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On construction of continuous functions
with cusp singularities
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Abstract. In this paper, we study various constructions of continuous functions on
R which have the prescribed cusp singularities at each point. As applications, we get
some generalizations of the results given in our previous paper [7], which discuss the cusp
singularities of the classical Weierstrass functions and Takagi function.
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1. Introduction

Let s be a positive number, which is not an integer and let x_{0} be a
point in R^{n} . Then a function f on R^{n} belongs to the pointwise H\"older

space C^{s}(x_{0}) , if there exists a polynomial P of degree less than s such that

|f(x)-P(x-x_{0})|\leq C|x-x_{0}|^{s}

in a neighborhood of x_{0} . The pointwise H\"older exponent of a function f at
a point x_{0} in R^{n} is defined as

H(f, x_{0})= \sup\{s>0;f\in C^{s}(x_{0})\} .

If a continuous function f does not belong to C^{s}(x_{0}) for every s>0 , then
H(f, x_{0})=0 .

However the pointwise H\"older exponent of a function f at a point x_{0} in
R^{n} is not stable under the pseud0-differential operators. Similarly it does
not fully characterize the oscillatory behavior on a neighborhood of x_{0} . This
implies that f\in C^{s}(x_{0}) cannot be characterized by size estimates on the
wavelet coefficients of f .

Here let us recall the definition of the weak scaling exponent character-
izing the local oscillatory behavior.

S_{0}(R^{n}) denotes the closed subspace of the Schwartz class S(R^{n}) such
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that

\int_{R^{n}}x^{\alpha}\psi(x)dx=0

for every multi-index \alpha in Z_{+}^{n} . Then a tempered distribution f belongs to
\Gamma^{s}(x_{0}) , if for every \psi in S_{0}(R^{n}) , there exists a constant C(\psi) such that

| \int_{R^{n}}f(x)\frac{1}{a^{n}}\psi(\frac{x-x_{0}}{a})dx|\leq C(\psi)a^{s} , 0<a\leq 1 .

The weak scaling exponent of a function f at a point x_{0} in R^{n} is defined as

\beta(f, x_{0})=\sup { s\in R;f locally belongs to \Gamma^{s}(x_{0}) }.

Since it is known that the pointwise H\"older space C^{s}(x_{0}) is contained in
local \Gamma^{s}(x_{0}) , it is obvious that

H(f, x_{0})\leq\beta(f, x_{0}) .

Now we recall the definition of the tw0-microlocal spaces C_{x_{0}}^{s,s’} , which
characterize this weak scaling exponent.

Let \varphi be a function in the Schwartz class S(R^{n}) such that

\hat{\varphi}(\xi)=\{\begin{array}{l}1 on|\xi|\leq\frac{1}{2}0 on|\xi|\geq 1\end{array}

where \hat{\varphi} is the Fourier transform of \varphi . For every non-negative integer j , we
define the convolution operator S_{j}(f)=f*\varphi\underline{1} where \varphi_{a}(x)=\frac{1}{a^{n}}\varphi(\frac{x}{a}) ,

2J

and the difference operator \triangle_{j}=S_{j+1}-S_{j} . Then

I=S_{0}+ \sum_{j=0}^{\infty}\Delta_{j} .

Let \psi=\varphi_{\frac{1}{2}}-\varphi . Then \psi\in S_{0}(R^{n}) and

\Delta_{j}(f)=f*\psi_{\frac{1}{2J}} .

Let s and s’ be two real numbers and x_{0} a point in R^{n} . Then a tempered
distribution f belongs to the tw0-microlocal spaces C_{x_{0}}^{s,s’} , if there exists a
constant C such that

|S_{0}(f)(x)|\leq C(1+|x-x_{0}|)^{-s’}
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and

|\Delta_{j}(f)(x)|\leq C2^{-js}(1+2^{j}|x-x_{0}|)^{-s’}

for every j\in Z_{+} and x\in R^{n} .
The following remarkable theorems with respect to the tw0-microlocal

spaces C_{x_{0}}^{s,s’} and \Gamma^{s}(x_{0}) were given in [5].

Theorem A [5, Theorem 1.8] Let s and s’ be two real numbers and x_{0}a

point in R^{n} and let us assume two positive integers r and N satisfying

r+s+ \inf(s’, n)>0

and

N> \sup(s, s+s’) .

Let \psi be a function such that

| \partial^{\alpha}\psi(x)|\leq\frac{C(q)}{(1+|x|)^{q}} , |\alpha|\leq r , q\geq 1

and

\int_{R^{n}}x^{\beta}\psi(x)dx=0 , |\beta|\leq N-1 .

If a function or a distribution f belongs to the twO-microlocal spaces C_{x_{0}}^{s,s’} ,
then we have

| \int_{R^{n}}f(x)\frac{1}{a^{n}}\overline{\psi(\frac{x-b}{a})}dx|\leq Ca^{s}(1+\frac{|b-x_{0}|}{a})-s’ ,

0<a\leq 1 , |b-x_{0}|\leq 1 .

Theorem B [5 , Theorem 1.2] Let s be a real number and let f be a func-
tion or a distribution defined on a neighborhood V of x_{0} .

Then f locally belongs to \Gamma^{s}(x_{0}) if and only if f locally belongs to the
twO-microlocal spaces C_{x_{0}}^{s,s’} for some s’ .

Several scientists have been interested in constructing irregular func-
tions. The well-known example is the Weierstrass function [8]. It is an
example of a nowhere differentiate continuous function. Hardy gave better
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estimates of the regularities for the Weierstrass function

\mathcal{W}_{c}(x)=\sum_{n=0}^{\infty}a^{n}\cos(b^{n}\pi x) (1)

and its sine series

\mathcal{W}_{s}(x)=\sum_{n=0}^{\infty}a^{n}\sin(b^{n}\pi x) , (2)

where 0<a<1 , b>1 and ab\geq 1[3] . He proved that these functions
do not possess finite derivatives at each point x and showed more precisely

that if ab>1 and \xi=[mathring]_{\frac{1g(\frac{1}{a})}{1ogb}} , then these functions satisfy

\mathcal{W}_{c}(x+h)-\mathcal{W}_{c}(x)=O(|h|^{\xi}) and \mathcal{W}_{s}(x+h)-\mathcal{W}_{s}(x)=O(|h|^{\xi})

for each x , but satisfy neither

\mathcal{W}_{c}(x+h)-\mathcal{W}_{c}(x)=o(|h|^{\xi}) nor \mathcal{W}_{s}(x+h)-\mathcal{W}_{s}(x)=o(|h|^{\xi})

for any x .
Next let us recall the definition of the Takagi function [6]. Let \theta^{*} be

the 1-periodic function such that

\theta^{*}(x)=\{\begin{array}{l}x if0\leq x<\frac{1}{2}1-x if\frac{1}{2}\leq x<1\end{array}

Then the Takagi function is defined by

\mathcal{T}(x)=\sum_{n=0}^{\infty}\frac{\theta^{*}(2^{n}x)}{2^{n}} . (3)

It is another example of a nowhere differentiate continuous function.
Using the scaling exponents, Meyer defined two types of singularities

of functions as follows [5]: a point x_{0} in R^{n} is called a cusp singularity of a
function f , when

H(f, x_{0})=\beta(f, x_{0})<\infty ,

while a point x_{0} in R^{n} is called an oscillating singularity of a function f ,
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when

H(f, x_{0})<\beta(f, x_{0}) .

