Limits of iterations of complex maps and hypergeometric functions

(Dedicated to Professor Keizo Yamaguchi on his sixtieth birthday)

Keiji Matsumoto* and Takashi Oikawa

(Received October 4, 2010)

Abstract

We consider the limit of the iteration of a map $z \mapsto m(z)$ from a complex domain D to D. For two kinds of maps m, we show that each iteration $m^{n}(z)$ of $m(z)$ converges for any $z \in D$ as $n \rightarrow \infty$ and that this limit is expressed by the hypergeometric function. These are analogs of the expression of the arithmetic-geometric mean by the Gauss hypergeometric function.

Key words: limit of iteration, hypergeometric function

1. Introduction

The arithmetic-geometric mean of a and b is defined by the limit of the iteration of a map consisting of the arithmetic and geometric means:

$$
(a, b) \mapsto\left(\frac{a+b}{2}, \sqrt{a b}\right)
$$

The limit is classically known to be expressed as

$$
\frac{a}{F\left(1 / 2,1 / 2,1 ; 1-b^{2} / a^{2}\right)},
$$

where $F(\alpha, \beta, \gamma ; z)$ is the Gauss hypergeometric series

$$
\sum_{n=0}^{\infty} \frac{(\alpha, n)(\beta, n)}{(\gamma, n)(1, n)} z^{n}, \quad|z|<1, \gamma \neq 0,-1,-2, \ldots,
$$

Recently, several analogs of this expression of the arithmetic-geometric mean are obtained from transformation formulas of hypergeometric functions,

[^0]refer to $[\mathrm{BB} 1],[\mathrm{C}],[\mathrm{HKM}],[\mathrm{KM}],[\mathrm{KS1}]$, $[\mathrm{KS} 2]$, and $[\mathrm{M}]$.
In this paper, we consider the limit of the iteration of a complex map
$$
m: D \ni z \mapsto m(z) \in D
$$

The map m is given as follows:

$$
\begin{align*}
& D=\left\{\left(z_{1}, z_{2}\right) \in\left(\mathbb{C}^{*}\right)^{2}| | \arg \left(z_{2} / z_{1}\right) \left\lvert\,<\frac{\pi}{3}\right.\right\} \tag{1}\\
& m\left(z_{1}, z_{2}\right)=\left(\sqrt[3]{\left(\frac{z_{1}-\omega z_{2}}{1-\omega}\right)^{2}\left(\frac{z_{2}-\omega z_{1}}{1-\omega}\right)}, \sqrt[3]{\left(\frac{z_{1}-\omega z_{2}}{1-\omega}\right)\left(\frac{z_{2}-\omega z_{1}}{1-\omega}\right)^{2}}\right)
\end{align*}
$$

(2) $D=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in\left(\mathbb{C}^{*}\right)^{3}| | \arg \left(z_{2} / z_{1}\right)\left|,\left|\arg \left(z_{3} / z_{1}\right)\right|<\frac{\pi}{3}\right\}\right.$,

$$
\begin{gathered}
m\left(z_{1}, z_{2}, z_{3}\right)=\left(m_{1}(z), \sqrt[3]{m_{1}(z)^{3}-m_{\omega}(z)^{3}}, \sqrt[3]{m_{1}(z)^{3}-m_{\bar{\omega}}(z)^{3}}\right) \\
m_{1}(z)=\frac{z_{1}+z_{2}+z_{3}}{3}, \quad m_{\omega}(z)=\frac{z_{1}+\omega z_{2}+\bar{\omega} z_{3}}{3} \\
m_{\bar{\omega}}(z)=\frac{z_{1}+\bar{\omega} z_{2}+\omega z_{3}}{3}
\end{gathered}
$$

where $\mathbb{C}^{*}=\mathbb{C}-\{0\}, \omega=(-1+\sqrt{-3}) / 2$ and $\bar{\omega}$ is its complex conjugate. We assign branches of the cubic roots in m, and show that the iteration $m^{n}(z)=\overbrace{m \circ \cdots \circ m}^{n}(z)$ of $m(z)$ converges for any $z \in D$ as $n \rightarrow \infty$. By using a complex map version of the invariant principle in [BB2] together with a transformation formula for the hypergeometric function in [KS1], [MO] and [V], we express this limit by the hypergeometric function.

In the study of the case (1), we have Theorem 1 which states that the limit is expressed by the Gauss hypergeometric functions with parameters $(\alpha, \beta, \gamma)=(1 / 3,2 / 3,4 / 3)$. Its monodromy group is isomorphic to the triangle group $(3,3,3)$. In [HKM], several analogs of the arithmetic-geometric mean are studied and the triangle groups $\left(r_{1}, r_{2}, r_{3}\right)$ with $1 / r_{1}+1 / r_{2}+1 / r_{3}=$ 1 except $(3,3,3)$ appear. Theorem 1 completes the correspondence between analogs of the arithmetic-geometric mean and the triangle groups acting on Euclidean space \mathbb{C}.

The limit for the case (2) is studied in $[\mathrm{KS} 1]$ when z_{1}, z_{2} and z_{3} are
positive real numbers. By improving their results on the domain of the variables, we have Theorem 2.

2. The limit of the iteration of a complex map

Let \mathbb{C}^{*} be the multiplicative group $\mathbb{C}-\{0\}$ and let D be a domain of $\left(\mathbb{C}^{*}\right)^{k}$ including (t, \ldots, t) for any $t \in \mathbb{C}^{*}$. We consider a holomorphic map

$$
m: D \ni z=\left(z_{1}, \ldots, z_{k}\right) \mapsto\left(m_{1}\left(z_{1}, \ldots, z_{k}\right), \ldots, m_{k}\left(z_{1}, \ldots, z_{k}\right)\right) \in D
$$

satisfying

$$
\begin{equation*}
m(t, \ldots, t)=(t, \ldots, t) \quad \text { for any } t \in \mathbb{C}^{*} \tag{1}
\end{equation*}
$$

If the domain D and the map m satisfy
(1-a) $t \cdot z=\left(t \cdot z_{1}, \ldots, t \cdot z_{k}\right) \in D$ for any $t \in \mathbb{C}^{*}$ and $z=\left(z_{1}, \ldots, z_{k}\right) \in D$,
(1-b) $m(t \cdot z)=t \cdot m(z)$ for any $t \in \mathbb{C}^{*}$ and $z \in D$,
(1-c) $m(1, \ldots, 1)=(1, \ldots, 1)$,
then m satisfies (1).
Suppose that for any $z=\left(z_{1}, \ldots, z_{k}\right) \in D$ there exists $\alpha \in \mathbb{C}^{*}$ such that

$$
\lim _{n \rightarrow \infty} m^{n}\left(z_{1}, \ldots, z_{k}\right)=\lim _{n \rightarrow \infty} \overbrace{m \circ \cdots \circ m}^{n}(z)=(\alpha, \ldots, \alpha) .
$$

This limit value $\alpha \in \mathbb{C}^{*}$ is denoted by $m_{*}^{\infty}(z)=m_{*}^{\infty}\left(z_{1}, \ldots, z_{k}\right)$. It is characterized by the following proposition, which is a complex map version of the invariant principle in [BB2].

