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Prediction of fractional processes with long-range dependence
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Abstract. We introduce a class of Gaussian processes with stationary increments

which exhibit long-range dependence. The class includes fractional Brownian motion

with Hurst parameter H > 1/2 as a typical example. We establish infinite and finite

past prediction formulas for the processes in which the predictor coefficients are given

explicitly in terms of the MA(∞) and AR(∞) coefficients.
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1. Introduction

Let (X(t) : t ∈ R) be a centered Gaussian process with stationary in-
crements, defined on a probability space (Ω,F , P ), that admits the moving-
average representation

X(t) =
∫ ∞

−∞
{g(t− s)− g(−s)}dW (s), t ∈ R, (1.1)

where (W (t) : t ∈ R) is a Brownian motion, and g(t) is a function of the
form

g(t) =
∫ t

0

c(s)ds, t ∈ R, (1.2)

c(t) := I(0,∞)(t)
∫ ∞

0

e−tsν(ds), t ∈ R, (1.3)

with some Borel measure ν on (0,∞) satisfying

∫ ∞

0

1
1 + s

ν(ds) < ∞. (1.4)

We will also assume some extra conditions such as

2010 Mathematics Subject Classification : Primary 60G25; Secondary 60G15.



158 A. Inoue and V. V. Anh

lim
t→0+

c(t) = ∞, (1.5)

g(t) ∼ tH−(1/2)`(t) · 1
Γ( 1

2 + H)
, t →∞, (1.6)

where `(t) is a slowly varying function at infinity and H is a constant such
that

1/2 < H < 1. (1.7)

In (1.6), and throughout the paper, a(t) ∼ b(t) as t → ∞ means
limt→∞ a(t)/b(t) = 1. We call c(t) (as well as g(t)) the MA(∞) coefficient
of (X(t)). We remark that, in the prediction formulas for (X(t)) which we
consider in this paper, c(t) becomes more relevant than g(t).

A typical example of ν is

ν(ds) =
sin{π(H − 1

2 )}
π

s(1/2)−Hds on (0,∞) (1.8)

with (1.7). For this ν, g(t) becomes

g(t) = I(0,∞)(t)tH−(1/2) 1
Γ( 1

2 + H)
, t ∈ R, (1.9)

and (X(t)) reduces to fractional Brownian motion (BH(t)) with Hurst pa-
rameter H (see Example 2.3 below). Fractional Brownian motion, abbrevi-
ated fBm, was introduced by Kolmogorov [K]. For 1/2 < H < 1, fBm has
both self-similarity and long-range dependence (Samorodnitsky and Taqqu
[ST]), and plays an important role in various fields such as network traffic
(see, e.g., Mikosch et al. [MRRS]) and finance (see, e.g., Hu et al. [HOS]);
see also Taqqu [T] and other papers in the same volume. Because of its
importance, stochastic calculus for fBm has been developed by many au-
thors; see, e.g., Decreusefond and Üstünel [DU], and Nualart [N]. Grecksch
and Anh [GA] introduced Hilbert space-valued fBm and the corresponding
stochastic calculus. Duncan et al. [DMP] and Tindel et al. [TTV] studied
stochastic evolution equations with fBm in Hilbert spaces. Other important
examples of (X(t)) are the processes with long-range dependence which,
unlike fBm, have two different indices H0 and H describing the local prop-
erties (path properties) and long-time behavior of (X(t)), respectively (see
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Example 2.4 below).
Let t0, t1 and T be real constants such that

−∞ < −t0 ≤ 0 ≤ t1 < T < ∞, −t0 < t1. (1.10)

For I = (−∞, t1] or [−t0, t1], we write PIX(T ) for the predictor of the future
value X(T ) based on the observable (X(s) : s ∈ I) (see Section 3 below).
One of the fundamental prediction problems for (X(t)) is to express PIX(T )
using the segment (X(s) : s ∈ I) and some deterministic quantities. Another
is to express the variance of the prediction error P⊥I X(T ) := X(T )−PIX(T ).
Results of this type become important tools in the analysis of non-Markovian
processes and systems modulated by them (see, e.g., Norros et al. [NVV],
Anh et al. [AIK], Inoue et al. [INA] and Inoue and Nakano [IN]). One of
our main purposes here is to derive such results for (X(t)).

We establish the following infinite and finite past prediction formulas
for (X(t)) (see Theorems 3.8 and 4.12 below):

P(−∞,t1]X(T ) = X(t1) +
∫ t1

−∞

{ ∫ T−t1

0

b(t1 − s, τ)dτ

}
dX(s), (1.11)

P[−t0,t1]X(T ) = X(t1) +
∫ t1

−t0

{ ∫ T−t1

0

h(s + t0, u)du

}
dX(s). (1.12)

The significance of (1.11) and (1.12) is that the predictor coefficients b(t, s)
and h(t, s) are given explicitly in terms of the MA(∞) coefficient c(t) and
AR(∞) coefficient a(t), to be defined in Section 3.1, of (X(t)). The integral
of a(t) is in fact the coefficient of an AR(∞)-type equation describing (X(t))
(see Section 5). We will find that a(t) has a nice integral representation
similar to (1.3) (see (3.3) below). It turns out that the existence of such a
nice AR(∞) coefficient, in addition to the nice MA(∞) coefficient, is a key
to the solution to the prediction problems above.

For fBm with 1/2 < H < 1, the predictor coefficients b(t, s) and h(t, s)
are given in Gripenberg and Norros [GN]. See [NVV] and [NP] for different
proofs. Fractional Brownian motion has a variety of nice properties, and
the methods of proof of [GN], [NVV], [NP] naturally rely on such special
properties of fBm, hence are not applicable to (X(t)). The method of this
paper is based on the alternating projections to the past and future (see
Section 4.1 below). As for fBm with 0 < H < 1/2, its infinite and finite
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past prediction formulas also exist, and are due to Yaglom [Y] and Nuzman
and Poor [NP], respectively (see also Anh and Inoue [AI1]).

