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Limits of iterations of complex maps

and hypergeometric functions
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Abstract. We consider the limit of the iteration of a map z 7→ m(z) from a complex

domain D to D. For two kinds of maps m, we show that each iteration mn(z) of m(z)

converges for any z ∈ D as n → ∞ and that this limit is expressed by the hypergeo-

metric function. These are analogs of the expression of the arithmetic-geometric mean

by the Gauss hypergeometric function.
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1. Introduction

The arithmetic-geometric mean of a and b is defined by the limit of the
iteration of a map consisting of the arithmetic and geometric means:

(a, b) 7→
(

a + b

2
,
√

ab

)
.

The limit is classically known to be expressed as

a

F (1/2, 1/2, 1; 1− b2/a2)
,

where F (α, β, γ; z) is the Gauss hypergeometric series

∞∑
n=0

(α, n)(β, n)
(γ, n)(1, n)

zn,
|z| < 1, γ 6= 0,−1,−2, . . . ,

(α, n) = α(α + 1) · · · (α + n− 1).

Recently, several analogs of this expression of the arithmetic-geometric mean
are obtained from transformation formulas of hypergeometric functions,
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refer to [BB1], [C], [HKM], [KM], [KS1], [KS2], and [M].
In this paper, we consider the limit of the iteration of a complex map

m : D 3 z 7→ m(z) ∈ D.

The map m is given as follows:

(1) D =
{

(z1, z2) ∈ (C∗)2 | | arg(z2/z1)| < π
3

}
,

m(z1, z2) =

(
3

√(
z1 − ωz2

1− ω

)2(
z2 − ωz1

1− ω

)
,

3

√(
z1 − ωz2

1− ω

)(
z2 − ωz1

1− ω

)2
)

,

(2) D =
{

(z1, z2, z3) ∈ (C∗)3 | | arg(z2/z1)|, | arg(z3/z1)| < π
3

}
,

m(z1, z2, z3) =
(
m1(z), 3

√
m1(z)3 −mω(z)3, 3

√
m1(z)3 −mω̄(z)3

)
,

m1(z) =
z1 + z2 + z3

3
, mω(z) =

z1 + ωz2 + ω̄z3

3
,

mω̄(z) =
z1 + ω̄z2 + ωz3

3
,

where C∗ = C − {0}, ω = (−1 +
√−3)/2 and ω̄ is its complex conjugate.

We assign branches of the cubic roots in m, and show that the iteration

mn(z) =
n︷ ︸︸ ︷

m ◦ · · · ◦m(z) of m(z) converges for any z ∈ D as n → ∞. By
using a complex map version of the invariant principle in [BB2] together
with a transformation formula for the hypergeometric function in [KS1],
[MO] and [V], we express this limit by the hypergeometric function.

In the study of the case (1), we have Theorem 1 which states that the
limit is expressed by the Gauss hypergeometric functions with parameters
(α, β, γ) = (1/3, 2/3, 4/3). Its monodromy group is isomorphic to the tri-
angle group (3, 3, 3). In [HKM], several analogs of the arithmetic-geometric
mean are studied and the triangle groups (r1, r2, r3) with 1/r1+1/r2+1/r3 =
1 except (3, 3, 3) appear. Theorem 1 completes the correspondence between
analogs of the arithmetic-geometric mean and the triangle groups acting on
Euclidean space C.

The limit for the case (2) is studied in [KS1] when z1, z2 and z3 are
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positive real numbers. By improving their results on the domain of the
variables, we have Theorem 2.