Proposition 1 (Invariant principle) If a holomorphic function μ on D satisfies
(i) $\mu(t, \ldots, t)=t$ for any $t \in \mathbb{C}^{*}$,
(ii) $\mu\left(m\left(z_{1}, \ldots, z_{k}\right)\right)=\mu\left(z_{1}, \ldots, z_{k}\right)$ for any $z=\left(z_{1}, \ldots, z_{k}\right) \in D$,
then $m_{*}^{\infty}\left(z_{1}, \ldots, z_{k}\right)=\mu\left(z_{1}, \ldots, z_{k}\right)$.
Proof. By using the condition (ii), we have

$$
\mu(z)=\mu(m(z))=\cdots=\mu\left(m^{n}(z)\right) .
$$

Since μ is continuous and $m^{n}(z)$ converges to $\left(m_{*}^{\infty}(z), \ldots, m_{*}^{\infty}(z)\right)$ as $n \rightarrow$ ∞, we have

$$
\lim _{n \rightarrow \infty} \mu\left(m^{n}(z)\right)=\mu\left(m_{*}^{\infty}(z), \ldots, m_{*}^{\infty}(z)\right)
$$

Thus we obtain

$$
\mu(z)=\mu\left(m_{*}^{\infty}(z), \ldots, m_{*}^{\infty}(z)\right)=m_{*}^{\infty}(z)
$$

by the condition (i).

3. Limit of a pair of sequences

In this section, we consider a map

$$
\begin{gathered}
m:\left(z_{1}, z_{2}\right) \mapsto\left(m_{1}\left(z_{1}, z_{2}\right), m_{2}\left(z_{1}, z_{2}\right)\right)=\left(\sqrt[3]{w_{1}^{2} w_{2}}, \sqrt[3]{w_{1} w_{2}^{2}}\right) \\
w_{1}=\frac{z_{1}-\omega z_{2}}{1-\omega}, \quad w_{2}=\frac{z_{2}-\omega z_{1}}{1-\omega}, \quad \omega=\frac{-1+\sqrt{-3}}{2}
\end{gathered}
$$

on a domain

$$
D=\left\{\left(z_{1}, z_{2}\right) \in\left(\mathbb{C}^{*}\right)^{2}| | \arg \left(z_{2} / z_{1}\right) \left\lvert\,<\frac{\pi}{3}\right.\right\}
$$

which satisfies $(1,1) \in D$ and $t \cdot\left(z_{1}, z_{2}\right) \in D$ for any $t \in \mathbb{C}^{*}$ and $\left(z_{1}, z_{2}\right) \in D$. By assigning branches of the functions m_{1} and m_{2}, we study the iteration of the map m.

3.1. A pair of sequences

We express the functions m_{1} and m_{2} as

$$
m_{1}\left(z_{1}, z_{2}\right)=w_{1} \sqrt[3]{w_{2} / w_{1}}, \quad m_{2}\left(z_{1}, z_{2}\right)=w_{1}\left(\sqrt[3]{w_{2} / w_{1}}\right)^{2}
$$

where the branches of the cubic roots are determined by the property $m_{1}\left(z_{1}, z_{1}\right)=m_{2}\left(z_{1}, z_{1}\right)=z_{1}$ for any $z_{1} \in \mathbb{C}^{*}$. Note that w_{1} and w_{2} can be expressed as

Figure 1. Geometrical interpretation of the map m.

$$
\begin{aligned}
\left(w_{1}, w_{2}\right) & =\frac{1}{1-\omega}\left(z_{1}, z_{2}\right)\left(\begin{array}{cc}
1 & -\omega \\
-\omega & 1
\end{array}\right) \\
& =\left(\frac{z_{1}+z_{2}}{2}-\frac{1}{\sqrt{-3}} \frac{z_{1}-z_{2}}{2}, \frac{z_{1}+z_{2}}{2}+\frac{1}{\sqrt{-3}} \frac{z_{1}-z_{2}}{2}\right)
\end{aligned}
$$

refer to Figure 1 for the relationship between the variables z_{1}, z_{2} and w_{1}, w_{2}.
Lemma 1 We have $m(D) \subset D$.
Proof. Put $\theta=\arg \left(z_{2} / z_{1}\right) \in\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ for $\left(z_{1}, z_{2}\right) \in D$. We have

$$
\begin{aligned}
& \left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2\left|z_{1}\right|\left|z_{2}\right| \cos \theta \\
& \left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right| \cos \theta
\end{aligned}
$$

and

$$
\left|z_{1}+z_{2}\right|^{2}-\left|z_{1}-z_{2}\right|^{2}=4\left|z_{1}\right|\left|z_{2}\right| \cos \theta>2\left|z_{1}\right|\left|z_{2}\right|>0 .
$$

Thus

$$
\left|w_{i}\right| \geq \frac{1}{2}\left|z_{1}+z_{2}\right|-\frac{1}{2 \sqrt{3}}\left|z_{1}-z_{2}\right|>0
$$

for $i=1,2$, which means that $w_{1}, w_{2} \in \mathbb{C}^{*}$. We have a triangle with vertices w_{1}, w_{2} and 0 . Note that the mid point of w_{1} and w_{2} coincides with that of z_{1} and z_{2}, see Figure 1. If z_{2} is near to z_{1} then the equality

$$
\arg \left(w_{2} / w_{1}\right)=\arg \left(\frac{z_{1}+z_{2}}{2} \frac{1}{w_{1}}\right)+\arg \left(w_{2} \frac{2}{z_{1}+z_{2}}\right)
$$

holds with taking values near to 0 . When $\left(z_{1}, z_{2}\right)$ belongs to D, the inequalities

$$
\tan \left|\arg \left(\frac{z_{1}+z_{2}}{2} \frac{1}{w_{1}}\right)\right|, \tan \left|\arg \left(w_{2} \frac{2}{z_{1}+z_{2}}\right)\right|<\frac{\left|z_{1}-z_{2}\right|}{\sqrt{3}\left|z_{1}+z_{2}\right|}<\frac{1}{\sqrt{3}}
$$

hold, which imply that

$$
\left|\arg \left(\frac{z_{1}+z_{2}}{2} \frac{1}{w_{1}}\right)\right|,\left|\arg \left(w_{2} \frac{2}{z_{1}+z_{2}}\right)\right|<\frac{\pi}{6}
$$

for any $\left(z_{1}, z_{2}\right) \in D$. Hence we have

$$
\left|\arg \left(m_{2}\left(z_{1}, z_{2}\right) / m_{1}\left(z_{1}, z_{2}\right)\right)\right|=\frac{1}{3}\left|\arg \left(w_{2} / w_{1}\right)\right|<\frac{\pi}{9}
$$

which means that $m\left(z_{1}, z_{2}\right) \in D$ for any $\left(z_{1}, z_{2}\right) \in D$.
For a given $(a, b) \in D$, we define a pair of sequences with initial $\left(a_{0}, b_{0}\right)=$ (a, b) by the recurrence relation

$$
\begin{equation*}
\left(a_{n+1}, b_{n+1}\right)=\left(m_{1}\left(a_{n}, b_{n}\right), m_{2}\left(a_{n}, b_{n}\right)\right)=m\left(a_{n}, b_{n}\right)=m \circ m^{n}(a, b) \tag{2}
\end{equation*}
$$

for $n \in \mathbb{N}=\{0,1,2, \ldots\}$.
Proposition 2 The pair of sequences (2) converges uniformly on any compact set in D and it satisfies

