Another example of an invariant subspace of H^{∞} with index c

Norio NIWA

(Received January 7, 2002)

Abstract. A. Borichev gave an example of an invariant subspace \mathcal{M} of H^{∞} with $\dim \mathcal{M}/z\mathcal{M} = \operatorname{card}[0,1] = \mathfrak{c}$, which is generated by an uncountable family of Blaschke products. In this paper, we construct singular inner functions which generate an invariant subspace \mathcal{M} with $\dim \mathcal{M}/z\mathcal{M} = \operatorname{card}[0,1]$.

Key words: invariant subspace, index, singular inner function.

1. Introduction

Let $L_a^2(D)$ be the Bergman space of all analytic functions on the open unit disc D in the complex plane that satisfy the following condition:

$$\int_D |f(z)|^2 dA(z) < +\infty,$$

where dA is the normalized area measure in D. A closed subspace \mathcal{M} of $L^2_a(D)$ is said to be (z-) invariant if $zf \in \mathcal{M}$ whenever $f \in \mathcal{M}$. Here, z is the coordinate function. The dimension of the quotient space $\mathcal{M}/z\mathcal{M}$ is called the index of \mathcal{M} .

In 1993, Hedenmalm [3] proved the existence of invariant subspaces of $L^2_a(D)$ with index $n, 2 \leq n < +\infty$, constructively. In the Hardy space $H^2(D)$, every invariant subspace, except {0}, has index 1. After Hedenmalm's work, many people have been interested in the structure of invariant subspaces of $L^2_a(D)$, see [4]. In 1996, by Hedenmalm, Richter and Seip [5], invariant subspaces of $L^2_a(D)$ with infinite index were constructed. So, in this paper, we study an invariant subspace of $H^{\infty}(D)$ with infinite index.

Let $H^{\infty} = H^{\infty}(D)$ be the Banach algebra of bounded analytic functions on D. Let $\mathfrak{M} = \mathfrak{M}(H^{\infty})$ be the maximal ideal space of H^{∞} endowed with the weak-* topology. By natural identification, we may consider that $D \subset$ \mathfrak{M} . It is known that \mathfrak{M} is a compact Hausdorff space. We identify a function in H^{∞} with its Gelfand transform, so we view H^{∞} as a closed subalgebra of

²⁰⁰⁰ Mathematics Subject Classification : Primary 47A15; Secondary 46J15.

 $C(\mathfrak{M})$, the space of complex valued continuous functions on \mathfrak{M} . A function $\varphi(z) \in H^{\infty}$ satisfying $|\varphi(e^{i\theta})| = 1$ almost everywhere on the unit circle ∂D is said to be inner. We know that every inner function $\varphi(z)$ has the form

$$\varphi(z) = e^{\mathrm{i}c}b(z)\psi(z),$$

where c is a real constant, b is a Blaschke product, and ψ is a singular inner function. [2, 6] are nice references for the study of H^{∞} . A sup norm closed subspace \mathcal{M} of H^{∞} is called (z-) invariant if $z\mathcal{M} \subset \mathcal{M}$. The dimension of $\mathcal{M}/z\mathcal{M}$ is also called the index of \mathcal{M} .

In [1], Borichev gave an example of an invariant subspace of H^{∞} with index \mathfrak{c} (= card[0, 1]), which is generated by Blaschke products. Our purpose of this paper is to construct an invariant subspace of H^{∞} with index \mathfrak{c} which is generated by singular inner functions. This construction is interesting in its own right in the study of singular inner functions.