In Inoue and Anh [IA], a class of processes (X̃(t)) of the same form

X̃(t) =
∫ ∞

−∞
{c̃(t− s)− c̃(−s)}dW (s), t ∈ R, (1.13)

as (1.1) are introduced. Unlike g(t) in (1.1), however, the kernel c̃(t) itself
is assumed to be of the form

c̃(t) = I(0,∞)(t)
∫ ∞

0

e−tsν̃(ds), t ∈ R, (1.14)

with a Borel measure ν̃ on (0,∞) satisfying some suitable conditions. This
class of (X̃(t)) includes fBm with H ∈ (0, 1/2) as a typical example. Notice
that c̃(t) in (1.14) (resp., g(t) in (1.1)) is decreasing (resp., increasing) on
(0,∞) as tH−(1/2) with H ∈ (0, 1/2) (resp., (1/2,1)) is. In [IA], prediction
formulas for (X̃(t)) are proved, extending the results for fBm with H ∈
(0, 1/2) stated above. These prediction formulas for (X̃(t)), including those
for fBm with H ∈ (0, 1/2), have different forms from (1.11) and (1.12), in
that no stochastic integrals appear there.

We provide the basic properties and examples of (X(t)) in Section 2.
We consider the infinite and finite past prediction problems for (X(t)) in
Sections 3 and 4, respectively. Finally in Section 5, we remark on the
AR(∞)-type equations describing (X(t)) and (X̃(t)).

2. Basic properties and examples

In this section, we assume (1.2)–(1.4) and

∫ ∞

1

c(t)2dt < ∞. (2.1)

Then, as in [IA, Lemma 2.1], we have
∫∞
−∞ |g(t − s) − g(−s)|2ds < ∞ for

t ∈ R. Therefore, for a one-dimensional standard Brownian motion (W (t) :
t ∈ R) with W (0) = 0, we may define the centered stationary-increment
Gaussian process (X(t) : t ∈ R) by (1.1).

For s > 0 and t ∈ R, we put ∆sX(t) := X(t + s) − X(t). Then, by
definition, (∆sX(t) : t ∈ R) is a stationary process.
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Lemma 2.1 Let s ∈ (0,∞). We assume (1.6) and (1.7). Then

E[∆sX(t) ·∆sX(0)] ∼ t2H−2`(t)2 · s
2Γ(2− 2H) sin{(H − 1

2 )π}
π

, t →∞.

Since −1 < 2H − 2 < 0 in Lemma 2.1, we see from this lemma that
(∆sX(t)), whence (X(t)), has long-range dependence.

We put σ(t) := E[|X(t + s)−X(s)|2]1/2 for t ≥ 0 and s ∈ R.

Lemma 2.2 Let H0 ∈ (1/2, 1) and `0(·) a slowly varying function at
infinity. We assume

g(t) ∼ tH0−(1/2)`0(1/t) · 1
Γ( 1

2 + H0)
, t → 0 + . (2.2)

Then

σ(t) ∼ tH0`0(1/t)
√

v(H0), t → 0 + ,

where v(H0) := Γ(2 − 2H0) cos(πH0)/{πH0(1 − 2H0)}. In particular, we
have

H0 = sup
{
β : σ(t) = o(tβ), t → 0 +

}
= inf

{
β : tβ = o(σ(t)), t → 0 +

}
.

From Lemma 2.2, we see that the index H0 describes the path properties
of (X(t)) (see Adler [A, Section 8.4]).

By the monotone density theorem (cf. Bingham et al. [BGT, Theorem
1.7.5]), (1.6) with (1.7) implies

c(t) ∼ tH−(3/2)`(t) · 1
Γ(H − 1

2 )
, t →∞. (2.3)

Similarly, (2.2) implies

c(t) ∼ tH0−(3/2)`0(1/t) · 1
Γ(H0 − 1

2 )
. t → 0 + . (2.4)

Lemmas 2.1 and 2.2 follow from (2.3) and (2.4), respectively, by standard
arguments. However, since we do not use these results, we omit the details.

Example 2.3 For H ∈ (1/2, 1), let ν be as in (1.8). Then we have (1.9);
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and so all the conditions above are satisfied. The resulting process (X(t))
is fBm (BH(t)):

BH(t) =
1

Γ( 1
2 + H)

∫ ∞

−∞

{
((t−s)+)H−(1/2)−((−s)+)H−(1/2)

}
dW (s), (2.5)

where (x)+ := max(0, x) for x ∈ R. The representation (2.5) of fBm is due
to the pioneering work of Mandelbrot and Van Ness [MV].

Example 2.4 Let f(·) be a nonnegative, locally integrable function on
(0,∞). For H0,H ∈ (1/2, 1) and slowly varying functions `0(·) and `(·) at
infinity, we assume

f(s) ∼ sin{π(H0 − 1
2 )}

π
s(1/2)−H`(1/s), s → 0 + ,

f(s) ∼ sin{π(H0 − 1
2 )}

π
s(1/2)−H0`0(s), s →∞.

Let ν(ds) = f(s)ds. Then, by Abelian theorems for Laplace transforms
(cf. [BGT, Section 1.7]), we have (2.3), whence (1.6). Similarly, we have
(2.4), whence (2.2). Thus all the conditions above are satisfied. As we have
seen above, the indices H0 and H describe the path properties and long-time
behavior of (X(t)), respectively.

3. Infinite past prediction problems

In this section, we assume (1.1)–(1.5), (2.1) and

lim
t→∞

g(t) = ∞. (3.1)

Notice that, for the processes (X(t)) in Examples 2.3 and 2.4, all these
conditions are satisfied. We also assume (1.10).

We write M(X) for the real Hilbert space spanned by {X(t) : t ∈ R}
in L2(Ω,F , P ), and ‖ · ‖ for its norm. Let I be a closed interval of R such
as [−t0, t1], (−∞, t1], and [−t0,∞). Let MI(X) be the closed subspace of
M(X) spanned by {X(t) : t ∈ I}. We write PI for the orthogonal projection
operator from M(X) to MI(X), and P⊥I for its orthogonal complement:
P⊥I Z = Z − PIZ for Z ∈ M(X). Note that, since (X(t)) is a Gaussian
process, we have PIZ = E[Z|σ(X(s) : s ∈ I)].
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3.1. MA and AR coefficients
The conditions (1.5) and (3.1) imply ν(0,∞) = ∞ and

∫∞
0

s−1ν(ds) =
∞, respectively. Therefore, by [IA, Theorem 3.2], there exists a unique Borel
measure µ on (0,∞) satisfying

∫ ∞

0

1
1 + s

µ(ds) < ∞, µ(0,∞) = ∞,

∫ ∞

0

1
s
µ(ds) = ∞

and

−iz

{ ∫ ∞

0

eiztc(t)dt

}{ ∫ ∞

0

eiztα(t)dt

}
= 1, =z > 0, (3.2)

with

α(t) :=
∫ ∞

0

e−stµ(ds), t > 0.

