{p}\right) \\
& =\sum_{j=1}^{\alpha}\left\{c_{1}^{j} \prod_{t=1}^{p} \cos u_{t}+c_{2}^{j} \sin u_{1}+c_{3}^{j} \sin u_{2} \cos u_{1}+\cdots\right. \\
& \left.\quad+c_{p+1}^{j} \sin u_{p} \prod_{t=1}^{p-1} \cos u_{t}\right\} z_{j}+\sum_{k=\alpha+1}^{h} E_{k} z_{k}+G \tag{4.78}
\end{align*}
$$

where c_{t}^{j}, E_{k}, G are constant vectors in \mathbf{C}^{m}.
Because $N_{T} \times_{f} N_{\perp}$ is a $C R$-warped product in \mathbf{C}^{m}, we may choose the following initial conditions:

$$
\begin{aligned}
& \phi(1,0, \ldots, 0)=(1,0, \ldots, 0, \ldots, 0) \\
& \phi_{z_{1}}(1,0, \ldots, 0)=(1,0, \ldots, 0, \ldots, 0) \\
& \phi_{z_{2}}(1,0, \ldots, 0)=(0,0, \ldots, 0, \overbrace{1}^{p+2 \text {-th }}, 0, \ldots, 0), \\
& \ldots \ldots \\
& \phi_{z_{\alpha}}(1,0, \ldots, 0)=(0, \ldots, 0, \overbrace{1}^{\alpha p-p+\alpha-\text { th }}, 0, \ldots, 0) \\
& \phi_{z_{\alpha+1}}(1,0, \ldots, 0)=(0, \ldots, 0, \overbrace{1}^{1+\alpha p+\alpha-\text { th }}, 0, \ldots, 0),
\end{aligned}
$$

$$
\begin{align*}
& \phi_{z_{h}}(1,0, \ldots, 0)=(0, \ldots, 0, \overbrace{1}^{\alpha p+h \text {-th }}, 0, \ldots, 0), \\
& \phi_{u_{1}}(1,0, \ldots, 0)=(0,1, \ldots, 0, \overbrace{1}^{p+3 \text {-th }}, 0, \ldots, 0, \overbrace{1}^{1+\alpha p-p+\alpha-\text {-th }}, 0, \ldots, 0), \\
& \ldots \ldots \\
& \phi_{u_{p}}(1,0, \ldots, 0)=(0, \ldots, 0, \overbrace{1}^{p+1 \text {-th }}, 0, \ldots, 0, \overbrace{1}^{\alpha(p+1) \text {-th }}, 0, \ldots, 0) . \tag{4.79}
\end{align*}
$$

Applying (4.78) and (4.79) gives

$$
\begin{equation*}
\phi=\left(w_{0} z_{1}, \ldots, w_{p} z_{1}, \ldots, w_{0} z_{\alpha}, \ldots, w_{p} z_{\alpha}, z_{\alpha+1}, \ldots, z_{h}, 0, \ldots, 0\right) \tag{4.80}
\end{equation*}
$$

where

$$
\begin{aligned}
& w_{0}=\prod_{t=1}^{p} \cos u_{t}, \quad w_{1}=\sin u_{1} \\
& w_{2}=\sin u_{2} \cos u_{1}, \ldots, w_{p+1}=\sin u_{p} \prod_{t=1}^{p-1} \cos u_{t}
\end{aligned}
$$

Since ϕ is an immersion, (4.80) implies that N_{T} is contained in \mathbf{C}_{*}^{h}.

5. $C R$-warped products in $C P^{m}$ satisfying the equality

In this section we determine $C R$-warped products in complex projectable spaces which satisfy the equality case of (4.16). In order to do so, we recall briefly a procedure via Hopf fibration to obtain the desired submanifolds of complex projective spaces.

Let $\mathbf{C}^{*}=\mathbf{C}-\{0\}$. Consider the \mathbf{C}^{*}-action on \mathbf{C}_{*}^{m+1} defined by λ. $\left(z_{0}, \ldots, z_{m}\right)=\left(\lambda z_{0}, \ldots, \lambda z_{m}\right)$. The set of equivalent classes obtained from this action is denoted by $C P^{m}$. Let $\pi(z)$ denote the equivalent class contains z. Then $\pi: \mathbf{C}_{*}^{m+1} \rightarrow C P^{m}$ is a surjection. It is well-known that the $C P^{m}$ admits a complex structure induced from the complex structure on \mathbf{C}^{m+1} and a Kähler metric g with constant holomorphic sectional curvature 4 .

Assume $\psi: M \rightarrow C P^{m}(4)$ is an isometric immersion. Then $\breve{M}=$ $\pi^{-1}(M)$ is a \mathbf{C}^{*}-bundle over M and the lift $\breve{\psi}: \pi^{-1}(M) \rightarrow \mathbf{C}_{*}^{m+1}$ of ψ is an isometric immersion satisfying $\pi \circ \breve{\psi}=\psi \circ \pi$. Conversely, if $\breve{\psi}: Q \rightarrow \mathbf{C}_{*}^{m+1}$ is an isometric immersion invariant under the \mathbf{C}^{*}-action, then there is a unique isometric immersion $\psi: \pi(Q) \rightarrow C P^{m}(4)$ satisfying $\pi \circ \breve{\psi}=\psi \circ \pi$.

There is an alternate way to view the lift $\breve{\psi}: \pi^{-1}(N) \rightarrow \mathbf{C}_{*}^{m+1}$ via the Hopf fibration as follows: Let $S^{2 m+1}$ denote the un it hypersphere of \mathbf{C}^{m+1} centered at the origin and let $U(1)=\{\lambda \in \mathbf{C}: \lambda \bar{\lambda}=1\}$. Then we have a $U(1)$-action on $S^{2 m+1}$ defined by $z \mapsto \lambda z$. At $z \in S^{2 m+1} \subset \mathbf{C}^{m+1}$, the vector $V=i z$ is tangent to the flow of this action. The quotient space $S^{2 m+1} / \sim$ obtained from this $U(1)$-action is exactly the $C P^{m}(4)$. Let $\varphi: S^{2 m+1} \rightarrow$ $C P^{m}(4)$ denote the projection via the $U(1)$-action. The projection φ is known as the Hopf fibration.

