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Another general inequality for \bm{CR}-warped products
in complex space forms
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Abstract. We prove that every CR-warped product N_{T}\cross_{f}N_{\perp} in a complex space
form \overline{M}^{m}(4c) of constant holomorphic sectional curvature 4c satisfies a general inequality:
||\sigma||^{2}\geq 2p\{||\nabla(\ln f)||^{2}+\triangle(\ln f)\}+4hpc , where h=\dim_{C}N_{T} , p=\dim_{R}N\perp , and \sigma

is the second fundamental form. We also completely classify CR-warped products in a
complex space form which satisfy the equality case of this inequality.

Key words: CR submanifold CR-warped product, squared norm of second fundamental
form, warping function, warped product, tensor product.

1. Introduction

A submanifold N of a K\"ahler manifold is called a CR submanifold if
there exists on N a differentiable holomorphic distribution V whose or-
thogonal complementary distribution D^{\perp} is a totally real distribution, i.e.,
JD_{x}^{\perp}\subset T_{x}^{\perp}N (cf. [1]). Throughout this paper we denote the complex rank
of V by h and the real rank of D^{\perp} by p . The study of CR-submanifolds
has been a very active field of research during the last two decades (see, for
instance, [1-4, 6-9, 11, 13, 14] ) .

A CR manifold is called a CR-product if it is the direct product
N_{T}\cross N_{\perp} of a holomorphic submanifold N_{T} and a totally real submanifold
N_{\perp} . It was proved in [3] that a CR-product in a complex Euclidean space is a
direct product of a holomorphic submanifold and a totally real submanifold
of complex linear subspaces. It was also proved in [3] that there do not
exist non-proper CR-products in complex hyperbolic spaces. Moreover,
CR-products in the complex projective space CP^{h+p+hp} are obtained from
the Segre imbedding in a natural way.

Let B and F be two Riemannian manifolds with Riemannian metrics
g_{B} and g_{F} , respectively, and f be a positive differentiable function on B .
The warped product B\cross_{f}F is the product manifold B\cross F equipped with
the Riemannian metric g=g_{B}+f^{2}g_{F} . The function f is called the warping

2000 Mathematics Subject Classification : 53C50,53C42,53B25 .



416 B.-Y. Chen

function. A warped product is said to be proper if its warping function is
non-constant. The warping function is the main structure of a warped prod-
uct manifold. It is well-known that warped products play some important
roles in differential geometry as well as in mathematical physics (cf. [12]).

It was shown in [4] that there do not exist warped products of the form:
N_{\perp}\cross_{f}N_{T} in a K\"ahler manifold beside CR products where N_{\perp} is a totally
real submanifold and N_{T} is a holomorphic submanifold. By contrast, it was
also shown that there exist many CR-submanifolds which are warped prod-
ucts of the form N_{T}\cross_{f}N_{\perp}by reversing the two factors N_{T} and N_{\perp} . Such
a warped product CR-submanifold is simply called a CR-warped product.

It was known in [4] that every CR-warped product satisfies a general
inequality: ||\sigma||^{2}\geq 2p||\nabla(\ln f)||^{2} , where \nabla(\ln f) is the gradient of ln f and
\sigma is the second fundamental form. CR-warped products in complex space
forms satisfying the equality case of this inequality have been completely
classified in [4].

In this paper we prove that every CR warped product N_{T}\cross_{f}N_{\perp} in a
complex space form \tilde{M}^{m}(4c) satisfies another general inequality:

||\sigma||^{2}\geq 2p { ||\nabla ln f||^{2}+\triangle(\ln f) } +4/ipc , (1.1)

where \triangle denotes the Laplacian operator of the CR-warped product.
For any three natural numbers h , p , \alpha satisfying \alpha\leq h , we introduce

a map \phi_{\alpha}^{hp} : C_{*}^{h}\cross S^{p} – C^{\alpha p+h} . C_{*}^{h}=C^{h}-\{0\} , in a way similar to Segre
imbedding. We show that each \phi_{\alpha}^{hp} is a CR-warped product in the complex
Euclidean space C^{\alpha p+h} (Theorem 3.1). We also prove that, up to rigid
motions, every CR-warped product in a complex Euclidean space satisfying
the equality case of inequality (1.1) is one of the \phi_{\alpha}^{hp} (Theorem 4.1). Finally,
we prove that every CR-warped product satisfying the equality in a complex
projective space or a complex hyperbolic space is obtained from a \phi_{\alpha}^{hp} via
the Hopf fibration (Theorems 5.1 and 6.1).

2. Preliminaries

Let M be a Riemannian n-manifold with inner product \langle , \rangle and
e_{1} , ., e_{n} be an orthonormal frame fields on M. For differentiate func-
tion \varphi on M, the gradient \nabla\varphi and the Laplacian \triangle\varphi of \varphi are defined
respectively by

\langle\nabla\varphi, X\rangle=X\varphi , (2.1)
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\triangle\varphi=\sum_{j=1}^{n}\{e_{j}e_{j}\varphi-(\nabla_{e_{j}}e_{j})\varphi\} (2.2)

for vector field X tangent to M. where \nabla is the Riemannian connection on
M . If M is isometrically immersed in a Riemannian manifold \tilde{M} . Then the
formulas of Gauss and Weingarten for M in \tilde{M} are given respectively by

\tilde{\nabla}_{X}Y=\nabla_{X}Y+\sigma(X, Y) , (2.3)

\tilde{\nabla}_{X}\xi=-A_{\xi}X+D_{X}\xi (2.4)

for vector fields X , Y tangent to N and \xi normal to M. where \tilde{\nabla} denotes the
Levi-Civita connection on \tilde{M} , \sigma the second fundamental form, D the normal
connection, and A the shape operator of M in \tilde{M} . The second fundamental
form and the shape operator are related by \langle A_{\xi}X, Y\rangle=\langle\sigma(X, Y), \xi\rangle . where

\langle , \rangle denotes the inner product on M as well as on \tilde{M} .
The equation of Gauss is given by

\tilde{R}(X, Y;Z, W)=R(X, Y;Z, W)+\langle\sigma(X, Z), \sigma(Y.W)\rangle

-\langle\sigma(X, W), \sigma(Y, Z)\rangle , (2.5)

for X , Y. Z , W tangent to M, where R and \tilde{R} denote the curvature tensors
of M and \tilde{M} . respectively.

For the second fundamental form \sigma , we define its covariant derivative
\overline{\nabla}\sigma with respect to the connection on TM\oplus T^{\perp}M by

(\overline{\nabla}_{X}\sigma)(Y, Z)=D_{X}(\sigma(Y, Z))-\sigma(\nabla_{X}Y, Z)-\sigma(Y.\nabla_{X}Z) . (2.6)

The equation of Codazzi is

(\tilde{R}(X, Y)Z)^{\perp}=(\overline{\nabla}_{X}\sigma)(Y, Z)-(\overline{\nabla}_{Y}\sigma)(X, Z) , (2.7)

where (\tilde{R}(X, Y)Z)^{\perp} denotes the normal component of \tilde{R}(X, Y)Z .
For a CR-submanifold M in a K\"ahler manifold \tilde{M} with complex struc-

ture J, we denote by lJ the complementary orthogonal subbundle of JD^{\perp}

in the normal bundle T^{\perp}M . Hence we have the following orthogonal direct
sum decomposition:

T^{\perp}M=JD^{\perp}\oplus\nu , JD^{\perp}\perp\nu . (2.8)

We recall the following lemma from [3] for later use.



418 B.-Y. Chen

Lemma 2.1 Let M be a CR -submanifold in a K\"ahler manifold \tilde{M} . Then
we have

(1) \langle\nabla_{U}Z, X\rangle=\langle JA_{JZ}U, X\rangle ,
(2) A_{JZ}W=A_{JW}Z , and
(3) A_{J\xi}X=-A_{\xi}JX ,

for any vectors U tangent to M, X, Y in D, Z, W in D^{\perp} , and \xi in lJ .

Let (x, u) be a point in a CR-warped product N_{T}\cross_{f}N_{\perp} . Then, for each
X\in T_{x}(N_{T}) , there is a unique vector in D at (x, u) whose projection under
\pi_{T} : N_{T}\cross_{f}N_{\perp}arrow N_{T} is the vector X In this way, one may regards a vector
field U on N_{T} as a vector field U lying in the holomorphic distribution D
in a natural way. Similarly, one may also regard a vector field Z on N_{\perp} as
a vector field in the totally real distribution D^{\perp} .

For CR-warped products in K\"ahler manifolds we have the following [4].

Lemma 2.2 If N_{T}\cross_{f}N_{\perp}is a CR-warped product in a K\"ahler manifold
\tilde{M} . then we have

(1) \langle\sigma(D, D), JD^{\perp}\rangle=0 ;
(2) \nabla_{X}Z=\nabla_{Z}X= (X ln f) Z ;
(3) \langle\sigma(JX, Z), JW\rangle= (X ln f) \langle Z, W\rangle

for any vector fifields X on N_{T} and Z, W in N_{\perp} .

Recall that the Riemann curvature tensor of a complex space form
\tilde{M}^{m}(4c) of constant holomorphic sectional curvature 4c is given by

\tilde{R}(X, Y;Z, W)

=c\{\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle+\langle JX, W\rangle\langle JY, Z\rangle

-\langle JX, Z\rangle\langle JY, W\rangle+2\langle X, JY\rangle\langle JZ, W\rangle\} . (2.9)

3. A class of CR-warped products in complex Euclidean space

Let C_{*}^{h}=C^{h}-\{0\} and j : S^{p}arrow E^{p+1} be the inclusion of the unit
hypersphere S^{p} centered at the origin into E^{p+1} . For a natural number
\alpha\leq h and a vector X tangent to C_{*}^{\alpha} at a point z\in C_{*}^{\alpha} , we decompose X
as X=X_{z}^{||}+X_{z}^{\perp} , where X_{z}^{||} is parallel to z and X_{z}^{\perp} is perpendicular to z .

For any given three natural numbers h , p , \alpha satisfying \alpha\leq h , we
introduce a map \phi_{\alpha}^{hp} : C_{*}^{h}\cross S^{p}arrow C^{\alpha p+h} by

\phi(z, w)=(w_{0}z_{1}, ., w_{p}z_{1}, ., w_{0}z_{\alpha}, ., w_{p}z_{\alpha}, z_{\alpha+1}, . ., z_{h}) (3.1)
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for z= (z_{1}, . . , z_{h})\in C_{*}^{h} and w=(w_{0}, . ., w_{p})\in S^{p}\subset E^{p+1} with
\sum_{t=0}^{p}w_{t}^{2}=1 .