We define

a(t) := −dα

dt
(t) =

∫ ∞

0

e−stsµ(ds), t > 0. (3.3)

We call a(t) (as well as α(t)) the AR(∞) coefficient of (X(t)) (see Section 5
for background). We define the positive kernel b(t, s) by

b(t, s) :=
∫ s

0

c(u)a(t + s− u)du, t, s > 0.

Then, by [IA, Lemma 3.4], the following equalities hold:

∫ ∞

0

b(t, s)dt = 1, s > 0, (3.4)

c(t + s) =
∫ t

0

c(t− u)b(u, s)du, t, s > 0. (3.5)

3.2. Stochastic integrals
Let I be a closed interval of R. We define
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HI(X) :=

{
f :

f is a real-valued measurable function on I such

that
∫∞
−∞{

∫
I
|f(u)|c(u− s)du}2ds < ∞.

}
.

This is the class of functions f for which we can define the stochastic inte-
gral

∫
I
f(s)dX(s). We notice that, by Lemma 5.2 below, the function c(t),

whence HI(X), is uniquely determined by (X(t)). We define a subclass H0
I

of HI(X) by

H0
I :=

{
m∑

k=1

akI(tk−1,tk](s) :
m ∈ N, −∞ < t0 < t1 < · · · < tm < ∞
with (t0, tm] ⊂ I, ak ∈ R (k = 1, . . . , m)

}
.

Each member of f ∈ H0
I is a simple function on I.

Definition 3.1 For f =
∑m

k=1 akI(tk−1,tk] ∈ H0
I , we define

∫

I

f(s)dX(s) :=
m∑

k=1

ak{X(tk)−X(tk−1)}.

We see that
∫

I
f(s)dX(s) ∈ MI(X) for f ∈ H0

I .

Proposition 3.2 For f ∈ H0
I , we have

∫

I

f(s)dX(s) =
∫ ∞

−∞

{ ∫

I

f(u)c(u− s)du

}
dW (s). (3.6)

Proof. For −∞ < a < b < ∞ with (a, b] ⊂ I, we have

X(b)−X(a) =
∫ ∞

−∞

{ ∫

I

I(a,b](u)c(u− s)du

}
dW (s),

which implies (3.6) for f = I(a,b]. The general case follows easily from this.
¤

Proposition 3.3 Let f ∈ HI(X) such that f ≥ 0, and let fn (n = 1, 2, . . . )
be a sequence of simple functions on I such that 0 ≤ fn ↑ f a.e. Then, in
M(X),

lim
n→∞

∫ ∞

−∞
fn(s)dX(s) =

∫ ∞

−∞

{ ∫

I

f(u)c(u− s)du

}
dW (s).
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Proof. By Proposition 3.2 and the monotone convergence theorem, we have

∥∥∥∥
∫

I

fn(s)dX(s)−
∫ ∞

−∞

{ ∫

I

f(u)c(u− s)du

}
dW (s)

∥∥∥∥
2

≤
∫ ∞

−∞

{ ∫

I

(f(u)− fn(u))c(u− s)du

}2

ds ↓ 0, n →∞.

Thus the proposition follows. ¤

For a real-valued function f on I, we write f(x) = f+(x)−f−(x), where

f+(x) := max(f(x), 0), f−(x) := max(−f(x), 0), x ∈ I.

Definition 3.4 For f ∈ HI(X), we define

∫

I

f(s)dX(s) := lim
n→∞

∫

I

f+
n (s)dX(s)− lim

n→∞

∫

I

f−n (s)dX(s) in M(X),

where {f+
n } and {f−n } are arbitrary sequences of non-negative simple func-

tions on I such that f+
n ↑ f+, f−n ↑ f−, as n →∞, a.e.

From the definition above, we see that
∫

I
f(s)dX(s) ∈ MI(X) for f ∈

HI(X). The next proposition follows immediately from Proposition 3.3.

Proposition 3.5 The equality (3.6) also holds for f ∈ HI(X).

3.3. Infinite past prediction formulas
We denote by D(R) the space of all φ ∈ C∞(R) with compact support,

endowed with the usual topology. For a random distribution Y (cf. [I2, Sec-
tion 2] and [AIK, Section 2]), we write DY for its derivative. For t ∈ R, we
write M(−∞,t](Y ) for the closed linear hull of {Y (φ) : φ ∈ D(R), suppφ ⊂
(−∞, t]} in L2(Ω,F , P ). Notice that MI(X) here coincides with that defined
above.

As in [IA, Proposition 2.4], we have the next proposition.

Proposition 3.6 The derivative DX of (X(t)) is a purely nondetermin-
istic stationary random distribution, and (W (t) : t ∈ R) is a canonical
Brownian motion of DX in the sense that M(−∞,t](DX) = M(−∞,t](DW )
for every t ∈ R.

See Section 5 for the proof.
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Here is the infinite past prediction formula for
∫∞

t
f(s)dX(s).

Theorem 3.7 For t ∈ [0,∞) and f ∈ H[t,∞)(X), the following assertions
hold :

(a)
∫∞
0

b(t− ·, τ)f(t + τ)dτ ∈ H(−∞,t](X).
(b) P(−∞,t]

∫∞
t

f(s)dX(s) =
∫ t

−∞{
∫∞
0

b(t− s, τ)f(t + τ)dτ}dX(s).