2. The limit of the iteration of a complex map

Let C∗ be the multiplicative group C − {0} and let D be a domain of
(C∗)k including (t, . . . , t) for any t ∈ C∗. We consider a holomorphic map

m : D 3 z = (z1, . . . , zk) 7→ (m1(z1, . . . , zk), . . . , mk(z1, . . . , zk)) ∈ D

satisfying

m(t, . . . , t) = (t, . . . , t) for any t ∈ C∗. (1)

If the domain D and the map m satisfy

(1-a) t · z = (t · z1, . . . , t · zk) ∈ D for any t ∈ C∗ and z = (z1, . . . , zk) ∈ D,
(1-b) m(t · z) = t ·m(z) for any t ∈ C∗ and z ∈ D,
(1-c) m(1, . . . , 1) = (1, . . . , 1),

then m satisfies (1).
Suppose that for any z = (z1, . . . , zk) ∈ D there exists α ∈ C∗ such that

lim
n→∞

mn(z1, . . . , zk) = lim
n→∞

n︷ ︸︸ ︷
m ◦ · · · ◦m(z) = (α, . . . , α).

This limit value α ∈ C∗ is denoted by m∞
∗ (z) = m∞

∗ (z1, . . . , zk). It is
characterized by the following proposition, which is a complex map version
of the invariant principle in [BB2].

Proposition 1 (Invariant principle) If a holomorphic function µ on D

satisfies

( i ) µ(t, . . . , t) = t for any t ∈ C∗,
( ii ) µ(m(z1, . . . , zk)) = µ(z1, . . . , zk) for any z = (z1, . . . , zk) ∈ D,

then m∞
∗ (z1, . . . , zk) = µ(z1, . . . , zk).

Proof. By using the condition (ii), we have

µ(z) = µ(m(z)) = · · · = µ(mn(z)).
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Since µ is continuous and mn(z) converges to (m∞
∗ (z), . . . , m∞

∗ (z)) as n →
∞, we have

lim
n→∞

µ(mn(z)) = µ(m∞
∗ (z), . . . , m∞

∗ (z)).

Thus we obtain

µ(z) = µ(m∞
∗ (z), . . . , m∞

∗ (z)) = m∞
∗ (z)

by the condition (i). ¤

3. Limit of a pair of sequences

In this section, we consider a map

m : (z1, z2) 7→ (m1(z1, z2),m2(z1, z2)) =
(

3

√
w2

1w2,
3

√
w1w2

2

)
,

w1 =
z1 − ωz2

1− ω
, w2 =

z2 − ωz1

1− ω
, ω =

−1 +
√−3

2
,

on a domain

D =
{

(z1, z2) ∈ (C∗)2 | | arg(z2/z1)| < π

3

}
,

which satisfies (1, 1) ∈ D and t · (z1, z2) ∈ D for any t ∈ C∗ and (z1, z2) ∈ D.
By assigning branches of the functions m1 and m2, we study the iteration
of the map m.

3.1. A pair of sequences
We express the functions m1 and m2 as

m1(z1, z2) = w1
3
√

w2/w1, m2(z1, z2) = w1( 3
√

w2/w1)2,

where the branches of the cubic roots are determined by the property
m1(z1, z1) = m2(z1, z1) = z1 for any z1 ∈ C∗. Note that w1 and w2 can be
expressed as
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Figure 1. Geometrical interpretation of the map m.

(w1, w2) =
1

1− ω
(z1, z2)

(
1 −ω
−ω 1

)

=
(

z1 + z2

2
− 1√−3

z1 − z2

2
,

z1 + z2

2
+

1√−3
z1 − z2

2

)
;

refer to Figure 1 for the relationship between the variables z1, z2 and w1, w2.

Lemma 1 We have m(D) ⊂ D.

Proof. Put θ = arg(z2/z1) ∈ (−π
3 , π

3 ) for (z1, z2) ∈ D. We have

|z1 + z2|2 = |z1|2 + |z2|2 + 2|z1||z2| cos θ,

|z1 − z2|2 = |z1|2 + |z2|2 − 2|z1||z2| cos θ,

and

|z1 + z2|2 − |z1 − z2|2 = 4|z1||z2| cos θ > 2|z1||z2| > 0.