When $\psi: M \rightarrow C P^{m}(4)$ is an isometric immersion, $\hat{M}=\varphi^{-1}(M)$ is a principal circle bundle over M with totally geodesic fibers. The lift $\hat{\psi}: \hat{M} \rightarrow S^{2 m+1}$ of ψ is an isometric immersion satisfying $\varphi \circ \hat{\psi}=\psi \circ \varphi$. Conversely, if $\psi: U \rightarrow S^{2 m+1}$ is an isometric immersion which is invariant under $U(1)$-action, there is a unique isometric immersion $\psi_{\varphi}: \varphi(U) \rightarrow$ $C P^{m}(4)$ satisfying $\varphi \circ \hat{\psi}_{\varphi}=\psi_{\varphi} \circ \varphi$.

For each vector X tangent to $C P^{m}(4)$, we denote by X^{*} a horizontal lift of X via the Hopf fibration φ. The horizontal lift X^{*} and X have the same length, since the Hopf fibration is a Riemannian submersion. Since $V=i z$ generates the vertical subspaces of the Hopf fibration, we have an orthogonal decomposition:

$$
\begin{equation*}
T_{z} S^{2 m+1}=\left(T_{\varphi(z)} C P^{m}\right)^{*} \oplus \operatorname{Span}\{V\} \tag{5.1}
\end{equation*}
$$

where $\left(T_{\varphi(z)} C P^{m}\right)^{*}$ is the set consisting of all horizontal lifts of $T_{\varphi(z)} C P^{m}$ via φ.

For an isometric immersion $\psi: M \rightarrow C P^{m}(4), \breve{M}=\pi^{-1}(M)$ is diffeomorphic to $\mathbf{R}^{*} \times \hat{M}$ where $\mathbf{R}^{*}=\mathbf{R}-\{0\}$ and $\hat{M}=\varphi^{-1}(M)$. The immersion $\breve{\psi}: \breve{M} \rightarrow \mathbf{C}_{*}^{m+1}$ is related to the immersion $\hat{\psi}: \hat{M} \rightarrow S^{2 m+1}$ by

$$
\begin{equation*}
\breve{\psi}(t, q)=t \hat{\psi}(q), \quad t \in \mathbf{R}^{*}, \quad q \in \hat{M} \tag{5.2}
\end{equation*}
$$

Clearly, \breve{M} is the cone over \hat{M} with the vertex at the origin of \mathbf{C}^{m+1}. The metric \breve{g} of \breve{M} and the metric \hat{g} of \hat{M} are related by

$$
\begin{equation*}
\breve{g}=t^{2} \hat{g}+d t^{2} \tag{5.3}
\end{equation*}
$$

The purpose of this section is to prove the following.
Theorem 5.1 Let $\phi: N_{T} \times{ }_{f} N_{\perp} \rightarrow C P^{m}(4)$ be a $C R$-warped product. Then
(1) The squared norm of the second fundamental form of ϕ satisfies

$$
\begin{equation*}
\|\sigma\|^{2} \geq 2 p\left\{\|\nabla(\ln f)\|^{2}+\Delta(\ln f)\right\}+4 h p \tag{5.4}
\end{equation*}
$$

(2) The CR-warped product satisfies the equality case of (5.4) if and only if
(2.i) N_{T} is an open portion of complex projective h-space $C P^{h}(4)$;
(2.ii) N_{\perp} is an open portion of unit p-sphere S^{p}; and
(2.iii) There exists a natural number $\alpha \leq h$ such that, up to rigid motions, ϕ is the composition $\pi \circ \breve{\phi}$, where

$$
\begin{equation*}
\breve{\phi}(z, w)=\left(w_{0} z_{0}, \ldots, w_{p} z_{0}, \ldots, w_{0} z_{\alpha}, \ldots, w_{p} z_{\alpha}, z_{\alpha+1}, \ldots, z_{h}, 0 \ldots, 0\right) \tag{5.5}
\end{equation*}
$$

for $z=\left(z_{0}, \ldots, z_{h}\right) \in \mathbf{C}_{*}^{h+1}$ and $w=\left(w_{0}, \ldots, w_{p}\right) \in S^{p} \subset \mathbf{E}^{p+1}$, and π being the projection $\pi: \mathbf{C}_{*}^{m+1} \rightarrow C P^{m}(4)$.

Proof. Inequality (5.4) is a special case of (4.16).
Let $\phi: M \rightarrow \overline{C P^{m}}(4)$ be an isometric immersion and let $\breve{\nabla}, \hat{\nabla}$ and ∇ denote the Levi-Civita connections on \breve{M}, \hat{M} and M respectively. Denote by $\hat{\sigma}$ the second fundamental form of the lift $\hat{\phi}: \hat{M} \rightarrow S^{2 m+1}$ of ϕ via Hopf's fibration. Then we have

$$
\begin{align*}
& \hat{\nabla}_{X^{*}} Y^{*}=\left(\nabla_{X} Y\right)^{*}-\langle P X, Y\rangle V, \tag{5.6}\\
& \hat{\nabla}_{V} X^{*}=\hat{\nabla}_{X^{*}} V=(P X)^{*}, \tag{5.7}\\
& \hat{\nabla}_{V} V=0, \tag{5.8}\\
& \hat{\sigma}\left(X^{*}, Y^{*}\right)=(\sigma(X, Y))^{*}, \quad \hat{\sigma}\left(X^{*}, V\right)=(F X)^{*}, \quad \hat{\sigma}(V, V)=0, \tag{5.9}
\end{align*}
$$

for vector fields X, Y tangent to M, where $P X$ and $F X$ are the tangential and the normal components of $J X$, respectively.