Proof. Since f ∈ H[t,∞)(X) iff |f | ∈ H[t,∞)(X), we may assume f ≥ 0.
Since

c(u) = 0, t ≤ 0, (3.7)

it follows from (3.5) and the Fubini–Tonelli theorem that, for s < t,

∫ ∞

t

f(u)c(u− s)du =
∫ ∞

0

dτf(t + τ)
∫ t−s

0

c(t− s− u)b(u, τ)du

=
∫ t

−∞
duc(u− s)

∫ ∞

0

b(t− u, τ)f(t + τ)dτ. (3.8)

Thus we obtain (a). By Proposition 3.6 and [AIK, Proposition 2.3 (2)], we
have

M(−∞,t](X) = M(−∞,t](DW ). (3.9)

This and Proposition 3.5 yield

P(−∞,t]

∫ ∞

t

f(s)dX(s) =
∫ t

−∞

{ ∫ ∞

t

f(u)c(u− s)du

}
dW (s).

By (3.7), (3.8) and Proposition 3.5, the integral on the right-hand side is

∫ t

−∞

{ ∫ t

−∞
duc(u− s)

∫ ∞

0

b(t− u, τ)f(t + τ)dτ

}
dW (s)

=
∫ t

−∞

{ ∫ ∞

0

b(t− s, τ)f(t + τ)dτ

}
dX(s).

Thus (b) follows. ¤
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By putting f(s) = I(t1,T ](s) in Theorem 3.7 (b), we immediately obtain
the next infinite past prediction formula for (X(t)).

Theorem 3.8 Let 0 ≤ t1 < T < ∞. Then
∫ T−t1
0

b(t1 − ·, τ)dτ ∈
H(−∞,t1](X) and the infinite past prediction formula (1.11) holds.

Using the Hilbert space isomorphism θ : M(X) → M(X) characterized
by θ(X(t)) = X(−t) for t ∈ R, we obtain the next theorem from Theorem
3.7 (see the proof of [AIK, Theorem 3.6]).

Theorem 3.9 For t ∈ [0,∞) and f ∈ H[t,∞)(X), the following assertions
hold :

(a)
∫∞
0

b(t + ·, τ)f(t + τ)dτ ∈ H[−t,∞)(X).
(b) P[−t,∞)

∫ −t

−∞ f(−s)dX(s) =
∫∞
−t
{∫∞

0
b(t + s, τ)f(t + τ)dτ}dX(s).

As in [AIK, Definition 2.2], we define another Brownian motion (W ∗(t) :
t ∈ R) by

W ∗(t) := θ(W (−t)), t ∈ R. (3.10)

Proposition 3.10 Let I be a closed interval of R and let f ∈ HI(X).
Then

∫

I

f(s)dX(s) =
∫ ∞

−∞

{ ∫

I

f(u)c(s− u)du

}
dW ∗(s).

The proof of Proposition 3.10 is the same as that of [AIK, Proposition
3.5], whence we omit it. We need Theorem 3.9 and Proposition 3.10 in the
next section.

Example 3.11 As in Example 2.3, we consider fBm (BH(t)) with 1/2 <

H < 1. Then the MA(∞) coefficient c(t) is given by

c(t) = tH−(3/2) 1
Γ(H − 1

2 )
, t > 0, (3.11)

so that
∫∞
0

eiztc(t)dt = (−iz)(1/2)−H for =z > 0. From (3.2), we have

∫ ∞

0

eiztα(t)dt = (−iz)H−(3/2).
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Hence, α(t) = t(1/2)−H/Γ( 3
2 − H), so that the AR(∞) coefficient a(t) is

given by

a(t) = t−(H+(1/2)) H − 1
2

Γ( 3
2 −H)

, t > 0. (3.12)

By the change of variable u = sv,
∫ s

0
(s−u)H−(3/2)(t+u)−H−(1/2)du becomes

sH−(1/2)t−H−(1/2)

∫ 1

0

(1− v)H−(3/2){1 + (s/t)v}−H−(1/2)dv

=
1

(H − 1
2 )

(
s

t

)H−(1/2) 1
t + s

,

where we have used the equality

∫ 1

0

(1− v)p−1(1 + xv)−p−1dv =
1

p(x + 1)
, p > 0, x > −1.

Thus

b(t, s) =
sin{π(H − 1

2 )}
π

(
s

t

)H−(1/2) 1
t + s

, t > 0, s > 0; (3.13)

and so, from Theorem 3.8, we see that, for 0 ≤ t < T ,

E[BH(T ) | σ(BH(s) : −∞ < s ≤ t)]

= BH(t) +
sin{π(H− 1

2 )}
π

∫ t

−∞

{ ∫ T−t

0

(
τ

t−s

)H−(1/2) 1
t−s+τ

dτ

}
dBH(s).

This prediction formula was obtained in [GN, Theorem 3.1] by a different
method.

4. Finite past prediction problems

In this section, we assume (1.1)–(1.7) and (1.10). Notice that (1.6) with
(1.7) implies (3.1) as well as (2.3), whence (2.1). For t0, t1, and T in (1.10),
we put
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t2 := t0 + t1, t3 := T − t1.

4.1. Alternating projections to the past and future
For n ∈ N, we define the orthogonal projection operator Pn by

Pn :=

{
P(−∞,t1], n = 1, 3, 5, . . . ,

P[−t0,∞), n = 2, 4, 6, . . . .

It should be noted that {Pn}∞n=1 is merely an alternating sequence of projec-
tion operators, first to M(−∞,t1](X), then to M[−t0,∞)(X), and so on. This
sequence plays a key role in the proof of the finite past prediction formula
for (X(t)).

For t, s ∈ (0,∞) and n ∈ N, we define bn(t, s) = bn(t, s; t2) iteratively
by





b1(t, s) := b(t, s),

bn(t, s) :=
∫ ∞

0

b(t, u)bn−1(t2 + u, s)du, n = 2, 3, . . . .
(4.1)

Proposition 4.1 For f ∈ H[t1,∞)(X), the following assertions hold :

(a)
∫∞
0

bn(t1 − ·, τ)f(t1 + τ)dτ ∈ H(−∞,t1](X) for n = 1, 3, 5, . . . .
(b)

∫∞
0

bn(t0 + ·, τ)f(t1 + τ)dτ ∈ H[−t0,∞)(X) for n = 2, 4, 6, . . . .

