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Another example of an invariant subspace
of H^{\infty} with index \mathfrak{c}
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Abstract. A. Borichev gave an example of an invariant subspace \mathcal{M} of H^{\infty} with
dim \mathcal{M}/z\mathcal{M}=card[0,1]=c , which is generated by an uncountable family of Blaschke
products. In this paper, we construct singular inner functions which generate an invariant
subspace \mathcal{M} with dim \mathcal{M}/z\mathcal{M}=card[0,1] .
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1. Introduction

Let L_{a}^{2}(D) be the Bergman space of all analytic functions on the open
unit disc D in the complex plane that satisfy the following condition:

\int_{D}|f(z)|^{2}dA(z)<+\infty ,

where dA is the normalized area measure in D . A closed subspace \mathcal{M} of
L_{a}^{2}(D) is said to be (z-) invariant if zf\in \mathcal{M} whenever f\in \mathcal{M} . Here, z
is the coordinate function. The dimension of the quotient space \mathcal{M}/z\mathcal{M} is
called the index of \mathcal{M} .

In 1993, Hedenmalm [3] proved the existence of invariant subspaces of
L_{a}^{2}(D) with index n, 2\leq n<+\infty , constructively. In the Hardy space
H^{2}(D) , every invariant subspace, except {0}, has index 1. After Heden-
malm’s work, many people have been interested in the structure of invariant
subspaces of L_{a}^{2}(D) , see [4]. In 1996, by Hedenmalm, Richter and Seip [5],
invariant subspaces of L_{a}^{2}(D) with infinite index were constructed. So, in
this paper, we study an invariant subspace of H^{\infty}(D) with infinite index.

Let H^{\infty}=H^{\infty}(D) be the Banach algebra of bounded analytic functions
on D . Let \mathfrak{M}=\mathfrak{M}(H^{\infty}) be the maximal ideal space of H^{\infty} endowed with
the weak-*topology. By natural identification, we may consider that D\subset

\mathfrak{M} . It is known that \mathfrak{M} is a compact Hausdorff space. We identify a function
in H^{\infty} with its Gelfand transform, so we view H^{\infty} as a closed subalgebra of
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C(\mathfrak{M}) , the space of complex valued continuous functions on \mathfrak{M} . A function
\varphi(z)\in H^{\infty} satisfying |\varphi(e^{i\theta})|=1 almost everywhere on the unit circle \partial D

is said to be inner. We know that every inner function \varphi(z) has the form

\varphi(z)=e^{ic}b(z)\psi(z) ,

where c is a real constant, b is a Blaschke product, and \psi is a singular inner
function. [2, 6] are nice references for the study of H^{\infty} . A sup norm closed
subspace \mathcal{M} of H^{\infty} is called (z-) invariant if z\mathcal{M}\subset \mathcal{M} . The dimension of
\mathcal{M}/z\mathcal{M} is also called the index of \mathcal{M} .

In [1], Borichev gave an example of an invariant subspace of H^{\infty} with
index c(=card[0,1]) , which is generated by Blaschke products. Our pur-
pose of this paper is to construct an invariant subspace of H^{\infty} with index
c which is generated by singular inner functions. This construction is inter-
esting in its own right in the study of singular inner functions.

2. Preliminaries

A singular inner function is of the form

\psi_{\mu}(z)=\exp(-\int_{\partial D}\frac{e^{i\theta}+z}{e^{i\theta}-z}d\mu(e^{i\theta}))’. z\in D ,

where \mu is a finite positive measure on \partial D and singular with respect to the
Lebesgue measure on \partial D . We note that

| \psi_{\mu}(z)|=\exp(-\int_{\partial D}P_{z}(e^{i\theta})d\mu(e^{i\theta})).
, z\in D ,

where P_{z}(e^{i\theta})=(1-|z|^{2})/(|1-e^{-i\theta}z|^{2}) is the Poisson kernel. This implies
that if \mu and \nu are singular measures and if 0\leq\nu\leq\mu , then

|\psi_{\mu}|\leq|\psi_{\nu}| on \mathfrak{M} . (2.1)