For a vector U tangent to $\hat{M} \subset S^{2 m+1} \subset \mathbf{C}_{*}^{m+1}$, we extend U to a vector field, also denoted by U, in \mathbf{C}_{*}^{m+1} by parallel translation along the rays of the cone \breve{M} over \hat{M}. We obtain from (5.2) that

$$
\begin{align*}
& \breve{\sigma}(U, W)(t, q)=\frac{1}{t} \hat{\sigma}(U, W)(q), \quad t \in \mathbf{R}^{*}, \quad q \in \hat{M}, \tag{5.10}\\
& \breve{\sigma}\left(U, \frac{\partial}{\partial t}\right)=\breve{\sigma}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=0, \tag{5.11}
\end{align*}
$$

for U, W tangent to \hat{M}, where $\breve{\sigma}$ denotes the second fundamental form of
the lift $\breve{\phi}: \breve{M} \rightarrow \mathbf{C}_{*}^{m+1}$ of ϕ via π.
Now suppose that $\phi: M=N_{T} \times_{f} N_{\perp} \rightarrow C P^{m}(4)$ is a $C R$-warped product in $C P^{m}(4)$. As before, we denote by \mathcal{D} and \mathcal{D}^{\perp} the holomorphic and the totally real distributions of $N_{t} \times{ }_{f} N_{\perp}$, respectively. Let $\hat{\mathcal{D}}$ denote the distribution on $\hat{M}=\varphi^{-1}(M)$ spanned by $\mathcal{D}^{*}=\left\{X^{*}, X \in \mathcal{D}\right\}$ and $V=i z$, where X^{*} is a horizontal lift of X via φ. Since \mathcal{D} is integrable, (5.6) (5.8) implies that the distribution $\hat{\mathcal{D}}$ is also integrable. From (5.6) (5.8), we also know that each leaf of $\hat{\mathcal{D}}$ is a totally geodesic submanifold of \hat{M}.

Let $\hat{\mathcal{D}}^{\perp}=\left\{Z^{*} \in T \hat{M}: Z \in \mathcal{D}^{\perp}\right\}$. Then $\hat{\mathcal{D}}^{\perp}$ is the orthogonal complementary distribution of $\hat{\mathcal{D}}$ in $T \hat{M}$. For vector fields Z, W in $\mathcal{D}^{\perp},(5.6)$ implies

$$
\begin{equation*}
\hat{\nabla}_{Z^{*}} W^{*}=\left(\nabla_{Z} W\right)^{*} \tag{5.12}
\end{equation*}
$$

Since \mathcal{D}^{\perp} is integrable, (5.12) implies that $\hat{\mathcal{D}}^{\perp}$ is also an integrable distribution.

On the other hand, (4.19) gives

$$
\begin{equation*}
\left\langle\nabla_{W} Z, X\right\rangle=-(X \ln f)\langle Z, W\rangle \tag{5.13}
\end{equation*}
$$

for vector field X in \mathcal{D} and Z, W in \mathcal{D}^{\perp}. Thus, by (5.12), (5.13), $\left\langle\left(\nabla_{Z} W\right)^{*}, V\right\rangle=0$, and the fact that the Hopf fibration is a Riemannian submersion, we obtain

$$
\begin{equation*}
\left\langle\hat{\nabla}_{Z^{*}} W^{*}, X^{*}\right\rangle=-(X \ln f)\left\langle Z^{*}, W^{*}\right\rangle, \quad\left\langle\hat{\nabla}_{Z^{*}} W^{*}, V\right\rangle=0 \tag{5.14}
\end{equation*}
$$

Thus, each leaf of $\hat{\mathcal{D}}^{\perp}$ is an extrinsic sphere in \hat{M}, that is, a totally umbilical submanifold with parallel mean curvature vector. Therefore, by applying a result of Hiepko [10], we know that \hat{M} is also a warped product $\hat{N}_{T} \times \hat{f} N_{\perp}^{*}$, where \hat{N}_{T} is a leaf of $\hat{\mathcal{D}}, N_{\perp}^{*}$ a horizontal lift of N_{\perp} and \hat{f} the warping function. From the definitions of $\hat{\mathcal{D}}, \hat{N}_{T}$ and φ, we may choose \hat{N}_{T} to be $\varphi^{-1}\left(N_{T}\right)$. Because the Hopf fibration $\varphi: S^{2 m+1} \rightarrow C P^{m}(4)$ is a Riemannian submersion, $d \varphi$ preserves the length of vectors normal to fibres. Therefore, the warping function \hat{f} of $\hat{N}_{T} \times{ }_{\hat{f}} N_{\perp}^{*}$ is given by $f \circ \varphi$. Since \breve{M} is the punctured cone over \hat{M} with 0 as its vertex, \breve{M} is nothing but $\breve{N_{T}} \times{ }_{t} \breve{N_{\perp}}$, where $\breve{N}_{T}=\pi^{-1}\left(N_{T}\right), \breve{f}=f \circ \pi$, and \breve{N}_{\perp} is a horizontal lift of N_{\perp} via π. Because \breve{N}_{\perp} is isometric to N_{\perp}, \breve{M} is thus isometric to $\breve{N}_{T} \times{ }_{t \breve{f}} N_{\perp}$. It follows from our constructions that $\breve{N}_{T}=\pi^{-1}\left(N_{T}\right)$ is a holomorphic submanifold of \mathbf{C}_{*}^{m+1} and \breve{N}_{\perp} is a totally real submanifold in \mathbf{C}_{*}^{m+1}. Therefore, \breve{M} is
isometrically immersed in \mathbf{C}_{*}^{m+1} as a $C R$-warped product.
Now, suppose that $\phi: M=N_{T} \times_{f} N_{\perp} \rightarrow C P^{m}(4)$ satisfies the equality case of (5.4). Then we obtain from (4.15) and (4.16) that

$$
\begin{equation*}
\sigma(\mathcal{D}, \mathcal{D})=0, \quad \sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right)=0 \tag{5.15}
\end{equation*}
$$