Proof. We may assume that f ≥ 0. By Theorem 3.7, (a) holds for n = 1.
By the Fubini–Tonelli theorem, we have, for s > −t0,

∫ ∞

0

dub(t0 + s, u)
∫ ∞

0

b1(t2 + u, τ)f(t1 + τ)dτ

=
∫ ∞

0

b2(t0 + s, τ)f(t1 + τ)dτ.

Hence, by Theorem 3.9, we have (b) for n = 2. Repeating this procedure,
we obtain the proposition. ¤

Let f ∈ H[t1,∞)(X). By Proposition 4.1, we may define the random
variables Gn(f) by
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Gn(f) :=





∫ t1

−t0

{ ∫ ∞

0

bn(t1 − s, τ)f(t1 + τ)dτ

}
dX(s), n = 1, 3, . . . ,

∫ t1

−t0

{ ∫ ∞

0

bn(t0 + s, τ)f(t1 + τ)dτ

}
dX(s), n = 2, 4, . . . .

We may also define the random variables εn(f) by ε0(f) :=
∫∞

t1
f(s)dX(s)

and

εn(f) :=





∫ −t0

−∞

{ ∫ ∞

0

bn(t1 − s, τ)f(t1 + τ)dτ

}
dX(s), n = 1, 3, . . . ,

∫ ∞

t1

{ ∫ ∞

0

bn(t0 + s, τ)f(t1 + τ)dτ

}
dX(s), n = 2, 4, . . . .

Proposition 4.2 Let f ∈ H[t1,∞)(X) and n ∈ N. Then

PnPn−1 · · ·P1

∫ ∞

t1

f(s)dX(s) = εn(f) +
n∑

k=1

Gk(f). (4.2)

We can prove (4.2) using Proposition 4.1 and the facts

M[−t0,t1](X) ⊂ M(−∞,t1](X) ∩M[−t0,∞)(X), (4.3)

Gk ∈ M[−t0,t1](X), k = 1, 2, . . . . (4.4)

Since the proof is similar to that of [AIK, Proposition 4.4], we omit the
details.

We are about to investigate the limit of (4.2) as n → ∞ (see Lemma
4.9 below).

For f ∈ H[t1,∞)(X) and s > 0, we define Dn(s, f) = Dn(s, f ; t1, t2) by

Dn(s, f) :=





∫ ∞

0

c(u)f(t1 + s + u)du, n = 0,

∫ ∞

0

duc(u)
∫ ∞

0

bn(t2 + u + s, τ)f(t1 + τ)dτ, n = 1, 2, . . . .

From the proof of the next proposition, we see that these integrals converge
absolutely. Recall (W ∗(t)) from (3.10).
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Proposition 4.3 Let f ∈ H[t1,∞)(X). Then

P⊥n+1εn(f) =





∫ ∞

t1

Dn(s− t1, f)dW (s), n = 0, 2, 4, . . . ,

∫ −t0

−∞
Dn(−t0 − s, f)dW ∗(s), n = 1, 3, 5, . . . .

Proof. By (3.9) and Proposition 3.5,

P⊥1 ε0(f) =
∫ ∞

t1

{ ∫ ∞

s

f(u)c(u− s)du

}
dW (s) =

∫ ∞

t1

D0(s− t1, f)dW (s).

Thus the assertion holds for n = 0. Let n = 1, 3, . . . . Then, by Proposition
3.10,

εn(f) =
∫ ∞

−∞

{ ∫ −t0

−∞
duc(s− u)

∫ ∞

0

bn(t1 − u, τ)f(t1 + τ)dτ

}
dW ∗(s).

Hence, using [AIK, Proposition 2.3 (7)] and (3.7),

P⊥n+1εn(f)

=
∫ −t0

−∞

{ ∫ s

−∞
duc(s− u)

∫ ∞

0

bn(t1 − u, τ)f(t1 + τ)dτ

}
dW ∗(s)

=
∫ −t0

−∞

{ ∫ ∞

0

duc(u)
∫ ∞

0

bn(t2 + u− t0 − s, τ)f(t1 + τ)dτ

}
dW ∗(s)

=
∫ −t0

−∞
Dn(−t0 − s, f)dW ∗(s).

Thus we obtain the assertion for n = 1, 3, . . . . The proof for n = 2, 4, . . . is
similar; and so we omit it. ¤

From Propositions 4.2 and 4.3, we immediately obtain the next propo-
sition (cf. the proof of [AIK, Proposition 4.9]).

Proposition 4.4 Let f ∈ H[t1,∞)(X). Then the following assertions hold :

(a) ‖P⊥1
∫∞

t1
f(s)dX(s)‖2 =

∫∞
0

D0(s, f)2ds.
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(b) ‖P⊥n+1PnPn−1 · · ·P1

∫∞
t1

f(s)dY (s)‖2 =
∫∞
0

Dn(s, f)2ds for n =
1, 2, . . . .

We write Q for the orthogonal projection operator from M(X) onto
the intersection M(−∞,t1](X) ∩ M[−t0,∞)(X). Then, by von Neumann’s
alternating projection theorem (see, e.g., [P, Theorem 9.20]), we have
Q = s-limn→∞ PnPn−1 · · ·P1. Using this, (4.3) and Proposition 4.4, we
immediately obtain the next proposition (cf. the proof of [AIK, Proposition
4.9 (3)]).

Proposition 4.5 Let f ∈ H[t1,∞)(X). Then limn→∞
∫∞
0

Dn(s, f)2ds = 0.

We need the next proposition.

Proposition 4.6 Let f ∈ H[t1,∞)(X). Then, for t > 0 and n = 0, 1, . . . ,
we have

∫ ∞

0

bn+1(t, τ)f(t1 + τ)dτ =
∫ ∞

0

a(t + u)Dn(u, f)du.

Proof. We may assume f ≥ 0. By the Fubini–Tonelli theorem, we have,
for t > 0,

∫ ∞

0

b1(t, τ)f(t1 + τ)dτ =
∫ ∞

0

{ ∫ τ

0

c(τ − u)a(t + u)du

}
f(t1 + τ)dτ

=
∫ ∞

0

a(t + u)
{ ∫ ∞

0

c(τ)f(t1 + u + τ)dτ

}
du

=
∫ ∞

0

a(t + u)D0(u, f)du.