When a point x_{0} is a cusp singularity of a function f , the pointwise
H\"older exponent can be found by computing the size estimates on the
wavelet coefficients of f inside the influence cone. Using this fact, we con-
struct continuous functions which have a prescribed cusp singularity at each
point x_{0} in R.

Daoudi and his team [2] studied the following problem which was raised
by L\’evy V\’ehel:

Let s be a function from [0, 1] to [0, 1] . Under what conditions on s does
there exist a continuous function f from [0, 1] to R such that H(f, x)=s(x)
for all x in [0, 1] ?

They solved the problem as follows: “For a function s from [0, 1] to
[0, 1] , there exist a continuous function f on [0, 1] such that H(f, x)=s(x)
for all x in [0, 1] if and only if s is a function which can be represented as a
limit inferior of a sequence of continuous functions on [0, 1] .” Further, they
constructed such f by various methods, –as the Weierstrass type function,
using Schauder bases and using Iterated Function System.

On the other hand, Andersson [1] proved a similar characterization for
a function s from R to [0, \infty] and constructed f satisfying H(f, x)=s(x)
for all x in R by a method using orthogonal wavelets.

In the rest of the paper we study, for a given function on R, various
constructions of a function f satisfying

H(f, x)=\beta(f, x)=s(x) , x\in R ,

using orthonormal wavelets in Section 2, as the Weierstrass type function
in Section 3 and using spline functions in Section 4.

2. Construction using orthonormal wavelets

In this section, using orthonormal wavelets, we construct a continuous
function which has a prescribed cusp singularity at each point in R.

The following Lemma 1 is used in the proof of Theorems 1 and 2.

Lemma 1 Let s be a function from R to [0, \infty] , which is the lower limit
of a sequence of real continuous functions \{t_{l}\}_{l\in N} . Then there exists a

sequence \{s_{l}\}_{l\in Z_{\dagger}} of infinitely differentia te non-negative functions with
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l\in N ,

compact supports such that
(i) s(x)= \lim inflarrow\infty s_{l}(x) , x\in R ,

(ii) For each x_{0} in R, there exists a positive integer l_{0} such that

s_{l}(x) \geq\frac{1}{\sqrt{l+1}} , l\geq l_{0} , |x-x_{0}|\leq 1 .

(iii) There exists a sequence \{C_{k}\}_{k\in Z_{\dagger}}\subset(0, \infty) such that

\sup_{x\in R}|s_{l}^{(k)}(x)|\leq C_{k}l^{k+1} , l\in Z_{+} ,

where s_{l}^{(k)} is the k -th derivative of s_{l} .

Proof. Let \eta be a non-negative infinitely difFerentiable function supported
on [-1, 1] satisfying \eta(x)=1 if |x| \leq\frac{1}{4} , \sup_{x\in R}\eta(x)=1 and \int_{R}\eta(x)dx=

1 . If we put

\tilde{t}_{l}(x)=\eta(\frac{x}{l}) min ( \max (t_{l}(x) , \frac{1}{\sqrt{l+1}}), l) ,

it is easy to see that \{\tilde{t}_{l}\}_{l\in N} satisfies

\lim\inf\tilde{t}_{l}(x)=s(x)larrow\infty ’
x\in R ,

\tilde{t}_{l}(x)\geq\frac{1}{\sqrt{l+1}} , |x| \leq\frac{l}{4} ,

\tilde{t}_{l}(x)=0 , |x|\geq l

and

\sup_{x\in R}\tilde{t}_{l}(x)\leq l .

Since each \tilde{t}_{l} is uniformly continuous, we can choose a strictly increasing
sequence of positive integers \{p_{l}\}_{l\in N} such that

sup | \tilde{t}_{l}(x)-\tilde{t}_{l}(y)|\leq\frac{1}{l} , l\in N .
|x-y| \leq\frac{1}{p_{l}}

Under these circumstances, we define s_{l}(x) for l\in Z_{+} and x\in R by
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s_{l}(x)=\{_{\int_{R}p_{m}\eta(p_{m}(x-y))\tilde{t}_{m}(y)dy}^{0}ififp_{m}\leq l<p_{m+1}0\leq l<p_{1}

, m\in N .

If we put C_{k}= \int_{R}|\eta^{(k)}(x)|dx for k\in Z_{+} , then \{s_{l}\}_{l\in Z_{\dagger}} satisfies the re-
quired properties (i), (ii) and (iii). To prove (i) we have

|s_{l}(x)- \tilde{t}_{m}(x)|=|\int_{R}p_{m}\eta(p_{m}(x-y))(\tilde{t}_{m}(y)-\tilde{t}_{m}(x))dy|

\leq \sup | \tilde{t}_{m}(y)-\tilde{t}_{m}(x)|\int_{R}\eta(y)dy

|x-y| \leq\frac{1}{Pm}

\leq\frac{1}{m} , p_{m}\leq l<p_{m+1} .

This proves the desired result. To prove (ii) we choose m_{0}\in N such that
\frac{m_{0}}{4}-\frac{1}{m_{0}}\geq|x_{0}|+1 and put l_{0}=p_{m_{0}} . For a positive integer l\geq l_{0} , choose
m\in N such that p_{m}\leq l<p_{m+1} . Then if |x-x_{0}|\leq 1 , we have

s_{l}(x)= \int_{R}p_{m}\eta(p_{m}(x-y))\tilde{t}_{m}(y)dy

\geq inf \tilde{t}_{m}(y)\int_{R}\eta(y)dy

|x-y| \leq\frac{1}{pm}

inf
\geq\tilde{t}_{m}(y)|y|\leq|x_{0}|+1+\frac{1}{m}

\geq inf \tilde{t}_{m}(y)

|y| \leq\frac{m}{4}

\geq\frac{1}{\sqrt{m+1}}\geq\frac{1}{\sqrt{l+1}} .