Theorem 3.1 For 1\leq\alpha\leq h and p\geq 1 , the map \phi_{\alpha}^{hp} : C_{*}^{h}\cross S^{p}arrow C^{\alpha p+h}

defifined by (3.1) satisfies the following properties:
(1) \phi_{\alpha}^{hp} : C_{*}^{h}\cross_{f}S^{p}arrow C^{\alpha p+h} is an isometric immersion with warping

function: f=\sqrt{\sum_{j_{-}^{-}1}^{\alpha}z_{j}\overline{z}_{j}} .

(2) \phi_{\alpha}^{hp} is a CR warped product.
(3) The second fundamental form \sigma of \phi_{\alpha}^{hp} satisfifies the equality:

||\sigma||^{2}=2p\{||\nabla(\ln f)||^{2}+\triangle(\ln f)\} . (3.2)

Proof. For tangent vector fields X of C_{*}^{h} and Z of S^{p} , we obtain from (3.1)

that

X\phi_{\alpha}^{hp}= (X^{(1)}\otimes j, X_{\alpha+1}, . ., X_{h}) , (3.3)

Z\phi_{\alpha}^{hp}=(z^{(1)}\otimes Z, 0, \ldots, 0) , (3.4)

where

X^{(1)}\otimes j= (w_{0}X_{1}, ., w_{p}X_{1}, . . , w_{0}X_{\alpha}, . . ’ w_{p}X_{\alpha}) , (3.5)

z^{(1)}\otimes Z= (Z_{0}z_{1}, \ldots, Z_{p}z_{1}, . . ’ Z_{0}z_{\alpha}, . ’ Z_{p}z_{\alpha}) , (3.6)

X^{(1)}= (X_{1}, . ’ X_{\alpha}) , X^{(2)}=(X_{\alpha+1} , ._{ }^{ X_{h})},,, (3.7)

X=(X^{(1)}, X^{(2)}) , Z=(Z_{0}, . ’ Z_{p}) , z^{(1)}=(z_{1}, . . ’ z_{\alpha}) . (3.8)

From (3.3) and (3.4) we know that the tangent space of C_{*}^{h}\cross S^{p} at
a point (z, w) is spanned by vectors given by (3.3) and (3.4). Since S^{p} is
the unit hypersphere centered at the origin, it follows from (3.3) and (3.4)
that the induced metric on C_{*}^{h}\cross S^{p} via \phi_{\alpha}^{hp} is the warped product metric
g=g_{0}+f^{2}g_{1} with warping function f=\sqrt{\sum_{j_{-}^{-}1}^{\alpha}z_{j}\overline{z}_{j}} , where g_{0} and g_{1}

denote the metrics of C_{*}^{h} and S^{p} , respectively. This proves statement (1).
It follows from (3.3) that C_{*}^{h} is immersed as a holomorphic submanifold

of C^{\alpha p+h} . From (3.3) and (3.4) we also know that S^{p} is immersed as a totally
real submanifold of C^{\alpha p+h} . Hence we have statement (2).

Applying (3.1) and (3.3)-(3.8) yields

XY\phi_{\alpha}^{hp}=(\tilde{\nabla}_{X^{(1)}}Y^{(1)}\otimes j,\tilde{\nabla}_{X^{(2)}}Y^{(2)}) , (3.9)

ZW\phi_{\alpha}^{hp}=(z^{(1)}\otimes\tilde{\nabla}_{Z}W, 0 , ., 0), (3.10)
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XZ\phi_{\alpha}^{hp}= (X^{(1)}\otimes Z, 0, \ldots, 0) , (3.11)

for vector fields X. Y tangent to C_{*}^{h} and Z , W tangent to S^{p} , where \tilde{\nabla} de-
notes the Levi-Civita connection for Euclidean space as well as for complex
Euclidean space.

From (3.3)-(3.4) and (3.9)-(3.11), we find

\sigma(X, Y)=\sigma(Z, W)=0 , \sigma(X, Z)= ( X_{z^{(1)}}^{(1)\perp}\otimes Z, 0 , . ’ o) (3.12)

for vector fields X , Y tangent to C_{*}^{h} and Z , W tangent to S^{p} . Therefore,
the squared norm of the second fundamental form is given by

|| \sigma||^{2}=\frac{2p(2\alpha-1)}{f^{2}} , f^{2}= \sum_{j=1}^{\alpha}z_{j}\overline{z}_{j} . (3.13)

On the other hand, it is straightforward to verify that

|| \nabla(\ln f)||^{2}=\frac{1}{f^{2}} , \triangle(\ln f)=\frac{2(\alpha-1)}{f^{2}} . (3.14)

By combining (3.13) and (3.14) we obtain statement (3). \square

4. CR-warped products in complex Euclidean space

The purpose of this section is to prove the following.

Theorem 4.1 Let \phi : N_{T}\cross_{f}N_{\perp}arrow C^{m} be a CR-warped product in com-
plex Euclidean m space C^{m} . Then we have

(1) The squared norm of the second fundamental form of \phi satisfifies
||\sigma||^{2}\geq 2p\{||\nabla(\ln f)||^{2}+\triangle(\ln f)\} . (4.1)

(2) If the CR-warped product satisfifies the equality case of (4.1), then
we have

(2.a) N_{T} is an open portion of C_{*}^{h} ;
(2.b) N_{\perp}is an open portion of S^{p} ;
(2.c) There exists a natural number \alpha\leq h and a complex coordinate

system \{z_{1}, ., z_{h}\} on C_{*}^{h} such that the warping function f is given by f=
\sqrt{\sum_{j_{-}^{-}1}^{\alpha}z_{j}\overline{z}_{j}} ;
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(2.d) Up to rigid motions of C^{m} , the immersion \phi is given by \phi_{(Y}^{hp}\dot{\iota}n

a natural way; namely, we have

\phi(z, w)=(w_{0}z_{1}, . ’ w_{p}z_{1}, . . ’ ^{w_{0}z_{\alpha}}., 0)

(4.2)

for z= (z_{1}, . ., z_{h})\in C_{*}^{h} and w=(w_{0}, . . ’ w_{p})\in S^{p}\subset E^{p+1}

Proof. Let N_{T}\cross_{f}N_{\perp} be a CR-warped product in a complex space forrll
\tilde{M}^{m}(4c) of constant holomorphic sectional curvature 4c . Then the eq\iota latiorl

of Codazzi implies

\tilde{R}(X, JX, JZ, Z)

=\langle D_{JX}\sigma(X, Z)-\sigma(\nabla_{JX}X, Z)-\sigma(X, \nabla_{JX}Z), JZ\rangle

-\langle D_{X}\sigma(JX, Z)-\sigma(\nabla_{X}JX, Z)-\sigma(JX, \nabla_{X}Z), JZ\rangle . (4.3)

for vector fields X on N_{T} and Z on N_{\perp} . Since N_{T}is^{1} totally geodesic ill
N_{T}\cross_{f}N_{\perp} , \nabla_{X}Z and \nabla_{JX}Z lie in D^{\perp} and \nabla_{X}JX and \nabla_{JX}.X lie iI1D .
Hence, by applying statements (2) and (3) of Lemma 2.2, we get

2 \langle X, X\rangle\langle Z, Z\rangle c=-JX ( \langle Z , Z\rangle JX ln f ) -\langle\sigma(X, Z) ,DjxJZ)
-X ( \langle Z , Z\rangle X ln f ) +\langle\sigma(JX, Z), D_{X}JZ\rangle

+ { (J\nabla_{JX}X) ln f-(J\nabla_{X}JX)1r1f } \langle Z, Z\rangle

+ { (X ln f)^{2}+((JX1_{I1}f))^{2}‘ } \langle Z, Z\rangle (4.4)

Applying Lemma 2.2 we find

JX ( \langle Z , Z\rangle JX ln f ) +X ( \langle Z , Z\rangle X ln f )
= { (JX)^{2}\ln f+X^{2} ln f+2(JX ln f)^{2}+2(X111f)^{2} } \langle Z, Z\rangle (4.5)

Since \tilde{M}^{m}(4c) is K\"ahlerian, we have

J\nabla_{X}Z=J\sigma(X, Z)=-A_{JZ}X+DxJZ . (4.6)

Applying (4.6) and statements (1), (2) and (3) of Lemma 2.2, we fill(l

\langle\sigma(JX, Z), D_{X}JZ\rangle=\langle\sigma(JX, Z), J\nabla_{X}Z\rangle+\langle\sigma(JX, Z), J\sigma(X, Z)\rangle

= (X ln f)^{2}\langle Z, Z\rangle+\langle\sigma(JX, Z), J\sigma(X, Z)\rangle (4.7)

for vector fields X in D and Z in D^{\perp} .
On the other hand, if we denote by \sigma_{\iota/}(X, Z) tlle \iota/-comI) ()11(^{Y}11t_{ t)},f
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\sigma(X, Z) , then, by applying statement (3) of Lemma 2.1, we also have

\langle\sigma(JX, Z), J\sigma(X, Z)\rangle=\langle\sigma(JX, Z), J\sigma_{\nu}(X, Z)\rangle

=\langle A_{J\sigma_{\nu}(X,Z)}JX, Z\rangle=\langle A_{\sigma_{\nu}(X,Z)}X, Z\rangle=||\sigma_{\nu}(X, Z)||^{2} . (4.8)

Combining (4.7) and (4.8) yields

\langle\sigma(JX, Z), D_{X}JZ\rangle=(X ln f)^{2}\langle Z, Z\rangle+||\sigma_{\iota/}(X, Z)||^{2} . (4.8)

Similarly, we also have

\langle\sigma(X, Z), D_{JX}JZ\rangle=-(JX \ln f)^{2}\langle Z, Z\rangle-||\sigma_{\iota/}(X, Z)||^{2} . (4.10)

Because N_{T} is a holomorphic submanifold of a K\"ahler manifold and N_{T}

is totally geodesic in N_{T}\cross_{f}N_{\perp} , we find

J\nabla_{JX}X=\nabla_{JX}JX , J\nabla_{X}JX=-\nabla_{X}X . (4.11)

Combining (4.4), (4.5) and (4.9)-(4.11) we obtain

2 \langle X, X\rangle\langle Z, Z\rangle c=\{(\nabla_{X}X+\nabla_{JX}JX) ln f-X^{2} ln f
-(JX)^{2}\ln f\}\langle Z, Z\rangle+2||\sigma_{\nu}(X, Z)||^{2} . (4.12)

Assume that \{X_{1}, . . ’ X_{2h}\} is an orthonormal frame of N_{T} and
\{Z_{1}, . ’ Z_{p}\} an orthonormal frame on N_{\perp} . Then (4.12) implies

2 \sum_{j=1}^{2h}\sum_{t=1}^{p}||\sigma_{l/}(X_{j}, Z_{t})||^{2}=4hpc-2p\triangle(\ln f) . (4.13)

On the other hand, statement (3) of Lemma 2.2 implies

\sum_{j=1}^{2h}\sum_{t=1}^{p}||\sigma_{JD^{\perp}}(X_{j}, Z_{t})||^{2}=p||\nabla ln f||^{2}- (4.14)

where \sigma_{JD^{\perp}}(X_{j}, Z_{t}) denotes the JD^{\perp} -component of \sigma(X_{j}, Z_{t}) . Combining
(4. 13) and (4. 14) gives

2 ||\sigma(D, D^{\perp})||^{2}=2p { ||\nabla ln f||^{2}+\triangle(\ln f)+2hc }, (4.15)

where || \sigma(D, D^{\perp})||^{2}=\sum_{j=1}^{2h}\sum_{t=1}^{p}||\sigma(X_{j}, Z_{t})||^{2} . Equation (4.15) implies

||\sigma||^{2}\geq 2p\{||\nabla(\ln f)||^{2}+\triangle(\ln f)\}+4hpc . (4.16)
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In particular, if \tilde{M}^{m}(4c) is the complex Euclidean m-space, inequality (4.16)
reduces to inequality (4.1).