Thus the assertion holds for n = 0. Now we assume that n ≥ 1. Since we
have

bn+1(t, τ) =
∫ ∞

0

a(t + v)
{ ∫ ∞

0

c(u)bn(t2 + u + v, τ)du

}
dv, t, τ > 0,

we obtain the assertion, again using the Fubini–Tonelli theorem. ¤

For t, s > 0, we define k(t, s) = k(t, s; t2) by
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k(t, s) :=
∫ ∞

0

c(t + u)a(t2 + u + s)du.

Notice that k(t, s) < ∞ for t, s > 0 since k(t, s) ≤ c(t)
∫∞

t2+s
a(u)du.

Proposition 4.7 Let f ∈ H[t1,∞)(X). Then

Pn+1εn(f) =





∫ t1

−∞

{ ∫ ∞

0

k(t1 − s, u)Dn−1(u, f)du

}
dW (s), n = 2, 4, . . . ,

∫ ∞

−t0

{ ∫ ∞

0

k(t0 + s, u)Dn−1(u, f)du

}
dW ∗(s), n = 1, 3, . . . .

Proof. We assume n = 2, 4, . . . . Then, by Propositions 3.5 and 4.6, we
have

Pn+1εn(f)

=
∫ t1

−∞

{ ∫ ∞

t1

duc(u− s)
∫ ∞

0

bn(t0 + u, τ)f(t1 + τ)dτ

}
dW (s)

=
∫ t1

−∞

{ ∫ ∞

0

dvc(t1 − s + v)
∫ ∞

0

a(t2 + v + u)Dn−1(u, f)duv}dW (s)

=
∫ t1

−∞

{ ∫ ∞

0

k(t1 − s, u)Dn−1(u, f)du

}
dW (s).

The proof of the case n = 1, 3, . . . is similar. ¤

We need the next L2-boundedness theorem.

Theorem 4.8 Let p ∈ (0, 1/2) and let `(·) be a slowly varying function
at infinity. Let C(·) and A(·) be nonnegative and decreasing functions on
(0,∞). We assume C(·) ∈ L1

loc[0,∞) and A(0+) < ∞. We also assume

A(t) ∼ t−(1+p)`(t)p, t →∞,

C(t) ∼ t−(1−p)

`(t)
· sin(pπ)

π
, t →∞,

and put K(x, y) :=
∫∞
0

C(x + u)A(u + y)du for x, y > 0. Then
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sup
x>0

∫ ∞

0

K(x, y)(x/y)1/2dy < ∞, sup
y>0

∫ ∞

0

K(x, y)(y/x)1/2dx < ∞.

In particular, the integral operator K defined by (Kf)(x) :=∫∞
0

K(x, y)f(y)dy for x > 0 is a bounded operator on L2((0,∞), dy).

We omit the proof of Theorem 4.8 which is similar to that of [IA, The-
orem 5.1].

By putting z = iy in (3.2), we get

y

{ ∫ ∞

0

e−ytc(t)dt

}{ ∫ ∞

0

e−ytα(t)dt

}
= 1, y > 0.

By Karamata’s Tauberian theorem (cf. [BGT, Theorem 1.7.6]) applied to
this, (2.3) implies α(t) ∼ t−(H− 1

2 )/{`(t)Γ((3/2)−H)} as t →∞. This and
the monotone density theorem give

a(t) ∼ t−(H+1/2)

`(t)
· (H − 1

2 )
Γ( 3

2 −H)
, t →∞. (4.5)

The next lemma is a key to our arguments.

Lemma 4.9 Let f ∈ H[t1,∞)(X). Then ‖εn(f)‖ → 0 as n →∞.

Proof. It follows from (2.3), (4.5) and Theorem 4.8 below that the integral
operator K defined by Kf(t) :=

∫∞
0

k(t, s)f(s)ds is a bounded operator on
L2((0,∞), ds). Hence, by Propositions 4.3, 4.5 and 4.7, we have

‖εn(f)‖2 =
∫ ∞

0

Dn(s, f)2ds +
∫ ∞

0

{ ∫ ∞

0

k(s, u)Dn−1(u, f)du

}2

ds

≤
∫ ∞

0

Dn(s, f)2ds + ‖K‖2
∫ ∞

0

Dn−1(s, f)2ds → 0, n →∞.

Thus the lemma follows. ¤

We can now state the conclusions of the arguments above.

Theorem 4.10 The following assertions hold :

(a) M[−t0,t1](X) = M(−∞,t1](X) ∩M[−t0,∞)(X).
(b) P[−t0,t1] = s-limn→∞ PnPn−1 · · ·P1.
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(c) ‖P⊥[−t0,t1]
Z‖2 = ‖P⊥1 Z‖2 +

∑∞
n=1 ‖(Pn+1)⊥Pn · · ·P1Z‖2 for Z ∈ M(X).

We can prove Theorem 4.10 using Proposition 4.2 and Lemma 4.9. Since
the proof is similar to that of [AIK, Theorem 4.6], we omit the details.

4.2. Finite past prediction formulas
We define h(s, u) = h(s, u; t2) by

h(s, u) :=
∞∑

k=1

{b2k−1(t2 − s, u) + b2k(s, u)}, 0 < s < t2, u > 0. (4.6)

Here is the finite past prediction formula for
∫∞

t1
f(s)dX(s).

Theorem 4.11 Let f ∈ H[t1,∞)(X). Then the following assertions hold :

(a)
∫∞
0

h(t0 + ·, u)f(t1 + u)du ∈ H[−t0,t1](X).
(b) P[−t0,t1]

∫∞
t1

f(s)dX(s) =
∫ t1
−t0
{∫∞

0
h(t0 + s, u)f(t1 + u)du}dX(s).

(c) ‖P⊥[−t0,t1]

∫∞
t1

f(s)dX(s)‖2 =
∑∞

n=0

∫∞
0

Dn(s, f)2ds.