To prove (iii) we choose m\in N , for a given l\in N , such that p_{m}\leq l<p_{m+1} .
Then we have

|s_{l}^{(k)}(x)|=| \int_{R}p_{m}^{k+1}\eta^{(k)}(p_{m}(x-y))\tilde{t}_{m}(y)dy|

\leq p_{m}^{k}\sup_{x|-y|\leq\frac{1}{pm}}\tilde{t}_{m}(y)\int_{R}|\eta^{(k)}(y)|dy

\leq C_{k}mp_{m}^{k}\leq C_{k}l^{k+1} .

\square
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Theorem 1 Let s be a function from R to [0, \infty] , which is the lower limit
of a sequence of continuous functions. Then there exists a sequence \{s_{l}\}_{l\in}z_{+}

of differentiable functions such that

s(x)= \lim inflarrow\infty s_{l}(x) , x\in R (4)

and

\sup_{x\in R}|s_{l}’(x)|\leq C_{1}l^{2} , l\in Z_{+} . (5)

Let \psi be an orthonormal wavelet in the Schwartz class S(R) . If we
define a continuous function f by

f(x)= \sum_{l=2}^{\infty}\sum_{m=0}^{\infty}c(l, m)\psi(2^{l}x-m) ,

where

c(l, m)= \min(2^{-ls_{l(\frac{m}{2^{l}})}}, 2^{-\frac{l}{1\circ gt}}) ,

then we have

H(f, x_{0})=\beta(f, x_{0})=s(x_{0})

at each point x_{0} in R.

Proof. The existence of \{s_{l}\}_{l\in Z_{+}} satisfying (4) and (5) follows from Lem-
ma 1. Since

\lim_{jarrow\infty}

|x-y| \leq 2\sup_{-\frac{i}{(\log j)^{2’}}}|s_{j}(x)-s_{j}(y)|

\leq\lim_{jarrow\infty}\sup_{x\in R}|s_{j}’(x)| sup |x-y|
|x-y| \leq 2-\frac{?}{(\log j)^{2}}

.

\leq C_{1}\lim_{jarrow\infty}j^{2}2^{-\frac{j}{(\log j)^{2}}}

=0,

H(f, x_{0})=s(x_{0}) at each point x_{0}\in R (cf. [1] p. 441, proof of Theorem 1).
We only need to compute the value of \beta(f, x_{0}) .

Let us assume f locally belongs to \Gamma^{s}(x_{0}) . Then by Theorem B , f
locally belongs to C_{x_{0}}^{s,s’} for some s’<0 . On the other hand, \psi\in S_{0}(R)
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(cf. [4, 2. Corollary 3.7]). By Theorem A, there exist two constants C\in

(0, \infty) and \delta\in(0, \frac{1}{2}) such that

| \int f(x)\frac{1}{a}\overline{\psi(\frac{x-b}{a})}dx|\leq Ca^{s}(1+\frac{|b-x_{0}|}{a})^{-s’} ,

0<a\leq\delta, |b-x_{0}|\leq\delta . (6)

Let jo be a positive integer such that \frac{1}{2^{j_{0}}}\leq\delta . For every j\geq jo , there

exists k_{j}\in Z such that \frac{k_{j}}{2J}\leq x_{0}<\frac{k_{j}+1}{2^{j}} and we define a_{j} and b_{j} by a_{j}= \frac{1}{2^{g}}

and b_{j}= \frac{k_{j}}{2^{g}} . Then |b_{j}-x_{0}|\leq a_{j} and by (6), we have

| \int f(x)2^{j}\overline{\psi(2^{j}x-k_{j})}dx|\leq\frac{C2^{-s’}}{2^{js}} , j\geq j_{0} . (7)

We estimate the left hand side of (7) as follows:

| \int f(x)2^{j}\overline{\psi(2^{j}x-k_{j})}dx|

=| \sum_{l=2}^{\infty}\sum_{m=-\infty}^{\infty}c(l, m)\int\psi(2^{l}x-m)2^{j}\overline{\psi(2^{j}x-k_{j})}dx|

=c(j, k_{j}) . (8)

By (7) and (8), f\in\Gamma^{s}(x_{0}) implies

c(j, k_{j})= \min(2^{-js_{j}(\frac{k}{2}L)}J, 2^{-_{\overline{10}g}\simeq_{j}}) \leq\frac{C2^{-s’}}{2^{js}} , j\geq j_{0} . (9)

Observe that

\lim_{jarrow\infty}|s_{j}(\frac{k_{j}}{2^{j}})-s_{j}(x_{0})| \leq\lim_{jarrow\infty}\sup_{x\in R}|s_{j}’(x)|(x_{0}-\frac{k_{j}}{2^{j}})

\leq C_{1}\lim_{jarrow\infty}\frac{j^{2}}{2^{j}}

=0.

By (9), we have

s \leq\lim infjarrow\infty max (s_{j}( \frac{k_{j}}{2^{j}}), \frac{l}{1ogj})

= \lim\inf s_{j}jarrow\infty(\frac{k_{j}}{2^{j}})
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= \lim\inf s_{j}(x_{0})+\lim_{jjarrow\inftyarrow\infty}(s_{j}(\frac{k_{j}}{2^{j}})-s_{j}(x_{0}))

=s(x_{0}) .

Therefore \beta(f, x_{0})\leq s(x_{0})=H(f, x_{0}) . Since H(f, x_{0})\leq\beta(f, x_{0}) is
trivial, we have H(f, x_{0})=\beta(f, x_{0})=s(x_{0}) . \square

3. Use of Weierstrass type functions

In this section, we construct the Weierstrass type continuous function
which has a prescribed cusp singularity at each point in R.

We begin with the following lemma.

Lemma 2 Let s\in[0, \infty] , l_{0}\in Z_{+} and \{s_{l}\}_{l\in Z_{\dagger}}\subset R be such that
(a) \lim inflarrow\infty s_{l}=s ,

(b) s_{l} \geq\frac{1}{\sqrt{l+1}} , l\geq l_{0} .

Suppose \lambda>1 and \{\theta_{l}\}_{l\in Z_{+}}\subset R are chosen arbitrary.