We often use the following notations and facts. For a function f\in H^{\infty} . we
put

\{|f|<1\}=\{x\in \mathfrak{M}\backslash D : |f(x)|<1\}

and

Z(f)=\{x\in \mathfrak{M}\backslash D : f(x)=0\} .
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For a point \lambda\in\partial D , let \mathfrak{M}_{\lambda}=\{x\in \mathfrak{M} : z(x)=\lambda\} , where z is the identity
function on D . It is known that \mathfrak{M}\backslash D=\bigcup_{\lambda\in\partial D}\mathfrak{M}_{\lambda} . We call \mathfrak{M}_{\lambda} the
fiber of \mathfrak{M} over \lambda . We denote by S(\mu) the closed support set of a singular
measure \mu on \partial D . It is well known ([6], p. 69) that

Z(\psi_{\mu})\subset\{|\psi_{\mu}|<1\}\subset \cup \mathfrak{M}_{\lambda} , (2.2)
\lambda\in S(\mu)

and that

|\psi_{\mu}|=1 on
\lambda\not\in S(\mu)\cup \mathfrak{M}_{\lambda}

. (2.3)

For a positive constant c, it is easy to see that

Z(\psi_{\mu})=Z(\psi_{c\mu}) and \{|\psi_{\mu}|<1\}=\{|\psi_{c\mu}|<1\} . (2.4)

Let \delta_{e^{i\theta}} denote the unit point measure at e^{i\theta} . In this paper, we deal
with discrete singular measures. Let

\mu=\sum_{k=1}^{\infty}a_{k}\delta_{e^{i\theta_{k}}} ,

where \sum_{k=1}^{\infty}a_{k}<\infty , a_{k}>0 for all k , and e^{i\theta_{k}}\neq e^{i\theta_{n}} if k\neq n . Then

| \psi_{\mu}(z)|=\prod_{k=1}^{\infty}|\psi_{\delta_{e^{i\theta}k}}(z)|^{a_{k}} , z\in D .

Let l_{+}^{\infty} be the set of sequences of bounded positive numbers. For p=
(p_{1},p_{2}, \ldots) \in l_{+}^{\infty} , we define \mu^{p} as \sum_{k=1}^{\infty}p_{k}a_{k}\delta_{e^{i\theta_{k}}} , and we put ||p||_{\infty}=

\sup\{p_{k} : k\in N\} . Then \mu^{p}\leq||p||_{\infty}\mu . Thus by (2.1) and (2.4), we have

Z(\psi_{\mu^{p}})\subset Z(\psi_{\mu}) and \{|\psi_{\mu^{p}}|<1\}\subset\{|\psi_{\mu}|<1\} . (2.2)

Singular inner functions defined by \mu^{p} , p\in l_{+}^{\infty} , were studied by K. Izuchi
in [7].

We use the following theorem.

Theorem 2.1 ([7]) Let \mu and \nu be positive singular measures on \partial D that
are sums of infinitely many point measures, respectively. Then \mu\perp\nu if and
only if

p\in l_{+}^{\infty}\cap\{|\psi_{\mu^{p}}|<1\}\cap\cap\{|\psi_{\nu^{q}}|q\in l_{+}^{\infty}<1\}=\emptyset

.
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By the above theorem, we obtain the following lemma, which is one of
key lemmas for constructing the desired singular inner functions.

Lemma 2.2 Let \mu and \nu be positive singular measures on \partial D that are
sums of infinitely many point measures, respectively. If \mu\perp\nu , then there
exist p\in l_{+}^{\infty} and q\in l_{+}^{\infty} such that ||p||_{\infty}\leq 1 , ||q||_{\infty}\leq 1 , and

Z(\psi_{\mu^{p}})\cap Z(\psi_{\nu^{q}})=\emptyset .