2. Preliminaries

A singular inner function is of the form

$$\psi_{\mu}(z) = \exp\left(-\int_{\partial D} rac{e^{\mathrm{i} heta}+z}{e^{\mathrm{i} heta}-z} d\mu(e^{\mathrm{i} heta})
ight), \quad z\in D,$$

where μ is a finite positive measure on ∂D and singular with respect to the Lebesgue measure on ∂D . We note that

$$|\psi_{\mu}(z)| = \exp\left(-\int_{\partial D} P_z(e^{\mathrm{i} heta})d\mu(e^{\mathrm{i} heta})
ight), \quad z\in D,$$

where $P_z(e^{i\theta}) = (1 - |z|^2)/(|1 - e^{-i\theta}z|^2)$ is the Poisson kernel. This implies that if μ and ν are singular measures and if $0 \le \nu \le \mu$, then

$$|\psi_{\mu}| \le |\psi_{\nu}| \quad \text{on } \mathfrak{M}. \tag{2.1}$$

We often use the following notations and facts. For a function $f \in H^{\infty}$, we put

$$\{|f|<1\}=\{x\in\mathfrak{M}\setminus D:|f(x)|<1\}$$

and

$$Z(f) = \{ x \in \mathfrak{M} \setminus D : f(x) = 0 \}.$$

For a point $\lambda \in \partial D$, let $\mathfrak{M}_{\lambda} = \{x \in \mathfrak{M} : z(x) = \lambda\}$, where z is the identity function on D. It is known that $\mathfrak{M} \setminus D = \bigcup_{\lambda \in \partial D} \mathfrak{M}_{\lambda}$. We call \mathfrak{M}_{λ} the fiber of \mathfrak{M} over λ . We denote by $S(\mu)$ the closed support set of a singular measure μ on ∂D . It is well known ([6], p. 69) that

$$Z(\psi_{\mu}) \subset \{ |\psi_{\mu}| < 1 \} \subset \bigcup_{\lambda \in S(\mu)} \mathfrak{M}_{\lambda},$$
(2.2)

and that

$$|\psi_{\mu}| = 1$$
 on $\bigcup_{\lambda \notin S(\mu)} \mathfrak{M}_{\lambda}.$ (2.3)

For a positive constant c, it is easy to see that

$$Z(\psi_{\mu}) = Z(\psi_{c\mu}) \quad \text{and} \quad \{|\psi_{\mu}| < 1\} = \{|\psi_{c\mu}| < 1\}.$$
(2.4)

Let $\delta_{e^{i\theta}}$ denote the unit point measure at $e^{i\theta}$. In this paper, we deal with discrete singular measures. Let

$$\mu = \sum_{k=1}^{\infty} a_k \delta_{e^{\mathbf{i}\theta_k}},$$

where $\sum_{k=1}^{\infty} a_k < \infty$, $a_k > 0$ for all k, and $e^{i\theta_k} \neq e^{i\theta_n}$ if $k \neq n$. Then

$$|\psi_{\mu}(z)|=\prod_{k=1}^{\infty}|\psi_{\delta_{e^{\mathrm{i} heta_{k}}}}(z)|^{a_{k}},\quad z\in D.$$

Let l_{+}^{∞} be the set of sequences of bounded positive numbers. For $p = (p_1, p_2, \ldots) \in l_{+}^{\infty}$, we define μ^p as $\sum_{k=1}^{\infty} p_k a_k \delta_{e^{i\theta_k}}$, and we put $\|p\|_{\infty} = \sup\{p_k : k \in \mathbb{N}\}$. Then $\mu^p \leq \|p\|_{\infty} \cdot \mu$. Thus by (2.1) and (2.4), we have

$$Z(\psi_{\mu^p}) \subset Z(\psi_{\mu}) \quad \text{and} \quad \{|\psi_{\mu^p}| < 1\} \subset \{|\psi_{\mu}| < 1\}.$$
 (2.5)

Singular inner functions defined by μ^p , $p \in l^{\infty}_+$, were studied by K. Izuchi in [7].

We use the following theorem.

