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Another example of an invariant subspace
of H* with index ¢

Norio N1wa
(Received January 7, 2002)

Abstract. A. Borichev gave an example of an invariant subspace M of H>™ with
dim M/2M = card|0, 1] = ¢, which is generated by an uncountable family of Blaschke

products. In this paper, we construct singular inner functions which generate an invariant
subspace M with dim M /zM = card[0, 1].
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1. Introduction

Let L2(D) be the Bergman space of all analytic functions on the open
unit disc D in the complex plane that satisfy the following condition:

[ 11PdAG) <+,
D

where dA is the normalized area measure in D. A closed subspace M of
L%(D) is said to be (z-) invariant if zf € M whenever f € M. Here, z
is the coordinate function. The dimension of the quotient space M/2zM is
called the index of M.

In 1993, Hedenmalm (3] proved the existence of invariant subspaces of
L2(D) with index n, 2 < n < +0o0, constructively. In the Hardy space
H?(D), every invariant subspace, except {0}, has index 1. After Heden-
malm’s work, many people have been interested in the structure of invariant
subspaces of L2(D), see [4]. In 1996, by Hedenmalm, Richter and Seip [5],
invariant subspaces of L2(D) with infinite index were constructed. So, in
this paper, we study an invariant subspace of H*°(D) with infinite index.

Let H*® = H*(D) be the Banach algebra of bounded analytic functions
on D. Let M = M(H*) be the maximal ideal space of H* endowed with
the weak-* topology. By natural identification, we may consider that D C
M. It is known that I is a compact Hausdorff space. We identify a function
in H* with its Gelfand transform, so we view H as a closed subalgebra of
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C (M), the space of complex valued continuous functions on . A function
¢(z) € H*™ satisfying |p(e'?)| = 1 almost everywhere on the unit circle 0D
is said to be inner. We know that every inner function ¢(z) has the form

p(2) = €b(2)9(2),

where c is a real constant, b is a Blaschke product, and 1 is a singular inner
function. [2, 6] are nice references for the study of H*°. A sup norm closed
subspace M of H® is called (2-) invariant if zM C M. The dimension of
M/zM is also called the index of M.

In , Borichev gave an example of an invariant subspace of H* with
index ¢ (= card|0, 1]), which is generated by Blaschke products. Our pur-
pose of this paper is to construct an invariant subspace of H* with index
¢ which is generated by singular inner functions. This construction is inter-
esting in its own right in the study of singular inner functions.

2. Preliminaries

A singular inner function is of the form

0
Yu(2) = exp (~/ e zdu(ei0)> , #z€D,
o

p€f—z

where p is a finite positive measure on 0D and singular with respect to the
Lebesgue measure on 0D. We note that

[¥u(2)| = exp (— /aD Pz(ei")du(ei”)) , ze€D,

where P,(e?) = (1 —|2|2)/(|1 — e %2|?) is the Poisson kernel. This implies
that if 4 and v are singular measures and if 0 < v < p, then

|wu| < |"/)u| on IN. (21)

We often use the following notations and facts. For a function f € H*, we
put

{Ifl <1} ={zeM\D:|f(z)] <1}

and

Z(f) = {z € M\ D : f(x) = 0}.
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For a point A € 0D, let My = {x € M : 2(z) = A}, where z is the identity
function on D. It is known that M\ D = Uyc5p Mr. We call M) the
fiber of M over A. We denote by S(u) the closed support set of a singular
measure g on dD. It is well known ([6], p. 69) that

Z() C{lgul <1} | M, (2.2)
AES(p)
and that
Yul=1 on | J M (2.3)
AES(p)
For a positive constant c, it is easy to see that
Z($u) = Z(Yeu) and  {|yhu] <1} = {|theu| <1} (2.4)

Let 0.6 denote the unit point measure at el?. In this paper, we deal
with discrete singular measures. Let

o0
/J« = Z ak&eiak,
k=1

where Y 7o ar < 00, ag > 0 for all k, and el £ ¢ if k £ n. Then

$u(2) = [ 16 0, ()1, 2 € D.
k=1

Let I3 be the set of sequences of bounded positive numbers. For p =
(p1,p2,...) € I, we define pP as Y ;2 prardge,, and we put |pllec =
sup{px : k € N}. Then p? < ||p|loo - 4. Thus by (2.1) and (2.4), we have

Z(Pur) C Z(Yu) and {[ghpe| <1} C {lvul <1}
Singular inner functions defined by pP, p € I, were studied by K. Izuchi
in .