Let $\breve{\mathcal{D}}$ be the distribution on \breve{M} spanned by $\hat{\mathcal{D}}$ and $\partial / \partial t$ and $\breve{\mathcal{D}}^{\perp}$ the orthogonal distribution of $\breve{\mathcal{D}}$ in $T \breve{M}$. Then $\breve{\mathcal{D}}^{\perp}$ is spanned by vectors in \mathbf{C}_{*}^{m+1} obtained from $\hat{\mathcal{D}}^{\perp}$ by parallel translation along rays of the cone \breve{M} over \hat{M}. Thus, from (5.9), (5.10) and the second equation of (5.15), we obtain

$$
\begin{equation*}
\breve{\sigma}\left(\breve{\mathcal{D}}^{\perp}, \breve{\mathcal{D}}^{\perp}\right)=0 . \tag{5.16}
\end{equation*}
$$

Also, from (5.9)-(5.11) and the first equation in (5.15), we find

$$
\begin{equation*}
\breve{\sigma}(\breve{\mathcal{D}}, \breve{\mathcal{D}})=0 . \tag{5.17}
\end{equation*}
$$

Therefore, by (4.15), $\pi^{-1}(M)=\breve{N}_{T} \times_{t \breve{f}} N_{\perp}$ satisfies the corresponding equality: $\|\breve{\sigma}\|^{2}=2 p\left\{\|\breve{\nabla}(\ln t \breve{f})\|^{2}+\breve{\Delta}(\ln t \breve{f})\right\}$ in \mathbf{C}_{*}^{m+1}. Hence, Theorem 4.1 implies that, up to rigid motions, the immersion of \breve{M} is the $\breve{\phi}$ defined by (5.5) for some natural number $\alpha \leq h$. Thus, up to rigid motions, ϕ is the composition $\pi \circ \breve{\phi}$.

Conversely, it is easy to see that the immersion $\breve{\phi}$ defined by (5.5) is a $C R$-warped product $\mathbf{C}_{*}^{h+1} \times_{f} S^{p}$ in \mathbf{C}^{m+1} which is invariant under the \mathbf{C}^{*}-action. Thus, the projection $\pi \circ \breve{\phi}$ of $\breve{\phi}$ under $\pi: \mathbf{C}_{*}^{m+1} \rightarrow C P^{m}(4)$ defines a submanifold M in $C P^{m}(4)$. It is easy to verify that M is indeed a $C R$-warped product $C P^{h}(4) \times{ }_{\tilde{f}} S^{p}$ in $C P^{m}(4)$ for some suitable warping function \tilde{f}. Moreover, it follows from (5.9) that the $C R$-warped product M satisfies condition (5.15). Hence, by applying (4.15), we know that $M=$ $\pi\left(\mathbf{C}_{*}^{h+1} \times_{f} S^{p}\right)$ satisfies the equality case of (5.4).

6. $\quad C R$-warped products in complex hyperbolic space

Let \mathbf{C}_{1}^{m+1} denote a complex number space endowed with pseudoEuclidean metric $g_{0}=-d z_{0} d \bar{z}_{0}+\sum_{j=1}^{m} d z_{j} d \bar{z}_{j}$. Put $\mathbf{C}_{* 1}^{m+1}=\mathbf{C}_{1}^{m+1}-\{0\}$. Consider the \mathbf{C}^{*}-action on $\mathbf{C}_{* 1}^{m+1}$ by $\lambda \cdot\left(z_{0}, \ldots, z_{m}\right)=\left(\lambda z_{0}, \ldots, \lambda z_{m}\right)$. The set of equivalent classes obtained from this action is denoted by $C H^{m}$. The CH^{m} admits a natural Kähler structure (J, g) with constant holomorphic sectional curvature -4 . Let $\pi: \mathbf{C}_{* 1}^{m+1} \rightarrow C H^{m}(-4)$ denote the projection
obtained from the \mathbf{C}^{*}-action.
Just like $C P^{m}$, there is an alternate way to view $C H^{m}$ as follows: Let

$$
\begin{equation*}
H_{1}^{2 m+1}=\left\{z=\left(z_{1}, z_{2}, \ldots, z_{m+1}\right) \in \mathbf{C}_{1}^{m+1}:\langle z, z\rangle=-1\right\} \tag{6.1}
\end{equation*}
$$

where \langle,$\rangle is the inner product on \mathbf{C}_{1}^{m+1}$ induced from the pseudo-Euclidean metric $g_{0} . H_{1}^{2 m+1}$ is known as the anti-de Sitter space-time.

We have an $U(1)$-action on $H_{1}^{2 m+1}$ defined by $z \mapsto \lambda z$. At each point $z \in H_{1}^{2 m+1}$, the vector $V=i z$ is tangent to the flow of the action. The orbit lies in the negative definite plane spanned by z and $i z$. The quotient space $H_{1}^{2 m+1} / \sim$ under the $U(1)$-action is exactly the complex hyperbolic space $C H^{m}$ with constant holomorphic sectional curvature -4 . The complex structure J on $C H^{m}$ is induced from the canonical complex structure J on \mathbf{C}_{1}^{m+1} via the Riemannian submersion:

$$
\begin{equation*}
\varphi: H_{1}^{2 m+1} \rightarrow C H^{m}(-4), \tag{6.2}
\end{equation*}
$$

which has totally geodesic fibers. The submersion (6.2) is called the hyperbolic Hopf fibration.

Assume $\psi: M \rightarrow C H^{m}(-4)$ is an isometric immersion. Then $\breve{M}=$ $\pi^{-1}(M)$ is a \mathbf{C}^{*}-bundle over M and the lift $\breve{\psi}: \breve{M} \rightarrow \mathbf{C}_{* 1}^{m+1}$ of ψ is an isometric immersion satisfying $\pi \circ \breve{\psi}=\psi \circ \pi$. Conversely, if $\breve{\psi}: \breve{M} \rightarrow \mathbf{C}_{* 1}^{m+1}$ is an isometric immersion which is invariant under the \mathbf{C}^{*}-action, then there is an isometric immersion $\psi: \pi(\breve{M}) \rightarrow C H^{m}(-4)$ satisfying $\pi \circ \breve{\psi}=\psi \circ \pi$.