Theorem 2.1 ([7]) Let μ and ν be positive singular measures on ∂D that are sums of infinitely many point measures, respectively. Then $\mu \perp \nu$ if and only if

$$\bigcap_{p \in l^{\infty}_{+}} \{ |\psi_{\mu^{p}}| < 1 \} \cap \bigcap_{q \in l^{\infty}_{+}} \{ |\psi_{\nu^{q}}| < 1 \} = \emptyset.$$

By the above theorem, we obtain the following lemma, which is one of key lemmas for constructing the desired singular inner functions.

Lemma 2.2 Let μ and ν be positive singular measures on ∂D that are sums of infinitely many point measures, respectively. If $\mu \perp \nu$, then there exist $p \in l^{\infty}_+$ and $q \in l^{\infty}_+$ such that $\|p\|_{\infty} \leq 1$, $\|q\|_{\infty} \leq 1$, and

$$Z(\psi_{\mu^p}) \cap Z(\psi_{
u^q}) = \emptyset$$

Proof. By Theorem 2.1,

$$\bigcap_{p \in l^{\infty}_{+}} Z(\psi_{\mu^{p}}) \cap \bigcap_{q \in l^{\infty}_{+}} Z(\psi_{\nu^{q}}) = \emptyset.$$
(2.6)

For each $p \in l^{\infty}_+$, $Z(\psi_{\mu^p})$ is a closed subset of $\mathfrak{M} \setminus D$. Since $\mathfrak{M} \setminus D$ is compact, $\bigcap_{p \in l^{\infty}_+} Z(\psi_{\mu^p})$ is a compact subset of $\mathfrak{M} \setminus D$. By (2.6), we have

$$\bigcap_{p \in l^{\infty}_{+}} Z(\psi_{\mu^{p}}) \subset \bigcup_{q \in l^{\infty}_{+}} (Z(\psi_{\nu^{q}}))^{c},$$

where $(Z(\psi_{\nu^q}))^c$ is the complement of $Z(\psi_{\nu^q})$ in $\mathfrak{M} \setminus D$. Then there exist $q^{(j)} = (q_1^{(j)}, q_2^{(j)}, \ldots) \in l_+^{\infty}, 1 \leq j \leq m$, such that

$$\bigcap_{p \in l^{\infty}_{+}} Z(\psi_{\mu^{p}}) \subset \bigcup_{j=1}^{m} \left(Z(\psi_{\nu^{q(j)}}) \right)^{c}.$$

Therefore

$$\bigcap_{p \in l^{\infty}_{+}} Z(\psi_{\mu^{p}}) \cap \bigcap_{j=1}^{m} Z(\psi_{\nu^{q^{(j)}}}) = \emptyset.$$

In the same way, there exist $p^{(i)} \in l^{\infty}_+$, $1 \leq i \leq n$, such that

$$\bigcap_{i=1}^n Z(\psi_{\mu^{p^{(i)}}}) \cap \bigcap_{j=1}^m Z(\psi_{\nu^{q^{(j)}}}) = \emptyset.$$

We put $p_k = \min\{1, p_k^{(1)}, p_k^{(2)}, \ldots, p_k^{(n)}\}\$ for each k. Then we have a new sequence $p = (p_1, p_2, \ldots) \in l_+^{\infty}$ with $\|p\|_{\infty} \leq 1$. It is clear that $\mu^p \leq \mu^{p^{(i)}}$ for all $i = 1, 2, \ldots, n$. Hence $Z(\psi_{\mu^p}) \subset Z(\psi_{\mu^{p^{(i)}}})$ for all i. A similar consideration gives us a singular measure ν^q . Therefore we obtain $Z(\psi_{\mu^p}) \cap Z(\psi_{\nu^q}) = \emptyset$. This completes the proof. \Box

3. An invariant subspace with index c

In this section, we prove the following theorem.

Theorem 3.1 There exists an invariant subspace of H^{∞} with index c which is generated by singular inner functions.

To prove our theorem, we need the following fact, which was used in Borichev [1, p. 42] without proof. We denote by N the set of positive integers.