Now, let us assume that \phi : N_{T}\cross_{f}N_{\perp}arrow C^{m} is a CR-warped product
satisfying the equality case of (4.1). Then (4.15) and the equality case of
(4.1) imply

\sigma(D, D)=0 , \sigma(D^{\perp}.D^{\perp})=0 . (4.17)

Since N_{T} is totally geodesic in N_{T}\cross_{f}N_{\perp} , the first equation in (4.17)
and the totally geodesy of N_{T} in N_{T}\cross_{f}N_{\perp} imply that N_{T} is isometrically
immersed as a totally geodesic holomorphic submanifold of C^{m} . Hence, N_{T}

is a open portion of a complex Euclidean h space C^{h} .
For vector fields X in D and Z, W in D^{\perp} . Lemma 2.1 implies

\langle\nabla_{W}Z, X\rangle=\langle JA_{JZ}W, X\rangle=-\langle\sigma(JX, W), JZ\rangle (4.18)

Hence, by applying statement (2) of Lemma 2.2 and (4.18), we find

\langle\nabla_{W}Z, X\rangle=-(X\ln f)\langle Z, W\rangle (4.19)

On the other hand, if we denote by \sigma^{\perp} the second fundamental form
of N_{\perp} in M=N_{T}\cross_{f}N_{\perp} , we get \langle\sigma^{\perp}(Z, W), X\rangle=\langle\nabla_{W}Z, X\rangle . Combining
this with (4.19) yields

\sigma^{\perp}(Z, W)=-\langle Z, W\rangle\nabla ln f (4.20)

Hence, by applying (4.20) and the second equation of (4.17), we see that
N_{\perp} is immersed as a totally umbilical submanifold of C^{m} . Hence, N_{\perp} is an
open portion of an ordinary p-sphere S^{p} (or R when p=1 ).

If p\geq 2 , we may assume that S^{p} is of radius one, by rescaling tlle
warping function f if necessary. Consequently, N_{T}\cross_{f}N_{\perp} is an open portion
of C^{h}\cross_{f}S^{p} (or C^{h}\cross_{f}R when p=1). Hence, we may choose a complex
Euclidean coordinate system \{z_{1}, ., z_{h}\} on C^{h} and a coordinate system
\{u_{1}, . . ’ u_{p}\} on S^{p} (or on R if p=1 ) so that the metric tensor on N_{T}\cross_{f}N_{\perp}

is given by

g= \sum_{j=1}^{h}dz_{j}d\overline{z}_{j}+f^{2}\{du_{1}^{2}+\cos^{2}u_{1}du_{2}^{2}+ +\cos 2 u_{1} . \cos 2 u_{p-1}du_{p}^{2}\} ,

(4.21)

where z_{j}=x_{j}+iy_{j} , i=\sqrt{-1} .
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Equation (4.21) and a straightforward computation imply that the Levi-
Civita connection on N_{T}\cross_{f}N_{\perp} satisfies

\nabla_{\frac{\partial}{\partial x_{j}}}\frac{\partial}{\partial x_{k}}=\nabla_{\frac{\partial}{\partial x_{j}}}\frac{\partial}{\partial y_{k}}=\nabla_{\frac{\partial}{\partial y_{j}}}\frac{\partial}{\partial y_{k}}=0 , j , k=1 , . . ’ h , (4.22)

\nabla_{\frac{\partial}{\partial x_{j}}}\frac{\partial}{\partial u_{t}}=\frac{f_{x_{j}}}{f}\frac{\partial}{\partial u_{t}} , j=1 , . ’ h ; t=1 , ., p , (4.23)

\nabla_{\frac{\partial}{\partial y_{j}}}\frac{\partial}{\partial u_{t}}=\frac{f_{y_{j}}}{f}\frac{\partial}{\partial u_{t}} , j=1 , , h ; t=1 , ., p , (4.24)

\nabla_{\frac{\partial}{\partial u_{S}}}\frac{\partial}{\partial u_{t}}=- tan u_{s} \frac{\partial}{\partial u_{t}} , 1\leq s<t\leq p , (4.25)

\nabla_{\frac{\partial}{\partial u_{t}}}\frac{\partial}{\partial u_{t}}=-\prod_{s=1}^{t-1}\cos^{2}u_{s}\sum_{k=1}^{h}(ff_{x_{k}}\frac{\partial}{\partial x_{k}}+ff_{yk}\frac{\partial}{\partial y_{k}})

+ \sum_{q=1}^{t-1}(\frac{\sin 2u_{q}}{2}\prod_{s=q+1}^{t-1}\cos^{2}u_{s})\frac{\partial}{\partial u_{q}} , t=1 , . ., p .

(4.26)

From equations (4.17), (4.22), (4.25) and (4.26), we know that the
immersion \phi satisfies

\phi_{z_{j}z_{k}}=\phi_{z_{j}\overline{z}_{k}}=\phi_{\overline{z}_{j}\overline{z}_{k}}=0 , j , k=1 , \ldots , h , (4.27)

\phi_{u_{6}u_{t}}=-\tan u_{s}\phi_{u_{t}} , 1\leq s<t\leq p , (4.28)

\phi_{u_{l}u_{t}}=-\prod_{s=1}^{t-1}\cos^{2}u_{s}\sum_{k=1}^{h}(ff_{x_{k}}\phi_{x_{k}}+ff_{yk}\phi_{yk})

+ \sum_{q=1}^{t-1}(\frac{\sin 2u_{q}}{2}\prod_{s=q+1}^{t-1}\cos^{2}u_{s})\phi_{u_{q}} , t=1 , \ldots , p , (4.29)

where \phi_{z_{j}\overline{z}_{k}}=\partial\phi/\partial z_{j}\partial\overline{z}_{k} , ., etc. , and

\frac{\partial}{\partial z_{j}}=\frac{1}{2}(\frac{\partial}{\partial x_{j}}-i\frac{\partial}{\partial y_{j}}) , \frac{\partial}{\partial\overline{z}_{j}}=\frac{1}{2}(\frac{\partial}{\partial x_{j}}+i\frac{\partial}{\partial y_{j}}) (4.30)

Solving (4.27) gives
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\phi(z_{1}, , z_{h}, u_{1}, . ., u_{p})=\sum_{j=1}^{h}A_{j}(u_{1}, ., u_{p})z_{j}+B(u_{1}, ., u_{p}) (4.31)

for some C^{m}-valued functions A_{1} , \ldots , A_{h} , B . From (4.29) with t=1 , we
find

\phi_{u_{1}u_{1}}=-\frac{1}{2}\sum_{k=1}^{h}(\frac{\partial f^{22}}{\partial x}\phi_{x_{k}}+\frac{\partial f^{2}}{\partial y_{k}}\phi_{yk}) (4.32)

Substituting (4.31) into (4.32) yields

\sum_{j=1}^{h}\frac{\partial^{2}A_{j}}{\partial u_{1}^{2}}z_{j}+\frac{\partial^{2}B}{\partial u_{1}^{2}}=-\sum_{j=1}^{h}\frac{\partial f^{2}}{\partial\overline{z}_{j}}A_{j} . (4.33)

Case (1): \sum_{j=1}^{h}(\partial f^{2}/\partial\overline{z}_{j})A_{j} is independent of z_{1} , . ’ z_{h} .

In this case, (4.33) implies

\frac{\partial^{2}A_{j}}{\partial u_{1}^{2}}=0 , j=1 , . ., h , (4.34)

\frac{\partial^{2}B}{\partial u_{1}^{2}}=-\sum_{j=1}^{h}\frac{\partial f^{2}}{\partial\overline{z}_{j}}A_{j} . (4.35)

Solving (4.34) gives

A_{j} (u_{1}, . ., u_{p})=D_{j}(u_{2}, . ., u_{p})u_{1}+E_{j}(u_{2}, . ., u_{p}) ,

j=1 , ., h , (4.36)

for some vector functions D_{j} (u_{2}, . ’ u_{p}) , E_{j}(u_{2}, , u_{p}) . Applying (4.31)
and (4.36) yields \langle\phi_{z_{j}} , \phi_{z_{j}}\rangle=|D_{j}|^{2}u_{1}^{2}+2\langle D_{j}, E_{j}\rangle u_{1}+|E_{j}|^{2} , where \langle , \rangle

denotes the standard Euclidean inner product on C^{h} . On the other hand,
(4.21) gives \langle\phi_{z_{j}} , \phi_{z_{j}}\rangle=1 which is independent of u_{1} . Thus, we obtain
D_{1}= =D_{h}=0 . Hence, (4.36) reduces to

A_{j} (u_{1}, ., u_{p})=E_{j}(u_{2}, ., u_{p}) , j=1 , . ., h , (4.37)

From (4.35) and (4.37), we find

B=- \frac{1}{2}\sum_{j=1}^{h}\frac{\partial f^{2}}{\partial\overline{z}_{j}}E_{j} (u_{2}, ., u_{p})u_{1}^{2}+F(u_{2}, , u_{p})u_{1}+G(u_{2}, , u_{p})

(4.38)
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for some vector functions F, G . Thus, we obtain from (4.31), (4.37) and
(4.38) that

\phi=\sum_{j=1}^{h}E_{j}(z_{j}-\frac{1}{2}\frac{\partial f^{2}}{\partial\overline{z}_{j}}u_{1}^{2})+Fu_{1}+G . (4.39)

Substituting (4.39) into (4.28) with s=1 and 1<t\leq p gives

\frac{1}{2}\sum_{j=1}^{h}\frac{\partial f^{2}}{\partial\overline{z}_{j}}\frac{\partial E_{j}}{\partial u_{t}}u_{1}-\frac{\partial F}{\partial u_{t}}

= \tan u_{1}\{\sum_{j=1}^{h}\frac{\partial E_{j}}{\partial u_{t}}z_{j}-\frac{1}{2}\sum_{j=1}^{h}\frac{\partial f^{2}}{\partial\overline{z}_{j}}\frac{\partial E_{j}}{\partial u_{t}}u_{1}^{2}+\frac{\partial F}{\partial u_{t}}u_{1}+\frac{\partial G}{\partial u_{t}}\} . (4.40)

Since E_{j} , F. G and \partial f^{2}/\partial\overline{z}_{j} are independent on the variable u_{1} , equa-
tion (4.40) implies \partial E_{j}/\partial u_{t}=\partial F/\partial u_{t}=\partial G/\partial u_{t}=0 for j=1 , . ’ h and
t=2 , ., p . Thus, E_{1} , ., E_{h} , F, G are constant vectors in C^{m} .