(i) If m\in Z_{+} and \{\alpha_{l}\}_{l\in Z_{\dagger}} is a bounded sequence in R and if we
define a continuous function f by

f(x)= \sum_{l=0}^{\infty}\frac{\alpha_{l}l^{m}}{\lambda^{ls_{l}}}\sin(\lambda^{l}x+\theta_{l}) , x\in R ,

then we have

H(f, x_{0})\geq s

at each point x_{0} in R.
(ii) If we define a continuous function g by

g(x)= \sum_{l=0}^{\infty}\frac{1}{\lambda^{ls_{l}}}\sin(\lambda^{l}x+\theta_{l}) , x\in R ,

then we have

H(g, x_{0})=\beta(g, x_{0})=s

at each point x_{0} in R.

Proof (i) By (b), f is a continuous function on R and hence we have
only to show (i) when s>0 .
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Let x_{0}\in R be fixed arbitrary.
First, we consider the case 0<s\leq 1 . Let \epsilon\in(0, s) be arbitrary. By

(a), we can choose l_{0}\in Z_{+} such that sl>s- \frac{\epsilon}{2} for l\geq l_{0} and we put
f_{1}(x)= \sum_{l=l_{0}}^{\infty}\frac{\alpha_{l}l^{m}}{\lambda^{ls_{l}}}\sin(\lambda^{l}x+\theta_{l}) . To show H(f, x_{0})\geq s-\epsilon , it suffices to

showf_{1}\in C^{s-\epsilon}(x_{0})sinceH-f_{1},x_{0})=\infty isobvious.Letearea1numbersuchthat|x-x_{0}|<\frac{(f1}{\lambda^{t_{0}}}andchooseN\in Z_{+}suchthat\frac{x_{1}b}{\lambda^{N+1}}\leq|x-

x_{0}|< \frac{1}{\lambda^{N}} . Then we have

|f_{1}(x)-f_{1}(x_{0})|=| \sum_{l=l_{0}}^{\infty}\frac{\alpha_{l}l^{m}}{\lambda^{ls_{t}}}(\sin(\lambda^{l}x+\theta_{l})-\sin(\lambda^{l}x_{0}+\theta_{l}))|

\leq|\sum_{l=l_{0}}^{N-1}\frac{\alpha_{l}l^{m}}{\lambda^{ls_{t}}}(\sin(\lambda^{l}x+\theta_{l})-\sin(\lambda^{l}x_{0}+\theta_{l}))|

+| \sum_{l=N}^{\infty}\frac{\alpha_{l}l^{m}}{\lambda^{ls_{l}}}(\sin(\lambda^{l}x+\theta_{l})-\sin(\lambda^{l}x_{0}+\theta_{l}))|

=A_{1}+A_{2} . (10)

Observe first that there exists a constant M_{1}\in(0, \infty) such that

|\alpha_{l}|l^{m}\leq M_{1}\lambda^{\frac{l\epsilon}{2}} , l\geq l_{0} . (11)

To estimate A_{1} and A_{2} we use (11) to obtain

A_{1}\leq 2\sum_{l=l_{0}}^{N-1}\frac{|\alpha_{l}|l^{m}}{\lambda^{ls_{l}}}|\cos(\frac{\lambda^{l}(x+x_{0})}{2}+\theta_{l}) sin ( \frac{\lambda^{l}(x-x_{0})}{2})|

\leq\sum_{l=l_{0}}^{N-1}|\alpha_{l}|l^{m}\lambda^{l(1-s_{l})}|x-x_{0}|

\leq M_{1}\sum_{l=l_{0}}^{N-1}\lambda^{l(1-s+\epsilon)}|x-x_{0}|

= \frac{M_{1}\lambda^{l_{0}(1-s+\epsilon)}(\lambda^{(N-l_{0})(1-s+\epsilon)}-1)}{\lambda^{1-s+\epsilon}-1}|x-x_{0}|

\leq\frac{M_{1}\lambda^{N(1-s+\epsilon)}}{\lambda^{1-s+\epsilon}-1}|x-x_{0}|

\leq\frac{M_{1}}{\lambda^{1-s+\epsilon}-1}|x-x_{0}|^{s-\epsilon} ,
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A_{2}\leq 2\sum_{l=N}^{\infty}\frac{|\alpha_{l}|l^{m}}{\lambda^{ls_{l}}}|\cos(\frac{\lambda^{l}(x+x_{0})}{2}+\theta_{l}) sin ( \frac{\lambda^{l}(x-x_{0})}{2})|

\leq 2\sum_{l=N}^{\infty}\frac{|\alpha_{l}|l^{m}}{\lambda^{ls_{l}}}

\leq 2M_{1}\sum_{l=N}^{\infty}\frac{1}{\lambda^{l(s-\epsilon)}}

= \frac{}{1-\frac{1}{\lambda^{s-\epsilon}}}\frac{2M_{1}}{\lambda^{N(s-\epsilon)}}

\leq\frac{2M_{1}\lambda^{2(s-\epsilon)}}{\lambda^{s-\epsilon}-1}|x-x_{0}|^{s-\epsilon} .

The estimates for A_{1} and A_{2} with (10) show that there exists a constant
M_{2}\in(0, \infty) such that

|f_{1}(x)-f_{1}(x_{0})|\leq M_{2}|x-x_{0}|^{s-\epsilon} , |x-x_{0}|< \frac{1}{\lambda^{l_{0}}} .

Thus H(f_{1}, x_{0})\geq s-\epsilon and hence H(f, x_{0})\geq s-\epsilon . Since \epsilon>0 is arbitrary,
H(f, x_{0})\geq s .

Next, we consider the case n<s\leq n+1 for some n\in N . In this case,
f is n-times continuously differentiable on R and we have

f^{(n)}(x)= \sum_{l=0}^{\infty}\frac{\alpha_{l}l^{m}}{\lambda^{l(s_{l}-n)}}\sin(\lambda^{l}x+\theta_{l}+\frac{n\pi}{2})

Thus H(f^{(n)}, x_{0})\geq s-n by an argument similar to the case where 0<s\leq
1 and hence H(f, x_{0})\geq s holds even for 1<s<\infty .

Finally, we consider the case s=\infty . In this case, f is obviously in-
finitely differentiable at x_{0} and hence H(f, x_{0})=\infty .

(ii) H(g, x_{0})\geq s follows from (i), if we put \alpha_{l}=1 for l\in Z_{+} and
m=0 in (i).

