On construction of continuous functions with cusp singularities

Hidenori Watanabe

(Received November 9, 2001; Revised January 25, 2002)

Abstract

In this paper, we study various constructions of continuous functions on \mathbf{R} which have the prescribed cusp singularities at each point. As applications, we get some generalizations of the results given in our previous paper [7], which discuss the cusp singularities of the classical Weierstrass functions and Takagi function.

Key words: wavelets, scaling exponents, singularities, Weierstrass functions, spline functions, Takagi function.

1. Introduction

Let s be a positive number, which is not an integer and let x_{0} be a point in \mathbf{R}^{n}. Then a function f on \mathbf{R}^{n} belongs to the pointwise Hölder space $C^{s}\left(x_{0}\right)$, if there exists a polynomial P of degree less than s such that

$$
\left|f(x)-P\left(x-x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{s}
$$

in a neighborhood of x_{0}. The pointwise Hölder exponent of a function f at a point x_{0} in \mathbf{R}^{n} is defined as

$$
H\left(f, x_{0}\right)=\sup \left\{s>0 ; f \in C^{s}\left(x_{0}\right)\right\}
$$

If a continuous function f does not belong to $C^{s}\left(x_{0}\right)$ for every $s>0$, then $H\left(f, x_{0}\right)=0$.

However the pointwise Hölder exponent of a function f at a point x_{0} in \mathbf{R}^{n} is not stable under the pseudo-differential operators. Similarly it does not fully characterize the oscillatory behavior on a neighborhood of x_{0}. This implies that $f \in C^{s}\left(x_{0}\right)$ cannot be characterized by size estimates on the wavelet coefficients of f.

Here let us recall the definition of the weak scaling exponent characterizing the local oscillatory behavior.
$\mathcal{S}_{0}\left(\mathbf{R}^{n}\right)$ denotes the closed subspace of the Schwartz class $\mathcal{S}\left(\mathbf{R}^{n}\right)$ such
that

$$
\int_{\mathbf{R}^{n}} x^{\alpha} \psi(x) d x=0
$$

for every multi-index α in \mathbf{Z}_{+}^{n}. Then a tempered distribution f belongs to $\Gamma^{s}\left(x_{0}\right)$, if for every ψ in $\mathcal{S}_{0}\left(\mathbf{R}^{n}\right)$, there exists a constant $C(\psi)$ such that

$$
\left|\int_{\mathbf{R}^{n}} f(x) \frac{1}{a^{n}} \psi\left(\frac{x-x_{0}}{a}\right) d x\right| \leq C(\psi) a^{s}, \quad 0<a \leq 1
$$

The weak scaling exponent of a function f at a point x_{0} in \mathbf{R}^{n} is defined as

$$
\beta\left(f, x_{0}\right)=\sup \left\{s \in \mathbf{R} ; f \text { locally belongs to } \Gamma^{s}\left(x_{0}\right)\right\}
$$

Since it is known that the pointwise Hölder space $C^{s}\left(x_{0}\right)$ is contained in local $\Gamma^{s}\left(x_{0}\right)$, it is obvious that

$$
H\left(f, x_{0}\right) \leq \beta\left(f, x_{0}\right)
$$

Now we recall the definition of the two-microlocal spaces $C_{x_{0}}^{s, s^{\prime}}$, which characterize this weak scaling exponent.

Let φ be a function in the Schwartz class $\mathcal{S}\left(\mathbf{R}^{n}\right)$ such that

$$
\hat{\varphi}(\xi)= \begin{cases}1 & \text { on }|\xi| \leq \frac{1}{2} \\ 0 & \text { on }|\xi| \geq 1\end{cases}
$$

where $\hat{\varphi}$ is the Fourier transform of φ. For every non-negative integer j, we define the convolution operator $S_{j}(f)=f * \varphi_{\frac{1}{2^{j}}}$ where $\varphi_{a}(x)=\frac{1}{a^{n}} \varphi\left(\frac{x}{a}\right)$, and the difference operator $\Delta_{j}=S_{j+1}-S_{j}$. Then

$$
I=S_{0}+\sum_{j=0}^{\infty} \Delta_{j}
$$

Let $\psi=\varphi_{\frac{1}{2}}-\varphi$. Then $\psi \in \mathcal{S}_{0}\left(\mathbf{R}^{n}\right)$ and

$$
\Delta_{j}(f)=f * \psi_{\frac{1}{2^{j}}}
$$

Let s and s^{\prime} be two real numbers and x_{0} a point in \mathbf{R}^{n}. Then a tempered distribution f belongs to the two-microlocal spaces $C_{x_{0}}^{s, s^{\prime}}$, if there exists a constant C such that

$$
\left|S_{0}(f)(x)\right| \leq C\left(1+\left|x-x_{0}\right|\right)^{-s^{\prime}}
$$

and

$$
\left|\Delta_{j}(f)(x)\right| \leq C 2^{-j s}\left(1+2^{j}\left|x-x_{0}\right|\right)^{-s^{\prime}}
$$

for every $j \in \mathbf{Z}_{+}$and $x \in \mathbf{R}^{n}$.
The following remarkable theorems with respect to the two-microlocal spaces $C_{x_{0}}^{s, s^{\prime}}$ and $\Gamma^{s}\left(x_{0}\right)$ were given in [5].

Theorem A [5, Theorem 1.8] Let s and s^{\prime} be two real numbers and $x_{0} a$ point in \mathbf{R}^{n} and let us assume two positive integers r and N satisfying

$$
r+s+\inf \left(s^{\prime}, n\right)>0
$$

and

$$
N>\sup \left(s, s+s^{\prime}\right)
$$

Let ψ be a function such that

$$
\left|\partial^{\alpha} \psi(x)\right| \leq \frac{C(q)}{(1+|x|)^{q}}, \quad|\alpha| \leq r, \quad q \geq 1
$$

and

$$
\int_{\mathbf{R}^{n}} x^{\beta} \psi(x) d x=0, \quad|\beta| \leq N-1
$$

If a function or a distribution f belongs to the two-microlocal spaces $C_{x_{0}}^{s, s^{\prime}}$, then we have

$$
\begin{gathered}
\left|\int_{\mathbf{R}^{n}} f(x) \frac{1}{a^{n}} \overline{\psi\left(\frac{x-b}{a}\right)} d x\right| \leq C a^{s}\left(1+\frac{\left|b-x_{0}\right|}{a}\right)^{-s^{\prime}}, \\
0<a \leq 1, \quad\left|b-x_{0}\right| \leq 1
\end{gathered}
$$

Theorem B [5, Theorem 1.2] Let s be a real number and let f be a function or a distribution defined on a neighborhood V of x_{0}.

Then f locally belongs to $\Gamma^{s}\left(x_{0}\right)$ if and only if f locally belongs to the two-microlocal spaces $C_{x_{0}}^{s, s^{\prime}}$ for some s^{\prime}.

Several scientists have been interested in constructing irregular functions. The well-known example is the Weierstrass function [8]. It is an example of a nowhere differentiable continuous function. Hardy gave better
estimates of the regularities for the Weierstrass function

$$
\begin{equation*}
\mathcal{W}_{c}(x)=\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} \pi x\right) \tag{1}
\end{equation*}
$$

and its sine series

$$
\begin{equation*}
\mathcal{W}_{s}(x)=\sum_{n=0}^{\infty} a^{n} \sin \left(b^{n} \pi x\right), \tag{2}
\end{equation*}
$$

where $0<a<1, b>1$ and $a b \geq 1[3]$. He proved that these functions do not possess finite derivatives at each point x and showed more precisely that if $a b>1$ and $\xi=\frac{\log \left(\frac{1}{a}\right)}{\log b}$, then these functions satisfy

$$
\mathcal{W}_{c}(x+h)-\mathcal{W}_{c}(x)=O\left(|h|^{\xi}\right) \text { and } \mathcal{W}_{s}(x+h)-\mathcal{W}_{s}(x)=O\left(|h|^{\xi}\right)
$$

for each x, but satisfy neither

$$
\mathcal{W}_{c}(x+h)-\mathcal{W}_{c}(x)=o\left(|h|^{\xi}\right) \text { nor } \mathcal{W}_{s}(x+h)-\mathcal{W}_{s}(x)=o\left(|h|^{\xi}\right)
$$

for any x.
Next let us recall the definition of the Takagi function [6]. Let θ^{*} be the 1-periodic function such that

$$
\theta^{*}(x)=\left\{\begin{array}{ll}
x & \text { if } 0 \leq x<\frac{1}{2} \\
1-x & \text { if } \frac{1}{2} \leq x<1
\end{array} .\right.
$$