Thus

|wi| ≥ 1
2
|z1 + z2| − 1

2
√

3
|z1 − z2| > 0

for i = 1, 2, which means that w1, w2 ∈ C∗. We have a triangle with vertices
w1,w2 and 0. Note that the mid point of w1 and w2 coincides with that of
z1 and z2, see Figure 1. If z2 is near to z1 then the equality

arg(w2/w1) = arg
(

z1 + z2

2
1
w1

)
+ arg

(
w2

2
z1 + z2

)
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holds with taking values near to 0. When (z1, z2) belongs to D, the inequal-
ities

tan
∣∣∣∣ arg

(
z1 + z2

2
1
w1

)∣∣∣∣, tan
∣∣∣∣ arg

(
w2

2
z1 + z2

)∣∣∣∣ <
|z1 − z2|√
3|z1 + z2|

<
1√
3

hold, which imply that
∣∣∣∣ arg

(
z1 + z2

2
1
w1

)∣∣∣∣,
∣∣∣∣ arg

(
w2

2
z1 + z2

)∣∣∣∣ <
π

6

for any (z1, z2) ∈ D. Hence we have

| arg(m2(z1, z2)/m1(z1, z2))| = 1
3
| arg(w2/w1)| < π

9
,

which means that m(z1, z2) ∈ D for any (z1, z2) ∈ D. ¤

For a given (a, b) ∈ D, we define a pair of sequences with initial (a0, b0) =
(a, b) by the recurrence relation

(an+1, bn+1) = (m1(an, bn),m2(an, bn)) = m(an, bn) = m ◦mn(a, b) (2)

for n ∈ N = {0, 1, 2, . . . }.
Proposition 2 The pair of sequences (2) converges uniformly on any
compact set in D and it satisfies

lim
n→∞

an = lim
n→∞

bn 6= 0;

this common limit is denoted by m∞
∗ (a, b). If a and b are positive real num-

bers, then this pair of sequences satisfies

( i ) 1
2 (an + bn) is a positive real number for any n ∈ N,

( ii ) a2n, b2n are positive real numbers, and

b2n < a2n ⇒ b2n < a2n+2 < b2n+2 < a2n,

a2n < b2n ⇒ a2n < b2n+2 < a2n+2 < b2n,

(iii) the common limit m∞
∗ (a, b) is a positive real number.
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In the rest of this subsection, we prove Proposition 2. We put

cn =
an + bn

2
, dn =

an − bn

2
,

a′n =
an + bn

2
− 1√−3

an − bn

2
= cn − 1√−3

dn,

b′n =
an + bn

2
+

1√−3
an − bn

2
= cn +

1√−3
dn,

for any n ∈ N. We give some lemmas.

Lemma 2 If a0 6= b0 then

|dn+1| < 1√
3
|dn|.

Proof. Note that

dn =
1
2
(an − bn) =

−√−3
2

(
a′n − b′n

)
=
−√−3

2
a′n(1− ξ)(1 + ξ + ξ2),

dn+1 =
an+1 − bn+1

2
=

a′n
(

3
√

b′n/a′n − ( 3
√

b′n/a′n)2
)

2
=

a′nξ(1− ξ)
2

,

where ξ = 3
√

b′n/a′n. We have

∣∣∣∣
dn+1

dn

∣∣∣∣ =
1√
3

1
|1 + ξ + ξ−1| <

1√
3
,

since the real part of (ξ + ξ−1) is positive for | arg(ξ)| < π
3 . ¤

Lemma 3 We have

c2
n+1 = c2

n +
1
3
d2

n + d2
n+1.