From (4.39) we also have

\phi_{u_{1}}=-\sum_{j=1}^{h}\frac{\partial f^{2}}{\partial\overline{z}_{j}}E_{j}u_{1}+F. (4.41)

On the other hand, using (4.21) we find \langle\phi_{u_{1}}\phi_{u_{1}}\rangle=f^{2} which is a non-
constant function independent of u_{1} . Hence, (4.41) implies

\sum_{j=1}^{h}(\partial f^{2}/\partial\overline{z}_{j})E_{j}=0 .

Thus, f^{2}=|F|^{2} is constant which contradicts to properness of the CR-
warped product.

Case (2): \sum_{j=1}^{h}(\partial^{2}f^{2}/\partial\overline{z}_{j})A_{j} depends on z_{1} , . , z_{h} .
In this case, by taking the derivative of (4.33) with respect to \partial/\partial z_{j} ,

we find

\frac{\partial^{2}A_{j}}{\partial u_{1}^{2}}=-\sum_{k=1}^{h}\frac{\partial^{2}f^{2}}{\partial z_{j}\partial_{k}^{--}}A_{k} , j=1 , \ldots , h . (4.42)

On the other hand, by applying (4.31), we find \phi_{z_{j}}=A_{j}(u_{1}, ., u_{p}) .
Thus, A_{1} , , A_{h} form an orthonormal frame according to (4.21). There-
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fore, by using the fact that \partial^{2}A_{j}/\partial u_{1}^{2} and A_{1} , . ., A_{h} are independent of
z_{1} , . ’ z_{h} , we know from (4.42) that \partial^{2}f^{2}/\partial z_{k}\partial\overline{z}_{j} , j , k=1 , ., h , are con-
stant. Thus, we may put

\frac{\partial^{2}f^{2}}{\partial z_{j}\partial_{k}^{--}}=\gamma_{j\overline{k}} , j , k=1 , \ldots , h (4.43)

for some constants \gamma_{j} -.
Solving (4.43) yields

f^{2} ( z_{1} , . .,^{z_{h})}= \sum_{j,k=1}^{h}\gamma_{j\overline{k}}z_{j}\overline{z}_{k}+H+K (4.44)

for some functions H , K satisfying

\frac{\partial H}{\partial\overline{z}_{j}}=\frac{\partial K}{\partial z_{j}}=0 , j=1 , ., h . (4.45)

Equation (4.43) implies that (\gamma_{j}
- ) is a Hermitian matrix, that is \overline{\gamma}_{j\overline{k}}=

\gamma_{k\overline{j}} . Therefore, the Spectral Theorem in matrix theory implies that there
is a unitary matrix which diagonalizes (\gamma_{j}

- ) . Hence, there exists a suitable
complex Euclidean coordinate system \{z_{1}, \ldots, z_{h}\} on C^{h} such that (4.44)
reduces to the form:

f^{2}= \sum_{j=1}^{h}b_{j}z_{j}\overline{z}_{j}+H(z_{1}, \ldots, z_{h})+K(z_{1}. ’ z_{h}) . (4.46)

Since f is a real-valued function, we may put

H=X+iY. K=U-iY. (4.47)

for some real-valued functions X , Y. U . From (4.45) and (4.47), we obtain
the following Cauchy-Riemann equations:

\frac{\partial X}{\partial x_{j}}=-\frac{\partial Y}{\partial y_{j}}) \frac{\partial Y}{\partial x_{j}}=\frac{\partial X}{\partial y_{j}}) \frac{\partial U}{\partial x_{j}}=\frac{\partial Y}{\partial y_{j}} , \frac{\partial Y}{\partial x_{j}}=-\frac{\partial U}{\partial y_{j}} . (4.48)

From (4.48) we find that H+K=X+U is constant, say \delta . Hence, (4.46)
becomes f^{2}= \sum_{j=1}^{h}b_{j}z_{j}\overline{z}_{j}+\delta . We may assume \delta=0 by applying a suitable
translation on C^{m} if necessary. Thus, we have

f^{2}= \sum_{j=1}^{h}a_{j}^{2}z_{j}\overline{z}_{j} , (4.49)
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for some real numbers a_{1} , . ’
a_{h}\geq 0 , since f>0 . Combining (4.33) and

(4.49) yields

\frac{\partial^{2}A_{j}}{\partial u_{1}^{2}}=-a_{j}^{2}A_{j} , j=1 , , h , (4.50)

\frac{\partial^{2}B}{\partial u_{1}^{2}}=0 . (4.51)

Since f>0 , there exists at least one a_{j} greater than zero. Without loss
of generality, we may assume

a_{1} , . ., a_{\alpha}>0 , a_{\alpha+1}= =a_{h}=0 . (4.52)

for some natural number \alpha\leq h . From (4.50), (4.51) and (4.53), we obtain

A_{j}=D_{j} (u_{2}, . . ’ u_{p})\cos(a_{j}u_{1})+E_{j}(u_{2}, , u_{p})\sin(a_{j}u_{1}) , (4.53)

A_{k}=D_{k}(u_{2}, , u_{p})u_{1}+E_{k}(u_{2}, ., u_{p}) , (4.54)

B=F(u_{2}, . ., u_{p})u_{1}+G(u_{2}, . . ’ u_{p}) (4.55)

for j=1 , . . ’
\alpha , and k=\alpha+1 , . ., h .

Substituting (4.53), (4.54) and (4.55) into (4.31) gives

\phi=\sum_{j=1}^{\alpha} ( D_{j} ( u_{2} , . . ’ u_{p} ) cos (a_{j}u_{1})+E_{j}(u_{2} , , u_{p}) sin (a_{j}u_{1}) ) z_{j}

+ \sum h (D_{k}(u_{2}, \ldots, u_{p})u_{1}+E_{k}(u_{2}, \ldots, u_{p}))z_{k} (4.56)
k=\alpha+1

+F(u_{2}, ., u_{p})u_{1}+G(u_{2}, ., u_{p}) .

By differentiating (4.56) with respect to z_{k} , we obtain \phi_{z_{k}}=D_{k}u_{1}+

E_{k} for k=\alpha+1 , . ’ h . Thus, \langle\phi_{z_{k}}, \phi_{z_{k}}\rangle=|D_{k}|^{2}u_{1}^{2}+2\langle D_{k}, E_{k}\rangle+|E_{k}|^{2} .
Comparing this with (4.21) yields D_{\alpha+1}= =D_{h}=0 . Therefore, (4.56)
becomes

\phi=\sum_{j=1}^{\alpha} ( D_{j} ( u_{2} , , u_{p} ) cos (a_{j}u_{1})+E_{j}(u_{2} , ., u_{p})\sin(a_{j}u_{1}) ) z_{j}

+ \sum_{k=\alpha+1}^{h}E_{k}(u_{2}, ., _{u_{p}})z_{k}+F(u_{2}, ., _{u_{p}})u_{1}+G(u_{2}, \ldots, u_{p}) .

(4.57)
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From (4.28) with s=1 , t>1 and (4.57), we find

\sum_{j=1}^{\alpha}a_{j} ( \frac{\partial D_{j}}{\partial u_{t}} sin (a_{j}u_{1})- \frac{\partial E_{j}}{\partial u_{t}} cos (a_{j}u_{1}) ) z_{j}+ \frac{\partial F}{\partial u_{t}}

= \tan u_{1}\{\sum_{j=1}^{\alpha} ( \frac{\partial D_{j}}{\partial u_{t}}\cos(a_{j}u_{1})+\frac{\partial E_{j}}{\partial u_{t}} sin (a_{j}u_{1})) z_{j}

+ \sum_{k=\alpha+1}^{h}\frac{\partial E_{k}}{\partial u_{t}}z_{k}+\frac{\partial F}{\partial u_{t}}u_{1}+\frac{\partial G}{\partial u_{t}}\} (4.58)

which implies \partial E_{k}/\partial u_{t}=\partial F/\partial u_{t}=\partial G/\partial u_{t}=0 , k=\alpha+1 . ’ h , t=
2 , , p . Hence, E_{\alpha+1} , . ., E_{h} , F and G are constant vectors. Equation
(4.58) also implies

a_{j} \frac{\partial D_{j}}{\partial u_{t}} sin (a_{j}u_{1})-a_{j} \frac{\partial E_{j}}{\partial u_{t}} cos (a_{j}u_{1})

= \tan u_{1}\{\frac{\partial D_{j}}{\partial u_{t}}\cos(a_{j}u_{1})+\frac{\partial E_{j}}{\partial u_{t}}\sin(a_{j}u_{1})\} , j=1 , ., \alpha , (4.59)

which are equivalent to

\frac{\partial D_{j}}{\partial u_{t}} { (a_{j}-1) sin((a_{j}+1)u_{1})-(a_{j}+1)\sin((a_{j}-1)u_{1}) }

= \frac{\partial E_{j}}{\partial u_{t}} { (a_{j}-1) cos ((a_{j}+1)u_{1})+(a_{j}+1) cos ((a_{j}-1)u_{1}) } (4.60)

for j=1 , . ’
\alpha . By letting u_{1}=0 , we get \partial E_{j}/\partial u_{t}=0 . Thus, E_{1} , . ’

E_{\alpha}

are constant vectors. Consequently, we obtain from (4.57) that

\phi=\sum_{j=1}^{\alpha} ( D_{j} ( u_{2} , ., u_{p} ) cos (a_{j}u_{1})+E_{j} sin (a_{j}u_{1}) ) z_{j}

+ \sum_{k=\alpha+1}^{h}E_{k}z_{k}+Fu_{1}+G (4.61)

where E_{1} , , E_{h} , F, G are constant vectors. From (4.61) we obtain

\phi_{x_{j}}=D_{j} cos (a_{j}u_{1})+E_{j}\sin(a_{j}u_{1}) , j=1 , ., \alpha , (4.62)

\phi_{y_{j}}=iD_{j}\cos(a_{j}u_{1})+iE_{j}\sin(a_{j}u_{1}) , j=1 , \ldots , \alpha , (4.63)

\phi_{x_{k}}=E_{k} , k=\alpha+1 , ., h , (4.64)
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\phi_{yk}=iE_{k} , k=\alpha+1 , ., h , (4.65)

\phi_{u_{1}}=\sum_{j=1}^{\alpha}a_{j}(E_{j}\cos(a_{j}u_{1})-D_{j}\sin(a_{j}u_{1}))z_{j}+F. (4. 66)

By applying (4.21) and (4.62), we find

2\delta_{j\ell}=\langle D_{j}, D_{\ell}\rangle ( cos ((a_{j}+a\ell)u_{1})+\cos((a_{j}-a\ell)u_{1}) )
+\langle E_{j}, E_{\ell}\rangle ( cos ((a_{j}-a\ell)u_{1})- cos ((a_{j}+a\ell)u_{1}) )
+\langle D_{j}, E_{\ell}\rangle ( sin ((a_{j}+a\ell)u_{1})- sin ((a_{j}-a\ell)u_{1}) )
+\langle D_{\ell}, E_{j}\rangle ( sin ((a_{j}+a\ell)u_{1})+\sin((a_{j}-a\ell)u_{1}) ) (4.67)

for j , \ell=1 , . ., \alpha .
Since \cos((a_{j}-a\ell)u_{1}) , \cos((a_{j}+a_{\ell})u_{1}) and \sin((a_{j}+a\ell)u_{1}) are inde-

pendent functions, (4.67) implies \langle D_{j}, E_{\ell}\rangle+\langle D_{\ell}, E_{j}\rangle=0 for j , \ell=1 , . . ’
\alpha .