Then the Takagi function is defined by

$$
\begin{equation*}
\mathcal{T}(x)=\sum_{n=0}^{\infty} \frac{\theta^{*}\left(2^{n} x\right)}{2^{n}} . \tag{3}
\end{equation*}
$$

It is another example of a nowhere differentiable continuous function.
Using the scaling exponents, Meyer defined two types of singularities of functions as follows [5]: a point x_{0} in \mathbf{R}^{n} is called a cusp singularity of a function f, when

$$
H\left(f, x_{0}\right)=\beta\left(f, x_{0}\right)<\infty,
$$

while a point x_{0} in \mathbf{R}^{n} is called an oscillating singularity of a function f,
when

$$
H\left(f, x_{0}\right)<\beta\left(f, x_{0}\right)
$$

When a point x_{0} is a cusp singularity of a function f, the pointwise Hölder exponent can be found by computing the size estimates on the wavelet coefficients of f inside the influence cone. Using this fact, we construct continuous functions which have a prescribed cusp singularity at each point x_{0} in \mathbf{R}.

Daoudi and his team [2] studied the following problem which was raised by Lévy Véhel:

Let s be a function from $[0,1]$ to $[0,1]$. Under what conditions on s does there exist a continuous function from $[0,1]$ to \mathbf{R} such that $H(f, x)=s(x)$ for all x in $[0,1]$?

They solved the problem as follows: "For a function s from $[0,1]$ to $[0,1]$, there exist a continuous function f on $[0,1]$ such that $H(f, x)=s(x)$ for all x in $[0,1]$ if and only if s is a function which can be represented as a limit inferior of a sequence of continuous functions on $[0,1]$." Further, they constructed such f by various methods, - as the Weierstrass type function, using Schauder bases and using Iterated Function System.

On the other hand, Andersson [1] proved a similar characterization for a function s from \mathbf{R} to $[0, \infty]$ and constructed f satisfying $H(f, x)=s(x)$ for all x in \mathbf{R} by a method using orthogonal wavelets.

In the rest of the paper we study, for a given function on \mathbf{R}, various constructions of a function f satisfying

$$
H(f, x)=\beta(f, x)=s(x), \quad x \in \mathbf{R}
$$

using orthonormal wavelets in Section 2, as the Weierstrass type function in Section 3 and using spline functions in Section 4.

2. Construction using orthonormal wavelets

In this section, using orthonormal wavelets, we construct a continuous function which has a prescribed cusp singularity at each point in \mathbf{R}.

The following Lemma 1 is used in the proof of Theorems 1 and 2.
Lemma 1 Let s be a function from \mathbf{R} to $[0, \infty]$, which is the lower limit of a sequence of real continuous functions $\left\{t_{l}\right\}_{l \in \mathbf{N}}$. Then there exists a sequence $\left\{s_{l}\right\}_{l \in \mathbf{Z}_{+}}$of infinitely differentiable non-negative functions with
compact supports such that
(i) $s(x)=\liminf _{l \rightarrow \infty} s_{l}(x), \quad x \in \mathbf{R}$,
(ii) For each x_{0} in \mathbf{R}, there exists a positive integer l_{0} such that

$$
s_{l}(x) \geq \frac{1}{\sqrt{l+1}}, \quad l \geq l_{0}, \quad\left|x-x_{0}\right| \leq 1
$$

(iii) There exists a sequence $\left\{C_{k}\right\}_{k \in \mathbf{Z}_{+}} \subset(0, \infty)$ such that

$$
\sup _{x \in \mathbf{R}}\left|s_{l}^{(k)}(x)\right| \leq C_{k} l^{k+1}, \quad l \in \mathbf{Z}_{+}
$$

where $s_{l}^{(k)}$ is the k-th derivative of s_{l}.
Proof. Let η be a non-negative infinitely differentiable function supported on $[-1,1]$ satisfying $\eta(x)=1$ if $|x| \leq \frac{1}{4}, \sup _{x \in \mathbf{R}} \eta(x)=1$ and $\int_{\mathbf{R}} \eta(x) d x=$ 1. If we put

$$
\tilde{t}_{l}(x)=\eta\left(\frac{x}{l}\right) \min \left(\max \left(t_{l}(x), \frac{1}{\sqrt{l+1}}\right), l\right), \quad l \in \mathbf{N},
$$

it is easy to see that $\left\{\tilde{t}_{l}\right\}_{l \in \mathbf{N}}$ satisfies

$$
\begin{aligned}
& \liminf _{l \rightarrow \infty} \tilde{t}_{l}(x)=s(x), \quad x \in \mathbf{R}, \\
& \tilde{t}_{l}(x) \geq \frac{1}{\sqrt{l+1}}, \quad|x| \leq \frac{l}{4}, \\
& \tilde{t}_{l}(x)=0, \quad|x| \geq l
\end{aligned}
$$

and

$$
\sup _{x \in \mathbf{R}} \tilde{t}_{l}(x) \leq l .
$$

Since each \tilde{t}_{l} is uniformly continuous, we can choose a strictly increasing sequence of positive integers $\left\{p_{l}\right\}_{l \in \mathbf{N}}$ such that

$$
\sup _{|x-y| \leq \frac{1}{p_{l}}}\left|\tilde{t}_{l}(x)-\tilde{t}_{l}(y)\right| \leq \frac{1}{l}, \quad l \in \mathbf{N} .
$$

Under these circumstances, we define $s_{l}(x)$ for $l \in \mathbf{Z}_{+}$and $x \in \mathbf{R}$ by

$$
s_{l}(x)= \begin{cases}0 & \text { if } 0 \leq l<p_{1} \\ \int_{\mathbf{R}} p_{m} \eta\left(p_{m}(x-y)\right) \tilde{t}_{m}(y) d y & \text { if } p_{m} \leq l<p_{m+1}, m \in \mathbf{N}\end{cases}
$$

If we put $C_{k}=\int_{\mathbf{R}}\left|\eta^{(k)}(x)\right| d x$ for $k \in \mathbf{Z}_{+}$, then $\left\{s_{l}\right\}_{l \in \mathbf{Z}_{+}}$satisfies the required properties (i), (ii) and (iii). To prove (i) we have

$$
\begin{aligned}
\left|s_{l}(x)-\tilde{t}_{m}(x)\right| & =\left|\int_{\mathbf{R}} p_{m} \eta\left(p_{m}(x-y)\right)\left(\tilde{t}_{m}(y)-\tilde{t}_{m}(x)\right) d y\right| \\
& \leq \sup _{|x-y| \leq \frac{1}{p_{m}}}\left|\tilde{t}_{m}(y)-\tilde{t}_{m}(x)\right| \int_{\mathbf{R}} \eta(y) d y \\
& \leq \frac{1}{m}, \quad p_{m} \leq l<p_{m+1}
\end{aligned}
$$

This proves the desired result. To prove (ii) we choose $m_{0} \in \mathbf{N}$ such that $\frac{m_{0}}{4}-\frac{1}{m_{0}} \geq\left|x_{0}\right|+1$ and put $l_{0}=p_{m_{0}}$. For a positive integer $l \geq l_{0}$, choose $m \in \mathbf{N}$ such that $p_{m} \leq l<p_{m+1}$. Then if $\left|x-x_{0}\right| \leq 1$, we have

$$
\begin{aligned}
s_{l}(x) & =\int_{\mathbf{R}} p_{m} \eta\left(p_{m}(x-y)\right) \tilde{t}_{m}(y) d y \\
& \geq \inf _{|x-y| \leq \frac{1}{p_{m}}} \tilde{t}_{m}(y) \int_{\mathbf{R}} \eta(y) d y \\
& \geq \inf _{|y| \leq\left|x_{0}\right|+1+\frac{1}{m}} \tilde{t}_{m}(y) \\
& \geq \inf _{|y| \leq \frac{m}{4}} \tilde{t}_{m}(y) \\
& \geq \frac{1}{\sqrt{m+1}} \geq \frac{1}{\sqrt{l+1}}
\end{aligned}
$$