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} \neq 0
$$

this common limit is denoted by $m_{*}^{\infty}(a, b)$. If a and b are positive real numbers, then this pair of sequences satisfies
(i) $\frac{1}{2}\left(a_{n}+b_{n}\right)$ is a positive real number for any $n \in \mathbb{N}$,
(ii) $a_{2 n}, b_{2 n}$ are positive real numbers, and

$$
\begin{aligned}
& b_{2 n}<a_{2 n} \Rightarrow b_{2 n}<a_{2 n+2}<b_{2 n+2}<a_{2 n} \\
& a_{2 n}<b_{2 n} \Rightarrow a_{2 n}<b_{2 n+2}<a_{2 n+2}<b_{2 n}
\end{aligned}
$$

(iii) the common limit $m_{*}^{\infty}(a, b)$ is a positive real number.

In the rest of this subsection, we prove Proposition 2. We put

$$
\begin{gathered}
c_{n}=\frac{a_{n}+b_{n}}{2}, \quad d_{n}=\frac{a_{n}-b_{n}}{2}, \\
a_{n}^{\prime}=\frac{a_{n}+b_{n}}{2}-\frac{1}{\sqrt{-3}} \frac{a_{n}-b_{n}}{2}=c_{n}-\frac{1}{\sqrt{-3}} d_{n}, \\
b_{n}^{\prime}=\frac{a_{n}+b_{n}}{2}+\frac{1}{\sqrt{-3}} \frac{a_{n}-b_{n}}{2}=c_{n}+\frac{1}{\sqrt{-3}} d_{n},
\end{gathered}
$$

for any $n \in \mathbb{N}$. We give some lemmas.
Lemma 2 If $a_{0} \neq b_{0}$ then

$$
\left|d_{n+1}\right|<\frac{1}{\sqrt{3}}\left|d_{n}\right| .
$$

Proof. Note that

$$
\begin{gathered}
d_{n}=\frac{1}{2}\left(a_{n}-b_{n}\right)=\frac{-\sqrt{-3}}{2}\left(a_{n}^{\prime}-b_{n}^{\prime}\right)=\frac{-\sqrt{-3}}{2} a_{n}^{\prime}(1-\xi)\left(1+\xi+\xi^{2}\right), \\
d_{n+1}=\frac{a_{n+1}-b_{n+1}}{2}=\frac{a_{n}^{\prime}\left(\sqrt[3]{b_{n}^{\prime} / a_{n}^{\prime}}-\left(\sqrt[3]{b_{n}^{\prime} / a_{n}^{\prime}}\right)^{2}\right)}{2}=\frac{a_{n}^{\prime} \xi(1-\xi)}{2}
\end{gathered}
$$

where $\xi=\sqrt[3]{b_{n}^{\prime} / a_{n}^{\prime}}$. We have

$$
\left|\frac{d_{n+1}}{d_{n}}\right|=\frac{1}{\sqrt{3}} \frac{1}{\left|1+\xi+\xi^{-1}\right|}<\frac{1}{\sqrt{3}}
$$

since the real part of $\left(\xi+\xi^{-1}\right)$ is positive for $|\arg (\xi)|<\frac{\pi}{3}$.
Lemma 3 We have

$$
c_{n+1}^{2}=c_{n}^{2}+\frac{1}{3} d_{n}^{2}+d_{n+1}^{2}
$$

Proof. We have

$$
\begin{aligned}
& a_{n+1} b_{n+1}=a_{n}^{\prime} b_{n}^{\prime} \\
& a_{n+1} b_{n+1}=\left(\frac{a_{n+1}+b_{n+1}}{2}\right)^{2}-\left(\frac{a_{n+1}-b_{n+1}}{2}\right)^{2}=c_{n+1}^{2}-d_{n+1}^{2}
\end{aligned}
$$

$$
a_{n}^{\prime} b_{n}^{\prime}=\left(c_{n}-\frac{1}{\sqrt{-3}} d_{n}\right)\left(c_{n}+\frac{1}{\sqrt{-3}} d_{n}\right)=c_{n}^{2}+\frac{1}{3} d_{n}^{2}
$$

these imply this lemma.
Proof of Proposition 2. By Lemma 2, the sequence $\left\{d_{n}\right\}_{n \in \mathbb{N}}$ converges to 0 uniformly on any compact set in D. Lemma 3 implies

$$
\begin{gathered}
c_{n}^{2}=c_{n-1}^{2}+\frac{1}{3} d_{n-1}^{2}+d_{n}^{2}, \\
c_{n-1}^{2}= \\
\vdots \\
c_{n-2}^{2}+\frac{1}{3} d_{n-2}^{2}+d_{n-1}^{2}, \\
c_{k+1}^{2}= \\
c_{k}^{2}+\frac{1}{3} d_{k}^{2}+d_{k+1}^{2} \\
c_{n}^{2}-c_{k}^{2}= \\
\frac{1}{3} \sum_{j=k}^{n-1} d_{j}^{2}+\sum_{j=k+1}^{n} d_{j}^{2}
\end{gathered}
$$

for $n>k \geq 0$. Thus we have

$$
\begin{aligned}
\left|c_{n}^{2}-c_{k}^{2}\right| & \leq \frac{1}{3} \sum_{j=k}^{n-1}\left|d_{j}\right|^{2}+\sum_{j=k+1}^{n}\left|d_{j}\right|^{2} \\
& <\left(\frac{1}{3} \sum_{j=k}^{n-1} \frac{1}{3^{j}}+\sum_{j=k+1}^{n} \frac{1}{3^{j}}\right)\left|d_{0}\right|^{2} \\
& <\frac{2}{3} \sum_{j=k}^{\infty} \frac{1}{3^{j}}\left|d_{0}\right|^{2}=\frac{1}{3^{k}}\left|d_{0}\right|^{2} .
\end{aligned}
$$

Hence the sequence $\left\{c_{n}^{2}\right\}_{n \in \mathbb{N}}$ converges uniformly on any compact set in D. By putting $k=0$, we obtain

$$
\left|c_{0}^{2}\right|-\left|c_{n}^{2}\right| \leq\left|c_{n}^{2}-c_{0}^{2}\right|<\left|d_{0}\right|^{2}
$$

Thus

$$
\left|c_{n}^{2}\right|>\left|c_{0}^{2}\right|-\left|d_{0}^{2}\right|=\frac{1}{4}\left(\left|a_{0}+b_{0}\right|^{2}-\left|a_{0}-b_{0}\right|^{2}\right) \geq \frac{1}{2}\left|a_{0}\right|\left|b_{0}\right|>0
$$

Figure 2. $\quad a_{1}, a_{2}, b_{1}, b_{2}$ for positive real a_{0}, b_{0}.
which implies $\lim _{n \rightarrow \infty} c_{n}^{2} \neq 0$. By the continuity of m, c_{n+1} is very near to c_{n} for a sufficiently large n. Thus the original sequence $\left\{c_{n}\right\}_{n \in N}$ also converges uniformly on any compact set in D. By $\lim _{n \rightarrow \infty} d_{n}=0$, the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ converge and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n} \neq 0$.