Proof By Theorem 2.1,

p\in l_{+}^{\infty}q\in l_{+}^{\infty}\cap Z(\psi_{\mu^{p}})\cap\cap Z(\psi_{\nu^{q}})=\emptyset
. (2.6)

For each p\in l_{+}^{\infty} , Z(\psi_{\mu^{p}}) is a closed subset of \mathfrak{M}\backslash D . Since \mathfrak{M}\backslash D is compact,
\bigcap_{p\in l_{+}^{\infty}}Z(\psi_{\mu^{p}}) is a compact subset of \mathfrak{M}\backslash D . By (2.6), we have

p\in l_{+}^{\infty}\cap Z(\psi_{\mu^{p}})\subset\cup(Z(\psi_{\nu^{q}}))^{c}q\in l_{+}^{\infty} ’

where (Z(\psi_{\nu^{q}}))^{c} is the complement of Z(\psi_{\nu^{q}}) in \mathfrak{M}\backslash D . Then there exist
q^{(j)}= (q_{1}^{(j)}, q_{2}^{(j)}, . .)\in l_{+}^{\infty} , 1\leq j\leq m , such that

p\in l_{+}^{\infty}\cap Z(\psi_{\mu^{p}})\subset\cup(Z(\psi_{\nu^{q^{(j)}}}))^{c}j=1m

Therefore

p\in l_{+}^{\infty}j=1\cap Z(\psi_{\mu^{p}})\cap\cap Z(\psi_{\nu^{q^{(j)}}})=\emptyset m .

In the same way, there exist p^{(i)}\in l_{+}^{\infty} , 1\leq i\leq n , such that

i=1j=1\cap Z(\psi_{\mu^{p^{(i)}}})\cap\cap Z(\psi_{\nu^{q^{(j)}}})=\emptyset nm .

We put p_{k}= \min\{1,p_{k}^{(1)},p_{k}^{(2)}, . ., p_{k}^{(n)}\} for each k . Then we have a
new sequence p=(p_{1},p_{2}, \ldots)\in l_{+}^{\infty} with ||p||_{\infty}\leq 1 . It is clear that \mu^{p}\leq

\mu^{p^{(i)}} for all i=1,2 , \ldots , n . Hence Z(\psi_{\mu^{p}})\subset Z(\psi_{\mu^{p^{(i)}}}) for all i . A similar
consideration gives us a singular measure \nu^{q} . Therefore we obtain Z(\psi_{\mu^{p}})\cap

Z(\psi_{\nu^{q}})=\emptyset . This completes the proof. \square
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3. An invariant subspace with index \mathbb{C}

In this section, we prove the following theorem.

Theorem 3.1 There exists an invariant subspace of H^{\infty} with index c

which is generated by singular inner functions.
To prove our theorem, we need the following fact, which was used in

Borichev [1, p. 42] without proof. We denote by N the set of positive integers.

Lemma 3.2 There exists a family \{N_{\alpha} : \alpha\in[0,1]\} such that N_{\alpha}\subset N for
each \alpha\in[0,1] , and such that for every finite family \alpha_{0} , \alpha_{1} , \ldots , \alpha_{n}\in[0,1] ,
\alpha_{0}\neq\alpha_{i} , 1\leq i\leq n ,

card (N_{\alpha_{0}}\backslash \cup N_{\alpha_{i}})i=1n=\infty . (3.1)

For the convenience of the reader, we include a proof.