To prove (iii) we choose $m \in \mathbf{N}$, for a given $l \in \mathbf{N}$, such that $p_{m} \leq l<p_{m+1}$. Then we have

$$
\begin{aligned}
\left|s_{l}^{(k)}(x)\right| & =\left|\int_{\mathbf{R}} p_{m}^{k+1} \eta^{(k)}\left(p_{m}(x-y)\right) \tilde{t}_{m}(y) d y\right| \\
& \leq p_{m}^{k} \sup _{|x-y| \leq \frac{1}{p_{m}}} \tilde{t}_{m}(y) \int_{\mathbf{R}}\left|\eta^{(k)}(y)\right| d y \\
& \leq C_{k} m p_{m}^{k} \leq C_{k} l^{k+1} .
\end{aligned}
$$

Theorem 1 Let s be a function from \mathbf{R} to $[0, \infty]$, which is the lower limit of a sequence of continuous functions. Then there exists a sequence $\left\{s_{l}\right\}_{l \in \mathbf{Z}_{+}}$ of differentiable functions such that

$$
\begin{equation*}
s(x)=\liminf _{l \rightarrow \infty} s_{l}(x), \quad x \in \mathbf{R} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x \in \mathbf{R}}\left|s_{l}^{\prime}(x)\right| \leq C_{1} l^{2}, \quad l \in \mathbf{Z}_{+} . \tag{5}
\end{equation*}
$$

Let ψ be an orthonormal wavelet in the Schwartz class $\mathcal{S}(\mathbf{R})$. If we define a continuous function f by

$$
f(x)=\sum_{l=2}^{\infty} \sum_{m=0}^{\infty} c(l, m) \psi\left(2^{l} x-m\right)
$$

where

$$
c(l, m)=\min \left(2^{-l s_{l}\left(\frac{m}{2^{2}}\right)}, 2^{-\frac{l}{\log l}}\right)
$$

then we have

$$
H\left(f, x_{0}\right)=\beta\left(f, x_{0}\right)=s\left(x_{0}\right)
$$

at each point x_{0} in \mathbf{R}.
Proof. The existence of $\left\{s_{l}\right\}_{l \in \mathbf{Z}_{+}}$satisfying (4) and (5) follows from Lemma 1. Since

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} \sup \operatorname{lx}_{j}\left|s_{j}(x)-s_{j}(y)\right| \leq 2^{-\frac{1}{(\log j)^{2}}} \\
& \quad \leq \lim _{j \rightarrow \infty} \sup _{x \in \mathbf{R}}\left|s_{j}^{\prime}(x)\right| \sup _{|x-y| \leq 2^{-\frac{j}{(\log j)^{2}}}}|x-y| \\
& \quad \leq C_{1} \lim _{j \rightarrow \infty} j^{2} 2^{-\frac{j}{(\log j)^{2}}} \\
& \quad=0
\end{aligned}
$$

$H\left(f, x_{0}\right)=s\left(x_{0}\right)$ at each point $x_{0} \in \mathbf{R}$ (cf. [1] p. 441, proof of Theorem 1). We only need to compute the value of $\beta\left(f, x_{0}\right)$.

Let us assume f locally belongs to $\Gamma^{s}\left(x_{0}\right)$. Then by Theorem B, f locally belongs to $C_{x_{0}}^{s, s^{\prime}}$ for some $s^{\prime}<0$. On the other hand, $\psi \in \mathcal{S}_{0}(\mathbf{R})$
(cf. [4, 2. Corollary 3.7]). By Theorem A, there exist two constants $C \in$ $(0, \infty)$ and $\delta \in\left(0, \frac{1}{2}\right)$ such that

$$
\begin{gather*}
\left\lvert\, \int f(x) \frac{1}{a} \psi\left(\frac{x-b}{a}\right)\right. \\
|x| \leq C a^{s}\left(1+\frac{\left|b-x_{0}\right|}{a}\right)^{-s^{\prime}}, \tag{6}\\
0<a \leq \delta, \quad\left|b-x_{0}\right| \leq \delta
\end{gather*}
$$

Let j_{0} be a positive integer such that $\frac{1}{2^{j_{0}}} \leq \delta$. For every $j \geq j_{0}$, there exists $k_{j} \in \mathbf{Z}$ such that $\frac{k_{j}}{2^{j}} \leq x_{0}<\frac{k_{j}+1}{2^{j}}$ and we define a_{j} and b_{j} by $a_{j}=\frac{1}{2^{j}}$ and $b_{j}=\frac{k_{j}}{2^{j}}$. Then $\left|b_{j}-x_{0}\right| \leq a_{j}$ and by (6), we have

$$
\begin{equation*}
\left|\int f(x) 2^{j} \overline{\psi\left(2^{j} x-k_{j}\right)} d x\right| \leq \frac{C 2^{-s^{\prime}}}{2^{j s}}, \quad j \geq j_{0} . \tag{7}
\end{equation*}
$$

We estimate the left hand side of (7) as follows:

$$
\begin{align*}
& \left|\int f(x) 2^{j} \overline{\psi\left(2^{j} x-k_{j}\right)} d x\right| \\
& \quad=\left|\sum_{l=2}^{\infty} \sum_{m=-\infty}^{\infty} c(l, m) \int \psi\left(2^{l} x-m\right) 2^{j} \overline{\psi\left(2^{j} x-k_{j}\right)} d x\right| \\
& \quad=c\left(j, k_{j}\right) . \tag{8}
\end{align*}
$$

By (7) and (8), $f \in \Gamma^{s}\left(x_{0}\right)$ implies

$$
\begin{equation*}
c\left(j, k_{j}\right)=\min \left(2^{-j s_{j}\left(\frac{k_{j}}{2^{j}}\right)}, 2^{-\frac{j}{\log j}}\right) \leq \frac{C 2^{-s^{\prime}}}{2^{j s}}, \quad j \geq j_{0} . \tag{9}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\lim _{j \rightarrow \infty}\left|s_{j}\left(\frac{k_{j}}{2^{j}}\right)-s_{j}\left(x_{0}\right)\right| & \leq \lim _{j \rightarrow \infty} \sup _{x \in \mathbf{R}}\left|s_{j}^{\prime}(x)\right|\left(x_{0}-\frac{k_{j}}{2^{j}}\right) \\
& \leq C_{1} \lim _{j \rightarrow \infty} \frac{j^{2}}{2^{j}} \\
& =0 .
\end{aligned}
$$

By (9), we have

$$
\begin{aligned}
s & \leq \liminf _{j \rightarrow \infty} \max \left(s_{j}\left(\frac{k_{j}}{2^{j}}\right), \frac{1}{\log j}\right) \\
& =\liminf _{j \rightarrow \infty} s_{j}\left(\frac{k_{j}}{2^{j}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\liminf _{j \rightarrow \infty} s_{j}\left(x_{0}\right)+\lim _{j \rightarrow \infty}\left(s_{j}\left(\frac{k_{j}}{2^{j}}\right)-s_{j}\left(x_{0}\right)\right) \\
& =s\left(x_{0}\right) .
\end{aligned}
$$

Therefore $\beta\left(f, x_{0}\right) \leq s\left(x_{0}\right)=H\left(f, x_{0}\right)$. Since $H\left(f, x_{0}\right) \leq \beta\left(f, x_{0}\right)$ is trivial, we have $H\left(f, x_{0}\right)=\beta\left(f, x_{0}\right)=s\left(x_{0}\right)$.

3. Use of Weierstrass type functions

In this section, we construct the Weierstrass type continuous function which has a prescribed cusp singularity at each point in \mathbf{R}.

We begin with the following lemma.
Lemma 2 Let $s \in[0, \infty], l_{0} \in \mathbf{Z}_{+}$and $\left\{s_{l}\right\}_{l \in \mathbf{Z}_{+}} \subset \mathbf{R}$ be such that
(a) $\liminf _{l \rightarrow \infty} s_{l}=s$,
(b) $\quad s_{l} \geq \frac{1}{\sqrt{l+1}}, \quad l \geq l_{0}$.