By setting u_{1}=0 , (4.67) also yields \langle D_{j}, D_{\ell}\rangle=\delta_{j\ell} . Thus, by combining
these with (4.67), we have \langle E_{j}, E_{\ell}\rangle=\delta_{j\ell} . Consequently, we obtain

\langle D_{j}, D_{\ell}\rangle=\langle E_{j}, E_{\ell}\rangle=\delta_{j\ell} , \langle D_{j}, E_{\ell}\rangle+\langle E_{j}, D_{\ell}\rangle=0 ,
1\leq j , \ell\leq\alpha . (4.68)

Similarly, by differentiating (4.67) with respect to u_{1} , we find

a_{\ell}\langle D_{j}, E_{\ell}\rangle+a_{j}\langle D_{\ell}, E_{j}\rangle=0 , j , \ell=1 , ., \alpha . (4.69)

Also, from (4.21), (4.62) and (4.63), we find

\langle D_{j}, iD_{\ell}\rangle=\langle E_{j}, iE_{\ell}\rangle=\delta_{j\ell} , \langle D_{j}, iE_{\ell}\rangle+\langle E_{j}, iD_{\ell}\rangle=0 , (4.70)

a\ell\langle D_{j}, iE_{\ell}\rangle+a_{j}\langle D_{\ell}, iE_{j}\rangle=0 , j , \ell=1 , ., \alpha . (4.71)

From (4.21) and (4.62)-(4.65), we also have

\langle E_{k}, D_{j}\rangle=\langle E_{k}, E_{j}\rangle=\langle E_{k}, iD_{j}\rangle=\langle E_{k}, iE_{j}\rangle=0 (4.72)

for j=1 , . , \alpha;k=\alpha+1 , ., h .
Equations (4.21), (4.49), (4.66), (4.68) and (4.70) imply

\sum_{j=1}^{\alpha}a_{j}^{2}z_{j^{\overline{Z}}j}=\sum_{j=1}^{\alpha}a_{j}^{2}z_{j}\overline{z}_{j}

+2 \sum_{j=1}^{\alpha}a_{j}
\langle(E_{j}\cos(a_{j}u_{1})-D_{j}\sin(a_{j}u_{1}))z_{j}, F\rangle+|F|^{2}-
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Thus, we obtain F=0. Therefore, (4.61) reduces to

\phi=\sum_{j=1}^{\alpha} ( D_{j} ( u_{2} , ., u_{p} ) cos (a_{j}u_{1})+E_{j} sin (a_{j}u_{1}) ) z_{j}+ \sum_{k=\alpha+1}^{h}E_{k}z_{k}+G ,

(4.73)
where E_{1} , \ldots , E_{h} , G are constant vectors.

Using (4.60) we know that either D_{j} is a constant vector or a_{j}=1 .
Without loss of generality, we may assume that a_{1} , , a_{r}\neq 1 and a_{r+1}=

=a_{\alpha}=1 . Then, D_{1} , \ldots , D_{r} are constant vectors; hence (4.73) reduces
to

\phi=\sum_{j=1}^{r}(D_{j}\cos(a_{j}u_{1})+E_{j}\sin(a_{j}u_{1}))z_{j}

+ \sum_{j=r+1}^{\alpha} ( D_{j} ( u_{2} , ., u_{p} ) cos u_{1}+E_{j} sin u_{1} ) z_{j}

+ \sum_{k=\alpha+1}^{h}E_{k}z_{k}+G , (4.74)

where D_{1} , ., D_{r} , E_{1} , . ’
E_{h} , G are constant vectors satisfying (4.68)-

(4.72).
Substituting (4.49) and (4.74) into (4.29) with t=2 yields

\sum_{j=r+1}^{\alpha}\cos u_{1}\frac{\partial^{2}D_{j}}{\partial u_{2}^{2}}z_{j}=-\cos^{2}u_{1}\sum_{j=1}^{\alpha}a_{j}(D_{j}\cos(a_{j}u_{1})+E_{j}\sin(a_{j}u_{1}))z_{j}

-sin u_{1} cos u_{1} \sum_{j=1}^{\alpha}a_{j} (D_{j}\sin(a_{j}u_{1})-E_{j} cos (a_{j}u_{1}) ) z_{j} ,

(4.75)
where a_{r+1}= =a_{\alpha}=1 .

If r>1 , then (4.75) implies

cos u_{1}(D_{j}\cos(a_{j}u_{1})+E_{j}\sin(a_{j}u_{1}))

+\sin u_{1}(D_{j}\sin(a_{j}u_{1})-E_{j}\cos(a_{j}u_{1}))=0 , j=1 , ., r . (4.76)

Since a_{1} , . ., a_{r}\neq 1 , equation (4.76) implies D_{1}= =D_{r}=E_{1}= =
E_{r}=0 which is a contradiction. Therefore, a_{1}= =a_{\alpha}=1 . Hence,
(4.75) implies \partial^{2}D_{j}/\partial u_{2}^{2}=-D_{j} for j=1 , . ., \alpha . Solving these equations
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gives

D_{j}=F_{j} (u_{3}, ., u_{p}) cos u_{2}+G_{j}(u_{3}, . ., u_{p}) sin u_{2} .

Consequently, (4.73) becomes

\phi=\sum_{j=1}^{\alpha}\{F_{j} ( u_{3} .,^{u_{p})} cos u_{1} cos u_{2}+G_{j}(u_{3} .,^{u_{p})\cos u_{1}\sin u_{2}}

+E_{j} \sin u_{1}\}z_{j}+\sum_{k=\alpha+1}^{h}E_{k}z_{k}+G . (4.77)

By substituting (4.77) into (4.28) with s=2 and t>2 , we know that G_{j}

are constant vectors. Continuing these procedures sufficiently many times,
we obtain

\phi(z_{1}, ., z_{h}, u_{1}, . . ’ u_{p})

= \sum_{j=1}^{\alpha}\{c_{1}^{j}\prod_{t=1}^{p} cos u_{t}+c_{2}^{j} sin u_{1}+c_{3}^{j} sin u_{2} cos u_{1}+

+c_{p+1}^{j} \sin u_{p}\prod_{t=1}^{p-1}\cos u_{t}\}z_{j}+\sum_{k=\alpha+1}^{h}E_{k}z_{k}+G , (4.78)

where c_{t}^{j} , E_{k} , G are constant vectors in C^{m} .
Because N_{T}\cross_{f}N_{\perp} is a CR-warped product in C^{m} , we may choose the

following initial conditions:

\phi( 1, 0, ., 0)=(1,0, ., 0, ., 0) ,

\phi_{z_{1}} ( 1, 0, ., 0)=(1,0, . ., 0, ., 0) ,

\phi_{z_{2}}(1,0, \ldots, 0)=(0,0, \ldots, 0,\hat{1}, 0, p+2- th\ldots, 0)

,

\alpha p-p+\alpha-th

\phi_{z_{\alpha}} ( 1, 0, ., 0)=(0 , ., 0, \hat{1} , 0, ., 0 ) ,

\phi_{z_{\alpha+1}} ( 1, 0, .,
0)=(0, . .,1+\alpha p+\alpha- th 0,\hat{1},0,., 0)

,
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\phi_{z_{h}} ( 1, 0, .,
0)=(0, . , _{0,\hat{1},0}^{\alpha p+h- th}, ., 0)

,

\phi_{u_{1}} ( 1, 0, .,
0)=(0,1, \ldots, 0,\hat{1}, 0, ^{1+\alpha p-p+\alpha- th}p+3- th.,0,\hat{1},0,., 0)

,

\phi_{u_{p}} ( 1, 0, .,
0)=(0, ., ^{p+1- th}0^{ },\hat{1}, 0, . ., _{0,\hat{1},0}^{\alpha(p+1)- th}, ., 0)

. (4.79)

Applying (4.78) and (4.79) gives

\phi= (w_{0}z_{1}, , w_{p}z_{1}, . ., w_{0}z_{\alpha}, . . , w_{p}z_{\alpha}, z_{\alpha+1}, . ’ z_{h}, o, ., 0) , (4.80)

where

w_{0}= \prod_{t=1}^{p} cos u_{t} , w_{1}=\sin u_{1} ,

w_{2}=\sin u_{2} cos u_{1} , . ’
w_{p+1}= \sin u_{p}\prod_{t=1}^{p-1} cos u_{t} .

Since \phi is an immersion, (4.80) implies that N_{T} is contained in C_{*}^{h} . \square

5. CR-warped products in CP^{m} satisfying the equality

In this section we determine CR-warped products in complex pr0-

jectable spaces which satisfy the equality case of (4.16). In order to do
so, we recall briefly a procedure via Hopf fibration to obtain the desired
submanifolds of complex projective spaces.