We use the following theorem.

Theorem 2.1 ([7]) Let p and v be positive singular measures on 0D that
are sums of infinitely many point measures, respectively. Then p L v if and

only if
M (] <130 () {lvonal <1} =0.

pely qely
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By the above theorem, we obtain the following lemma, which is one of
key lemmas for constructing the desired singular inner functions.

Lemma 2.2 Let p and v be positive singular measures on 0D that are
sums of infinitely many point measures, respectively. If u L v, then there
exist p € I and q € I such that ||plloo < 1, ||¢lloc < 1, and

Z(ys) N Z (1) = 0
Proof. By [Theorem 2.1,

() 2Wuw) 0 () Z($0e) = 0. (26)

pely g€l

For each p € I5°, Z(v») is a closed subset of 9\ D. Since M\ D is compact,
npelf Z(¢ur) is a compact subset of 9\ D. By [2.6), we have

M Z@Ww) C | (Z2@w))5,

pely qelfP

where (Z(t,4))¢ is the complement of Z(t,¢) in M \ D. Then there exist
qU) = (q (J),qgj),. ) €%, 1< j <m, such that

ﬂ Z("b;ﬂ’ U Z(quq(J))

pEl;’f’ j=1
Therefore

ﬂ VALY lﬂ’) N ﬂ Z( q(g)

peElY

In the same way, there exist p(*) € 1, 1 < ¢ < n, such that

We put pr = mln{l p,c ,p,(,f), R )} for each k. Then we have a

new sequence p = (p1,p2,...) € I with ||p|lc < 1. It is clear that p? <
up(l) for all 1 = 1,2,...,n. Hence Z(¢y») C Z (zp”p(i)) for all . A similar
consideration gives us a singular measure 9. Therefore we obtain Z (i) N
Z(¢ye) = 0. This completes the proof. O
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3. An invariant subspace with index ¢
In this section, we prove the following theorem.

Theorem 3.1 There exists an invariant subspace of H*® with index ¢
which is generated by singular inner functions.

To prove our theorem, we need the following fact, which was used in
Borichev [1, p. 42] without proof. We denote by N the set of positive integers.

Lemma 3.2 There ezists a family {N, : o € [0,1]} such that N, C N for
each o € [0,1], and such that for every finite family ag,ay,...,an € [0,1],
010#%', 1§’t§n;

card (Nao \ LnJ Nai) = 00. (3.1)

i=1
For the convenience of the reader, we include a proof.

Proof. 'Take a countable dense subset {ax : £k € N} in the open square
(0,1) x (0,1). For a € [0,1], let A, = {(z,y) : |xr — a| < y} be the angular
domain at vertex a, and put N, = {k : ax € A,}, which gives the desired
family. O

Proof of Theorem 3.1. Let {e!% : k € N} be a dense subset of distinct
points in 0D. For each k, let

{Mk,;}; be a sequence of distinct points in 6D (3.2)
such that

lim g ; = el%. (3.3)

j—00

Furthermore, we may assume that
{Aej:jeNIN{N;:jEN}=0 if k#I, (3.4)
and
{Mej:d, ke NN {e®% : ke N} =0. (3.5)
First, we set up a singular measure

o0 oo
I

k=1 j5=1
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where > 77, 3722 ckj < 0o and cg; > 0 for every k, j. Put

o0
Vg = Z ck,jé,\k,j.
i=1

By induction, we show the existence of singular measures uy, k& =
1,2,..., satisfying the following conditions:

oo
k=) Ak Oy

J=1

(> O Ne o}
> apj<oo, ar;>0 forall k, j,
k=1 j=1

and
Z( )N Z(wzgik+1 u) =0 forevery k=1,2,.... (3.7)

Apply for singular measures v; and o, vk, then there
exist p € I$° and g € I$° such that ||p|leo < 1, ||¢]lc < 1, and

Z2(ur) N Z (Y, uye) = 0.
Put p1 =vf. Then 0 < py <y, 0< (350, Vk)q <> o vk, and

Z(hu) N Z (Y, 1e) = 0. (3.8)
We write (350, vk)? as Y50, =1 @k,jOx ;- For each k > 2, put v}, =
Z;‘;l d,;0x, ;- And, apply for measures 14 and ) o, v}, then

Z(y) N Z () =0

holds for some r € I$° and s € I with ||7||ec < 1, ||s]jec < 1. Put pp =
(14)". Then we have

Z(Wu) N Z (Y, uye) =0,

0< pp <wy,and 0< (X 525v;)° < D025 k.
Repeating the same argument, we obtain the desired singular measures
e, k=1,2,....