Proof. We may assume that f ≥ 0. By Theorem 4.10 (b), Proposition 4.2
and Lemma 4.9, we have, in M(X),

P[−t0,t1]

∫ ∞

t1

f(s)dX(s) = lim
n→∞

PnPn−1 · · ·P1

∫ ∞

t1

f(s)dX(s)

= lim
n→∞

∫ t1

−t0

{ ∫ ∞

0

hn(t0 + u, v)f(t1 + v)dv

}
dX(s),

where, for 0 < s < t2 and u > 0, we define hn(s, u) = hn(s, u; t2) by

hn(s, u) =

{
b1(t2 − s, u) + b2(s, u) + · · ·+ bn(t2 − s, u), n = 1, 3, 5, . . . ,

b1(t2 − s, u) + b2(s, u) + · · ·+ bn(s, u), n = 2, 4, 6, . . . .

Since hn(s, u) ↑ h(s, u), we obtain (a) and (b) using the monotone conver-
gence theorem. Finally, (c) follows from Theorem 4.10 (c) and Proposition
4.4. ¤

For s, u > 0, we define Dn(s) = Dn(s; t2, t3) by

Dn(s) :=
∫ ∞

0

duc(u)
∫ t3

0

bn(t2 + u + s, τ)dτ, n = 1, 2, . . . .
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Here are the solutions to the finite past prediction problems for (X(t)).

Theorem 4.12 The finite past prediction formula (1.12) and the following
equality for the mean-square prediction error hold :

∥∥P⊥[−t0,t1]
X(T )

∥∥2 =
∫ T−t1

0

g(s)2ds +
∞∑

n=1

∫ ∞

0

Dn(s)2ds.

Proof. We put f(s) = I(t1,T ](s). Then
∫∞

t1
f(s)dX(s) = X(T )−X(t1) and

∫ ∞

0

h(t0 + s, u)f(t1 + u)du =
∫ t3

0

h(t0 + s, u)du, −t0 < s < t1.

We also have Dn(s, f) = Dn(s) for n = 1, 2, . . . and D0(s, f) = g(t3 − s).
Thus the theorem follows from Theorem 4.11. ¤

5. AR(∞)-type equations

In this section, we consider the AR(∞)-type equations for (X(t)) in
(1.1) and (X̃(t)) in (1.13). For a Borel measure τ on (0,∞) satisfying∫∞
0

(1 + s)−1τ(ds) < ∞, we write

Fτ (z) :=
∫ ∞

0

1
λ− iz

τ(dλ), =z ≥ 0.

First, we consider the process X = (X(t)) in (1.1) with (1.2)–(1.5), (2.1)
and (3.1). Let ft(s) := g(t− s)− g(−s) =

∫ t−s

−s
c(u)du for t, s ∈ R.

Lemma 5.1 Let t ∈ R. Then the Fourier transform of ft(·) in the L2-
sense is equal to (iξ)−1(1− e−itξ)Fν(ξ):

(1− e−itξ)
iξ

Fν(ξ) = l.i.m.
M→∞

∫ M

−M

e−isξft(s)ds. (5.1)

Proof. Since
∫∞
−∞ |ft(s)|2ds < ∞, the limit on the right-hand side of (5.1)

exists. Therefore, it is enough to justify the following point-wise conver-
gence:
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(1− e−itξ)
iξ

Fν(ξ) = lim
M→∞

∫ M

−M

e−isξft(s)ds, ξ 6= 0. (5.2)

Now, if −M ≤ t ≤ M , then

∫ M

−M

e−isξft(s)ds

=
∫ M

−M

dse−isξ

∫ t

0

c(u− s)du =
∫ t

0

du

∫ M

−M

e−isξc(u− s)ds

=
∫ t

0

due−iuξ

∫ u+M

u−M

eivξc(v)dv =
∫ t

0

due−iuξ

∫ u+M

0

eivξc(v)dv

because u−M ≤ 0 ≤ u + M for u between 0 and t, and c(s) = 0 for s ≤ 0.
However,

∫ t

0

due−iuξ

∫ u+M

0

eisξc(s)ds

=
∫ t

0

due−iuξ

∫ ∞

0

1− e(iξ−λ)(u+M)

λ− iξ
ν(dλ)

=
(1− e−itξ)

iξ
Fν(ξ)− eiξM

∫ t

0

du

∫ ∞

0

e−λ(u+M)

λ− iξ
ν(dλ),

so that, for ξ 6= 0,

∣∣∣∣
(1− e−itξ)

iξ
Fν(ξ)−

∫ M

−M

e−isξft(s)ds

∣∣∣∣ ≤ t

∫ ∞

0

e−λM

|λ− iξ|ν(dλ) ↓ 0, M →∞.

Thus, (5.2) holds. ¤

For the Brownian motion W = (W (t)) in (1.1), let DW (φ) =
∫∞
−∞ φ̂(ξ)

ZDW (dξ) with φ ∈ D(R) be the spectral decomposition of DW as a station-
ary random distribution, where φ̂(ξ) :=

∫∞
−∞ e−itξφ(ξ)dξ and ZDW is the as-

sociated complex-valued random measure such that E[ZDW (A)ZDW (B)] =
(2π)−1

∫
A∩B

dξ (see Itô [It]). By Lemma 5.1 and the Parseval-type for-
mula for the homogeneous random measure ZDW , we obtain X(t) =∫∞
−∞[(1− e−itξ)/(iξ)]Fν(ξ)ZDW (dξ), whence
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DX(φ) =
∫ ∞

−∞
φ̂(ξ)Fν(ξ)ZDW (dξ), φ ∈ D(R). (5.3)

Let ρDX be the spectral measure of DX: E[X(φ)X(ψ)] =
∫∞
−∞ φ̂(ξ)ψ̂(ξ)

ρDX(dξ). Then, from (5.3), we see that ρDX(dξ) = (2π)−1|Fν(ξ)|2dξ. Thus,
DX has the spectral density ∆DX(ξ) := (2π)−1|Fν(ξ)|2. Since, for z = x+iy

with y > 0, we have

<{Fν(z)} =
∫ ∞

0

s + y

(s + y)2 + x2
ν(ds) > 0,

the function Fν(z) is an outer function on the upper half plane =z > 0:

Fν(z) = exp
{

1
πi

∫ ∞

−∞

1 + ξz

ξ − z
· log |Fν(ξ)|

1 + ξ2
dξ

}
, =z > 0. (5.4)

In particular, Proposition 3.6 follows from this and (5.3).
We also have the next lemma.