For an isometric immersion $\psi: M \rightarrow C H^{m}(-4), \breve{M}=\pi^{-1}(M)$ is diffeomorphic to $\mathbf{R}^{*} \times \hat{M}$, where $\hat{M}=\varphi^{-1}(M)$. The immersion $\breve{\psi}: \breve{M} \rightarrow$ $\mathbf{C}_{* 1}^{m+1}$ is related to $\hat{\psi}: \hat{M} \rightarrow H_{1}^{2 m+1}$ by

$$
\begin{equation*}
\breve{\psi}(t, q)=t \hat{\psi}(q), \quad t \in \mathbf{R}^{*}, \quad q \in \hat{M} \tag{6.3}
\end{equation*}
$$

The purpose of this section is to prove the following.
Theorem 6.1 Let $\phi: N_{T} \times_{f} N_{\perp} \rightarrow C H^{m}(-4)$ be a $C R$-warped product. Then
(1) The squared norm of the second fundamental form of ϕ satisfies

$$
\begin{equation*}
\|\sigma\|^{2} \geq 2 p\left\{\|\nabla(\ln f)\|^{2}+\Delta(\ln f)\right\}-4 h p \tag{6.4}
\end{equation*}
$$

(2) The CR-warped product satisfies the equality case of (6.4) if and only if
(2.a) N_{T} is an open portion of complex hy perbolic h-space $C H^{h}(-4)$;
(2.b) N_{\perp} is an open portion of unit p-sphere S^{p} (or \mathbf{R}, when $p=1$); and
(2.c) up to rigid motions, ϕ is the composition $\pi \circ \breve{\phi}$, where either $\breve{\phi}$ is given by

$$
\begin{equation*}
\breve{\phi}(z, w)=\left(z_{0}, \ldots, z_{\beta}, w_{0} z_{\beta+1}, \ldots, w_{p} z_{\beta+1}, \ldots, w_{0} z_{h}, \ldots, w_{p} z_{h}, 0 \ldots, 0\right) \tag{6.5}
\end{equation*}
$$

for $0<\beta \leq h, z=\left(z_{0}, \ldots, z_{h}\right) \in \mathbf{C}_{* 1}^{h+1}$ and $w=\left(w_{0}, \ldots, w_{p}\right) \in S^{p}$, or $\breve{\phi}$ is given by

$$
\begin{align*}
& \breve{\phi}(z, u)=\left(z_{0} \cosh u, z_{0} \sinh u, z_{1} \cos u, z_{1} \sin u, \ldots\right. \\
& \left.\ldots, z_{\alpha} \cos u, z_{\alpha} \sin u, z_{\alpha+1}, \ldots, z_{h}, 0 \ldots, 0\right) \tag{6.6}
\end{align*}
$$

for $z=\left(z_{0}, \ldots, z_{h}\right) \in \mathbf{C}_{* 1}^{h+1}$ and $u \in \mathbf{R}$, and π being the projection π : $\mathbf{C}_{* 1}^{m+1} \rightarrow C H^{m}(-4)$.

Proof. Inequality (6.4) is a special case of (4.16). It follows from (4.15) that a $C R$-warped product $\phi: M=N_{T} \times_{f} N_{\perp} \rightarrow C H^{m}(-4)$ satisfies the equality case of (6.4) if and only if the second fundamental form of ϕ satisfies

$$
\begin{equation*}
\sigma(\mathcal{D}, \mathcal{D})=0, \quad \sigma\left(\mathcal{D}^{\perp}, \mathcal{D}^{\perp}\right)=0 \tag{6.7}
\end{equation*}
$$

Suppose that ϕ is a $C R$-warped product in $C H^{m}(-4)$ satisfying (6.7). Since N_{T} is totally geodesic in $N_{T} \times{ }_{f} N_{\perp}$, the first equation of (6.7) implies that each leaf of \mathcal{D} is totally geodesic in $C H^{m}(-4)$. Thus, N_{T} is an open portion of $C H^{h}(-4)$; thus the preimage $\breve{N}_{T}=\pi^{-1}\left(N_{T}\right)$ is an open portion of $\mathbf{C}_{* 1}^{h+1}$. Moreover, by applying an argument similar to the proof of Theorem 5.1 for $C R$-warped products in $C P^{m}$, we know that $\breve{M}=\pi^{-1}(M)$ is isometric to $\breve{N}_{T} \times_{t \breve{f}} N_{\perp}$ with $\breve{f}=f \circ \pi$ and the lift $\breve{\phi}: \breve{N}_{T} \times{ }_{t \breve{f}} N_{\perp} \rightarrow \mathbf{C}_{* 1}^{m+1}$ is a $C R$-warped product in $\mathrm{C}_{* 1}^{m+1}$.

Let $\breve{\nabla}$ and $\hat{\nabla}$ denote the Levi-Civita connections on \breve{M} and \hat{M}, respectively, and $\hat{\sigma}$ be the second fundamental form of the lift $\hat{\phi}: \hat{M} \rightarrow H_{1}^{2 m+1}$. Then we have [5]

$$
\begin{align*}
& \hat{\nabla}_{X^{*}} Y^{*}=\left(\nabla_{X} Y\right)^{*}+\langle P X, Y\rangle V \tag{6.8}\\
& \hat{\nabla}_{V} X^{*}=\hat{\nabla}_{X^{*}} V=(P X)^{*}, \quad \hat{\nabla}_{V} V=0 \tag{6.9}\\
& \hat{\sigma}\left(X^{*}, Y^{*}\right)=(\sigma(X, Y))^{*}, \hat{\sigma}\left(X^{*}, V\right)=(F X)^{*}, \hat{\sigma}(V, V)=0 \tag{6.10}
\end{align*}
$$

for vector fields X, Y tangent to M.