Let a_{0} and b_{0} be positive real numbers with $b_{0}<a_{0}$. Then $\left(a_{0}+b_{0}\right) / 2$ is positive real, and a_{0}^{\prime} and b_{0}^{\prime} are complex conjugate each other. Thus a_{1} and b_{1} are complex conjugate each other and they satisfy

$$
\frac{a_{0}+b_{0}}{2}<\frac{a_{1}+b_{1}}{2}<\sqrt{\left(\frac{a_{0}+b_{0}}{2}\right)^{2}+\left(\frac{a_{0}-b_{0}}{2 \sqrt{3}}\right)^{2}}<\frac{a_{0}+b_{0}}{2}+\frac{a_{0}-b_{0}}{2 \sqrt{3}}
$$

i.e.,

$$
c_{0}<c_{1}<\sqrt{c_{0}^{2}+\frac{1}{3}\left|d_{0}\right|^{2}}<c_{0}+\frac{\left|d_{0}\right|}{\sqrt{3}}
$$

see Figure 2. It is clear that $c_{1}=\left(a_{1}+b_{1}\right) / 2$ is positive real and $d_{1}=$ $\left(a_{1}-b_{1}\right) / 2$ is pure imaginary with $\left|d_{1}\right|<\left|d_{0}\right| / \sqrt{3}$. Since a_{1}^{\prime} and b_{1}^{\prime} are given by $c_{1} \mp d_{1} / \sqrt{-3}$ and a_{2} and b_{2} are given by $\sqrt[3]{\left(a_{1}^{\prime}\right)^{2} b_{1}^{\prime}}$ and $\sqrt[3]{a_{1}^{\prime}\left(b_{1}^{\prime}\right)^{2}}$, we have

$$
\begin{gathered}
b_{0}<c_{0}-\frac{\left|d_{0}\right|}{3}<c_{1}-\frac{\left|d_{0}\right|}{3}<c_{1}-\frac{\left|d_{1}\right|}{\sqrt{3}}=a_{1}^{\prime}<a_{2}<c_{1}, \\
c_{1}<b_{2}<b_{1}^{\prime}=c_{1}+\frac{\left|d_{1}\right|}{\sqrt{3}}<c_{1}+\frac{\left|d_{0}\right|}{3}<c_{0}+\frac{\left|d_{0}\right|}{\sqrt{3}}+\frac{\left|d_{0}\right|}{3}<a_{0}
\end{gathered}
$$

For $a_{0}>b_{0}$, exchange the role of them. Therefore, we have inductively (i) and (ii), and we have (iii) as a consequence of them.

3.2. Expression of the limit of the pair of sequences

The Gauss hypergeometric series $F(\alpha, \beta, \gamma ; z)$ of a variable z with parameter α, β, γ is defined by

$$
F(\alpha, \beta, \gamma ; z)=\sum_{n=0}^{\infty} \frac{(\alpha, n)(\beta, n)}{(\gamma, n)(1, n)} z^{n}
$$

where $|z|<1, \gamma \neq 0,-1,-2, \ldots$ and $(\alpha, n)=\alpha(\alpha+1) \cdots(\alpha+n-1)$.
This series satisfies the Gauss hypergeometric differential equation

$$
E(\alpha, \beta, \gamma): z(1-z) \frac{d^{2} f}{d z^{2}}+(\gamma-(\alpha+\beta+1) z) \frac{d f}{d z}-\alpha \beta f=0
$$

By this differential equation, we can make the analytic continuation of the Gauss hypergeometric series $F(\alpha, \beta, \gamma, z)$ to a single valued holomorphic function on the simply connected domain $\mathbb{C}-[1, \infty)$.

The Gauss hypergeometric series $F(\alpha, \beta, \gamma ; z)$ satisfies the following functional equation due to Vidūnas.

Fact 1 ((23) in [V]) For z sufficiently near to 0, we have

$$
\begin{aligned}
& F\left(\alpha, \frac{1+\alpha}{3}, \frac{2+2 \alpha}{3} ; z\right) \\
& \quad=(1+\bar{\omega} z)^{-\alpha} F\left(\frac{\alpha}{3}, \frac{1+\alpha}{3}, \frac{2 \alpha+2}{3} ; \frac{3(2 \omega+1) z(z-1)}{(z+\omega)^{3}}\right),
\end{aligned}
$$

where $\alpha \neq-1,-\frac{5}{2},-4,-\frac{11}{2},-7, \ldots, \bar{\omega}$ is the complex conjugate of ω and $(1+\bar{\omega} z)^{-\alpha}=1$ at $z=0$.

Our first theorem is as follows.

Theorem 1 The common limit $m_{*}^{\infty}(a, b)$ of the pair of sequences (2) can be expressed by the Gauss hypergeometric function:

$$
m_{*}^{\infty}(a, b)=\frac{a}{F\left(\frac{1}{3}, \frac{2}{3}, \frac{4}{3} ; 1-\left(\frac{b}{a}\right)^{3}\right)}
$$

Remark 1

(1) Since $1-b^{3} / a^{3} \in \mathbb{C}-[1, \infty)$ for any $(a, b) \in D$, Theorem 1 is effective for any $(a, b) \in D$.
(2) The monodromy group of the Gauss hypergeometric differential equation $E(1 / 3,2 / 3,4 / 3)$ is isomorphic to the triangle group $(3,3,3)$. In [HKM], several analogs of the arithmetic-geometric mean are studied and the triangle groups $\left(r_{1}, r_{2}, r_{3}\right)$ with $1 / r_{1}+1 / r_{2}+1 / r_{3}=1$ except $(3,3,3)$ appear. Theorem 1 completes the correspondence between analogs of the arithmetic-geometric mean and the triangle groups acting on Euclidean space \mathbb{C}.

Proof of Theorem 1. We apply Proposition 1 to $m(a, b)=\left(m_{1}(a, b)\right.$, $\left.m_{2}(a, b)\right)$ in this section and $\mu(a, b)=a / F\left(1 / 3,2 / 3,4 / 3 ; 1-b^{3} / a^{3}\right)$. We have shown in Section 3.1 that the map m satisfies the conditions for Proposition 1. We have only to show the condition (i) and (ii) in Proposition 1 for $\mu(a, b)$. Since $F(\alpha, \beta, \gamma ; 0)=1$ for any parameters α, β, γ, we have $\mu(a, a)=a$ for any $a \in \mathbb{C}^{*}$; (i) is satisfied. We remark that we need the assumption $m_{*}^{\infty}(a, b) \neq 0$.