Let C^{*}=C-\{0\} . Consider the C^{*} action on C_{*}^{m+1} defined by \lambda

(z0, ., z_{m})=(\lambda z_{0}, , \lambda z_{m}) . The set of equivalent classes obtained from
this action is denoted by CP^{m} . Let \pi(z) denote the equivalent class contains
z . Then \pi : C_{*}^{m+1}arrow CP^{m} is a surjection. It is well-known that the CP^{m}

admits a complex structure induced from the complex structure on C^{m+1}

and a K\"ahler metric 9 with constant holomorphic sectional curvature 4.
Assume \psi : Marrow CP^{m}(4) is an isometric immersion. Then \dot{M}=

\pi^{-1}(M) is a C^{*} -bundle over M and the lift \dot{\psi} : \pi^{-1}(M) – C_{*}^{m+1} of \psi is an
isometric immersion satisfying \pi\circ\dot{\psi}=\psi\circ\pi . Conversely, if \dot{\psi} : Q – C_{*}^{m+1}

is an isometric immersion invariant under the C^{*}-action, then there is a
unique isometric immersion \psi : \pi(Q)arrow CP^{m}(4) satisfying \pi\circ\dot{\psi}=\psi\circ\pi .
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There is an alternate way to view the lift \dot{\psi} : \pi^{-1}(N)arrow C_{*}^{m+1} via the
Hopf fibration as follows: Let S^{2m+1} denote the un it hypersphere of C^{m+1}

centered at the origin and let U(1)=\{\lambda\in C : \lambda\overline{\lambda}=1\} . Then we have a
U(1)-action on S^{2m+1} defined by z\mapsto\lambda z . At z\in S^{2m+1}\subset C^{m+1} , the vector
V=iz is tangent to the flow of this action. The quotient space S^{2m+1}/\sim

obtained from this U(1)-action is exactly the CP^{m}(4) . Let \varphi : S^{2m+1}arrow

CP^{m}(4) denote the projection via the U(1)-action. The projection \varphi is
known as the Hopf fifibration.

When \psi : M – CP^{m}(4) is an isometric immersion, \hat{M}=\varphi^{-1}(M)

is a principal circle bundle over M with totally geodesic fibers. The lift
\hat{\psi} : \hat{M}

– S^{2m+1} of \psi is an isometric immersion satisfying \varphi 0\hat{\psi}=\psi\circ\varphi .
Conversely, if \psi : U – S^{2m+1} is an isometric immersion which is invariant
under U(1)-action, there is a unique isometric immersion \psi_{\varphi} : \varphi(U)arrow

CP^{m}(4) satisfying \varphi\circ\hat{\psi}_{\varphi}=\psi_{\varphi}\circ\varphi .
For each vector X tangent to CP^{m}(4) , we denote by X^{*} a horizontal

lift of X via the Hopf fibration \varphi . The horizontal lift X^{*} and X have the
same length, since the Hopf fibration is a Riemannian submersion. Since
V=iz generates the vertical subspaces of the Hopf fibration, we have an
orthogonal decomposition:

T_{z}S^{2m+1}=(T_{\varphi(z)}CP^{m})^{*}\oplus Span\{V\} , (5.1)

where (T_{\varphi(z)}CP^{m})^{*} is the set consisting of all horizontal lifts of T_{\varphi(z)}CP^{m}

via \varphi .
For an isometric immersion \psi : Marrow CP^{m}(4) , \dot{M}=\pi^{-1}(M) is diffe0-

morphic to R^{*}\cross\hat{M} where R^{*}=R-\{0\} and \hat{M}=\varphi^{-1}(M) . The immersion
\dot{\psi} : \dot{M}

– C_{*}^{m+1} is related to the immersion \hat{\psi} : \hat{M}
– S^{2m+1} by

\dot{\psi}(t, q)=t\hat{\psi}(q) , t\in R^{*}- q\in\hat{M} . (5.2)

Clearly, \dot{M} is the cone over \hat{M} with the vertex at the origin of C^{m+1} . The
metric \dot{g} of \dot{M} and the metric \hat{g} of \hat{M} are related by

\dot{g}=t^{2}\hat{g}+dt^{2} . (5.3)

The purpose of this section is to prove the following.

Theorem 5.1 Let \phi : N_{T}\cross_{f}N_{\perp}arrow CP^{m}(4) be a CR-warped product
Then
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(1) The squared norm of the second fundamental form of \phi satisfies
||\sigma||^{2}\geq 2p\{||\nabla(\ln f)||^{2}+\triangle(\ln f)\}+4hp . (5.4)

(2) The CR-warped product satisfifies the equality case of (5.4) if and
only if

(2.i) N_{T} is an open portion of complex projective h space CP^{h}(4) ;
(2.ii) N_{\perp}is an open portion of unit p-sphere S^{p} ; and
(2.iii) There exists a natural number \alpha\leq h such that, up to rigid m0-

tions, \phi is the composition \pi\circ\dot{\phi} , where

\dot{\phi}(z, w)=(w_{0}z_{0}, . ., w_{p}z_{0}, ., w_{0}z_{\alpha}, . ., w_{p}z_{\alpha}, z_{\alpha+1}, ., z_{h}, o. ., 0)

(5.5)

for z= (z_{0}, \ldots, z_{h})\in C_{*}^{h+1} and w=(w0, ., w_{p})\in S^{p}\subset E^{p+1} , and \pi

being the projection \pi : C_{*}^{m+1} – CP^{m}(4) .

Proof Inequality (5.4) is a special case of (4.16).
Let \phi : M – CP^{m}(4) be an isometric immersion and let \dot{\nabla}.\hat{\nabla} and \nabla

denote the Levi-Civita connections on \dot{M},\hat{M} and M respectively. Denote
by \hat{\sigma} the second fundamental form of the lift \hat{\phi} : \hat{M}

– S^{2m+1} of \phi via Hopf’s
fibration. Then we have

\hat{\nabla}_{X^{*}}Y^{*}=(\nabla_{X}Y)^{*}-\langle PX, Y\rangle V, (5.6)

\hat{\nabla}_{V}X^{*}=\hat{\nabla}_{X^{*}}V=(PX)^{*} (5.7)

\hat{\nabla}_{V}V=0 , (5.8)

\hat{\sigma}(X^{*}, Y^{*})=(\sigma(X, Y))^{*} \hat{\sigma}(X^{*}. V)=(FX)^{*} \hat{\sigma}(V, V)=0 , (5.9)

for vector fields X , Y tangent to M , where PX and FX are the tangential
and the normal components of JX , respectively.

For a vector U tangent to \hat{M}\subset S^{2m+1}\subset C_{*}^{m+1} , we extend U to a
vector field, also denoted by U. in C_{*}^{m+1} by parallel translation along the
rays of the cone \dot{M} over \hat{M} . We obtain from (5.2) that

\dot{\sigma}(U, W)(t, q)=\frac{1}{t}\hat{\sigma}(U, W)(q) , t\in R^{*} q\in\hat{M} , (5.10)

\dot{\sigma} (U, \frac{\partial}{\partial t})=\dot{\sigma}(\frac{\partial}{\partial t}, \frac{\partial}{\partial t})=0 , (5.11)

for U , W tangent to \hat{M} , where \dot{\sigma} denotes the second fundamental form of
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the lift \dot{\phi} : \dot{M}
– C_{*}^{m+1} of \phi via \pi .

Now suppose that \phi : M=N_{T}\cross_{f}N_{\perp}arrow CP^{m}(4) is a CH-warped
product in CP^{m}(4) . As before, we denote by D and D^{\perp} the holomorphic
and the totally real distributions of N_{t}\cross_{f}N_{\perp} , respectively. Let \hat{D} denote the
distribution on \hat{M}=\varphi^{-1}(M) spanned by D^{*}=\{X^{*}, X\in D\} and V=iz ,
where X^{*} is a horizontal lift of X via \varphi . Since D is integrable, (5.6)-(5.8)
implies that the distribution \hat{D} is also integrable. From (5.6)-(5.8), we also
know that each leaf of \hat{D} is a totally geodesic submanifold of \hat{M} .

Let \hat{D}^{\perp}=\{Z^{*}\in T\hat{M} : Z\in D^{\perp}\} . Then \hat{D}^{\perp} is the orthogonal com-
plementary distribution of \hat{D} in T\hat{M} . For vector fields Z , W in D^{\perp} , (5.6)
implies

\hat{\nabla}_{Z^{*}}W^{*}=(\nabla_{Z}W)^{*} . (5.12)

Since D^{\perp} is integrable, (5.12) implies that \hat{D}^{\perp} is also an integrable distri-
bution.

On the other hand, (4.19) gives

\langle\nabla_{W}Z, X\rangle=- (X ln f) \langle Z, W\rangle (5.13)

for vector field X in D and Z, W in D^{\perp} . Thus, by (5.12), (5.13),
\langle(\nabla_{Z}W)^{*}, V\rangle=0 , and the fact that the Hopf fibration is a Riemannian
submersion, we obtain

\langle\hat{\nabla}_{Z^{*}}W^{*}, X^{*}\rangle=- (X ln f) \langle Z_{7}^{*}W^{*}\rangle , \langle\hat{\nabla}_{Z^{*}}W^{*}. V\rangle=0 . (5.14)

Thus, each leaf of \hat{D}^{\perp} is an extrinsic sphere in \hat{M} , that is, a totally umbilical
submanifold with parallel mean curvature vector. Therefore, by applying a
result of Hiepko [10], we know that \hat{M} is also a warped product \hat{N}_{T}\cross_{\hat{f}}N_{\perp}^{*} ,
where \hat{N}_{T} is a leaf of \hat{D} , N_{\perp}^{*} a horizontal lift of N_{\perp} and \hat{f} the warping
function. From the definitions of \hat{D},\hat{N}_{T} and \varphi , we may choose \hat{N}_{T} to be
\varphi^{-1}(N_{T}) . Because the Hopf fibration \varphi : S^{2m+1} – CP^{m}(4) is a Riemannian
submersion, d\varphi preserves the length of vectors normal to fibres. Therefore,
the warping function \hat{f} of \hat{N}_{T}\cross_{\hat{f}}N_{\perp}^{*} is given by f\circ\varphi . Since \dot{M} is the
punctured cone over \hat{M} with 0 as its vertex, \dot{M} is nothing but \dot{N}_{T}\cross_{t\dot{f}}\dot{N}_{\perp} ,

where \dot{N}_{T}=\pi^{-1}(N_{T}),\dot{f}=f\circ\pi , and \dot{N}_{\perp} is a horizontal lift of N_{\perp} via \pi .
Because \dot{N}_{\perp} is isometric to N_{\perp} , \dot{M} is thus isometric to \dot{N}_{T}\cross_{t\dot{f}}N_{\perp} . It follows
from our constructions that \dot{N}_{T}=\pi^{-1}(N_{T}) is a holomorphic submanifold
of C_{*}^{m+1} and \dot{N}_{\perp} is a totally real submanifold in C_{*}^{m+1} . Therefore, \dot{M} is
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isometrically immersed in C_{*}^{m+1} as a CR-warped product.
Now, suppose that \phi : M=N_{T}\cross_{f}N_{\perp}arrow CP^{m}(4) satisfies the equality

case of (5.4). Then we obtain from (4.15) and (4.16) that

\sigma(D, D)=0 , \sigma(D^{\perp}. D^{\perp})=0 . (5.15)

Let \dot{D} be the distribution on \dot{M} spanned by \hat{D} and \partial/\partial t and \dot{D}^{\perp} the
orthogonal distribution of \dot{D} in T\dot{M} . Then \dot{D}^{\perp} is spanned by vectors in
C_{*}^{m+1} obtained from \hat{D}^{\perp} by parallel translation along rays of the cone \dot{M}

over \hat{M} . Thus, from (5.9), (5.10) and the second equation of (5.15), we
obtain

\dot{\sigma}(\dot{D}^{\perp},\dot{D}^{\perp})=0 . (5.16)

Also, from (5.9)-(5.11) and the first equation in (5.15), we find

\dot{\sigma}(\dot{D},\dot{D})=0 . (5.17)

Therefore, by (4.15), \pi^{-1}(M)=\dot{N}_{T}\cross_{t\dot{f}}N_{\perp} satisfies the corresponding
equality: ||\dot{\sigma}||^{2}=2p { ||\dot{\nabla}(\ln t\dot{f})||^{2}+\triangle

.
(ln t\dot{f}) } in C_{*}^{m+1} . Hence, Theorem 4. 1

implies that, up to rigid motions, the immersion of \dot{M} is the \dot{\phi} defined by
(5.5) for some natural number \alpha\leq h . Thus, up to rigid motions, \phi is the
composition \pi\circ\dot{\phi} .