For a vector U tangent to $\hat{M} \subset H_{1}^{2 m+1} \subset \mathbf{C}_{* 1}^{m+1}$, we extend U to a vector field in $\mathbf{C}_{* 1}^{m+1}$ by parallel translation along the rays of the cone \breve{M} over \hat{M}. From (6.3), we find

$$
\begin{align*}
& \breve{\sigma}(U, W)(t, q)=\frac{1}{t} \hat{\sigma}(U, W)(q), \quad t \in \mathbf{R}^{*}, \quad q \in \hat{M} \tag{6.11}\\
& \breve{\sigma}\left(U, \frac{\partial}{\partial t}\right)=\breve{\sigma}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)=0 \tag{6.12}
\end{align*}
$$

for U, W tangent to \hat{M}, where $\breve{\sigma}$ denotes the second fundamental form of the lift $\breve{\phi}: \breve{M}=\breve{N}_{T} \times_{t \breve{f}} N_{\perp} \rightarrow \mathbf{C}_{*}^{m+1}$ of ϕ via π.

By applying (6.7) (6.12), we know that the second fundamental form $\breve{\sigma}$ of $\breve{\phi}$ satisfies

$$
\begin{equation*}
\breve{\sigma}(\breve{\mathcal{D}}, \breve{\mathcal{D}})=0, \quad \sigma\left(\breve{\mathcal{D}}^{\perp}, \breve{\mathcal{D}}^{\perp}\right)=0 \tag{6.13}
\end{equation*}
$$

where $\breve{\mathcal{D}}$ and $\breve{\mathcal{D}}^{\perp}$ are the holomorphic and the totally real distributions of \breve{M}. Since \breve{N}_{\perp} is totally umbilical in the warped product $\breve{N}_{T} \times \breve{N}_{t} \breve{N}_{\perp}$, the second equation in (6.13) implies that \breve{B}_{\perp} is immersed as a totally umbilical submanifold in a complex Euclidean subspace. Hence, without loss of generality, we may assume that \breve{N}_{\perp} is an open portion of S^{p} (or of \mathbf{R} when $p=1$). Therefore, there is a complex coordinate system $\left\{z_{0}, \ldots, z_{h}\right\}$ on $\mathbf{C}_{* 1}^{h+1}$ and a coordinate system on S^{p} or \mathbf{R} so that the metric on $\breve{M}=$ $\breve{N}_{T} \times{ }_{t \breve{f}} N_{\perp}$ is given by

$$
\begin{equation*}
g=-d z_{0} d \bar{z}_{0}+\sum_{j=1}^{h} d z_{j} d \bar{z}_{j}+\lambda^{2} \sum_{s=1}^{p}\left(\prod_{t=1}^{s-1} \cos ^{2} u_{t} d u_{t}^{2}\right) \tag{6.14}
\end{equation*}
$$

where $\lambda=\lambda\left(z_{0}, \ldots, z_{h}\right)$ is the corresponding warping function.
From (6.13) and (6.14) we know that $\breve{\phi}$ satisfies the following system of partial differential equations:

$$
\begin{align*}
\breve{\phi}_{z_{j} z_{k}}= & \breve{\phi}_{z_{j} \bar{z}_{k}}=\breve{\phi}_{\bar{z}_{j} \bar{z}_{k}}=0, \quad j, k=0, \ldots, h \tag{6.15}\\
\breve{\phi}_{u_{s} u_{t}}= & -\tan u_{s} \breve{\phi}_{u_{t}}, \quad 1 \leq s<t \leq p \tag{6.16}\\
\breve{\phi}_{u_{t} u_{t}}= & \lambda \prod_{s=1}^{t-1} \cos ^{2} u_{s}\left\{\lambda_{x_{0}} \breve{\phi}_{x_{0}}+\lambda_{y_{0}} \breve{\phi}_{y_{0}}-\sum_{k=1}^{h}\left(\lambda_{x_{k}} \breve{\phi}_{x_{k}}+\lambda_{y_{k}} \breve{\phi}_{y_{k}}\right)\right\} \\
& +\sum_{q=1}^{t-1}\left(\frac{\sin 2 u_{q}}{2} \prod_{s=q+1}^{t-1} \cos ^{2} u_{s}\right) \breve{\phi}_{u_{q}}, \quad t=1, \ldots, p \tag{6.17}
\end{align*}
$$

Solving (6.15) gives

$$
\begin{equation*}
\breve{\phi}\left(z_{1}, \ldots, z_{h}, u_{1}, \ldots, u_{p}\right)=\sum_{j=0}^{h} A_{j}\left(u_{1}, \ldots, u_{p}\right) z_{j}+B\left(u_{1}, \ldots, u_{p}\right) \tag{6.18}
\end{equation*}
$$

for some \mathbf{C}_{1}^{m+1}-valued functions A_{0}, \ldots, A_{h}, B. From (6.17) with $t=1$, we find

$$
\begin{equation*}
\breve{\phi}_{u_{1} u_{1}}=\frac{1}{2}\left(\frac{\partial \lambda^{2}}{\partial x_{0}} \breve{\phi}_{x_{0}}+\frac{\partial \lambda^{2}}{\partial y_{0}} \breve{\phi}_{y_{0}}\right)-\frac{1}{2} \sum_{k=1}^{h}\left(\frac{\partial \lambda^{2}}{\partial x_{k}} \breve{\phi}_{x_{k}}+\frac{\partial \lambda^{2}}{\partial y_{k}} \breve{\phi}_{y_{k}}\right) \tag{6.19}
\end{equation*}
$$

Substituting (6.18) into (6.19) yields

$$
\begin{equation*}
\sum_{j=0}^{h} \frac{\partial^{2} A_{j}}{\partial u_{1}^{2}} z_{j}+\frac{\partial^{2} B}{\partial u_{1}^{2}}=\frac{1}{2} \frac{\partial \lambda^{2}}{\partial \bar{z}_{0}} A_{0}-\frac{1}{2} \sum_{j=1}^{h} \frac{\partial \lambda^{2}}{\partial \bar{z}_{j}} A_{j} \tag{6.20}
\end{equation*}
$$