For \beta(g, x_{0}) , let us assume g locally belongs to \Gamma^{\rho}(x_{0}) . Let \psi be a
function in S_{0}(R) such that \hat{\psi}(\xi)=0 if | \xi-1|\geq\frac{\lambda-1}{\lambda} and \hat{\psi}(1)=2 . Then
there exist two constants M_{3}\in(0, \infty) and \eta\in(0,1] such that

| \int g(x)\frac{1}{a}\psi(\frac{x-x_{0}}{a})dx|\leq M_{3}a^{\rho} . 0<a\leq\eta . (12)

Let jo be a non-negative integer such that \frac{1}{\lambda^{j_{0}}}\leq\eta . For every j\geq jo ,
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we put a_{j}= \frac{1}{\lambda^{j}} . By (12), we have

| \int g(x)\lambda^{j}\psi(\lambda^{j}(x-x_{0}))dx|\leq\frac{M_{3}}{\lambda^{j\rho}} , j\geq j_{0} . (13)

We estimate the left hand side of (13) as follows:

| \int g(x)\lambda^{j}\psi(\lambda^{j}(x-x_{0}))dx|

=| \int\sum_{l=0}^{\infty}\frac{1}{\lambda^{ls_{t}}}\sin(\lambda^{l-j}x+\lambda^{l}x_{0}+\theta_{l})\psi(x)dx|

=| \sum_{l=0}^{\infty}\frac{1}{\lambda^{ls_{t}}}\int\frac{e^{i(\lambda^{l-j}x+\lambda^{l}x_{0}+\theta_{l})}-e^{-i(\lambda^{l-j}x+\lambda^{l}x_{0}+\theta_{l})}}{2i}\psi(x)dx|

=| \sum_{l=0}^{\infty}\frac{e^{i(\lambda^{l}x_{0}+\theta_{l})}\hat{\psi}(-\lambda^{l-j})-e^{-i(\lambda^{l}x_{0}+\theta_{l})}\hat{\psi}(\lambda^{l-j})}{2i\lambda^{ls_{t}}}|

= \frac{|\hat{\psi}(1)|}{2\lambda^{js_{j}}}

= \frac{1}{\lambda^{js_{j}}} . (14)

By (13) and (14), g\in\Gamma^{\rho}(x_{0}) implies \frac{1}{\lambda^{js_{j}}}\leq\frac{M}{\lambda J}\rho a for every j\geq j_{0} and
hence \rho\leq\lim\inf_{jarrow\infty}s_{j}=s\leq H(g, x_{0}) . Therefore \beta(g, x_{0})\leq s\leq H(g, x_{0}) .
Since H(g, x_{0})\leq\beta(g, x_{0}) is trivial, we have H(g, x_{0})=\beta(g, x_{0})=s . \square

Theorem 2 Let s be a function from R to [0, \infty] , which is the lower limit
of a sequence of continuous functions and let \{s_{l}\}_{l\in Z_{+}} be a sequence of
continuous functions satisfying part (i), (ii) and (iii) of Lemma 1.

Suppose \lambda>1 and \{\theta_{l}\}_{l\in Z_{+}}\subset R are chosen arbitrary. If we define a

continuous function f by

f(x)= \sum_{l=0}^{\infty}\frac{1}{\lambda^{ls_{l}(x)}}\sin(\lambda^{l}x+\theta_{l}) ,

then we have

H(f, x_{0})=\beta(f, x_{0})=s(x_{0})

at each point x_{0} in R.
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Proof. First, we consider the case n\leq s(x_{0})<n+1 for some n\in Z_{+} .
Using the Taylor expansion we have

\frac{1}{\lambda^{ls_{l}(x)}}=\frac{1}{\lambda^{ls_{l}(x_{0})}}+\sum_{j=1}^{n}\frac{1}{j!}\frac{d^{j}}{dx^{j}}\frac{1}{\lambda^{ls_{l}(x)}}|_{x=x_{0}}(x-x_{0})^{j}

+ \frac{1}{(n+1)!}\frac{d^{n+1}}{dx^{n+1}}\frac{1}{\lambda^{ls_{l}(x)}}|_{x=\xi_{l}}(x-x_{0})^{n+1} , (15)

where \xi_{l}\in ( \min(x, x_{0}) , \max(x, x_{0})) . It goes without saying that if n=0
the second term in the right hand side of (15) does not appear. By (15), we
can write

f(x)= \sum_{l=0}^{\infty}\frac{1}{\lambda^{ls_{l}(x)}} sin (\lambda^{l}x+\theta_{l})=f_{1}(x)+f_{2}(x)+f_{3}(x) , (16)

where

f_{1}(x)= \sum_{l=0}^{\infty}\frac{1}{\lambda^{ls_{l}(x_{0})}}\sin(\lambda^{l}x+\theta_{l}) , (17)

f_{2}(x)= \sum_{l=0}^{\infty}\sum_{j=1}^{n}\frac{1}{j!}\frac{d^{j}}{dx^{j}}\frac{1}{\lambda^{ls_{l}(x)}}|_{x=x_{0}}\sin(\lambda^{l}x+\theta_{l})(x-x_{0})^{j} (18)

and

f_{3}(x)= \frac{1}{(n+1)!}\sum_{l=0}^{\infty}\frac{d^{n+1}}{dx^{n+1}}\frac{1}{\lambda^{ls_{l}(x)}}|_{x=\xi_{l}}\sin(\lambda^{l}x+\theta_{l})(x-x_{0})^{n+1} ,

(19)

where \xi_{l}\in ( \min(x, x_{0}) , \max(x, x_{0})) .
By part (ii) of Lemma 2, H(f_{1}, x_{0})=\beta(f_{1}, x_{0})=s(x_{0}) follows at once.

f_{2} does not appear if n=0, and if n\geq 1 we have

f_{2}(x)= \sum\sum\sum\sum\frac{1}{j!}\frac{(-\log\lambda)^{k}l^{k}\alpha_{j,i_{1},\ldots,i_{k}}s_{l}^{(i_{1})}(x_{0})\ldots s_{l}^{(i_{k})}(x_{0})}{\lambda^{ls_{l}(x_{0})}}\infty nj

l=0j=1k=1(*)_{j}

\sin(\lambda^{l}x+\theta_{l})(x-x_{0})^{j} , (20)

where \sum_{(*)_{j}} mean the summation under the condition i_{1}+\cdots+ik=j with
i_{1}\leq , \leq i_{k} and \{\alpha_{j,i_{1},\ldots,i_{k}}\} are positive integers satisfying \sum_{(*)_{j}}\alpha_{j,i_{1},\ldots,i_{k}}\leq
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(k+1)^{j} . By (20), part (iii) of Lemma 1 and part (i) of Lemma 2, we can
deduce that H(f_{2}, x_{0})\geq s(x_{0})+1 . For f_{3} , we have

f_{3}(x)= \frac{1}{(n+1)!}\sum_{l=0}^{\infty}\sum_{k=1}^{n+1}\sum_{(*)_{n+1}}\frac{(-\log\lambda)^{k}l^{k}\alpha_{n+1,i_{1},\ldots,i_{k}}s_{l}^{(i_{1})}(\xi_{l})}{\lambda^{ls_{l}(\xi_{l})}}