Let us show that $\mu(a, b)$ satisfies the condition (ii). By using Fact 1 with $\alpha=1$ and a well-known formula

$$
F(\alpha, \beta, \gamma ; z)=(1-z)^{\gamma-\alpha-\beta} F(\gamma-\alpha, \gamma-\beta, \gamma ; z),
$$

we have

$$
F\left(\frac{1}{3}, \frac{2}{3}, \frac{4}{3} ; z\right)=\frac{\sqrt[3]{1-z}}{1+\bar{\omega} z} F\left(\frac{1}{3}, \frac{2}{3}, \frac{4}{3} ; \frac{3(2 \omega+1) z(z-1)}{(z+\omega)^{3}}\right)
$$

which is equivalent to

$$
F\left(\frac{1}{3}, \frac{2}{3}, \frac{4}{3} ; 1-x\right)=\frac{\sqrt[3]{x}}{1+\bar{\omega}(1-x)} F\left(\frac{1}{3}, \frac{2}{3}, \frac{4}{3} ; 1-\left(\frac{x+\omega}{\omega x+1}\right)^{3}\right)
$$

under the variable change $z=1-x$. By substituting $(x+\omega) /(\omega x+1)=b / a$, we can transform the above equality into

$$
\frac{a}{F\left(\frac{1}{3}, \frac{2}{3}, \frac{4}{3} ; 1-\frac{b^{3}}{a^{3}}\right)}=\frac{m_{1}(a, b)}{F\left(\frac{1}{3}, \frac{2}{3}, \frac{4}{3} ; 1-\frac{m_{2}(a, b)^{3}}{m_{1}(a, b)^{3}}\right)},
$$

which implies that (ii) is satisfied.

4. Limit of a triple of sequences

In this section, we consider a map

$$
\begin{gathered}
m: z=\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(m_{1}(z), m_{2}(z), m_{3}(z)\right) \\
m_{1}(z)=\frac{z_{1}+z_{2}+z_{3}}{3}, \quad m_{\omega}(z)=\frac{z_{1}+\omega z_{2}+\bar{\omega} z_{3}}{3} \\
m_{\bar{\omega}}(z)=\frac{z_{1}+\bar{\omega} z_{2}+\omega z_{3}}{3} \\
m_{2}(z)=\sqrt[3]{m_{1}(z)^{3}-m_{\omega}(z)^{3}}, \quad m_{3}(z)=\sqrt[3]{m_{1}(z)^{3}-m_{\bar{\omega}}(z)^{3}}
\end{gathered}
$$

on a domain

$$
D=\left\{z \in\left(\mathbb{C}^{*}\right)^{3}| | \arg \left(z_{2} / z_{1}\right)\left|,\left|\arg \left(z_{3} / z_{1}\right)\right|<\frac{\pi}{3}\right\}\right.
$$

which satisfies $(1,1,1) \in D$ and $t \cdot\left(z_{1}, z_{2}, z_{3}\right) \in D$ for any $t \in \mathbb{C}^{*}$ and $\left(z_{1}, z_{2}, z_{3}\right) \in D$. By assigning branches of the functions m_{2} and m_{3}, we study the iteration of the map m.

Remark 2 The limit of the iteration of m is studied in [KS1] when z_{1}, z_{2} and z_{3} are positive real numbers.

4.1. Iteration of three terms

We begin with the following elementary lemma.
Lemma 4 Let z_{1} and z_{2} be different elements of \mathbb{C}^{*} and let θ be $\arg \left(z_{2} / z_{1}\right)$. If $|\theta|<\pi / 3$ then

$$
\left|z_{1}-z_{2}\right|<\sqrt[3]{\left|z_{1}^{3}-z_{2}^{3}\right|}
$$

Proof. We have $\left|z_{1}-z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2\left|z_{1}\right|\left|z_{2}\right| \cos |\theta|$. If $\left|z_{1}\right|=\left|z_{1}^{\prime}\right|$ and $\left|z_{2}\right|=\left|z_{2}^{\prime}\right|$, then

$$
|\theta|>\left|\theta^{\prime}\right|=\left|\arg \left(z_{2}^{\prime} / z_{1}^{\prime}\right)\right| \Rightarrow\left|z_{1}-z_{2}\right|>\left|z_{1}^{\prime}-z_{2}^{\prime}\right|
$$

for $-\pi<\theta, \theta^{\prime}<\pi$. Since $|\theta|<\pi / 3$, we have $\left|\arg \left(\omega z_{2} / z_{1}\right)\right|,\left|\arg \left(\bar{\omega} z_{2} / z_{1}\right)\right|>$ $|\theta|$. Thus inequalities $\left|z_{1}-z_{2}\right|<\left|z_{1}-\omega z_{2}\right|$ and $\left|z_{1}-z_{2}\right|<\left|z_{1}-\bar{\omega} z_{2}\right|$ hold. Hence if $z_{1} \neq z_{2}$ then

$$
\frac{\left|z_{1}-z_{2}\right|^{3}}{\left|z_{1}^{3}-z_{2}^{3}\right|}=\frac{\left|z_{1}-z_{2}\right|^{2}}{\left|z_{1}-\omega z_{2}\right|\left|z_{1}-\bar{\omega} z_{2}\right|}<1
$$

which implies this Lemma.

Lemma 5

(1) If $z=\left(z_{1}, z_{2}, z_{3}\right)$ belongs to D then the functions $\left(m_{\omega}(z) / m_{1}(z)\right)^{3}$ and $\left(m_{\bar{\omega}}(z) / m_{1}(z)\right)^{3}$ do not take values in the interval $[1, \infty)$.
(2) If $z=\left(z_{1}, z_{2}, z_{3}\right) \in D$ satisfies $\left|z_{2}\right|,\left|z_{3}\right|<2\left|z_{1}\right|$ then

$$
\left|m_{\omega}(z)\right|,\left|m_{\bar{\omega}}(z)\right|<\left|m_{1}(z)\right| .
$$

Proof. (1) Put $z_{2} / z_{1}=a+b \sqrt{-1}$ and $z_{3} / z_{1}=c+d \sqrt{-1}$, where $a, b, c, d \in$ \mathbb{R}. By the assumption, we have

$$
\begin{equation*}
a, c>0, \quad|b|<\sqrt{3} a, \quad|d|<\sqrt{3} c . \tag{3}
\end{equation*}
$$

Suppose that $\left(m_{\omega}(z) / m_{1}(z)\right)^{3} \in \mathbb{R}$. Then one of

$$
\operatorname{Im}\left(\frac{m_{\omega}(z)}{m_{1}(z)}\right)=0, \quad \operatorname{Im}\left(\omega \frac{m_{\omega}(z)}{m_{1}(z)}\right)=0, \quad \operatorname{Im}\left(\omega^{2} \frac{m_{\omega}(z)}{m_{1}(z)}\right)=0
$$

is satisfied. The condition $\operatorname{Im}\left(m_{\omega}(z) / m_{1}(z)\right)=0$ is equivalent to

$$
a^{2}+b^{2}-c^{2}-d^{2}+a-\sqrt{3} b-c-\sqrt{3} d=0
$$

By solving this quadratic equation with respect to d, we have

$$
d=-\frac{\sqrt{3}}{2} \pm \frac{1}{2} \sqrt{4 a^{2}+4 b^{2}-4 c^{2}+4 a-4 b \sqrt{3}-4 c+3}
$$