Proof. Take a countable dense subset \{a_{k} : k\in N\} in the open square
(0, 1)\cross(0,1) . For \alpha\in[0,1] , let A_{\alpha}=\{(x, y) : |x-\alpha|<y\} be the angular
domain at vertex \alpha , and put N_{\alpha}=\{k : a_{k}\in A_{\alpha}\} , which gives the desired
family. \square

Proof of Theorem 3.1. Let \{e^{i\theta_{k}} : k\in N\} be a dense subset of distinct
points in \partial D . For each k , let

\{\lambda_{k,j}\}_{j} be a sequence of distinct points in \partial D (3.2)

such that

\lim_{jarrow\infty}\lambda_{k,j}=e^{i\theta_{k}} . (3.3)

Furthermore, we may assume that

\{\lambda_{k,j} : j\in N\}\cap\{\lambda_{l,j} : j\in N\}=\emptyset if k\neq l , (3.4)

and

\{\lambda_{k,j} : j, k\in N\}\cap\{e^{i\theta_{k}} : k\in N\}=\emptyset . (3.5)

First, we set up a singular measure

\nu=\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}c_{k,j}\delta_{\lambda_{k,j}} ,
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where \sum_{k=1}^{\infty}\sum_{j=1}^{\infty}c_{k,j}<\infty and c_{k,j}>0 for every k , j . Put

\nu_{k}=\sum_{j=1}^{\infty}c_{k,j}\delta_{\lambda_{k,j}} .

By induction, we show the existence of singular measures \mu_{k} , k=
1,2 , . , satisfying the following conditions:

\mu_{k}=\sum_{j=1}^{\infty}a_{k,j}\delta_{\lambda_{k,j}} ,

\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}a_{k,j}<\infty , a_{k,j}>0

and

Z(\psi_{\mu k})\cap Z(\psi_{\Sigma_{i=k+1}^{\infty}\mu i})=\emptyset

(3.8)

for all k , j ,

for every k=1,2 , . . (3.7)

Apply Lemma 2.2 for singular measures \nu_{1} and \sum_{k=2}^{\infty}\nu_{k} , then there
exist p\in l_{+}^{\infty} and q\in l_{+}^{\infty} such that ||p||_{\infty}\leq 1 , ||q||_{\infty}\leq 1 , and

Z(\psi_{\nu_{1}^{p}})\cap Z(\psi_{(\Sigma_{k=2}^{\infty}\nu_{k})^{q}})=\emptyset .

Put \mu_{1}=\nu_{1}^{p}l Then 0 \leq\mu_{1}\leq\nu_{1},0\leq(\sum_{k=2}^{\infty}\nu_{k})^{q}\leq\sum_{k=2}^{\infty}\nu_{k} , and

Z(\psi_{\mu_{1}})\cap Z(\psi_{(\Sigma_{k=2}^{\infty}\nu_{k})^{q}})=\emptyset . (3.8)

We write ( \sum_{k=2}^{\infty}\nu_{k})^{q} as \sum_{k=2}^{\infty}\sum_{j=1}^{\infty}d_{k,j}\delta_{\lambda_{k,j}} . For each k\geq 2 , put \nu_{k}’=

\sum_{j=1}^{\infty}d_{k,j}\delta_{\lambda_{k,j}} . And, apply Lemma 2.2 for measures \nu_{2}’ and \sum_{k=3}^{\infty}\nu_{k}’ , then

Z(\psi_{(\nu_{2}’)^{r}})\cap Z(\psi_{(\Sigma_{k=3}^{\infty}\nu_{k}’)^{s)}}=\emptyset

holds for some r\in l_{+}^{\infty} and s\in l_{+}^{\infty} with ||r||_{\infty}\leq 1 , ||s||_{\infty}\leq 1 . Put \mu_{2}=

(\nu_{2}’)^{r} . Then we have

Z(\psi_{\mu_{2}})\cap Z(\psi_{(\Sigma_{k=3}^{\infty}\nu_{k}’)^{s)}}=\emptyset ,

0\leq\mu_{2}\leq\nu_{2} , and 0 \leq(\sum_{k=3}^{\infty}\nu_{k}’)^{s}\leq\sum_{k=3}^{\infty}\nu_{k} .
Repeating the same argument, we obtain the desired singular measures