Lemma 3.2 There exists a family $\{N_{\alpha} : \alpha \in [0, 1]\}$ such that $N_{\alpha} \subset \mathbb{N}$ for each $\alpha \in [0, 1]$, and such that for every finite family $\alpha_0, \alpha_1, \ldots, \alpha_n \in [0, 1]$, $\alpha_0 \neq \alpha_i, 1 \leq i \leq n$,

$$\operatorname{card}\left(N_{\alpha_0} \setminus \bigcup_{i=1}^n N_{\alpha_i}\right) = \infty.$$
(3.1)

For the convenience of the reader, we include a proof.

Proof. Take a countable dense subset $\{a_k : k \in \mathbb{N}\}$ in the open square $(0,1) \times (0,1)$. For $\alpha \in [0,1]$, let $A_{\alpha} = \{(x,y) : |x-\alpha| < y\}$ be the angular domain at vertex α , and put $N_{\alpha} = \{k : a_k \in A_{\alpha}\}$, which gives the desired family.

Proof of Theorem 3.1. Let $\{e^{i\theta_k} : k \in \mathbb{N}\}$ be a dense subset of distinct points in ∂D . For each k, let

$$\{\lambda_{k,j}\}_j$$
 be a sequence of distinct points in ∂D (3.2)

such that

$$\lim_{j \to \infty} \lambda_{k,j} = e^{\mathrm{i}\theta_k}.\tag{3.3}$$

Furthermore, we may assume that

$$\{\lambda_{k,j} : j \in \mathbb{N}\} \cap \{\lambda_{l,j} : j \in \mathbb{N}\} = \emptyset \quad \text{if} \quad k \neq l,$$
(3.4)

and

$$\{\lambda_{k,j}: j, k \in \mathbb{N}\} \cap \{e^{\mathrm{i}\theta_k}: k \in \mathbb{N}\} = \emptyset.$$
(3.5)

First, we set up a singular measure

$$\nu = \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} c_{k,j} \delta_{\lambda_{k,j}},$$

where $\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} c_{k,j} < \infty$ and $c_{k,j} > 0$ for every k, j. Put

$$\nu_k = \sum_{j=1}^{\infty} c_{k,j} \delta_{\lambda_{k,j}}$$

By induction, we show the existence of singular measures μ_k , $k = 1, 2, \ldots$, satisfying the following conditions:

$$\mu_k = \sum_{j=1}^{\infty} a_{k,j} \delta_{\lambda_{k,j}},\tag{3.6}$$

$$\sum_{k=1}^{\infty}\sum_{j=1}^{\infty}a_{k,j}<\infty, \quad a_{k,j}>0 \quad \text{for all} \ k, \ j,$$

and

P

$$Z(\psi_{\mu_k}) \cap Z(\psi_{\sum_{i=k+1}^{\infty} \mu_i}) = \emptyset \quad \text{for every} \quad k = 1, 2, \dots$$
 (3.7)

Apply Lemma 2.2 for singular measures ν_1 and $\sum_{k=2}^{\infty} \nu_k$, then there exist $p \in l^{\infty}_+$ and $q \in l^{\infty}_+$ such that $\|p\|_{\infty} \leq 1$, $\|q\|_{\infty} \leq 1$, and

$$Z(\psi_{\nu_1^p}) \cap Z\left(\psi_{(\sum_{k=2}^{\infty}\nu_k)^q}\right) = \emptyset.$$

ut $\mu_1 = \nu_1^p$. Then $0 \le \mu_1 \le \nu_1, 0 \le \left(\sum_{k=2}^{\infty}\nu_k\right)^q \le \sum_{k=2}^{\infty}\nu_k$, and
$$Z(\psi_{\mu_1}) \cap Z\left(\psi_{(\sum_{k=2}^{\infty}\nu_k)^q}\right) = \emptyset.$$
 (3.8)