Suppose $\lambda>1$ and $\left\{\theta_{l}\right\}_{l \in \mathbf{Z}_{+}} \subset \mathbf{R}$ are chosen arbitrary.
(i) If $m \in \mathbf{Z}_{+}$and $\left\{\alpha_{l}\right\}_{l \in \mathbf{Z}_{+}}$is a bounded sequence in \mathbf{R} and if we define a continuous function f by

$$
f(x)=\sum_{l=0}^{\infty} \frac{\alpha_{l} l^{m}}{\lambda^{l_{l}}} \sin \left(\lambda^{l} x+\theta_{l}\right), \quad x \in \mathbf{R}
$$

then we have

$$
H\left(f, x_{0}\right) \geq s
$$

at each point x_{0} in \mathbf{R}.
(ii) If we define a continuous function g by

$$
g(x)=\sum_{l=0}^{\infty} \frac{1}{\lambda^{l_{s}}} \sin \left(\lambda^{l} x+\theta_{l}\right), \quad x \in \mathbf{R},
$$

then we have

$$
H\left(g, x_{0}\right)=\beta\left(g, x_{0}\right)=s
$$

at each point x_{0} in \mathbf{R}.
Proof. (i) By (b), f is a continuous function on \mathbf{R} and hence we have only to show (i) when $s>0$.

Let $x_{0} \in \mathbf{R}$ be fixed arbitrary.
First, we consider the case $0<s \leq 1$. Let $\varepsilon \in(0, s)$ be arbitrary. By (a), we can choose $l_{0} \in \mathbf{Z}_{+}$such that $s_{l}>s-\frac{\varepsilon}{2}$ for $l \geq l_{0}$ and we put $f_{1}(x)=\sum_{l=l_{0}}^{\infty} \frac{\alpha_{l} l^{m}}{\lambda^{s_{l}}} \sin \left(\lambda^{l} x+\theta_{l}\right)$. To show $H\left(f, x_{0}\right) \geq s-\varepsilon$, it suffices to show $f_{1} \in C^{s-\varepsilon}\left(x_{0}\right)$ since $H\left(f-f_{1}, x_{0}\right)=\infty$ is obvious. Let x be a real number such that $\left|x-x_{0}\right|<\frac{1}{\lambda^{l_{0}}}$ and choose $N \in \mathbf{Z}_{+}$such that $\frac{1}{\lambda^{N+1}} \leq \mid x-$ $x_{0} \left\lvert\,<\frac{1}{\lambda^{N}}\right.$. Then we have

$$
\begin{align*}
\left|f_{1}(x)-f_{1}\left(x_{0}\right)\right|= & \left|\sum_{l=l_{0}}^{\infty} \frac{\alpha_{l} l^{m}}{\lambda^{l_{l}}}\left(\sin \left(\lambda^{l} x+\theta_{l}\right)-\sin \left(\lambda^{l} x_{0}+\theta_{l}\right)\right)\right| \\
\leq & \left|\sum_{l=l_{0}}^{N-1} \frac{\alpha_{l} l^{m}}{\lambda^{s_{l}}}\left(\sin \left(\lambda^{l} x+\theta_{l}\right)-\sin \left(\lambda^{l} x_{0}+\theta_{l}\right)\right)\right| \\
& +\left|\sum_{l=N}^{\infty} \frac{\alpha_{l} l^{m}}{\lambda^{l s_{l}}}\left(\sin \left(\lambda^{l} x+\theta_{l}\right)-\sin \left(\lambda^{l} x_{0}+\theta_{l}\right)\right)\right| \\
= & \mathrm{A}_{1}+\mathrm{A}_{2} . \tag{10}
\end{align*}
$$

Observe first that there exists a constant $M_{1} \in(0, \infty)$ such that

$$
\begin{equation*}
\left|\alpha_{l}\right| l^{m} \leq M_{1} \lambda^{\frac{l \varepsilon}{2}}, \quad l \geq l_{0} . \tag{11}
\end{equation*}
$$

To estimate A_{1} and A_{2} we use (11) to obtain

$$
\begin{aligned}
\mathrm{A}_{1} & \leq 2 \sum_{l=l_{0}}^{N-1} \frac{\left|\alpha_{l}\right| l^{m}}{\lambda^{s_{l}}}\left|\cos \left(\frac{\lambda^{l}\left(x+x_{0}\right)}{2}+\theta_{l}\right) \sin \left(\frac{\lambda^{l}\left(x-x_{0}\right)}{2}\right)\right| \\
& \leq \sum_{l=l_{0}}^{N-1}\left|\alpha_{l}\right| l^{m} \lambda^{l\left(1-s_{l}\right)}\left|x-x_{0}\right| \\
& \leq M_{1} \sum_{l=l_{0}}^{N-1} \lambda^{l(1-s+\varepsilon)}\left|x-x_{0}\right| \\
& =\frac{M_{1} \lambda^{l_{0}(1-s+\varepsilon)}\left(\lambda^{\left(N-l_{0}\right)(1-s+\varepsilon)}-1\right)}{\lambda^{1-s+\varepsilon}-1}\left|x-x_{0}\right| \\
& \leq \frac{M_{1} \lambda^{N(1-s+\varepsilon)}}{\lambda^{1-s+\varepsilon}-1}\left|x-x_{0}\right| \\
& \leq \frac{M_{1}}{\lambda^{1-s+\varepsilon}-1}\left|x-x_{0}\right|^{s-\varepsilon},
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}_{2} & \leq 2 \sum_{l=N}^{\infty} \frac{\left|\alpha_{l}\right| l^{m}}{\lambda^{l_{s}}}\left|\cos \left(\frac{\lambda^{l}\left(x+x_{0}\right)}{2}+\theta_{l}\right) \sin \left(\frac{\lambda^{l}\left(x-x_{0}\right)}{2}\right)\right| \\
& \leq 2 \sum_{l=N}^{\infty} \frac{\left|\alpha_{l}\right| l^{m}}{\lambda^{l_{s}}} \\
& \leq 2 M_{1} \sum_{l=N}^{\infty} \frac{1}{\lambda^{l(s-\varepsilon)}} \\
& =\frac{\frac{2 M_{1}}{\lambda^{N(s-\varepsilon)}}}{1-\frac{1}{\lambda^{s-\varepsilon}}} \\
& \leq \frac{2 M_{1} \lambda^{2(s-\varepsilon)}}{\lambda^{s-\varepsilon}-1}\left|x-x_{0}\right|^{s-\varepsilon}
\end{aligned}
$$

The estimates for A_{1} and A_{2} with (10) show that there exists a constant $M_{2} \in(0, \infty)$ such that

$$
\left|f_{1}(x)-f_{1}\left(x_{0}\right)\right| \leq M_{2}\left|x-x_{0}\right|^{s-\varepsilon}, \quad\left|x-x_{0}\right|<\frac{1}{\lambda^{l_{0}}}
$$

Thus $H\left(f_{1}, x_{0}\right) \geq s-\varepsilon$ and hence $H\left(f, x_{0}\right) \geq s-\varepsilon$. Since $\varepsilon>0$ is arbitrary, $H\left(f, x_{0}\right) \geq s$.

Next, we consider the case $n<s \leq n+1$ for some $n \in \mathbf{N}$. In this case, f is n-times continuously differentiable on \mathbf{R} and we have

$$
f^{(n)}(x)=\sum_{l=0}^{\infty} \frac{\alpha_{l} l^{m}}{\lambda^{l\left(s_{l}-n\right)}} \sin \left(\lambda^{l} x+\theta_{l}+\frac{n \pi}{2}\right)
$$

Thus $H\left(f^{(n)}, x_{0}\right) \geq s-n$ by an argument similar to the case where $0<s \leq$ 1 and hence $H\left(f, x_{0}\right) \geq s$ holds even for $1<s<\infty$.

Finally, we consider the case $s=\infty$. In this case, f is obviously infinitely differentiable at x_{0} and hence $H\left(f, x_{0}\right)=\infty$.
(ii) $H\left(g, x_{0}\right) \geq s$ follows from (i), if we put $\alpha_{l}=1$ for $l \in \mathbf{Z}_{+}$and $m=0$ in (i).