Applying the same argument as for Case (1) in the proof of Theorem 4.1, we know that $\sum_{j=0}^{h}\left(\partial A_{j} / \partial u_{1}\right) A_{j}$ cannot be independent on all z_{0}, \ldots, z_{h}. Then, by applying an argument similar to that given in the first part of Case (2) of the proof of Theorem 4.1, we know that the warping function λ can be chosen to be

$$
\begin{equation*}
\lambda=\left(\sum_{j=0}^{n} a_{j}^{2} z_{j} \bar{z}_{j}\right)^{1 / 2}, \quad a_{0}, \ldots, a_{h} \geq 0 \tag{6.21}
\end{equation*}
$$

Substituting (6.21) into (6.20) gives

$$
\begin{align*}
\frac{\partial^{2} A_{0}}{\partial u_{1}^{2}} & =a_{0}^{2} A_{0}, \quad \frac{\partial^{2} A_{j}}{\partial u_{1}^{2}}=-a_{j}^{2} A_{j}, \quad j=1, \ldots, h \tag{6.22}\\
\frac{\partial^{2} B}{\partial u_{1}^{2}} & =0 \tag{6.23}
\end{align*}
$$

$\operatorname{Case}(\mathrm{a}): a_{0}=\cdots=a_{\beta}=0, a_{\beta+1}, \ldots, a_{h}>0$ for some β satisfying $0<$ $\beta \leq h$.

In this case, by applying an argument similar to Case (2) in the proof of Theorem 4.1, we may obtain

$$
\begin{align*}
& \breve{\phi}=\sum_{j=0}^{\beta}\left\{c_{1}^{j} \prod_{t=1}^{p} \cos u_{t}+c_{2}^{j} \sin u_{1}+c_{3}^{j} \sin u_{2} \cos u_{1}+\cdots\right. \\
&\left.+c_{p+1}^{j} \sin u_{p} \prod_{t=1}^{p-1} \cos u_{t}\right\} z_{j}+\sum_{k=\beta+1}^{h} E_{k} z_{k}+G \tag{6.24}
\end{align*}
$$

for some constant vectors c_{t}^{j}, E_{k}, G in $\mathbf{C}_{* 1}^{m+1}$. Thus, after choosing some suitable initial conditions, we obtain (6.5).

Case (b): $a_{0}, \ldots, a_{\alpha}>0, a_{\alpha+1}=\cdots=a_{h}=0$ for some natural number $\alpha \leq h$.

In this case, after solving (6.22) and (6.23), we find

$$
\begin{align*}
A_{0} & =D_{0}\left(u_{2}, \ldots, u_{p}\right) \cosh \left(a_{0} u_{1}\right)+E_{0}\left(u_{2}, \ldots, u_{p}\right) \sinh \left(a_{0} u_{1}\right) \\
A_{j} & =D_{j}\left(u_{2}, \ldots, u_{p}\right) \cos \left(a_{j} u_{1}\right)+E_{j}\left(u_{2}, \ldots, u_{p}\right) \sin \left(a_{j} u_{1}\right) \\
A_{k} & =D_{k}\left(u_{2}, \ldots, u_{p}\right) u_{1}+E_{k}\left(u_{2}, \ldots, u_{p}\right) \\
B & =F\left(u_{2}, \ldots, u_{p}\right) u_{1}+G\left(u_{2}, \ldots, u_{p}\right) \tag{6.25}
\end{align*}
$$

for some vector functions $D_{0}, \ldots, D_{h}, E_{0}, \ldots, E_{h}, G, G$, where $j=1, \ldots, \alpha$, and $k=\alpha+1, \ldots, h$. Substituting (4.53), (4.54) and (4.55) into (4.31) gives

$$
\begin{align*}
\breve{\phi}= & \left(D_{0}\left(u_{2}, \ldots, u_{p}\right) \cosh \left(a_{0} u_{1}\right)+E_{0}\left(u_{2}, \ldots, u_{p}\right) \sinh \left(a_{0} u_{1}\right)\right) z_{0} \\
& +\sum_{j=1}^{\alpha}\left(D_{j}\left(u_{2}, \ldots, u_{p}\right) \cos \left(a_{j} u_{1}\right)+E_{j}\left(u_{2}, \ldots, u_{p}\right) \sin \left(a_{j} u_{1}\right)\right) z_{j} \tag{6.26}\\
& +\sum_{k=\alpha+1}^{h}\left(D_{k}\left(u_{2}, \ldots, u_{p}\right) u_{1}+E_{k}\left(u_{2}, \ldots, u_{p}\right)\right) z_{k} \tag{6.27}\\
& +F\left(u_{2}, \ldots, u_{p}\right) u_{1}+G\left(u_{2}, \ldots, u_{p}\right)
\end{align*}
$$

Because $\breve{\phi}$ is invariant under the \mathbf{C}^{*}-action, we have $F=G=0$.
If $p=1$, then $D_{0}, \ldots, D_{h}, E_{0}, \ldots, E_{h}$ are constant vectors.
If $p>1$, then (6.26) and (6.16) with $s=1$ and $t=2, \ldots, p$ imply that D_{0} and E_{0} are constant vectors. Also, by applying arguments similar to that given in Case (2) of the proof of Theorem 4.1, we also know that E_{0}, \ldots, E_{h} are constant vectors and $a_{0}=\cdots=a_{\alpha}=1$. The latter condition implies

$$
\begin{equation*}
\lambda^{2}=\sum_{j=0}^{\alpha} z_{j} \bar{z}_{j} \tag{6.28}
\end{equation*}
$$