. . s_{l}^{(i_{k})}(\xi_{l})

. \sin(\lambda^{l}x+\theta_{l})(x-x_{0})^{n+1} , (21)

where \sum_{(*)_{n+1}} mean the summation under the condition i_{1}+ , +i_{k}=

n+1 with i_{1}\leq \leq i_{k} and \{\alpha_{n+1,i_{1},\ldots,i_{k}}\} are positive integers satisfying
\sum_{(*)_{n+1}}\alpha_{n+1,i_{1},\ldots,i_{k}}\leq(k+1)^{n+1} . By (21) and part (iii) of Lemma 1, we
can deduce that H(f_{3}, x_{0})\geq n+1 . By the estimates for f_{1} , f_{2} and f_{3} , and
(16), we can conclude that H(f, x_{0})=\beta(f, x_{0})=s(x_{0}) .

Next, we consider the case s(x_{0})=\infty . Let n be a positive integer and
let f=f_{1}+f_{2}+f_{3} , where f_{1} , f_{2} and f_{3} are defined by (17), (18) and (19),
respectively. But in this case, we have H(f_{1}, x_{0})=H(f_{2}, x_{0})=\infty and
H(f_{3}, x_{0})\geq n+1 by part (iii) of Lemma 1 and part (i) of Lemma 2, since
lim \inf_{larrow\infty}s_{l}(x_{0})=\infty . By the estimates for f_{1} , f_{2} and f_{3} , and (16), we
have H(f, x_{0})\geq n+1 . Since n is arbitrary, we can conclude that H(f, x_{0})=
\beta(f, x_{0})=s(x_{0}) even for s(x_{0})=\infty . \square

In the case where s is a continuous function, we have the following
result.

Theorem 3 Let s be a continuous function from R to (0, \infty) such that

s(x_{0})<H(s, x_{0})

at each point x_{0} in R. Suppose \lambda>1 and \{\theta_{l}\}_{l\in Z_{\dagger}}\subset R are chosen arbi-
trary. If we define a continuous function f by

f(x)= \sum_{l=0}^{\infty}\frac{1}{\lambda^{ls(x)}}\sin(\lambda^{l}x+\theta_{l}) ,

then we have

H(f, x_{0})=\beta(f, x_{0})=s(x_{0})

at each point x_{0} in R.

Proof. Let x_{0}\in R be fixed arbitrary and let x be a real number such that
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|x-x_{0}|<1 . Then we have

f(x)= \sum_{l=0}^{\infty}\frac{1}{\lambda^{ls(x_{0})}}\sin(\lambda^{l}x+\theta_{l})+\sum_{l=0}^{\infty}(\frac{1}{\lambda^{ls(x)}}-\frac{1}{\lambda^{ls(x_{0})}})\cdot\sin(\lambda^{l}x+\theta_{l})

=f_{1}(x)+f_{2}(x) . (22)

By part (ii) of Lemma 2, H(f_{1}, x_{0})=\beta(f_{1}, x_{0})=s(x_{0}) follows at once.
Let \epsilon be a positive number such that s(x_{0})+\epsilon<H(s, x_{0}) and s(x_{0})+\epsilon\not\in N .
Then s\in C^{s(x_{0})+\epsilon}(x_{0}) and there exist a polynomial P of degree at most
[s(x_{0})+\epsilon] , two constants C\in(0, \infty) and \delta\in(0,1) such that

s(x)=s(x_{0})+P(x-x_{0})+Q(x-x_{0})

and

|Q(x-x_{0})|\leq C|x-x_{0}|^{s(x_{0})+\epsilon} , |x-x_{0}|\leq\delta.

To estimate f_{2} , using the mean value theorem, we write

\frac{1}{\lambda^{ls(x)}}-\frac{1}{\lambda^{ls(x_{0})}}=\frac{(-\log\lambda)l(s(x)-s(x_{0}))}{\lambda^{l\tau_{l}}} ,

where \tau_{l}\in[\min(s(x), s(x_{0})), \max(s(x), s(x_{0}))] . Then we have

|f_{2}(x)-((-\log \lambda) \sum_{l=0}^{\infty}\frac{l}{\lambda^{l\tau_{t}}}\sin(\lambda^{l}x+\theta_{l}))P(x-x_{0})|

=( \log\lambda)|\sum_{l=0}^{\infty}\frac{l}{\lambda^{l\tau_{t}}}\sin(\lambda^{l}x+\theta_{l})||Q(x-x_{0})|

\leq C(\log\lambda)\sum_{l=0}^{\infty}\frac{l}{\lambda^{l\tau_{l}}}|x-x_{0}|^{s(x_{0})+\epsilon} .

Hence H(f_{2}, x_{0})\geq s(x_{0})+\epsilon . By the estimates for f_{1} and f_{2} , and (22), we
can conclude that H(f, x_{0})=\beta(f, x_{0})=s(x_{0}) . \square

Corollary 1 Each point in R is a cusp singularity of the Weierstrass
functions.
Proof Let \mathcal{W}_{c} and \mathcal{W}_{s} be the Weierstrass functions (for the definitions of
\mathcal{W}_{c} and \mathcal{W}_{s} , see (1) and (2) ) . If we put \lambda=b , s(x)= \frac{1og(\frac{1}{a})}{1ogb} and \theta_{l}=\frac{\pi}{2} for

l\in Z_{+} or \theta_{l}=0 for l\in Z_{+} , then we have H(\mathcal{W}_{c}, x)=\beta(\mathcal{W}_{c}, x)=[mathring]_{\frac{1g(\frac{1}{a})}{1ogb}}=

H(\mathcal{W}_{s}, x)=\beta(\mathcal{W}_{s}, x) at each point x in R from Theorem 3. \square



On \omeganstmction of \omegantinuous functions with cusp singulanties 177

4. Construction using spline functions

In this section, using spline functions [9], we construct a continuous
function which has a prescribed cusp singularity at each point in R.