Substitute this into

$$
\begin{aligned}
& \operatorname{Re}\left(1-m_{\omega}(z) / m_{1}(z)\right) \\
& \quad=\frac{\left(3 a^{2}+b^{2}+c^{2}+d^{2}+a+c+2 a c+2 b d\right)+\sqrt{3}(b-d-2 a d+2 b c)}{2\left((1+a+c)^{2}+(b+d)^{2}\right)} .
\end{aligned}
$$

Then we have

$$
\operatorname{Re}\left(1-m_{\omega}(z) / m_{1}(z)\right)=\frac{\sqrt{3}(\sqrt{3}(a+c)+(b-d))}{2(a+c+1)}
$$

which is positive under the assumption (3).
The conditions $\operatorname{Im}\left(\omega m_{\omega}(z) / m_{1}(z)\right)=0$ and $\operatorname{Im}\left(\omega^{2} m_{\omega}(z) / m_{1}(z)\right)=0$ are equivalent to

$$
\begin{aligned}
& a^{2}+b^{2}+b d+a c-c-1+\sqrt{3}(b c-a d-d)=0 \\
& c^{2}+d^{2}+a c+b d-a-1+\sqrt{3}(-a d+b c+b)=0
\end{aligned}
$$

respectively. By these relations, we have

$$
\begin{aligned}
& d=\frac{a^{2}+b^{2}+a c+\sqrt{3} b c-c-1}{\sqrt{3} a-b+\sqrt{3}} \\
& b=-\frac{c^{2}+d^{2}+a c-\sqrt{3} a d-a-1}{\sqrt{3} c+d+\sqrt{3}}
\end{aligned}
$$

We can transform $\operatorname{Re}\left(1-\omega m_{\omega}(z) / m_{1}(z)\right)$ and $\operatorname{Re}\left(1-\omega^{2} m_{\omega}(z) / m_{1}(z)\right)$ into

$$
\frac{\sqrt{3}}{2} \frac{\sqrt{3}+\sqrt{3} a-b}{1+a+c}, \quad \frac{\sqrt{3}}{2} \frac{\sqrt{3}+\sqrt{3} c+d}{1+a+c}
$$

respectively. They are positive under the assumption (3). Use a similar argument for $\left(m_{\bar{\omega}}(z) / m_{1}(z)\right)^{3}$.
(2) By the assumption, we have the additional condition $|b|,|d|<\sqrt{3}$. A straightforward calculation implies

$$
\begin{align*}
& \frac{3 \sqrt{3}}{\left|z_{1}\right|^{2}}\left(\left|m_{1}(z)\right|^{2}-\left|m_{\omega}(z)\right|^{2}\right) \\
& \quad=(\sqrt{3} a+b)+(\sqrt{3} c-d)+(\sqrt{3} a c+\sqrt{3} b d+a d-b c) \tag{4}
\end{align*}
$$

It is clear that the first term $(\sqrt{3} a+b)$ and the second term $(\sqrt{3} c-d)$ of (4) are positive. The last term $(\sqrt{3} a c+\sqrt{3} b d+a d-b c)$ of (4) is positive for the following cases

$$
\begin{aligned}
b, d \geq 0 & \Rightarrow(\sqrt{3} a-b) c+\sqrt{3} b d+a d>0 \\
b, d \leq 0 & \Rightarrow(\sqrt{3} c+d) a+\sqrt{3} b d-b c>0 \\
b \leq 0, d \geq 0 & \Rightarrow \frac{1}{\sqrt{3}}((3 a c+b d)+(\sqrt{3} a+b) d-b(\sqrt{3} c-d))>0 .
\end{aligned}
$$

If $b \geq 0, d \leq 0$, then the positivity of (4) is shown as follows:

$$
\begin{aligned}
(4) & =(\sqrt{3} c+b-d+\sqrt{3} b d)+(\sqrt{3}+d) a+(\sqrt{3} a-b) c \\
& >(\sqrt{3} c+b-d+3 d)+(\sqrt{3}+d) a+(\sqrt{3} a-b) c \\
& =(\sqrt{3} c+d)+(b+d)+(\sqrt{3}+d) a+(\sqrt{3} a-b) c>0
\end{aligned}
$$

for $|b| \geq|d|$;

$$
\begin{aligned}
(4) & =(\sqrt{3} a+b-d+\sqrt{3} b d)+(\sqrt{3}-b) c+(\sqrt{3} c+d) a \\
& >(\sqrt{3} a+b-d-3 b)+(\sqrt{3}-b) c+(\sqrt{3} c+d) a \\
& =(\sqrt{3} a-b)+(-d-b)+(\sqrt{3}-b) c+(\sqrt{3} c+d) a>0
\end{aligned}
$$

for $|b| \leq|d|$. Similarly we have $\left|m_{1}(z)\right|^{2}>\left|m_{\bar{\omega}}(z)\right|^{2}$.
The function $f(y)=\sqrt[3]{1-y^{3}}$ on the unit disk $U=\{y \in \mathbb{C}| | y \mid<1\}$ is defined by the power series

$$
\begin{equation*}
f(y)=\sum_{n=0}^{\infty} \frac{(-1 / 3, n)}{n!} y^{3 n} \tag{5}
\end{equation*}
$$

It satisfies

$$
|f(y)|^{3}=\left|1-y^{3}\right|, \quad 3 \arg (f(y))=\arg \left(1-y^{3}\right) \in(-\pi / 2, \pi / 2)
$$

for any $y \in U$, and admits the analytic continuation along any path in $\mathbb{C}-\{1\}$. Now we strictly define two functions m_{2} and m_{3} on D. When $\left(z_{1}, z_{2}, z_{3}\right) \in D$ and $\left|z_{2}\right|,\left|z_{3}\right|<2\left|z_{1}\right|, m_{\omega}(z) / m_{1}(z)$ and $m_{\bar{\omega}}(z) / m_{1}(z)$ belong to the unit disk U by Lemma 5 . Thus we define m_{2} and m_{3} by the convergent power series $f(y)$:

$$
\begin{aligned}
& m_{2}(z)=m_{1}(z) f\left(m_{\omega}(z) / m_{1}(z)\right)=m_{1}(z) \sqrt[3]{1-m_{\omega}(z)^{3} / m_{1}(z)^{3}} \\
& m_{3}(z)=m_{1}(z) f\left(m_{\bar{\omega}}(z) / m_{1}(z)\right)=m_{1}(z) \sqrt[3]{1-m_{\bar{\omega}}(z)^{3} / m_{1}(z)^{3}}
\end{aligned}
$$