Thus, from (6.26), we get

$$
\begin{align*}
\breve{\phi}= & \left(D_{0} \cosh u_{1}+E_{0} \sinh u_{1}\right) z_{0} \\
& +\sum_{j=1}^{\alpha}\left(D_{j}\left(u_{2}, \ldots, u_{p}\right) \cos u_{1}+E_{j} \sin u_{1}\right) z_{j}+\sum_{k=\alpha+1}^{h} E_{k} z_{k} \tag{6.29}
\end{align*}
$$

If $p>1$, then by substituting (4.27) and (4.28) into (6.17) with $t=2$, we find

$$
\begin{align*}
& \sum_{j=1}^{\alpha} \cos u_{1} \frac{\partial^{2} D_{j}}{\partial u_{2}^{2}} z_{j} \\
& \quad=\cos ^{2} u_{1}\left\{\left(D_{0} \cosh u_{1}+E_{0} \sinh u_{1}\right) z_{0}+\sum_{j=1}^{\alpha}\left(D_{j} \cos u_{1}+E_{j} \sin u_{1}\right) z_{j}\right\} \\
& \quad-\frac{\sin 2 u_{1}}{2}\left\{\left(D_{0} \sinh u_{1}+E_{0} \cosh u_{1}\right) z_{0}+\sum_{j=1}^{\alpha}\left(D_{j} \sin u_{1}-E_{j} \cos u_{1}\right) z_{j}\right\} \tag{6.30}
\end{align*}
$$

By comparing the coefficients of z_{0} in (6.30) we find

$$
\cos u_{1}\left(D_{0} \cosh u_{1}+E_{0} \sinh u_{1}\right)=\sin u_{1}\left(D_{0} \sinh u_{1}+E_{0} \cosh u_{1}\right)
$$

which is impossible. Hence, we must have $p=1$ in Case (b). Thus, (6.29) becomes

$$
\begin{align*}
\breve{\phi}= & \left(D_{0} \cosh u_{1}+E_{0} \sinh u_{1}\right) z_{0} \\
& +\sum_{j=1}^{\alpha}\left(D_{j} \cos u_{1}+E_{j} \sin u_{1}\right) z_{j}+\sum_{k=\alpha+1}^{h} E_{k} z_{k} \tag{6.31}
\end{align*}
$$

for some constant vectors $D_{0}, \ldots, D_{\alpha}, E_{0}, \ldots, E_{h}$. From (6.14) and (6.31), we know that D_{0} is a unit time-like vector and $D_{1}, \ldots, D_{\alpha}, E_{0}, \ldots, E_{h}$ are space-like orthonormal vectors in \mathbf{C}_{1}^{m+1}. Therefore, after choosing suitable initial conditions, we may obtain (6.6).

Conversely, it is straightforward to verify that (6.5) defines a $C R$ warped product $\mathbf{C}_{* 1}^{h+1} \times_{\lambda} S^{p}$ and (6.6) defines a $C R$-warped product $\mathbf{C}_{* 1}^{h+1} \times_{\lambda}$ \mathbf{R} in $\mathbf{C}_{* 1}^{m+1}$; both cases satisfy (6.13). Since the immersions $\breve{\phi}$ defined by (6.5) and (6.6) are invariant under the \mathbf{C}^{*}-action, their projections under $\pi: \mathbf{C}_{* 1}^{m+1} \rightarrow C H^{m}(-4)$ give rise to $C R$-warped products $C H^{h}(-4) \times{ }_{f} S^{p}$
and $C H^{h}(-4) \times_{f} \mathbf{R}$ in $C H^{m}(-4)$. Because the second fundamental form of $C H^{h}(-4) \times_{f} S^{p}$ and $C H^{h}(-4) \times_{f} \mathbf{R}$ both satisfy condition (6.7) in $\mathrm{CH}^{m}(-4)$, their second fundamental forms satisfy the equality case of (6.4).

References

[1] Bejancu A., Geometry of CR-Submanifolds. D. Reidel Publ. Co. 1986.
[2] Blair D.E. and Chen B.Y., On CR-submanifolds of Hermitian manifold. Israel J. Math. 34 (1979), 353-363.
[3] Chen B.Y., CR-submanifolds of a Kaehler manifold. I. J. Differential Geometry 16 (1981), 305-322; - II, ibid 16 (1981), 493-509.
[4] Chen B.Y., Geometry of warped product CR-submanifolds in a Kaehler manifold. Monatsh. Math. 133 (2001), 177-195; — II, ibid 134 (2001), 103-119.
[5] Chen B.Y., Ludden G.D. and Montiel S., Real submanifolds of a Kaehler manifold. Algebras Groups Geom. 1 (1984), 176-212.
[6] Chen B.Y. and Vrancken L., CR-submanifolds of complex hyperbolic spaces satisfying a basic equality. Israel J. Math. 110 (1999), 341-358.
[7] Dragomir S. and Grimaldi R.A., Classification of totally umbilical CR submanifolds of a generalized Hopf manifold. Boll. Un. Mat. Ital. A (7) 9 (1995), 557-568.
[8] Duggal K.L., Lorentzian geometry of $C R$ submanifolds. Acta Appl. Math. 17 (1989), 171-193.
[9] Gotoh T., Compact minimal CR-submanifolds with the least nullity in a complex projective space. Osaka J. Math. 34 (1997), 175-197.
[10] Hiepko S., Eine innere Kennzeichung der verzerrten Produkte. Math. Ann. 241 (1979), 209-215.
[11] Ki U.H., Takagi R. and Takahashi T., On some CR submanifolds with parallel mean curvature vector field in a complex space form. Nihonkai Math. J. 6 (1995), 215-226.
[12] O'Neill B., Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.
[13] Sasahara, T., On Ricci curvature of CR-submanifolds with rank one totally real distribution. Nihonkai Math. J. 12 (2001), 47-58.
[14] Sharma R. and Duggal K.L., Mixed foliate CR-submanifolds of indefinite complex space-forms. Ann. Mat. Pura Appl. (4) 149 (1987), 103-111.

Department of Mathematics Michigan State University
East Lansing, MI 48824-1027
U. S. A.

E-mail: bychen@math.msu.edu