Conversely, it is easy to see that the immersion \dot{\phi} defined by (5.5) is
a CR-warped product C_{*}^{h+1}\cross_{f}S^{p} in C^{m+1} which is invariant under the
C^{*} -action. Thus, the projection \pi\circ\dot{\phi} of \dot{\phi} under \pi : C_{*}^{m+1} – CP^{m}(4)

defines a submanifold M in CP^{m}(4) . It is easy to verify that M is indeed
a CR-warped product CP^{h}(4)\cross_{\overline{f}}S^{p} in CP^{m}(4) for some suitable warping
function \tilde{f} . Moreover, it follows from (5.9) that the CR-warped product M
satisfies condition (5.15). Hence, by applying (4.15), we know that M=
\pi(C_{*}^{h+1}\cross_{f}S^{p}) satisfies the equality case of (5.4). \square

6. CR-warped products in complex hyperbolic space

Let C_{1}^{m+1} denote a complex number space endowed with pseud0-
Euclidean metric g_{0}=-dz_{0}d \overline{z}_{0}+\sum_{j=1}^{m}dz_{j}d\overline{z}_{j} . Put C_{*1}^{m+1}=C_{1}^{m+1}-\{0\} .
Consider the C^{*} action on C_{*1}^{m+1} by \lambda (z_{0}, ., z_{m})=(\lambda z_{0}, . ’ \lambda z_{rn}) . Tllc
set of equivalent classes obtained from this action is denoted by CH^{m} . Thc
CH^{m} admits a natural K\"ahler structure (J, g) with constant holonlO\Gamma I) 1_{1}i( .
sectional curvature -4. Let \pi : C_{*1}^{m+1} – CH^{m}(-4) denote the projee^{1tie}) r1
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obtained from the C^{*} action.
Just like CP^{m} , there is an alternate way to view CH^{m} as follows: Let

H_{1}^{2m+1}=\{z= (z_{1}, z_{2}, . ’ z_{m+1})\in C_{1}^{m+1} : \langle z, z\rangle=-1\} , (6.1)

where \langle , \rangle is the inner product on C_{1}^{m+1} induced from the pseud0-Euclidean
metric g_{0} . H_{1}^{2m+1} is known as the anti-de Sitter space-time.

We have an U(1)-action on H_{1}^{2m+1} defined by z\mapsto\lambda z . At each point
z\in H_{1}^{2m+1} the vector V=iz is tangent to the flow of the action. The
orbit lies in the negative definite plane spanned by z and iz . The quotient
space H_{1}^{2m+1}/\sim under the U(1)-action is exactly the complex hyperbolic
space CH^{m} with constant holomorphic sectional curvature -4. The com-
plex structure J on CH^{m} is induced from the canonical complex structure
J on C_{1}^{m+1} via the Riemannian submersion:

\varphi:H_{1}^{2m+1}arrow CH^{m}(-4) , (6.2)

which has totally geodesic fibers. The submersion (6.2) is called the hyper-
bolic Hopf fibration.

Assume \psi : Marrow CH^{m}(-4) is an isometric immersion. Then \dot{M}=

\pi^{-1}(M) is a C^{*} -bundle over M and the lift \dot{\psi} : \dot{M}arrow C_{*1}^{m+1} of \psi is an
isometric immersion satisfying \pi\circ\dot{\psi}=\psi\circ\pi . Conversely, if \dot{\psi} : \dot{M}

– C_{*1}^{m+1}

is an isometric immersion which is invariant under the C^{*} -action, then there
is an isometric immersion \psi : \pi(\dot{M}) – CH^{m}(-4) satisfying \pi\circ\dot{\psi}=\psi\circ\pi .

For an isometric immersion \psi : Marrow CH^{m}(-4),\dot{M}=\pi^{-1}(M) is
diffeomorphic to R^{*}\cross\hat{M} . where \hat{M}=\varphi^{-1}(M) . The immersion \dot{\psi} : \dot{M}

-

C_{*1}^{m+1} is related to \hat{\psi} : \hat{M}
– H_{1}^{2m+1} by

\dot{\psi}(t, q)=t\hat{\psi}(q) , t\in R^{*} q\in\hat{M} . (6.3)

The purpose of this section is to prove the following.

Theorem 6.1 Let \phi : N_{T}\cross_{f}N_{\perp}arrow CH^{m}(-4) be a CR -warped product
Then

(1) The squared norm of the second fundamental form of \phi satisfifies
||\sigma||^{2}\geq 2p\{||\nabla(\ln f)||^{2}+\triangle(\ln f)\}-4hp . (6.4)

(2) The CR-warped product satisfifies the equality case of (6.4) if and
only if

(2.a) N_{T} is an open portion of complex hy perbolic h space CH^{h}(-4) ;
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(2.b) N_{\perp}is an open portion of unit p-sphere S^{p} ( or R, when p=1 );
and

(2.c) up to rigid motions, \phi is the composition \pi\circ\dot{\phi} , where either \dot{\phi} is
given by

\dot{\phi}(z, w)= ( Z_{0}, \ldots, z_{\beta}, w_{0}z_{\beta+1},,_{w_{p}z_{\beta+1}} , .,_{w_{0}z_{h}} , ,_{w_{p}z_{h}} ., o)
(6.5)

for 0<\beta\leq h , z= (z_{0}, ., z_{h})\in C_{*1}^{h+1} and w=(w_{0}, . ., w_{p})\in S^{p} . or \dot{\phi} is
given by

\dot{\phi}(z, u)=(z_{0} cosh u , z_{0} sinh u , z_{1} cos u , z_{1} sin u ,

, z_{\alpha} cos u , z_{\alpha} sin u , z_{\alpha+1} , ., z_{h} , 0. ., 0) (6.6)

for z= (z_{0}, . ., z_{h})\in C_{*1}^{h+1} and u\in R , and \pi being the projection \pi :
C_{*1}^{m+1}arrow CH^{m}(-4) .

Proof Inequality (6.4) is a special case of (4.16). It follows from (4.15)
that a CR-warped product \phi : M=N_{T}\cross_{f}N_{\perp}arrow CH^{m}(-4) satisfies the
equality case of (6.4) if and only if the second fundamental form of \phi satisfies

\sigma(D, D)=0 , \sigma(D^{\perp}, D^{\perp})=0 . (6.7)

Suppose that \phi is a CR-warped product in CH^{m}(-4) satisfying (6.7).
Since N_{T} is totally geodesic in N_{T}\cross_{f}N_{\perp} , the first equation of (6.7) implies
that each leaf of D is totally geodesic in CH^{m}(-4) . Thus, N_{T} is an open
portion of CH^{h}(-4) ; thus the preimage \dot{N}_{T}=\pi^{-1}(N_{T}) is an open portion
of C_{*1}^{h+1} Moreover, by applying an argument similar to the proof of The-
orem 5.1 for CR-warped products in CP^{m}\wedge we know that \dot{M}=\pi^{-1}(M) is
isometric to \dot{N}_{T}\cross_{t\dot{f}}N_{\perp} with \dot{f}=fo\pi and the lift \dot{\phi} : \dot{N}_{T}\cross_{t\dot{f}}N_{\perp}arrow C_{*1}^{m+1}

is a CR-warped product in C_{*1}^{m+1}

Let \dot{\nabla} and \hat{\nabla} denote the Levi-Civita connections on \dot{M} and \hat{M} , respec-
tively, and \hat{\sigma} be the second fundamental form of the lift \hat{\phi} : \hat{M}

– H_{1}^{2m+1}

Then we have [5]

\hat{\nabla}x*Y^{*}=(\nabla_{X}Y)^{*}+\langle PX, Y\rangle V, (6.8)
\hat{\nabla}_{V}X^{*}=\hat{\nabla}_{X}*V=(PX)^{*} \hat{\nabla}_{V}V=0 , (6.8)

\hat{\sigma}(X^{*}.Y^{*})=(\sigma(X, Y))^{*},\hat{\sigma}(X^{*}, V)=(FX)^{*}.\hat{\sigma}(V, V)=0 , (6.10)

for vector fields X , Y tangent to M .
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For a vector U tangent to \hat{M}\subset H_{1}^{2m+1}\subset C_{*1}^{m+1} we extend U to a
vector field in C_{*1}^{m+1} by parallel translation along the rays of the cone \dot{M}

over \hat{M} . From (6.3), we find

\dot{\sigma}(U, W)(t, q)=\frac{1}{t}\hat{\sigma}(U, W)(q) , t\in R^{*} , q\in\hat{M} , (6.11)

\dot{\sigma} (U, \frac{\partial}{\partial t})=\dot{\sigma}(\frac{\partial}{\partial t}, \frac{\partial}{\partial t})=0 , (6.12)

for U , W tangent to \hat{M} , where \dot{\sigma} denotes the second fundamental form of
the lift \dot{\phi} : \dot{M}=\dot{N}_{T}\cross_{t\dot{f}}N_{\perp}arrow C_{*}^{m+1} of \phi via \pi .