For $\beta\left(g, x_{0}\right)$, let us assume g locally belongs to $\Gamma^{\rho}\left(x_{0}\right)$. Let ψ be a function in $\mathcal{S}_{0}(\mathbf{R})$ such that $\hat{\psi}(\xi)=0$ if $|\xi-1| \geq \frac{\lambda-1}{\lambda}$ and $\hat{\psi}(1)=2$. Then there exist two constants $M_{3} \in(0, \infty)$ and $\eta \in(0,1]$ such that

$$
\begin{equation*}
\left|\int g(x) \frac{1}{a} \psi\left(\frac{x-x_{0}}{a}\right) d x\right| \leq M_{3} a^{\rho}, \quad 0<a \leq \eta \tag{12}
\end{equation*}
$$

Let j_{0} be a non-negative integer such that $\frac{1}{\lambda^{j_{0}}} \leq \eta$. For every $j \geq j_{0}$,
we put $a_{j}=\frac{1}{\lambda^{j}}$. By (12), we have

$$
\begin{equation*}
\left|\int g(x) \lambda^{j} \psi\left(\lambda^{j}\left(x-x_{0}\right)\right) d x\right| \leq \frac{M_{3}}{\lambda^{j \rho}}, \quad j \geq j_{0} \tag{13}
\end{equation*}
$$

We estimate the left hand side of (13) as follows:

$$
\begin{align*}
& \left|\int g(x) \lambda^{j} \psi\left(\lambda^{j}\left(x-x_{0}\right)\right) d x\right| \\
& \quad=\left|\int \sum_{l=0}^{\infty} \frac{1}{\lambda^{l s_{l}}} \sin \left(\lambda^{l-j} x+\lambda^{l} x_{0}+\theta_{l}\right) \psi(x) d x\right| \\
& \quad=\left|\sum_{l=0}^{\infty} \frac{1}{\lambda^{l s_{l}}} \int \frac{e^{i\left(\lambda^{l-j} x+\lambda^{l} x_{0}+\theta_{l}\right)}-e^{-i\left(\lambda^{l-j} x+\lambda^{l} x_{0}+\theta_{l}\right)}}{2 i} \psi(x) d x\right| \\
& \quad=\left|\sum_{l=0}^{\infty} \frac{e^{i\left(\lambda^{l} x_{0}+\theta_{l}\right)} \hat{\psi}\left(-\lambda^{l-j}\right)-e^{-i\left(\lambda^{l} x_{0}+\theta_{l}\right)} \hat{\psi}\left(\lambda^{l-j}\right)}{2 i \lambda^{l s_{l}}}\right| \\
& \quad=\frac{|\hat{\psi}(1)|}{2 \lambda^{j s_{j}}} \\
& \quad=\frac{1}{\lambda^{j s_{j}}} \tag{14}
\end{align*}
$$

By (13) and (14), $g \in \Gamma^{\rho}\left(x_{0}\right)$ implies $\frac{1}{\lambda^{j s_{j}}} \leq \frac{M_{3}}{\lambda^{j \rho}}$ for every $j \geq j_{0}$ and hence $\rho \leq \liminf _{j \rightarrow \infty} s_{j}=s \leq H\left(g, x_{0}\right)$. Therefore $\beta\left(g, x_{0}\right) \leq s \leq H\left(g, x_{0}\right)$. Since $H\left(g, x_{0}\right) \leq \beta\left(g, x_{0}\right)$ is trivial, we have $H\left(g, x_{0}\right)=\beta\left(g, x_{0}\right)=s$.

Theorem 2 Let s be a function from \mathbf{R} to $[0, \infty]$, which is the lower limit of a sequence of continuous functions and let $\left\{s_{l}\right\}_{l \in \mathbf{Z}_{+}}$be a sequence of continuous functions satisfying part (i), (ii) and (iii) of Lemma 1.

Suppose $\lambda>1$ and $\left\{\theta_{l}\right\}_{l \in \mathbf{Z}_{+}} \subset \mathbf{R}$ are chosen arbitrary. If we define a continuous function f by

$$
f(x)=\sum_{l=0}^{\infty} \frac{1}{\lambda^{l s_{l}(x)}} \sin \left(\lambda^{l} x+\theta_{l}\right)
$$

then we have

$$
H\left(f, x_{0}\right)=\beta\left(f, x_{0}\right)=s\left(x_{0}\right)
$$

at each point x_{0} in \mathbf{R}.

Proof. First, we consider the case $n \leq s\left(x_{0}\right)<n+1$ for some $n \in \mathbf{Z}_{+}$. Using the Taylor expansion we have

$$
\begin{align*}
\frac{1}{\lambda^{s_{l}(x)}}=\frac{1}{\lambda^{s_{l}\left(x_{0}\right)}} & +\left.\sum_{j=1}^{n} \frac{1}{j!} \frac{d^{j}}{d x^{j}} \frac{1}{\lambda^{s_{l}(x)}}\right|_{x=x_{0}}\left(x-x_{0}\right)^{j} \\
& +\left.\frac{1}{(n+1)!} \frac{d^{n+1}}{d x^{n+1}} \frac{1}{\lambda^{s_{l}(x)}}\right|_{x=\xi_{l}}\left(x-x_{0}\right)^{n+1}, \tag{15}
\end{align*}
$$

where $\xi_{l} \in\left(\min \left(x, x_{0}\right), \max \left(x, x_{0}\right)\right)$. It goes without saying that if $n=0$ the second term in the right hand side of (15) does not appear. By (15), we can write

$$
\begin{equation*}
f(x)=\sum_{l=0}^{\infty} \frac{1}{\lambda^{l_{l}(x)}} \sin \left(\lambda^{l} x+\theta_{l}\right)=f_{1}(x)+f_{2}(x)+f_{3}(x) \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
& f_{1}(x)=\sum_{l=0}^{\infty} \frac{1}{\lambda^{s_{l}\left(x_{0}\right)}} \sin \left(\lambda^{l} x+\theta_{l}\right), \tag{17}\\
& f_{2}(x)=\left.\sum_{l=0}^{\infty} \sum_{j=1}^{n} \frac{1}{j!} \frac{d^{j}}{d x^{j}} \frac{1}{\lambda^{l s_{l}(x)}}\right|_{x=x_{0}} \sin \left(\lambda^{l} x+\theta_{l}\right)\left(x-x_{0}\right)^{j} \tag{18}
\end{align*}
$$

and

$$
\begin{equation*}
f_{3}(x)=\left.\frac{1}{(n+1)!} \sum_{l=0}^{\infty} \frac{d^{n+1}}{d x^{n+1}} \frac{1}{\lambda^{l_{l}(x)}}\right|_{x=\xi_{l}} \sin \left(\lambda^{l} x+\theta_{l}\right)\left(x-x_{0}\right)^{n+1}, \tag{19}
\end{equation*}
$$

where $\xi_{l} \in\left(\min \left(x, x_{0}\right), \max \left(x, x_{0}\right)\right)$.
By part (ii) of Lemma 2, $H\left(f_{1}, x_{0}\right)=\beta\left(f_{1}, x_{0}\right)=s\left(x_{0}\right)$ follows at once. f_{2} does not appear if $n=0$, and if $n \geq 1$ we have

$$
\begin{gather*}
f_{2}(x)=\sum_{l=0}^{\infty} \sum_{j=1}^{n} \sum_{k=1}^{j} \sum_{(*))_{j}} \frac{1}{j!} \frac{(-\log \lambda)^{k} l^{k} \alpha_{j, i_{1}, \ldots, i_{k}} s_{l}^{\left(i_{1}\right)}\left(x_{0}\right) \ldots s_{l}^{\left(i_{k}\right)}\left(x_{0}\right)}{\lambda^{l s_{l}\left(x_{0}\right)}} \\
\cdot \sin \left(\lambda^{l} x+\theta_{l}\right)\left(x-x_{0}\right)^{j}, \tag{20}
\end{gather*}
$$

where $\sum_{(*)_{j}}$ mean the summation under the condition $i_{1}+\cdots+i_{k}=j$ with $i_{1} \leq \cdots \leq i_{k}$ and $\left\{\alpha_{j, i_{1}, \ldots, i_{k}}\right\}$ are positive integers satisfying $\sum_{(*)_{j}} \alpha_{j, i_{1}, \ldots, i_{k}} \leq$
$(k+1)^{j}$. By (20), part (iii) of Lemma 1 and part (i) of Lemma 2, we can deduce that $H\left(f_{2}, x_{0}\right) \geq s\left(x_{0}\right)+1$. For f_{3}, we have

$$
\begin{gather*}
f_{3}(x)=\frac{1}{(n+1)!} \sum_{l=0}^{\infty} \sum_{k=1}^{n+1} \sum_{(*)_{n+1}} \frac{(-\log \lambda)^{k} l^{k} \alpha_{n+1, i_{1}, \ldots, i_{k}} s_{l}^{\left(i_{1}\right)}\left(\xi_{l}\right) \ldots s_{l}^{\left(i_{k}\right)}\left(\xi_{l}\right)}{\lambda^{l s_{l}\left(\xi_{l}\right)}} \\
\cdot \sin \left(\lambda^{l} x+\theta_{l}\right)\left(x-x_{0}\right)^{n+1}, \tag{21}
\end{gather*}
$$

where $\sum_{(*)_{n+1}}$ mean the summation under the condition $i_{1}+\cdots+i_{k}=$ $n+1$ with $i_{1} \leq \cdots \leq i_{k}$ and $\left\{\alpha_{n+1, i_{1}, \ldots, i_{k}}\right\}$ are positive integers satisfying $\sum_{(*)_{n+1}} \alpha_{n+1, i_{1}, \ldots, i_{k}} \leq(k+1)^{n+1}$. By (21) and part (iii) of Lemma 1, we can deduce that $H\left(f_{3}, x_{0}\right) \geq n+1$. By the estimates for f_{1}, f_{2} and f_{3}, and (16), we can conclude that $H\left(f, x_{0}\right)=\beta\left(f, x_{0}\right)=s\left(x_{0}\right)$.