Let a be a positive real number and for a positive integer n , C^{n}(R) be
the set of all functions f defined on R such that all the derivatives of f up
to order n exist and f^{(n)} is continuous on R. For n=0, we mean the set
of all continuous functions on R. A spline of order n with nodes in aZ is a
function f defined on R which is of class C^{n-1}(R) and is a polynomial of
degree at most n when restricted to each interval of the form [ka, (k+1)a]
for an integer k .

Lemma 3 For a positive integer n , suppose \theta is the 1- pe7\dot{v}odic spline of
order n with nodes in \frac{1}{\lambda}Z , which is not a constant function, where \lambda is a

positive integer greater than 1. If we define a continuous function f by

f(x)= \sum_{l=0}^{\infty}\frac{1}{\lambda^{ls}}\theta(\lambda^{l}x) ,

where 0<s\leq n , then we have

H(f, x_{0})=\beta(f, x_{0})=s

at each point x_{0} in R.

Proof. Let x_{0}\in R be fixed arbitrary. For H(f, x_{0}) , we divide the proof
into the following two cases.

First, we consider the case 0<s\leq 1 . We first prove that H(f, x_{0})\geq s

in the case s<1 . Let x be a real number such that |x-x_{0}|<1 and choose
N\in Z_{+} such that \frac{1}{\lambda^{N+1}}\leq|x-x_{0}|<\frac{1}{\lambda^{N}} . Then we have

|f(x)-f(x_{0})|=| \sum_{l=0}^{\infty}\frac{1}{\lambda^{ls}}(\theta(\lambda^{l}x)-\theta(\lambda^{l}x_{0}))|

\leq|\sum_{l=0}^{N-1}\frac{1}{\lambda^{ls}}(\theta(\lambda^{l}x)-\theta(\lambda^{l}x_{0}))|

+| \sum_{l=N}^{\infty}\frac{1}{\lambda^{ls}}(\theta(\lambda^{l}x)-\theta(\lambda^{l}x_{0}))|

=A_{1}+A_{2} . (23)
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To estimate A_{2} we have

A_{2}\leq\sum_{l=N}^{\infty}\frac{1}{\lambda^{ls}}|\theta(\lambda^{l}x)-\theta(\lambda^{l}x_{0})|

\leq 2\sup_{x\in R}|\theta(x)|\sum_{l=N}^{\infty}\frac{1}{\lambda^{ls}}

= \frac{\frac{2\sup_{x\in R}|\theta(x)|}{\lambda^{Ns}}}{1-\frac{1}{\lambda^{s}}}

\leq\frac{2\lambda^{2s}\sup_{x\in R}|\theta(x)|}{\lambda^{s}-1}|x-x_{0}|^{s} .

Observe that the estimate for A_{2} holds even for s=1 . To estimate A_{1} we
use the relation

|\theta(x)-\theta(y)|\leq C_{1}|x-y| ,

where C_{1}= \sup_{x\in R\backslash \frac{z}{\lambda}}|\theta’(x)|<\infty . Then we have

A_{1}\leq\sum_{l=0}^{N-1}\frac{1}{\lambda^{ls}}|\theta(\lambda^{l}x)-\theta(\lambda^{l}x_{0})|

\leq C_{1}\sum_{l=0}^{N-1}\lambda^{l(1-s)}|x-x_{0}|

= \frac{C_{1}(\lambda^{N(1-s)}-1)}{\lambda^{1-s}-1}|x-x_{0}|

\leq\frac{C_{1}}{\lambda^{1-s}-1}|x-x_{0}|^{s} .

H(f, x_{0})\geq s now follows from the estimates for A_{1} and A_{2} , and (23).
To prove that H(f, x_{0})\geq s when s=1 we recall that (23) and the

estimate for A_{2} are still valid in this case. Thus we need to find an upper
bound for A_{1} . Let \epsilon>0 be fixed arbitrary. To estimate A_{1} we write

A_{1}\leq\sum_{l=0}^{N-1}\frac{1}{\lambda^{l}}|\theta(\lambda^{l}x)-\theta(\lambda^{l}x_{0})|

\leq C_{1}N|x-x_{0}|
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\leq\frac{C_{1}}{1og\lambda}|x-x_{0}|\log\frac{1}{|x-x_{0}|}

\leq C_{2}|x-x_{0}|^{1-\in} .

for some constant C_{2}\in(0, \infty) . Hence there exists a constant C_{3}\in(0, \infty)

such that

|f(x)-f(x_{0})|\leq C_{3}|x-x_{0}|^{1-\epsilon}-

Therefore H(f, x_{0})\geq 1-\epsilon . Since \epsilon>0 is arbitrary, H(f, x_{0})\geq s holds
even for s=1 .

Next, we consider the case m<s\leq m+1 for some positive integer
m<n . Since f^{(m)}(x)= \sum_{l=0}^{\infty}\frac{1}{\lambda^{l(s-m)}}\theta^{(m)}(\lambda^{l}x) , H(f^{(m)}, x_{0})\geq s-m by
an argument similar to the case where 0<s\leq 1 . Therefore H(f, x_{0})\geq s

holds even for 1<s\leq n .
For \beta(f, x_{0}) , let us assume f locally belongs to \Gamma^{\rho}(x_{0}) . Then by The-

orem B, f locally belongs to C_{x_{0}}^{\rho,\rho’} for some \rho’<0 . Let M be an integer
greater than \rho . Let \psi be a function supported on [0, 1] , has M-1 vanish-
ing moments. By Theorem A, there exist two constants C_{4}\in(0, \infty) and
\delta\in(0,1] such that

| \int f(x)\frac{1}{a}\psi(\frac{x-b}{a})dx|\leq C_{4}a^{\rho}(1+\frac{|b-x_{0}|}{a})^{-\rho’}
:

0<a\leq\delta, |b-x_{0}|\leq\delta . (24)

Let j_{0} be a non-negative integer such that \frac{1}{\lambda^{j_{0}}}\leq\delta . For every j\geq j_{0} ,

there exists k_{j}\in Z such that \frac{k_{j}}{\lambda J}\leq x_{0}<\frac{k_{j}+1}{\lambda^{g}} and we define a_{j} and b_{j} by
a_{j}= \frac{1}{\lambda^{j}} and b_{j}=\lrcorner\lambda^{j}k . Then |b_{j}-x_{0}|\leq a_{j} and by (24), we have

| \int f(x)\lambda^{j}\psi(\lambda^{j}x-k_{j})dx|\leq\frac{C_{4}2^{-\rho’}}{\lambda^{j\rho}} , j\geq j_{0} . (25)