We write $(\sum_{k=2}^{\infty} \nu_k)^q$ as $\sum_{k=2}^{\infty} \sum_{j=1}^{\infty} d_{k,j} \delta_{\lambda_{k,j}}$. For each $k \ge 2$, put $\nu'_k = \sum_{j=1}^{\infty} d_{k,j} \delta_{\lambda_{k,j}}$. And, apply Lemma 2.2 for measures ν'_2 and $\sum_{k=3}^{\infty} \nu'_k$, then

$$Z(\psi_{(\nu_2')^r}) \cap Z\big(\psi_{(\sum_{k=3}^{\infty}\nu_k')^s}\big) = \emptyset$$

holds for some $r \in l_+^{\infty}$ and $s \in l_+^{\infty}$ with $||r||_{\infty} \leq 1$, $||s||_{\infty} \leq 1$. Put $\mu_2 = (\nu_2')^r$. Then we have

$$Z(\psi_{\mu_2}) \cap Z\big(\psi_{(\sum_{k=3}^{\infty}\nu'_k)^s}\big) = \emptyset,$$

 $0 \le \mu_2 \le \nu_2$, and $0 \le \left(\sum_{k=3}^{\infty} \nu'_k\right)^s \le \sum_{k=3}^{\infty} \nu_k$.

Repeating the same argument, we obtain the desired singular measures $\mu_k, \ k = 1, 2, \ldots$

By (2.4) and (3.7), multiplying the measure $\sum_{i=k+1}^{\infty} \mu_i$ by a suitable positive constant less than 1 if necessary, we may assume that

$$\left|\psi_{\sum_{i=k+1}^{\infty}\mu_{i}}\right| \geq \frac{1}{2} \quad \text{on} \quad Z(\psi_{\mu_{k}}) \tag{3.9}$$

for each k.

Let $\{N_{\alpha} : \alpha \in [0,1]\}$ be the family given in Lemma 3.2. For each $\alpha \in [0,1]$, put

$$\sigma_{\alpha} = \sum_{k=1}^{\infty} \sum_{j \in \mathbb{N} \setminus N_{\alpha}} a_{k,j} \delta_{\lambda_{k,j}}$$
(3.10)

and

$$\sigma_{k,\alpha} = \sum_{j \in \mathbb{N} \setminus N_{\alpha}} a_{k,j} \delta_{\lambda_{k,j}}.$$
(3.11)

Then $\sigma_{\alpha} = \sum_{k=1}^{\infty} \sigma_{k,\alpha}$, and by (3.6)

$$\sigma_{k,\alpha} \le \sigma_{\alpha} \quad \text{and} \quad \sigma_{k,\alpha} \le \mu_k \quad \text{for every } k.$$
 (3.12)

Let \mathcal{M} be the invariant subspace of H^{∞} generated by singular inner functions $\psi_{\sigma_{\alpha}}, \alpha \in [0, 1]$. Let $\alpha_0 \in [0, 1]$. We claim that the vector $\psi_{\sigma_{\alpha_0}} + z\mathcal{M}$ does not belong to the closure of the linear span of $\{\psi_{\sigma_{\alpha}} + z\mathcal{M} : \alpha \in [0, 1], \alpha \neq \alpha_0\}$ in $\mathcal{M}/z\mathcal{M}$. This implies that dim $\mathcal{M}/z\mathcal{M} = \operatorname{card}[0, 1]$, that is, the index of \mathcal{M} equals \mathfrak{c} .

To prove the above, suppose not. Then we have

$$\left\|\psi_{\sigma_{\alpha_0}} + p_0\psi_{\sigma_{\alpha_0}} + \sum_{i=1}^n p_i\psi_{\sigma_{\alpha_i}}\right\|_{H^{\infty}} < \frac{1}{2}$$
(3.13)

for some finite set of elements $\alpha_i \in [0, 1]$, $\alpha_i \neq \alpha_0$, $1 \leq i \leq n$, and polynomials p_0, p_1, \ldots, p_n . Here $p_0(0) = 0$.