Next, we consider the case $s\left(x_{0}\right)=\infty$. Let n be a positive integer and let $f=f_{1}+f_{2}+f_{3}$, where f_{1}, f_{2} and f_{3} are defined by (17), (18) and (19), respectively. But in this case, we have $H\left(f_{1}, x_{0}\right)=H\left(f_{2}, x_{0}\right)=\infty$ and $H\left(f_{3}, x_{0}\right) \geq n+1$ by part (iii) of Lemma 1 and part (i) of Lemma 2, since $\lim \inf _{l \rightarrow \infty} s_{l}\left(x_{0}\right)=\infty$. By the estimates for f_{1}, f_{2} and f_{3}, and (16), we have $H\left(f, x_{0}\right) \geq n+1$. Since n is arbitrary, we can conclude that $H\left(f, x_{0}\right)=$ $\beta\left(f, x_{0}\right)=s\left(x_{0}\right)$ even for $s\left(x_{0}\right)=\infty$.

In the case where s is a continuous function, we have the following result.

Theorem 3 Let s be a continuous function from \mathbf{R} to $(0, \infty)$ such that

$$
s\left(x_{0}\right)<H\left(s, x_{0}\right)
$$

at each point x_{0} in \mathbf{R}. Suppose $\lambda>1$ and $\left\{\theta_{l}\right\}_{l \in \mathbf{Z}_{+}} \subset \mathbf{R}$ are chosen arbitrary. If we define a continuous function f by

$$
f(x)=\sum_{l=0}^{\infty} \frac{1}{\lambda^{l s(x)}} \sin \left(\lambda^{l} x+\theta_{l}\right),
$$

then we have

$$
H\left(f, x_{0}\right)=\beta\left(f, x_{0}\right)=s\left(x_{0}\right)
$$

at each point x_{0} in \mathbf{R}.
Proof. Let $x_{0} \in \mathbf{R}$ be fixed arbitrary and let x be a real number such that
$\left|x-x_{0}\right|<1$. Then we have

$$
\begin{align*}
f(x) & =\sum_{l=0}^{\infty} \frac{1}{\lambda^{l s\left(x_{0}\right)}} \sin \left(\lambda^{l} x+\theta_{l}\right)+\sum_{l=0}^{\infty}\left(\frac{1}{\lambda^{l s(x)}}-\frac{1}{\lambda^{l s\left(x_{0}\right)}}\right) \cdot \sin \left(\lambda^{l} x+\theta_{l}\right) \\
& =f_{1}(x)+f_{2}(x) \tag{22}
\end{align*}
$$

By part (ii) of Lemma 2, $H\left(f_{1}, x_{0}\right)=\beta\left(f_{1}, x_{0}\right)=s\left(x_{0}\right)$ follows at once. Let ε be a positive number such that $s\left(x_{0}\right)+\varepsilon<H\left(s, x_{0}\right)$ and $s\left(x_{0}\right)+\varepsilon \notin \mathbf{N}$. Then $s \in C^{s\left(x_{0}\right)+\varepsilon}\left(x_{0}\right)$ and there exist a polynomial P of degree at most $\left[s\left(x_{0}\right)+\varepsilon\right]$, two constants $C \in(0, \infty)$ and $\delta \in(0,1)$ such that

$$
s(x)=s\left(x_{0}\right)+P\left(x-x_{0}\right)+Q\left(x-x_{0}\right)
$$

and

$$
\left|Q\left(x-x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{s\left(x_{0}\right)+\varepsilon}, \quad\left|x-x_{0}\right| \leq \delta .
$$

To estimate f_{2}, using the mean value theorem, we write

$$
\frac{1}{\lambda^{l s(x)}}-\frac{1}{\lambda^{l s\left(x_{0}\right)}}=\frac{(-\log \lambda) l\left(s(x)-s\left(x_{0}\right)\right)}{\lambda^{l \tau_{l}}}
$$

where $\tau_{l} \in\left[\min \left(s(x), s\left(x_{0}\right)\right), \max \left(s(x), s\left(x_{0}\right)\right)\right]$. Then we have

$$
\begin{aligned}
\mid f_{2}(x) & \left.-\left((-\log \lambda) \sum_{l=0}^{\infty} \frac{l}{\lambda^{l \tau_{l}}} \sin \left(\lambda^{l} x+\theta_{l}\right)\right) P\left(x-x_{0}\right) \right\rvert\, \\
= & (\log \lambda)\left|\sum_{l=0}^{\infty} \frac{l}{\lambda^{l \tau_{l}}} \sin \left(\lambda^{l} x+\theta_{l}\right)\right|\left|Q\left(x-x_{0}\right)\right| \\
\leq & C(\log \lambda) \sum_{l=0}^{\infty} \frac{l}{\lambda^{l \tau_{l}}}\left|x-x_{0}\right|^{s\left(x_{0}\right)+\varepsilon} .
\end{aligned}
$$

Hence $H\left(f_{2}, x_{0}\right) \geq s\left(x_{0}\right)+\varepsilon$. By the estimates for f_{1} and f_{2}, and (22), we can conclude that $H\left(f, x_{0}\right)=\beta\left(f, x_{0}\right)=s\left(x_{0}\right)$.

Corollary 1 Each point in \mathbf{R} is a cusp singularity of the Weierstrass functions.

Proof. Let \mathcal{W}_{c} and \mathcal{W}_{s} be the Weierstrass functions (for the definitions of \mathcal{W}_{c} and \mathcal{W}_{s}, see (1) and (2)). If we put $\lambda=b, s(x)=\frac{\log \left(\frac{1}{a}\right)}{\log b}$ and $\theta_{l}=\frac{\pi}{2}$ for $l \in \mathbf{Z}_{+}$or $\theta_{l}=0$ for $l \in \mathbf{Z}_{+}$, then we have $H\left(\mathcal{W}_{c}, x\right)=\beta\left(\mathcal{W}_{c}, x\right)=\frac{\log \left(\frac{1}{a}\right)}{\log b}=$ $H\left(\mathcal{W}_{s}, x\right)=\beta\left(\mathcal{W}_{s}, x\right)$ at each point x in \mathbf{R} from Theorem 3.

4. Construction using spline functions

In this section, using spline functions [9], we construct a continuous function which has a prescribed cusp singularity at each point in \mathbf{R}.

Let a be a positive real number and for a positive integer $n, C^{n}(\mathbf{R})$ be the set of all functions f defined on \mathbf{R} such that all the derivatives of f up to order n exist and $f^{(n)}$ is continuous on \mathbf{R}. For $n=0$, we mean the set of all continuous functions on \mathbf{R}. A spline of order n with nodes in $a \mathbf{Z}$ is a function f defined on \mathbf{R} which is of class $C^{n-1}(\mathbf{R})$ and is a polynomial of degree at most n when restricted to each interval of the form $[k a,(k+1) a]$ for an integer k.

Lemma 3 For a positive integer n, suppose θ is the 1-periodic spline of order n with nodes in $\frac{1}{\lambda} \mathbf{Z}$, which is not a constant function, where λ is a positive integer greater than 1 . If we define a continuous function f by

$$
f(x)=\sum_{l=0}^{\infty} \frac{1}{\lambda^{l_{s}}} \theta\left(\lambda^{l} x\right),
$$

where $0<s \leq n$, then we have

$$
H\left(f, x_{0}\right)=\beta\left(f, x_{0}\right)=s
$$

at each point x_{0} in \mathbf{R}.
Proof. Let $x_{0} \in \mathbf{R}$ be fixed arbitrary. For $H\left(f, x_{0}\right)$, we divide the proof into the following two cases.