We can make their analytic continuations to the whole domain D; the extended functions $m_{2}(z)$ and $m_{3}(z)$ are single valued on D by Lemma 5 . Note that

$$
m_{j}(1,1,1)=1, \quad m_{j}(t \cdot z)=t \cdot m_{j}(z) \quad(j=1,2,3)
$$

for any $t \in \mathbb{C}^{*}$ and $z \in D$.
Lemma 6 We have $m(D) \subset D$.
Proof. By Lemma 5, we have inequalities

$$
-\pi<\arg \left(m_{2}(z)^{3} / m_{1}(z)^{3}\right), \quad \arg \left(m_{3}(z)^{3} / m_{1}(z)^{3}\right)<\pi
$$

which imply this lemma.
For any $(a, b, c)=\left(a_{0}, b_{0}, c_{0}\right) \in D$, we define a triple $\left(a_{n}, b_{n}, c_{n}\right)_{n \in \mathbb{N}}$ of sequences by the recurrence relation

$$
\begin{align*}
\left(a_{n+1}, b_{n+1}, c_{n+1}\right) & =\left(m_{1}\left(a_{n}, b_{n}, c_{n}\right), m_{2}\left(a_{n}, b_{n}, c_{n}\right), m_{3}\left(a_{n}, b_{n}, c_{n}\right)\right) \\
& =m\left(a_{n}, b_{n}, c_{n}\right)=m \circ m^{n}(a, b, c) . \tag{6}
\end{align*}
$$

Note that b_{n} and c_{n} are uniquely determined by the previous terms and that $\left(a_{n}, b_{n}, c_{n}\right) \in D$ for any $n \in \mathbb{N}$ by Lemmas 5 and 6 .

Proposition 3 The triple (6) of sequences converges uniformly on any compact set in D, and it has a common limit:

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}
$$

which is denoted by $m_{*}^{\infty}(a, b, c)$. If (a, b, c) satisfies

$$
\begin{equation*}
|a-b|<\frac{1}{2}|a|, \quad|a-c|<\frac{1}{2}|a|, \tag{7}
\end{equation*}
$$

then $\lim _{n \rightarrow \infty} a_{n} \neq 0$.
Proof. Lemma 4 implies

$$
\begin{aligned}
\left|a_{n}-b_{n}\right| & \leq \sqrt[3]{\left|a_{n}^{3}-b_{n}^{3}\right|}=\frac{1}{3}\left|a_{n-1}+\omega b_{n-1}+\bar{\omega} c_{n-1}\right| \\
& =\frac{1}{3}\left|\omega\left(b_{n-1}-a_{n-1}\right)+\bar{\omega}\left(c_{n-1}-a_{n-1}\right)\right| \\
& \leq \frac{1}{3}\left(\left|b_{n-1}-a_{n-1}\right|+\left|c_{n-1}-a_{n-1}\right|\right), \\
\left|a_{n}-c_{n}\right| & \leq \frac{1}{3}\left(\left|b_{n-1}-a_{n-1}\right|+\left|c_{n-1}-a_{n-1}\right|\right) .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
&\left|a_{n}-b_{n}\right|+\left|a_{n}-c_{n}\right| \leq \frac{2}{3}\left(\left|a_{n-1}-b_{n-1}\right|+\left|a_{n-1}-c_{n-1}\right|\right) \\
& \leq\left(\frac{2}{3}\right)^{2}\left(\left|a_{n-2}-b_{n-2}\right|+\left|a_{n-2}-c_{n-2}\right|\right) \\
& \leq \cdots \leq\left(\frac{2}{3}\right)^{n}\left(\left|a_{0}-b_{0}\right|+\left|a_{0}-c_{0}\right|\right)
\end{aligned}
$$

which implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty}\left(a_{n}-c_{n}\right)=0 \tag{8}
\end{equation*}
$$

Since

$$
\begin{aligned}
a_{n+1}-a_{n} & =\frac{a_{n}+b_{n}+c_{n}}{3}-a_{n}=\frac{\left(b_{n}-a_{n}\right)+\left(c_{n}-a_{n}\right)}{3} \\
a_{n+2}-a_{n+1} & =\frac{\left(b_{n+1}-a_{n+1}\right)+\left(c_{n+1}-a_{n+1}\right)}{3}
\end{aligned}
$$

$$
\begin{gathered}
\vdots \\
a_{n+k}-a_{n+k-1}=\frac{\left(b_{n+k-1}-a_{n+k-1}\right)+\left(c_{n+k-1}-a_{n+k-1}\right)}{3},
\end{gathered}
$$

we have

$$
\begin{align*}
a_{n+k}-a_{n} & =\frac{1}{3} \sum_{i=n}^{n+k-1}\left(\left(b_{i}-a_{i}\right)+\left(c_{i}-a_{i}\right)\right) \\
\left|a_{n+k}-a_{n}\right| & \leq \frac{1}{3} \sum_{i=n}^{n+k-1}\left(\left|b_{i}-a_{i}\right|+\left|c_{i}-a_{i}\right|\right) \\
& \leq \frac{\left|b_{n}-a_{n}\right|+\left|c_{n}-a_{n}\right|}{3} \sum_{i=0}^{k-1}\left(\frac{2}{3}\right)^{i} \leq\left|b_{n}-a_{n}\right|+\left|c_{n}-a_{n}\right| . \tag{9}
\end{align*}
$$

By (8), the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is fundamental. Thus it converges and

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}
$$

Note that this convergence is uniformly on any compact set in D by the inequalities

$$
\left|a_{n+k}-a_{n}\right| \leq\left|a_{n}-b_{n}\right|+\left|a_{n}-c_{n}\right| \leq\left(\frac{2}{3}\right)^{n}\left(\left|a_{0}-b_{0}\right|+\left|a_{0}-c_{0}\right|\right)
$$

If (a, b, c) satisfies (7), then there exists a small positive real number ε such that

$$
|a-b|+|a-c|<|a|-\varepsilon .
$$

By putting $n=0$ in (9), we have

$$
|a|-\left|a_{k}\right| \leq\left|a-a_{k}\right| \leq|a-b|+|a-c|<|a|-\varepsilon .
$$

Let $k \rightarrow \infty$ for the above inequality, then we obtain $\lim _{k \rightarrow \infty}\left|a_{k}\right| \geq \varepsilon>0$.