\mu_{k} , k=1,2 ,
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By (2.4) and (3.7), multiplying the measure \sum_{i=k+1}^{\infty}\mu_{i} by a suitable
positive constant less than 1 if necessary, we may assume that

| \psi_{\Sigma_{i=k+1}^{\infty}\mu_{i}}|\geq\frac{1}{2} on Z(\psi_{\mu k}) (3.9)

for each k .
Let \{N_{\alpha} : \alpha\in[0,1]\} be the family given in Lemma 3.2. For each \alpha\in

[0, 1] , put

\sigma_{\alpha}=\sum_{k=1j}^{\infty}\sum_{\in N\backslash N_{\alpha}}a_{k,j}\delta_{\lambda_{k,j}} (3.10)

and

\sigma_{k,\alpha}=\sum_{j\in N\backslash N_{\alpha}}a_{k,j}\delta_{\lambda_{k,j}}

. (3.11)

Then \sigma_{\alpha}=\sum_{k=1}^{\infty}\sigma_{k,\alpha} , and by (3.6)

\sigma_{k,\alpha}\leq\sigma_{\alpha} and \sigma_{k,\alpha}\leq\mu_{k} for every k . (3.12)

Let \mathcal{M} be the invariant subspace of H^{\infty} generated by singular inner
functions \psi_{\sigma_{\alpha}} , \alpha\in[0,1] . Let \alpha_{0}\in[0,1] . We claim that the vector \psi_{\sigma_{\alpha_{0}}}+

z\mathcal{M} does not belong to the closure of the linear span of { \psi_{\sigma_{\alpha}}+z\mathcal{M} : \alpha\in

[0, 1] , \alpha\neq\alpha_{0}\} in \mathcal{M}/z\mathcal{M} . This implies that dim \mathcal{M}/z\mathcal{M}=card[0,1] , that
is, the index of \mathcal{M} equals c .

To prove the above, suppose not. Then we have

|| \psi_{\sigma_{\alpha_{0}}}+p_{0}\psi_{\sigma_{\alpha_{0}}}+\sum_{i=1}^{n}p_{i}\psi_{\sigma_{\alpha_{i}}}||_{H^{\infty}}<\frac{1}{2} (3.13)

for some finite set of elements \alpha_{i}\in[0,1] , \alpha_{i}\neq\alpha_{0},1\leq i\leq n , and polyn0-
mials p_{0},p_{1} , . , p_{n} . Here p_{0}(0)=0 .

For each k , j , there exists a point x_{k,j}\in \mathfrak{M}_{\lambda_{k,j}} such that

\psi_{\delta_{\lambda_{k,j}}}(x_{k,j})=0 . (3.14)

Then by (2.1) and (3.6), |\psi_{\mu k}(x_{k,j})|\leq|\psi\delta_{\lambda_{k,j}}(x_{k,j})|^{a_{k,j}}=0 for each k , j .
Hence

x_{k,j}\in Z(\psi_{\mu k}) for every k , j . (3.15)
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Take t \in(N_{\alpha_{0}}\backslash \bigcup_{i=1}^{n}N_{\alpha_{i}}) arbitrary. Then by using (2.1), for 1\leq i\leq n

|\psi_{\sigma_{\alpha_{i}}}(x_{k,t})|\leq|\psi_{\sigma_{k,\alpha_{i}}}(x_{k,t})| by (3.12)

\leq|\psi_{\delta_{\lambda_{k,t}}}(x_{k,t})|^{a_{k,t}} by (3.11)

=0 by (3.14).

Thus we get

\psi_{\sigma_{\alpha_{i}}}(x_{k,t})=0 (3.16)

for every k\in N , 1\leq i\leq n , and t \in(N_{\alpha_{0}}\backslash \bigcup_{i=1}^{n}N_{\alpha_{i}}) .
Let y_{k} be one of cluster points of \{x_{k,t} : t \in N_{\alpha_{0}}\backslash \bigcup_{i=1}^{n}N_{\alpha_{i}}\} . Since

\psi_{\sigma_{\alpha_{i}}} is continuous on \mathfrak{M} , by (3.16)