By applying (6.7)-(6.12), we know that the second fundamental form
\dot{\sigma} of \dot{\phi} satisfies

\dot{\sigma}(\dot{D},\dot{D})=0 , \sigma(\dot{D}^{\perp},\dot{D}^{\perp})=0 , (6.13)

where \dot{D} and \dot{D}^{\perp} are the holomorphic and the totally real distributions
of \dot{M} . Since \dot{N}_{\perp} is totally umbilical in the warped product \dot{N}_{T}\cross_{t\dot{f}}\dot{N}_{\perp} ,

the second equation in (6.13) implies that \dot{B}_{\perp} is immersed as a totally
umbilical submanifold in a complex Euclidean subspace. Hence, without
loss of generality, we may assume that \dot{N}_{\perp} is an open portion of S^{p} (or of R
when p=1 ). Therefore, there is a complex coordinate system \{z_{0}, \ldots, z_{h}\}

on C_{*1}^{h+1} and a coordinate system on S^{p} or R so that the metric on \dot{M}=

\dot{N}_{T}\cross_{t\overline{f}}N_{\perp} is given by

g=-dz_{0}d \overline{z}_{0}+\sum_{j=1}^{h}dz_{j}d\overline{z}_{j}+\lambda^{2}\sum_{s=1}^{p} ( \prod_{t=1}^{s-1} cos2 u_{t}du_{t}^{2}). (6.14)

where \lambda=\lambda(z_{0} , . ., z_{h}) is the corresponding warping function.
From (6.13) and (6.14) we know that \dot{\phi} satisfies the following system of

partial differential equations:

\dot{\phi}_{z_{j}z_{k}}=\dot{\phi}_{z_{j}\overline{z}_{k}}=\dot{\phi}_{\overline{z}_{j}\overline{z}_{k}}=0 , j , k=0 , . ., h , (6.15)

\dot{\phi}_{u_{s}u_{t}}=- tan u_{s}\dot{\phi}_{u_{t}} , 1\leq s<t\leq p , (6.16)

\dot{\phi}_{u_{t}u_{t}}=\lambda\prod_{s=1}^{t-1}\cos^{2}u_{s}\{\lambda_{x_{0}}\dot{\phi}_{x_{0}}+\lambda_{y0}\dot{\phi}_{y0}-\sum_{k=1}^{h}(\lambda_{x_{k}}\dot{\phi}_{x_{k}}+\lambda_{yk}\dot{\phi}_{yk})\}

+ \sum_{q=1}^{t-1} ( \frac{\sin 2u_{q}}{2}\prod_{s=q+1}^{t-1} cos2 u_{s}) \dot{\phi}_{u_{q}} , t=1 , ., p. (6.17)
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Solving (6. 15) gives

\dot{\phi}(z_{1}, . ’ z_{h}, u_{1}, . ., u_{p})=\sum_{j=0}^{h}A_{j}(u_{1}, ., u_{p})z_{j}+B(u_{1}, . ’ u_{p})

(6.18)

for some C_{1}^{m+1} -valued functions A_{0} , . ., A_{h} , B . From (6.17) with t=1 , we
find

\dot{\phi}_{u_{1}u_{1}}=\frac{1}{2}(\frac{\partial\lambda^{2}}{\partial x_{0}}\dot{\phi}_{x_{0}}+\frac{\partial\lambda^{2}}{\partial y_{0}}\dot{\phi}_{y0})-\frac{1}{2}\sum_{k=1}^{h}(\frac{\partial\lambda^{2}}{\partial x_{k}}\dot{\phi}_{x_{k}}+\frac{\partial\lambda^{2}}{\partial y_{k}}\dot{\phi}_{yk}) (6.19)

Substituting (6.18) into (6.19) yields

\sum_{j=0}^{h}\frac{\partial^{2}A_{j}}{\partial u_{1}^{2}}z_{j}+\frac{\partial^{2}B}{\partial u_{1}^{2}}=\frac{1}{2}\frac{\partial\lambda^{2}}{\partial\overline{z}_{0}}A_{0}-\frac{1}{2}\sum_{j=1}^{h}\frac{\partial\lambda^{2}}{\partial\overline{z}_{j}}A_{j} . (6.20)

Applying the same argument as for Case (1) in the proof of TheO-
rem 4.1, we know that \sum_{j=0}^{h}(\partial A_{j}/\partial u_{1})A_{j} cannot be independent on all
z_{0} , . ’ z_{h} . Then, by applying an argument similar to that given in the first
part of Case (2) of the proof of Theorem 4.1, we know that the warping
function \lambda can be chosen to be

\lambda=(\sum_{j=0}^{n}a_{j}^{2}z_{j}\overline{z}_{j})1/2
a_{0} , ., a_{h}\geq 0 . (6.21)

Substituting (6.21) into (6.20) gives

\frac{\partial^{2}A_{0}}{\partial u_{1}^{2}}=a_{0}^{2}A_{0} , \frac{\partial^{2}A_{j}}{\partial u_{1}^{2}}=-a_{j}^{2}A_{j} , j=1 , ., h , (6.21)

\frac{\partial^{2}B}{\partial u_{1}^{2}}=0 . (6.23)

Case (a): a_{0}= 1=a_{\beta}=0 , a_{\beta+1} , \ldots , a_{h}>0 for some \beta satisfying 0<
\beta\leq h .

In this case, by applying an argument similar to Case (2) in the proof
of Theorem 4.1, we may obtain
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\dot{\phi}=\sum_{j=0}^{\beta}\{c_{1}^{?}\prod_{t=1}^{p} cos u_{t}+c_{2}^{\gamma} sin u_{1}+c_{3}^{J} sin u_{2} cos u_{1}+

+c_{p+1}^{j} sin u_{p} \prod_{t=1}^{p-1} cos u_{t} \}z_{j}+\sum_{k=\beta+1}^{h}E_{k}z_{k}+G , (6.24)

for some constant vectors c\mathscr{S}_{t} , E_{k} , G in C_{*1}^{m+1} Thus, after choosing some
suitable initial conditions, we obtain (6.5).

Case (b): a_{0} , . ., a_{\alpha}>0 , a_{\alpha+1}= =a_{h}=0 for some natural number
\alpha\leq h .

In this case, after solving (6.22) and (6.23), we find

A_{0}=D_{0}(u_{2}, . ., u_{p})\cosh(a_{0}u_{1})+E_{0}(u_{2}, \ldots, u_{p})\sinh(a_{0}u_{1}) ,
A_{j}=D_{j} (u_{2}, , u_{p}) cos (a_{j}u_{1})+E_{j}(u_{2}, ., u_{p})\sin(a_{j}u_{1}) ,
A_{k}=D_{k}(u_{2}, ., u_{p})u_{1}+E_{k}(u_{2}, ., u_{p}) ,

B=F(u_{2}, \ldots, u_{p})u_{1}+G(u_{2}, . ., u_{p}) (6.25)

for some vector functions D_{0} , . . ’
D_{h} , E_{0} , ., E_{h} , G , G , where j=1 , . ., \alpha ,

and k=\alpha+1 , . , h . Substituting (4.53), (4.54) and (4.55) into (4.31) gives

\dot{\phi}= (D_{0}(u_{2}, ., u_{p})\cosh(a_{0}u_{1})+E_{0}(u_{2}, ., u_{p})\sinh(a_{0}u_{1}))z_{0}

+ \sum_{j=1}^{\alpha} ( D_{j} ( u_{2} , ., u_{p} ) cos (a_{j}u_{1})+E_{j}(u_{2} , \ldots , u_{p})\sin(a_{j}u_{1}) ) z_{j} (6.26)

+ \sum_{k=\alpha+1}^{h} (D_{k}(u_{2}, ., u_{p})u_{1}+E_{k}(u_{2}, ., u_{p}))z_{k} (6.27)

+F(u_{2}, , u_{p})u_{1}+G(u_{2}, , u_{p}) .

Because \dot{\phi} is invariant under the C^{*} -action, we have F=G=0.
If p=1 , then D_{0} , . . ’

D_{h} , E_{0} , ., E_{h} are constant vectors.
If p>1 , then (6.26) and (6.16) with s=1 and t=2 , ., p imply

that D_{0} and E_{0} are constant vectors. Also, by applying arguments similar
to that given in Case (2) of the proof of Theorem 4.1, we also know that
E_{0} , . ’

E_{h} are constant vectors and a_{0}= =a_{\alpha}=1 . The latter condition
implies

\lambda^{2}=\sum_{j=0}^{\alpha}z_{j^{\overline{Z}}j} . (6.28)
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Thus, from (6.26), we get

\dot{\phi}= ( D_{0} cosh u_{1}+E_{0} sinh u_{1} ) z_{0}

+ \sum_{j=1}^{\alpha} ( D_{j} ( u_{2} , ., u_{p} ) cos u_{1}+E_{j} sin u_{1} ) z_{j}+ \sum_{k=\alpha+1}^{h}E_{k}z_{k} .

(6.29)

If p>1 , then by substituting (4.27) and (4.28) into (6.17) with t=2 ,
we find

\sum_{j=1}^{\alpha}\cos u_{1}\frac{\partial^{2}D_{j}}{\partial u_{2}^{2}}z_{j}

=\cos^{2}u_{1}\{ ( D_{0} cosh u_{1}+E_{0} sinh u_{1} ) z_{0}+ \sum_{j=1}^{\alpha} (D_{j} cos u_{1}+E_{j} sin u_{1} ) z_{j}\}

- \frac{\sin 2u_{1}}{2}\{ ( D_{0} sinh u_{1}+E_{0} cosh u_{1} ) z_{0}+ \sum_{j=1}^{\alpha} ( D_{j} sin u_{1}-E_{j} cos u_{1} ) z_{j}\} .

(6.30)

By comparing the coefficients of z_{0} in (6.30) we find

cos u_{1} ( D_{0} cosh u_{1}+E_{0} sinh u_{1} ) =\sin u_{1} ( D_{0} sinh u_{1}+E_{0} cosh u_{1} )

which is impossible. Hence, we must have p=1 in Case (b). Thus, (6.29)
becomes

\dot{\phi}= ( D_{0} cosh u_{1}+E_{0} sinh u_{1} ) z_{0}

+ \sum_{j=1}^{\alpha} ( D_{j} cos u_{1}+E_{j} sin u_{1} ) z_{j}+ \sum_{k=\alpha+1}^{h}E_{k}z_{k} . (6.31)

for some constant vectors D_{0} , . ., D_{\alpha} , E_{0} , . ., E_{h} . From (6.14) and (6.31),
we know that D_{0} is a unit time-like vector and D_{1} , . ’

D_{\alpha} , E_{0} , \ldots , E_{h} are
space-like orthonormal vectors in C_{1}^{m+1} Therefore, after choosing suitable
initial conditions, we may obtain (6.6).

Conversely, it is straightforward to verify that (6.5) defines a CR-
warped product C_{*1}^{h+1}\cross_{\lambda}S^{p} and (6.6) defines a CR-warped product C_{*1}^{h+1}\cross_{\lambda}

R in C_{*1}^{m+1} ; both cases satisfy (6.13). Since the immersions \dot{\phi} defined by
(6.5) and (6.6) are invariant under the C^{*}-action, their projections under
\pi : C_{*1}^{m+1} – CH^{m}(-4) give rise to CR-warped products CH^{h}(-4)\cross_{f}S^{p}
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and CH^{h}(-4)\cross_{f}R in CH^{m}(-4) . Because the second fundamental form
of CH^{h}(-4)\cross_{f}S^{p} and CH^{h}(-4)\cross_{f}R both satisfy condition (6.7) in
CH^{m}(-4) , their second fundamental forms satisfy the equality case of (6.4).

\square
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