Another example of an invariant subspace of H*® with indez ¢ 189

By (2.4) and (3.7), multiplying the measure ) ;°, ., u; by a suitable
positive constant less than 1 if necessary, we may assume that

2% on Z(y,) (3.9)

‘¢Z?§k+1 Hi

for each k.

Let {N, : o € [0,1]} be the family given in [Lemma 3.2. For each o €
[0,1], put

0
O‘QZZ Z ak,j(s)\k,j (3.10)

k=1 jEN\Nq
and

Ok = Z ak,jcS)\k,j. (3.11)
JEN\N,

Then o4 = ) poy Ok,a, and by (3.6)
Oka <0q and oo < g for every k. (3.12)

Let M be the invariant subspace of H* generated by singular inner
functions ¥, € [0,1]. Let ag € [0,1]. We claim that the vector ¥, +
2M does not belong to the closure of the linear span of {¢,, + 2M : a €
[0,1], @ # ap} in M/2M. This implies that dim M/zM = card[0, 1], that
is, the index of M equals c.

To prove the above, suppose not. Then we have

n
¢aa0 +p0¢aa0 + sz’waai

i=1

1
< '2‘ (3.13)
HOO

for some finite set of elements a; € [0, 1], a; # ap, 1 <% < n, and polyno-
mials po, p1, - - -, Pn. Here pp(0) = 0.
For each k, j, there exists a point zx ; € 9y, ; such that

Vox, ; (Tk,3) = 0. (3.14)

Then by (2.1) and (3.6), |¥u,(zk,;)| < |¢5,\kj(:ck,j)|a’°vj = 0 for each k, j.
Hence ’

Tk, € Z(Yy,) for every k, j. (3.15)
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Take t € (Nq, \ Uj=; Na,) arbitrary. Then by using (2.1),for 1 <i<n

Y00, (Tht)| < Worq, (k)] by (3.12)
< |95, (@) by
=0 by[3.14)

Thus we get

Voo, (Thit) =0 (3.16)

for every k € N, 1 <i <, and t € (N \ UL; Nag)-
Let yx be one of cluster points of {zx; : t € Ny, \ Ul; No,}- Since
Yo, 18 continuous on M, by

Yoo, (Yk) =0 (3.17)

fori=1,2,...,n,and fork=1,2,....
Let m denote the fiber projection from 9 \ D onto &D. By and
(3.14),

T(Tk,j) = Ak, and zk; € My, . (3.18)

By (3.1), there is a sequence {t;}m C (Nag \ Uj; Na,) such that ¢, — oo

as m — co. Then by [(3.3),

lim «n(zx = lim A =e
im 7m(zgg,) = lm Ay,

Since 7 is continuous on M\ D ([6], p. 160), it follows that

0

m(yx) = €% and gy € M oy, . (3.19)
For every k € N and t € (Ny, \ U;—; No,), we have
deao (wk,t)l

k
~ (T Woneo@01) - 655y 380]b (3.10) an
1=1

AV

k
(H %0 0 (Sﬂk,t)l) : WZ;’ikH i (Tht) | by (3.12)
i=1
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k

1

> 5 [T oiap(@n)l by (3.9) and (3.15)
=1

1

'é.
The proof of the last equality is the following. For each i, 1 <1 < k, we
have

S(0iao) ={Aij : 5 €N\ Nog} by
={e%}U{N;: 1 €N\No} by [33)
F Mt by (3.2), (3.4) and [3.5).

Hence by (2.3) and (3.18), |, ,, (Tk,t)| = 1 for every i, 1 <i < k.
Since yj, is one of cluster points of {zk;:t € Ny, \ Uj=; No,}, by the
above inequalities, we have

1
Yoy ()] > 5 for every k. (3.20)

By (3.13) and (3.17), we have

1+ B0(k) g (48)] < 5 for every .
Therefore by (3.20), we obtain
|1 +po(yk)| <1 forall keN.
By (3.19) and poisa polynomial, we have po(yx) = po(el%). Hence
|1+ po(el%)] <1 forall keN. (3.21)

By the starting assumption, {e!% : k € N} is dense in 8D, so that we obtain
|1+ po|| o < 1. Since 1+ pg(0) = 1, by the maximality we have 1+pg = 1.
This implies that pp = 0. By (3.21), we get 1 < 1. This is the desired
contradiction. O
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