First, we consider the case $0<s \leq 1$. We first prove that $H\left(f, x_{0}\right) \geq s$ in the case $s<1$. Let x be a real number such that $\left|x-x_{0}\right|<1$ and choose $N \in \mathbf{Z}_{+}$such that $\frac{1}{\lambda^{N+1}} \leq\left|x-x_{0}\right|<\frac{1}{\lambda^{N}}$. Then we have

$$
\begin{align*}
\left|f(x)-f\left(x_{0}\right)\right|= & \left|\sum_{l=0}^{\infty} \frac{1}{\lambda^{l s}}\left(\theta\left(\lambda^{l} x\right)-\theta\left(\lambda^{l} x_{0}\right)\right)\right| \\
\leq & \left|\sum_{l=0}^{N-1} \frac{1}{\lambda^{l s}}\left(\theta\left(\lambda^{l} x\right)-\theta\left(\lambda^{l} x_{0}\right)\right)\right| \\
& \quad+\left|\sum_{l=N}^{\infty} \frac{1}{\lambda^{l s}}\left(\theta\left(\lambda^{l} x\right)-\theta\left(\lambda^{l} x_{0}\right)\right)\right| \\
= & \mathrm{A}_{1}+\mathrm{A}_{2} . \tag{23}
\end{align*}
$$

To estimate A_{2} we have

$$
\begin{aligned}
\mathrm{A}_{2} & \leq \sum_{l=N}^{\infty} \frac{1}{\lambda^{l s}}\left|\theta\left(\lambda^{l} x\right)-\theta\left(\lambda^{l} x_{0}\right)\right| \\
& \leq 2 \sup _{x \in \mathbf{R}}|\theta(x)| \sum_{l=N}^{\infty} \frac{1}{\lambda^{l s}} \\
& =\frac{\frac{2 \sup _{x \in \mathbf{R}}|\theta(x)|}{\lambda^{N s}}}{1-\frac{1}{\lambda^{s}}} \\
& \leq \frac{2 \lambda^{2 s} \sup _{x \in \mathbf{R}}|\theta(x)|}{\lambda^{s}-1}\left|x-x_{0}\right|^{s}
\end{aligned}
$$

Observe that the estimate for A_{2} holds even for $s=1$. To estimate A_{1} we use the relation

$$
|\theta(x)-\theta(y)| \leq C_{1}|x-y|
$$

where $C_{1}=\sup _{x \in \mathbf{R} \backslash \frac{\mathbf{Z}}{\lambda}}\left|\theta^{\prime}(x)\right|<\infty$. Then we have

$$
\begin{aligned}
\mathrm{A}_{1} & \leq \sum_{l=0}^{N-1} \frac{1}{\lambda^{l s}}\left|\theta\left(\lambda^{l} x\right)-\theta\left(\lambda^{l} x_{0}\right)\right| \\
& \leq C_{1} \sum_{l=0}^{N-1} \lambda^{l(1-s)}\left|x-x_{0}\right| \\
& =\frac{C_{1}\left(\lambda^{N(1-s)}-1\right)}{\lambda^{1-s}-1}\left|x-x_{0}\right| \\
& \leq \frac{C_{1}}{\lambda^{1-s}-1}\left|x-x_{0}\right|^{s}
\end{aligned}
$$

$H\left(f, x_{0}\right) \geq s$ now follows from the estimates for A_{1} and A_{2}, and (23).
To prove that $H\left(f, x_{0}\right) \geq s$ when $s=1$ we recall that (23) and the estimate for A_{2} are still valid in this case. Thus we need to find an upper bound for A_{1}. Let $\varepsilon>0$ be fixed arbitrary. To estimate A_{1} we write

$$
\begin{aligned}
\mathrm{A}_{1} & \leq \sum_{l=0}^{N-1} \frac{1}{\lambda^{l}}\left|\theta\left(\lambda^{l} x\right)-\theta\left(\lambda^{l} x_{0}\right)\right| \\
& \leq C_{1} N\left|x-x_{0}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{C_{1}}{\log \lambda}\left|x-x_{0}\right| \log \frac{1}{\left|x-x_{0}\right|} \\
& \leq C_{2}\left|x-x_{0}\right|^{1-\varepsilon} .
\end{aligned}
$$

for some constant $C_{2} \in(0, \infty)$. Hence there exists a constant $C_{3} \in(0, \infty)$ such that

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq C_{3}\left|x-x_{0}\right|^{1-\varepsilon} .
$$

Therefore $H\left(f, x_{0}\right) \geq 1-\varepsilon$. Since $\varepsilon>0$ is arbitrary, $H\left(f, x_{0}\right) \geq s$ holds even for $s=1$.

Next, we consider the case $m<s \leq m+1$ for some positive integer $m<n$. Since $f^{(m)}(x)=\sum_{l=0}^{\infty} \frac{1}{\lambda^{l(s-m)}} \theta^{(m)}\left(\lambda^{l} x\right), H\left(f^{(m)}, x_{0}\right) \geq s-m$ by an argument similar to the case where $0<s \leq 1$. Therefore $H\left(f, x_{0}\right) \geq s$ holds even for $1<s \leq n$.

For $\beta\left(f, x_{0}\right)$, let us assume f locally belongs to $\Gamma^{\rho}\left(x_{0}\right)$. Then by Theorem B, f locally belongs to $C_{x_{0}}^{\rho, \rho^{\prime}}$ for some $\rho^{\prime}<0$. Let M be an integer greater than ρ. Let ψ be a function supported on $[0,1]$, has $M-1$ vanishing moments. By Theorem A, there exist two constants $C_{4} \in(0, \infty)$ and $\delta \in(0,1]$ such that

$$
\begin{gather*}
\left|\int f(x) \frac{1}{a} \psi\left(\frac{x-b}{a}\right) d x\right| \leq C_{4} a^{\rho}\left(1+\frac{\left|b-x_{0}\right|}{a}\right)^{-\rho^{\prime}}, \\
0<a \leq \delta, \quad\left|b-x_{0}\right| \leq \delta . \tag{24}
\end{gather*}
$$

Let j_{0} be a non-negative integer such that $\frac{1}{\lambda^{j_{0}}} \leq \delta$. For every $j \geq j_{0}$, there exists $k_{j} \in \mathbf{Z}$ such that $\frac{k_{j}}{\lambda^{j}} \leq x_{0}<\frac{k_{j}+1}{\lambda^{j}}$ and we define a_{j} and b_{j} by $a_{j}=\frac{1}{\lambda^{j}}$ and $b_{j}=\frac{k_{j}}{\lambda^{j}}$. Then $\left|b_{j}-x_{0}\right| \leq a_{j}$ and by (24), we have

$$
\begin{equation*}
\left|\int f(x) \lambda^{j} \psi\left(\lambda^{j} x-k_{j}\right) d x\right| \leq \frac{C_{4} 2^{-\rho^{\prime}}}{\lambda^{j \rho}}, \quad j \geq j_{0} . \tag{25}
\end{equation*}
$$

We estimate the left hand side of (25) as follows:

$$
\left|\int f(x) \lambda^{j} \psi\left(\lambda^{j} x-k_{j}\right) d x\right|=\left|\int_{0}^{1} \sum_{l=0}^{\infty} \frac{1}{\lambda^{l s}} \theta\left(\lambda^{l-j}\left(x+k_{j}\right)\right) \psi(x) d x\right| .
$$

Then we have

$$
\begin{aligned}
& \sum_{l=0}^{\infty} \frac{1}{\lambda^{l s}} \theta\left(\lambda^{l-j}\left(x+k_{j}\right)\right) \\
& \quad=\sum_{l=0}^{j-1} \frac{1}{\lambda^{l s}} \theta\left(\lambda^{l-j}\left(x+k_{j}\right)\right)+\sum_{l=j}^{\infty} \frac{1}{\lambda^{l s}} \theta\left(\lambda^{l-j}\left(x+k_{j}\right)\right) \\
& \quad=\frac{1}{\lambda^{j s}} \sum_{l=1}^{j} \lambda^{l s} \theta\left(\frac{x+k_{j}}{\lambda^{l}}\right)+\frac{1}{\lambda^{j s}} \sum_{l=0}^{\infty} \frac{1}{\lambda^{l s}} \theta\left(\lambda^{l} x\right)
\end{aligned}
$$