For each k, j, there exists a point $x_{k,j} \in \mathfrak{M}_{\lambda_{k,j}}$ such that

$$\psi_{\delta_{\lambda_{k,j}}}(x_{k,j}) = 0. \tag{3.14}$$

Then by (2.1) and (3.6), $|\psi_{\mu_k}(x_{k,j})| \leq |\psi_{\delta_{\lambda_{k,j}}}(x_{k,j})|^{a_{k,j}} = 0$ for each k, j. Hence

$$x_{k,j} \in Z(\psi_{\mu_k})$$
 for every $k, j.$ (3.15)

N. Niwa

Take $t \in (N_{\alpha_0} \setminus \bigcup_{i=1}^n N_{\alpha_i})$ arbitrary. Then by using (2.1), for $1 \le i \le n$

$$\begin{aligned} |\psi_{\sigma_{\alpha_{i}}}(x_{k,t})| &\leq |\psi_{\sigma_{k,\alpha_{i}}}(x_{k,t})| & \text{by (3.12)} \\ &\leq |\psi_{\delta_{\lambda_{k,t}}}(x_{k,t})|^{a_{k,t}} & \text{by (3.11)} \\ &= 0 & \text{by (3.14).} \end{aligned}$$

Thus we get

$$\psi_{\sigma_{\alpha_i}}(x_{k,t}) = 0 \tag{3.16}$$

for every $k \in \mathbb{N}$, $1 \le i \le n$, and $t \in (N_{\alpha_0} \setminus \bigcup_{i=1}^n N_{\alpha_i})$.

Let y_k be one of cluster points of $\{x_{k,t} : t \in N_{\alpha_0} \setminus \bigcup_{i=1}^n N_{\alpha_i}\}$. Since $\psi_{\sigma_{\alpha_i}}$ is continuous on \mathfrak{M} , by (3.16)

$$\psi_{\sigma_{\alpha_i}}(y_k) = 0 \tag{3.17}$$

for i = 1, 2, ..., n, and for k = 1, 2, ...

Let π denote the fiber projection from $\mathfrak{M} \setminus D$ onto ∂D . By (2.2) and (3.14),

$$\pi(x_{k,j}) = \lambda_{k,j} \quad \text{and} \quad x_{k,j} \in \mathfrak{M}_{\lambda_{k,j}}.$$
(3.18)

By (3.1), there is a sequence $\{t_m\}_m \subset (N_{\alpha_0} \setminus \bigcup_{i=1}^n N_{\alpha_i})$ such that $t_m \to \infty$ as $m \to \infty$. Then by (3.3),

$$\lim_{m \to \infty} \pi(x_{k,t_m}) = \lim_{m \to \infty} \lambda_{k,t_m} = e^{\mathrm{i}\theta_k}$$

Since π is continuous on $\mathfrak{M} \setminus D$ ([6], p. 160), it follows that

$$\pi(y_k) = e^{\mathrm{i}\theta_k} \quad \text{and} \quad y_k \in \mathfrak{M}_{e^{\mathrm{i}\theta_k}}.$$
 (3.19)

For every $k \in \mathbb{N}$ and $t \in (N_{\alpha_0} \setminus \bigcup_{i=1}^n N_{\alpha_i})$, we have

$$\begin{aligned} |\psi_{\sigma_{\alpha_0}}(x_{k,t})| \\ &= \left(\prod_{i=1}^k |\psi_{\sigma_{i,\alpha_0}}(x_{k,t})|\right) \cdot \left|\psi_{\sum_{i=k+1}^\infty \sigma_{i,\alpha_0}}(x_{k,t})\right| \quad \text{by (3.10) and (3.11)} \\ &\geq \left(\prod_{i=1}^k |\psi_{\sigma_{i,\alpha_0}}(x_{k,t})|\right) \cdot \left|\psi_{\sum_{i=k+1}^\infty \mu_i}(x_{k,t})\right| \quad \text{by (3.12)} \end{aligned}$$

$$\geq \frac{1}{2} \prod_{i=1}^{k} |\psi_{\sigma_{i,\alpha_{0}}}(x_{k,t})| \qquad \text{by (3.9) and (3.15)} \\ = \frac{1}{2}.$$