We estimate the left hand side of (25) as follows:

| \int f(x)\lambda^{j}\psi(\lambda^{j}x-k_{j})dx|=|\int_{0}^{1}\sum_{l=0}^{\infty}\frac{1}{\lambda^{ls}}\theta(\lambda^{l-j}(x+k_{j}))\psi(x)dx|t

Then we have
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\sum_{l=0}^{\infty}\frac{1}{\lambda^{ls}}\theta(\lambda^{l-j}(x+k_{j}))

= \sum_{l=0}^{j-1}\frac{1}{\lambda^{ls}}\theta(\lambda^{l-j}(x+k_{j}))+\sum_{l=j}^{\infty}\frac{1}{\lambda^{ls}}\theta(\lambda^{l-j}(x+k_{j}))

= \frac{1}{\lambda^{js}}\sum_{l=1}^{j}\lambda^{ls}\theta(\frac{x+k_{j}}{\lambda^{l}})+\frac{1}{\lambda^{js}}\sum_{l=0}^{\infty}\frac{1}{\lambda^{ls}}\theta(\lambda^{l}x) .

Since \theta is a spline of order n with nodes in \frac{1}{\lambda}Z , \sum_{l=1}^{j}\lambda^{ls}\theta(\frac{x+k_{j}}{\lambda^{l}}) is
a polynomial of degree at most n on the support of \psi . Thus
\frac{1}{\lambda^{js}}\int_{0}^{1}\sum_{l=1}^{j}\lambda^{ls}\theta(\frac{x+k_{j}}{\lambda^{l}})\psi(x)dx=0 . Hence

| \int f(x)\lambda^{j}\psi(\lambda^{j}x-k_{j})dx|=\frac{1}{\lambda^{js}}|\int_{0}^{1}\sum_{l=0}^{\infty}\frac{1}{\lambda^{ls}}\theta(\lambda^{l}x)\psi(x)dx| . (26)

Since \sum_{l=0}^{\infty}\frac{1}{\lambda^{ts}}\theta(\lambda^{l}x) is not a polynomial, we can select a wavelet \psi such
that

\int_{0}^{1}\sum_{l=0}^{\infty}\frac{1}{\lambda^{ls}}\theta(\lambda^{l}x)\psi(x)dx=1 . (27)

By (25), (26) and (27), f\in\Gamma^{\rho}(x_{0}) implies \frac{1}{\lambda^{js}}\leq\frac{C_{4}2^{-\rho’}}{\lambda^{j\rho}} for every j\geq j_{0}

and hence \rho\leq s\leq H(f, x_{0}) . Therefore \beta(f, x_{0})\leq s\leq H(f, x_{0}) . Since
H(f, x_{0})\leq\beta(f, x_{0}) is trivial, we have H(f, x_{0})=\beta(f, x_{0})=s . \square

In the case where s is a continuous function, we have the following
result.

Theorem 4 For a positive integer n , suppose \theta is the 1-periodic spline of
order n with nodes in \frac{1}{\lambda}Z , which is not a constant function, where \lambda is a

positive integer greater than 1. Let s be a continuous function from R to
(0, n] such that

s(x_{0})<H(s, x_{0})

at each point x_{0} in R. If we define a continuous function f by

f(x)= \sum_{l=0}^{\infty}\frac{1}{\lambda^{ls(x)}}\theta(\lambda^{l}x) ,



On \omeganstmction of \omegantinuous functions with cusp singulanties 181

then we have

H(f, x_{0})=\beta(f, x_{0})=s(x_{0})

at each point x_{0} in R.

Proof. Let x_{0}\in R be fixed arbitrary and let x be a real number such that
|x-x_{0}|<1 . Then we have

f(x)= \sum_{l=0}^{\infty}\frac{1}{\lambda^{ls(x_{0})}}\theta(\lambda^{l}x)+\sum_{l=0}^{\infty}(\frac{1}{\lambda^{ls(x)}}-\frac{1}{\lambda^{ls(x_{0})}})\theta(\lambda^{l}x)

=f_{1}(x)+f_{2}(x) . (28)

By Lemma 3, H(f_{1}, x_{0})=\beta(f_{1}, x_{0})=s(x_{0}) follows at once. Let \epsilon be a
positive number such that s(x_{0})+\epsilon<H(s, x_{0}) and s(x_{0})+\epsilon\not\in N . Then
s\in C^{s(x_{0})+\epsilon}(x_{0}) and there exist a polynomial P of degree at most [s(x_{0})+

\epsilon] , two constants C\in(0, \infty) and \delta\in(0,1) such that

s(x)=s(x_{0})+P(x-x_{0})+Q(x-x_{0})

and

|Q(x-x_{0})|\leq C|x-x_{0}|^{s(x_{0})+\in} , |x-x_{0}|\leq\delta .

To estimate f_{2} , using the mean value theorem, we write

\frac{1}{\lambda^{ls(x)}}-\frac{1}{\lambda^{ls(x_{0})}}=\frac{(-\log\lambda)l(s(x)-s(x_{0}))}{\lambda^{l\tau_{l}}} ,

where \tau_{l}\in[\min(s(x), s(x_{0})), \max(s(x), s(x_{0}))] . Then we have

|f_{2}(x)-((-\log \lambda) \sum_{l=0}^{\infty}\frac{l}{\lambda^{l\tau_{l}}}\theta(\lambda^{l}x))P(x-x_{0})|

=( \log\lambda)|\sum_{l=0}^{\infty}\frac{l}{\lambda^{l\tau_{l}}}\theta(\lambda^{l}x)||Q(x-x_{0})|

\leq C(\log\lambda)\sum_{l=0}^{\infty}\frac{l}{\lambda^{l\tau_{l}}}\sup_{x\in R}|\theta(x)||x-x_{0}|^{s(x_{0})+\epsilon} .

Hence H(f_{2}, x_{0})\geq s(x_{0})+\epsilon . By the estimates for f_{1} and f_{2} , and (28), we
can conclude that H(f, x_{0})=\beta(f, x_{0})=s(x_{0}) . \square

Corollary 2 Each point in R is a cusp singular^{*}ity of the Takagi function.
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Proof. Let \mathcal{T} be the Takagi function (for the definition of \mathcal{T} , see (3)). If
we put \lambda=2 , s(x)=1 and \theta=\theta^{*} , then we have H(\mathcal{T}, x)=\beta(\mathcal{T}, x)=1 at
each point x in R from Theorem 4. \square
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