Since θ is a spline of order n with nodes in $\frac{1}{\lambda} \mathbf{Z}, \sum_{l=1}^{j} \lambda^{l s} \theta\left(\frac{x+k_{j}}{\lambda^{l}}\right)$ is a polynomial of degree at most n on the support of ψ. Thus $\frac{1}{\lambda^{j s}} \int_{0}^{1} \sum_{l=1}^{j} \lambda^{l s} \theta\left(\frac{x+k_{j}}{\lambda^{l}}\right) \psi(x) d x=0$. Hence

$$
\begin{equation*}
\left|\int f(x) \lambda^{j} \psi\left(\lambda^{j} x-k_{j}\right) d x\right|=\frac{1}{\lambda^{j s}}\left|\int_{0}^{1} \sum_{l=0}^{\infty} \frac{1}{\lambda^{l s}} \theta\left(\lambda^{l} x\right) \psi(x) d x\right| \tag{26}
\end{equation*}
$$

Since $\sum_{l=0}^{\infty} \frac{1}{\lambda^{l s}} \theta\left(\lambda^{l} x\right)$ is not a polynomial, we can select a wavelet ψ such that

$$
\begin{equation*}
\int_{0}^{1} \sum_{l=0}^{\infty} \frac{1}{\lambda^{l s}} \theta\left(\lambda^{l} x\right) \psi(x) d x=1 \tag{27}
\end{equation*}
$$

By (25), (26) and (27), $f \in \Gamma^{\rho}\left(x_{0}\right)$ implies $\frac{1}{\lambda^{j s}} \leq \frac{C_{4} 2^{-\rho^{\prime}}}{\lambda^{j \rho}}$ for every $j \geq j_{0}$ and hence $\rho \leq s \leq H\left(f, x_{0}\right)$. Therefore $\beta\left(f, x_{0}\right) \leq s \leq H\left(f, x_{0}\right)$. Since $H\left(f, x_{0}\right) \leq \beta\left(f, x_{0}\right)$ is trivial, we have $H\left(f, x_{0}\right)=\beta\left(f, x_{0}\right)=s$.

In the case where s is a continuous function, we have the following result.

Theorem 4 For a positive integer n, suppose θ is the 1-periodic spline of order n with nodes in $\frac{1}{\lambda} \mathbf{Z}$, which is not a constant function, where λ is a positive integer greater than 1 . Let s be a continuous function from \mathbf{R} to $(0, n]$ such that

$$
s\left(x_{0}\right)<H\left(s, x_{0}\right)
$$

at each point x_{0} in \mathbf{R}. If we define a continuous function f by

$$
f(x)=\sum_{l=0}^{\infty} \frac{1}{\lambda^{l s(x)}} \theta\left(\lambda^{l} x\right)
$$

then we have

$$
H\left(f, x_{0}\right)=\beta\left(f, x_{0}\right)=s\left(x_{0}\right)
$$

at each point x_{0} in \mathbf{R}.
Proof. Let $x_{0} \in \mathbf{R}$ be fixed arbitrary and let x be a real number such that $\left|x-x_{0}\right|<1$. Then we have

$$
\begin{align*}
f(x) & =\sum_{l=0}^{\infty} \frac{1}{\lambda^{l s\left(x_{0}\right)}} \theta\left(\lambda^{l} x\right)+\sum_{l=0}^{\infty}\left(\frac{1}{\lambda^{l s(x)}}-\frac{1}{\lambda^{l s\left(x_{0}\right)}}\right) \theta\left(\lambda^{l} x\right) \\
& =f_{1}(x)+f_{2}(x) . \tag{28}
\end{align*}
$$

By Lemma 3, $H\left(f_{1}, x_{0}\right)=\beta\left(f_{1}, x_{0}\right)=s\left(x_{0}\right)$ follows at once. Let ε be a positive number such that $s\left(x_{0}\right)+\varepsilon<H\left(s, x_{0}\right)$ and $s\left(x_{0}\right)+\varepsilon \notin \mathbf{N}$. Then $s \in C^{s\left(x_{0}\right)+\varepsilon}\left(x_{0}\right)$ and there exist a polynomial P of degree at most $\left[s\left(x_{0}\right)+\right.$ $\varepsilon]$, two constants $C \in(0, \infty)$ and $\delta \in(0,1)$ such that

$$
s(x)=s\left(x_{0}\right)+P\left(x-x_{0}\right)+Q\left(x-x_{0}\right)
$$

and

$$
\left|Q\left(x-x_{0}\right)\right| \leq C\left|x-x_{0}\right|^{s\left(x_{0}\right)+\varepsilon}, \quad\left|x-x_{0}\right| \leq \delta .
$$

To estimate f_{2}, using the mean value theorem, we write

$$
\frac{1}{\lambda^{l s(x)}}-\frac{1}{\lambda^{l s\left(x_{0}\right)}}=\frac{(-\log \lambda) l\left(s(x)-s\left(x_{0}\right)\right)}{\lambda^{l \tau_{l}}}
$$

where $\tau_{l} \in\left[\min \left(s(x), s\left(x_{0}\right)\right), \max \left(s(x), s\left(x_{0}\right)\right)\right]$. Then we have

$$
\begin{aligned}
\mid f_{2}(x) & \left.-\left((-\log \lambda) \sum_{l=0}^{\infty} \frac{l}{\lambda^{l \tau_{l}}} \theta\left(\lambda^{l} x\right)\right) P\left(x-x_{0}\right) \right\rvert\, \\
= & (\log \lambda)\left|\sum_{l=0}^{\infty} \frac{l}{\lambda^{l \tau_{l}}} \theta\left(\lambda^{l} x\right)\right|\left|Q\left(x-x_{0}\right)\right| \\
& \leq C(\log \lambda) \sum_{l=0}^{\infty} \frac{l}{\lambda^{l \tau_{l}}} \sup _{x \in \mathbf{R}}|\theta(x)|\left|x-x_{0}\right|^{s\left(x_{0}\right)+\varepsilon} .
\end{aligned}
$$

Hence $H\left(f_{2}, x_{0}\right) \geq s\left(x_{0}\right)+\varepsilon$. By the estimates for f_{1} and f_{2}, and (28), we can conclude that $H\left(f, x_{0}\right)=\beta\left(f, x_{0}\right)=s\left(x_{0}\right)$.

Corollary 2 Each point in \mathbf{R} is a cusp singularity of the Takagi function.

Proof. Let \mathcal{T} be the Takagi function (for the definition of \mathcal{T}, see (3)). If we put $\lambda=2, s(x)=1$ and $\theta=\theta^{*}$, then we have $H(\mathcal{T}, x)=\beta(\mathcal{T}, x)=1$ at each point x in \mathbf{R} from Theorem 4 .

Acknowledgment The author is deeply grateful to Professor Jyunji Inoue for his valuable advice, guidance and encouragement.

References

[1] Andersson P., Characterization of pointwise Hölder regularity. Appl. Comput. Harmon. Anal. 4, No. 4 (1997), 429-443.
[2] Daoudi K., Lévy Véhel J. and Meyer Y., Construction of continuous functions with prescribed local regularity. Constr. Approx. 14, No. 3 (1998), 349-385.
[3] Hardy G.H., Weierstrass's non-differentiable function. Trans. Amer. Math. Soc. 17, No. 3 (1916), 301-325.
[4] Hernández E. and Weiss G., A first course on wavelets. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1996.
[5] Meyer Y., Wavelets, vibrations and scalings. CRM Monograph Series, 9. American Mathematical Society, Providence, RI, 1998.
[6] Takagi T., A simple example of the continuous function without derivative (1903). Teiji Takagi Collected papers. Springer-Verlag, Tokyo, (1990), 5-6.
[7] Watanabe H., On the scaling exponents of Takagi, Lévy and Weierstrass functions. Hokkaido Math. J. 30, No. 3 (2001), 589-604.
[8] Weierstrass K., Über continuirliche functionen eines reellen arguments, die für keinen werth des letzteren einen bestimmten differentialquotienten besitzen. Mathematische Werke II, (1895), 71-74.
[9] Wojtaszczyk P., A mathematical introduction to wavelets. London Mathematical Society Student Texts, 37. Cambridge University Press, Cambridge, 1997.

Ritsumeikan Keisho Junior \& Senior High School
Ebetsu, Hokkaido 069-0832, Japan
E-mail: watanabe-h@spc.ritsumei.ac.jp