The proof of the last equality is the following. For each $i, 1 \leq i \leq k$, we have

$$S(\sigma_{i,\alpha_0}) = \overline{\{\lambda_{i,j} : j \in \mathbb{N} \setminus N_{\alpha_0}\}} \quad \text{by (3.11)}$$
$$= \{e^{\mathrm{i}\theta_i}\} \cup \{\lambda_{i,j} : j \in \mathbb{N} \setminus N_{\alpha_0}\} \quad \text{by (3.3)}$$
$$\not \supseteq \lambda_{k,t} \quad \text{by (3.2), (3.4) and (3.5).}$$

Hence by (2.3) and (3.18), $|\psi_{\sigma_{i,\alpha_0}}(x_{k,t})| = 1$ for every $i, 1 \le i \le k$.

Since y_k is one of cluster points of $\{x_{k,t} : t \in N_{\alpha_0} \setminus \bigcup_{i=1}^n N_{\alpha_i}\}$, by the above inequalities, we have

$$|\psi_{\sigma_{\alpha_0}}(y_k)| \ge \frac{1}{2}$$
 for every k . (3.20)

By (3.13) and (3.17), we have

$$|(1+p_0(y_k))\psi_{\sigma_{\alpha_0}}(y_k)| < rac{1}{2}$$
 for every k .

Therefore by (3.20), we obtain

 $|1+p_0(y_k)| < 1$ for all $k \in \mathbb{N}$.

By (3.19) and p_0 is a polynomial, we have $p_0(y_k) = p_0(e^{i\theta_k})$. Hence

$$|1 + p_0(e^{\mathbf{i}\theta_k})| < 1 \quad \text{for all} \quad k \in \mathbb{N}.$$
(3.21)

By the starting assumption, $\{e^{i\theta_k} : k \in \mathbb{N}\}$ is dense in ∂D , so that we obtain $\|1+p_0\|_{H^{\infty}} \leq 1$. Since $1+p_0(0) = 1$, by the maximality we have $1+p_0 \equiv 1$. This implies that $p_0 \equiv 0$. By (3.21), we get 1 < 1. This is the desired contradiction.

Acknowledgements The author would like to thank Professor Mikihiro Hayashi for teaching me the proof of Lemma 3.2 and Professor Keiji Izuchi for his advice and suggestions.

N. Niwa

References

- Borichev A., Invariant subspaces of given index in Banach spaces of analytic functions. J. Reine Angew. Math. 505 (1998), 23-44.
- [2] Garnett J., Bounded Analytic Functions. Academic Press, New York, 1981.
- [3] Hedenmalm H., An invariant subspace of the Bergman space having the codimension two property. J. Reine Angew. Math. 443 (1993), 1–9.
- [4] Hedenmalm H., Korenblum B. and Zhu K., *Theory of Bergman spaces*. Springer-Verlag, New York, 2000.
- [5] Hedenmalm H., Richter S. and Seip K., Interpolating sequences and invariant subspaces of given index in the Bergman spaces. J. Reine Angew. Math. 477 (1996), 13-30.
- [6] Hoffman K., Banach Spaces of Analytic Functions. Prentice Hall, Englewood Cliffs, N. J., 1962.
- [7] Izuchi K., Singular inner functions of L^1 type II. J. Math. Soc. Japan 53 (2001), 287-305.
- [8] Richter S., Invariant subspaces in Banach spaces of analytic functions. Trans. Amer. Math. Soc. 304 (1987), 585-616.

Department of Mathematical Sciences Graduate School of Science and Technology Niigata University 8050 Ikarashi 2-no-chou, Niigata 950-2181 Japan E-mail: niwa@m.sc.niigata-u.ac.jp