4.2. Expression of the limit of the triple of sequences

The Appell hypergeometric series F_{1} of two variables z_{1}, z_{2} with parameters $\alpha, \beta_{1}, \beta_{2}, \gamma$ is defined as

$$
F_{1}\left(\alpha, \beta_{1}, \beta_{2}, \gamma ; z_{1}, z_{2}\right)=\sum_{n_{1}, n_{2} \geq 0}^{\infty} \frac{\left(\alpha, n_{1}+n_{2}\right)\left(\beta_{1}, n_{1}\right)\left(\beta_{2}, n_{2}\right)}{\left(\gamma, n_{1}+n_{2}\right)\left(1, n_{1}\right)\left(1, n_{2}\right)} z_{1}^{n_{1}} z_{2}^{n_{2}},
$$

where $\gamma \neq 0,-1,-2, \ldots$ and z_{j} satisfies $\left|z_{j}\right|<1(j=1,2)$. It is known that we can make the analytic continuation of the series $F_{1}\left(\alpha, \beta_{1}, \beta_{2}, \gamma ; z_{1}, z_{2}\right)$ along any path in

$$
\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \mid z_{1} z_{2}\left(z_{1}-1\right)\left(z_{2}-1\right)\left(z_{1}-z_{2}\right) \neq 0\right\}
$$

by the Appell hypergeometric system $E_{1}\left(\alpha, \beta_{1}, \beta_{2}, \gamma\right)$ of differential equations. In particular, $F_{1}\left(\alpha, \beta_{1}, \beta_{2}, \gamma ; z_{1}, z_{2}\right)$ can be regarded as a single valued holomorphic function on the simply connected domain $(\mathbb{C}-[1, \infty))^{2}$.

Fact 2 ([KS1], [MO]) We have a transformation formula

$$
\begin{aligned}
& \left(\frac{1+z_{1}+z_{2}}{3}\right)^{p} F_{1}\left(\frac{p}{3}, \frac{p+1}{6}, \frac{p+1}{6}, \frac{p+1}{2} ; 1-z_{1}^{3}, 1-z_{2}^{3}\right) \\
& \quad=F_{1}\left(\frac{p}{3}, \frac{p+1}{6}, \frac{p+1}{6}, \frac{p+5}{6} ; z_{1}^{\prime}, z_{2}^{\prime}\right)
\end{aligned}
$$

where $p \neq-1,-3,-5, \ldots, z=\left(z_{1}, z_{2}\right)$ is in a small neighborhood of $(1,1)$, the value of $\left(\frac{1+z_{1}+z_{2}}{3}\right)^{p}$ at $\left(z_{1}, z_{2}\right)=(1,1)$ is 1 , and

$$
\left(z_{1}^{\prime}, z_{2}^{\prime}\right)=\left(\left(\frac{1+\omega z_{1}+\bar{\omega} z_{2}}{1+z_{1}+z_{2}}\right)^{3},\left(\frac{1+\bar{\omega} z_{1}+\omega z_{2}}{1+z_{1}+z_{2}}\right)^{3}\right) .
$$

In particular,

$$
\begin{equation*}
\left(\frac{1+z_{1}+z_{2}}{3}\right) F_{1}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1 ; 1-z_{1}^{3}, 1-z_{2}^{3}\right)=F_{1}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1 ; z_{1}^{\prime}, z_{2}^{\prime}\right) . \tag{10}
\end{equation*}
$$

Our second theorem is as follows.
Theorem 2 Let (a, b, c) be any element of D. Then the common limit $m_{*}^{\infty}(a, b, c)$ of the triple (6) of sequences can be expressed by

$$
m_{*}^{\infty}(a, b, c)=\frac{a}{F_{1}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1 ; 1-\frac{b^{3}}{a^{3}}, 1-\frac{c^{3}}{a^{3}}\right)} .
$$

Remark 3

(1) The right hand side of Theorem 2 is a single valued holomorphic function. The common limit $m_{*}^{\infty}(a, b, c)$ never vanishes for any $(a, b, c) \in D$.
(2) This theorem is an extension of Theorem 2.2 in [KS1].

Proof of Theorem 2. We apply Proposition 1 to the map m in this section and

$$
\mu(a, b, c)=\frac{a}{F_{1}\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1 ; 1-\frac{b^{3}}{a^{3}}, 1-\frac{c^{3}}{a^{3}}\right)} .
$$

Suppose that $(a, b, c) \in D$ satisfies (7). Then $m_{*}^{\infty}(a, b, c) \neq 0$ and the map m satisfies the conditions for Proposition 1. We show the condition (i) and (ii) in Proposition 1 for $\mu(a, b, c)$. Since $F\left(\alpha, \beta_{1}, \beta_{2}, \gamma ; 0,0\right)=1$, we have $\mu(a, a, a)=a$ for any $a \in \mathbb{C}^{*}$; (i) is satisfied. By substituting $\left(z_{1}, z_{2}\right)=(b / a, c / a)$ in (10), we have

$$
\frac{a}{F\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1 ; 1-\frac{b^{3}}{a^{3}}, 1-\frac{b^{3}}{a^{3}}\right)}=\frac{m_{1}(a, b, c)}{F\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1 ; 1-\frac{m_{2}(a, b, c)^{3}}{m_{1}(a, b, c)^{3}}, 1-\frac{m_{3}(a, b, c)^{3}}{m_{1}(a, b, c)^{3}}\right)},
$$

which implies that (ii) is satisfied. By the analytic continuation, this theorem is effective and $m_{*}^{\infty}(a, b, c) \neq 0$ for any $(a, b, c) \in D$.

References

[BB1] Borwein J. M. and Borwein P. B., A cubic counterpart of Jacobi's identity and the AGM. Trans. Amer. Math. Soc. 323 (1991), 691-701.
[BB2] Borwein J. M. and Borwein P. B., Pi and the AGM. volume 4, A WileyInterscience Publ., New York, 1998.
[C] Carlson B. C., Algorithms involving arithmetic and geometric means. MAA Monthly. 78 (1971), 496-505.
[HKM] Hattori R., Kato T. and Matsumoto K., Mean iterations derived from transformation formulas for the hypergeometric function. Hokkaido Math. J. 38 (2009), 563-586.
[KM] Kato T. and Matsumoto K., The common limit of a quadruple sequence and the hypergeometric function F_{D} of three variables. Nagoya Math. J. 195 (2009), 113-124.
[KS1] Koike K. and Shiga H., Isogeny formulas for the Picard modular form and a three terms arithmetic geometric mean. J. Number Theory. 124 (2007), 123-141.
[KS2] Koike K. and Shiga H., Extended Gauss AGM and corresponding Picard modular forms. J. Number Theory. 128 (2008), 2097-2126.
[M] Matsumoto K., A transformation formula for Appell's hypergeometric function F_{1} and common limits of triple sequences by mean iterations. Tôhoku Math. J. 62 (2010), 263-268.
[MO] Matsumoto K. and Ohara K., Some transformation formulas for Lauricella's hypergeometric functions F_{D}. Funkcial. Ekvac. 52 (2009), 203212.
[V] Vidūnas R., Algebraic Transformations of Gauss Hypergeometric Functions. Funkcial. Ekvac. 52 (2009), 139-180.

Keiji Matsumoto
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
E-mail: matsu@math.sci.hokudai.ac.jp
Takashi Oikawa
Hokkaido Kushiro Higashi High School
Tomihara 3-1, Kushiro-Cho
Kushiro-Gun, 088-0618, Japan
E-mail: T.Oikawa.0727.agm@gmail.com

[^0]: 2000 Mathematics Subject Classification : Primary 30D05; Secondary 33C05, 33C65.

 * This author was supported by Max Planck Institute for Mathematics.