\psi_{\sigma_{\alpha_{i}}}(y_{k})=0 (3.17)

for i=1,2 , ., n , and for k=1,2 ,
Let \pi denote the fiber projection from \mathfrak{M}\backslash D onto \partial D . By (2.2) and

(3.14),

\pi(x_{k,j})=\lambda_{k,j} and x_{k,j}\in \mathfrak{M}_{\lambda_{k,j}} . (3.18)

By (3.1), there is a sequence \{t_{m}\}_{m}\subset(N_{\alpha_{0}}\backslash \bigcup_{i=1}^{n}N_{\alpha_{i}}) such that t_{m}arrow\infty

as m - \infty . Then by (3.3),

\lim_{marrow\infty}\pi(x_{k,t_{m}})=\lim_{marrow\infty}\lambda_{k,t_{m}}=e^{i\theta_{k}} .

Since \pi is continuous on \mathfrak{M}\backslash D ([6], p. 160), it follows that

\pi(y_{k})=e^{i\theta_{k}} and y_{k}\in \mathfrak{M}_{e^{i\theta_{k}}} . (3.19)

For every k\in N and t \in(N_{\alpha_{0}}\backslash \bigcup_{i=1}^{n}N_{\alpha_{i}}) , we have

|\psi_{\sigma_{\alpha_{0}}}(x_{k,t})|

=( \prod_{i=1}^{k}|\psi_{\sigma_{i,\alpha_{0}}}(x_{k,t})|) |\psi_{\Sigma_{i=k+1}\sigma_{i,\alpha_{0}}}\infty(x_{k,t})| by (3.12) and (3.11)

\geq(\prod_{i=1}^{k}|\psi_{\sigma_{i,\alpha_{0}}}(x_{k,t})|) |\psi\Sigma_{i=k+1}\infty(\mu ix_{k,t})| by (3.12)
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\geq\frac{1}{2}\prod_{i=1}^{k}|\psi_{\sigma_{i,\alpha_{0}}}(x_{k,t})| by (3.9) and (3.15)

1
=\overline{2}

.

The proof of the last equality is the following. For each i , 1\leq i\leq k , we
have

S(\sigma_{i,\alpha_{0}})=\overline{\{\lambda_{i,j}.\cdot j\in N\backslash N_{\alpha_{0}}\}} by (3.11)
=\{e^{i\theta_{i}}\}\cup\{\lambda_{i,j} : j\in N\backslash N_{\alpha_{0}}\} by (3.3)

\not\supset\lambda_{k,t} by (3.2), (3.4) and (3.5).

Hence by (2.3) and (3.18), |\psi_{\sigma_{i,\alpha_{0}}}(x_{k,t})|=1 for every i , 1\leq i\leq k .
Since y_{k} is one of cluster points of \{x_{k,t} : t\in N_{\alpha_{0}}\backslash \bigcup_{i=1}^{n}N_{\alpha_{i}}\} , by the

above inequalities, we have

| \psi_{\sigma_{\alpha_{0}}}(y_{k})|\geq\frac{1}{2} for every k . (3.20)

By (3. 13) and (3. 17), we have

|(1+p_{0}(y_{k})) \psi_{\sigma_{\alpha_{0}}}(y_{k})|<\frac{1}{2} for every k .

Therefore by (3.20), we obtain

|1+p_{0}(y_{k})|<1 for all k\in N .

By (3.19) and p_{0} is a polynomial, we have p_{0}(y_{k})=p_{0}(e^{i\theta_{k}}) . Hence

|1+p_{0}(e^{i\theta_{k}})|<1 for all k\in N . (3.21)

By the starting assumption, \{e^{i\theta_{k}} : k\in N\} is dense in \partial D , so that we obtain
||1+p_{0}||_{H}\infty\leq 1 . Since 1+p_{0}(0)=1 , by the maximality we have 1+p_{0}\equiv 1 .
This implies that p_{0}\equiv 0 . By (3.21), we get 1<1 . This is the desired
contradiction. \square
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