Lemma 5.2 The following equality holds:

∫ ∞

0

eiztc(t)dt =
√

2π exp
{

1
2πi

∫ ∞

−∞

1 + ξz

ξ − z
· log |∆DX(ξ)|

1 + ξ2
dξ

}
, =z > 0.

Proof. Since Fν(z) =
∫∞
0

eiztc(t)dt and |Fν(ξ)| = {2π∆DX(ξ)}1/2, the
lemma follows from (5.4). ¤

From Lemma 5.2, we see that the kernel c(·) is uniquely determined by
DX, whence (X(t)), as claimed in Section 3.2.

Let D2X := D(DX). For the AR(∞) kernel α(·) in Section 3.1, we de-
fine the convolution α∗D2X, which is also a stationary random distribution,
by

(α ∗D2X)(φ) := l.i.m.
M→∞

∫ M

0

α(u)D2X(τuφ)du, φ ∈ D(R), (5.5)

where τuφ(t) := φ(t+u) and the integral on the right-hand side is an M(X)-
valued Bochner integral. Then, by [I2, Proposition 2.3] and (5.3), we have
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(α ∗D2X)(φ) = −
∫ ∞

−∞
iξFµ(ξ)Fν(ξ)φ̂(ξ)ZDW (dξ).

However, since (3.2) implies −iξFµ(ξ)Fν(ξ) = 1 for ξ 6= 0, we see that X

satisfies

α ∗D2X = DW. (5.6)

More precisely, we have the next theorem.

Theorem 5.3 The process (X(t)) is the only stationary-increment process
with X(0) = 0 satisfying the following two conditions:

(1) the stationary random distribution DX is purely nondeterministic;
(2) (X(t)) satisfies (5.6).

The proof of Theorem 5.3 is similar to that of [AI2, Theorem 2.6],
whence we omit it. Notice that (5.6) can be written formally as the following
AR(∞)-type equation:

∫ t

−∞
α(t− s)

d2X

ds2
(s)ds =

dW

dt
(t). (5.7)

Example 5.4 Let (BH(t)) be the fBm in (2.5) with 1/2 < H < 1. Then,
by Example 3.11, we have α(t) = t(1/2)−H/Γ( 3

2 −H) for t > 0, whence (5.7)
becomes

1
Γ
(

3
2 −H

)
∫ t

−∞

1
(t− s)H−(1/2)

· d2BH

ds2
(s)ds =

dW

dt
(t).

Next, we turn to X̃ = (X̃(t)) in (1.13) with (1.14). We assume that ν̃

is a Borel measure on (0,∞) satisfying the following conditions:

∫ ∞

0

1
1 + s

ν̃(ds) < ∞, ν̃((0,∞)) =
∫ ∞

0

1
s
ν̃(ds) = ∞,

∫ 1

0

c̃(t)2dt < ∞.

By [IA, Theorem 3.2], there exists a unique Borel measure µ̃ on (0,∞)
satisfying

∫ ∞

0

1
1 + s

µ̃(ds) < ∞, µ̃((0,∞)) =
∫ ∞

0

1
s
µ̃(ds) = ∞,



180 A. Inoue and V. V. Anh

and −izFν̃(z)Fµ̃(z) = 1 for =z > 0. If we define

α̃(t) :=
∫ ∞

0

e−stµ̃(ds), t > 0,

then the last equality becomes

−iz

{ ∫ ∞

0

eiztc̃(t)dt

}{ ∫ ∞

0

eiztα̃(t)dt

}
= 1, =z > 0. (5.8)

By [IA, (2.3)], we have

DX̃(φ) =
∫ ∞

−∞
φ̂(ξ)(−iξ)Fν̃(ξ)ZDW (dξ), φ ∈ D(R), (5.9)

whence, in the same way as the proof of [I1, Proposition 5.1], we get

(α̃ ∗DX̃)(φ) = −
∫ ∞

−∞
iξFµ̃(ξ)Fν̃(ξ)φ̂(ξ)ZDW (dξ), φ ∈ D(R),

where the convolution α̃∗DX̃ is defined in the same way as (5.5). However,
since −iξFµ̃(ξ)Fν̃(ξ) = 1 for ξ 6= 0, we see that (X̃(t)) satisfies

α̃ ∗DX̃ = DW. (5.10)

Notice that the equation (5.10) can be written formally as the following
AR(∞)-type equation:

∫ t

−∞
α̃(t− s)

dX̃

ds
(s)ds =

dW

dt
(t). (5.11)

We can also prove an analogue of Theorem 5.3 for (X̃(t)), which we omit in
this paper.

Example 5.5 Let (BH(t)) be the fBm in (2.5) with 0 < H < 1/2. Then,
by [IA, Example 3.9], we have α̃(t) = t−(1/2)−H/Γ( 1

2 −H) for t > 0, whence
(5.11) becomes

1
Γ( 1

2 −H)

∫ t

−∞

1
(t− s)H+(1/2)

· dBH

ds
(s)ds =

dW

dt
(t).



Fractional processes with long-range dependence 181

Acknowledgements We would like to express our gratitude to an anony-
mous referee for useful suggestions.

References

[A] Adler R. J., The Geometry of random fields. John Wiley and Sons, New

York, 1981.

[AI1] Anh V. V. and Inoue A., Prediction of fractional Brownian motion with

Hurst index less than 1/2. Bull. Austral. Math. Soc. 70 (2004), 321–328.

[AI2] Anh V. V. and Inoue A., Financial markets with memory I: Dynamic

models. Stochastic Anal. Appl. 23 (2005), 275–300.

[AIK] Anh V. V., Inoue A. and Kasahara Y., Financial markets with memory

II: Innovation processes and expected utility maximization. Stochastic

Anal. Appl. 23 (2005), 301–328.

[BGT] Bingham N. H., Goldie C. M. and Teugels J. L., Regular Variation. 2nd

ed., Cambridge Univ. Press, Cambridge, 1989.
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