Proof. We have

an+1bn+1 = a′nb′n,

an+1bn+1 =
(

an+1 + bn+1

2

)2

−
(

an+1 − bn+1

2

)2

= c2
n+1 − d2

n+1,
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a′nb′n =
(

cn − 1√−3
dn

)(
cn +

1√−3
dn

)
= c2

n +
1
3
d2

n;

these imply this lemma. ¤

Proof of Proposition 2. By Lemma 2, the sequence {dn}n∈N converges to
0 uniformly on any compact set in D. Lemma 3 implies

c2
n = c2

n−1 +
1
3
d2

n−1 + d2
n,

c2
n−1 = c2

n−2 +
1
3
d2

n−2 + d2
n−1,

...

c2
k+1 = c2

k +
1
3
d2

k + d2
k+1;

c2
n − c2

k =
1
3

n−1∑

j=k

d2
j +

n∑

j=k+1

d2
j

for n > k ≥ 0. Thus we have

∣∣c2
n − c2

k

∣∣ ≤ 1
3

n−1∑

j=k

|dj |2 +
n∑

j=k+1

|dj |2

<

(
1
3

n−1∑

j=k

1
3j

+
n∑

j=k+1

1
3j

)
|d0|2

<
2
3

∞∑

j=k

1
3j
|d0|2 =

1
3k
|d0|2.

Hence the sequence {c2
n}n∈N converges uniformly on any compact set in D.

By putting k = 0, we obtain
∣∣c2

0

∣∣− ∣∣c2
n

∣∣ ≤ ∣∣c2
n − c2

0

∣∣ < |d0|2.

Thus

∣∣c2
n

∣∣ >
∣∣c2

0

∣∣− ∣∣d2
0

∣∣ =
1
4
(|a0 + b0|2 − |a0 − b0|2

) ≥ 1
2
|a0||b0| > 0,
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Figure 2. a1, a2, b1, b2 for positive real a0, b0.

which implies limn→∞ c2
n 6= 0. By the continuity of m, cn+1 is very near to cn

for a sufficiently large n. Thus the original sequence {cn}n∈N also converges
uniformly on any compact set in D. By limn→∞ dn = 0, the sequences {an}
and {bn} converge and limn→∞ an = limn→∞ bn = limn→∞ cn 6= 0.

Let a0 and b0 be positive real numbers with b0 < a0. Then (a0 + b0)/2
is positive real, and a′0 and b′0 are complex conjugate each other. Thus a1

and b1 are complex conjugate each other and they satisfy

a0 + b0

2
<

a1 + b1

2
<

√(
a0 + b0

2

)2

+
(

a0 − b0

2
√

3

)2

<
a0 + b0

2
+

a0 − b0

2
√

3
,

i.e.,

c0 < c1 <

√
c2
0 +

1
3
|d0|2 < c0 +

|d0|√
3

;

see Figure 2. It is clear that c1 = (a1 + b1)/2 is positive real and d1 =
(a1− b1)/2 is pure imaginary with |d1| < |d0|/

√
3. Since a′1 and b′1 are given

by c1 ∓ d1/
√−3 and a2 and b2 are given by 3

√
(a′1)2b

′
1 and 3

√
a′1(b

′
1)2, we

have
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b0 < c0 − |d0|
3

< c1 − |d0|
3

< c1 − |d1|√
3

= a′1 < a2 < c1,

c1 < b2 < b′1 = c1 +
|d1|√

3
< c1 +

|d0|
3

< c0 +
|d0|√

3
+
|d0|
3

< a0.

For a0 > b0, exchange the role of them. Therefore, we have inductively (i)
and (ii), and we have (iii) as a consequence of them. ¤

3.2. Expression of the limit of the pair of sequences
The Gauss hypergeometric series F (α, β, γ; z) of a variable z with pa-

rameter α, β, γ is defined by

F (α, β, γ; z) =
∞∑

n=0

(α, n)(β, n)
(γ, n)(1, n)

zn,

where |z| < 1, γ 6= 0,−1,−2, . . . and (α, n) = α(α + 1) · · · (α + n− 1).
This series satisfies the Gauss hypergeometric differential equation

E(α, β, γ) : z(1− z)
d2f

dz2
+ (γ − (α + β + 1)z)

df

dz
− αβf = 0.

By this differential equation, we can make the analytic continuation of the
Gauss hypergeometric series F (α, β, γ, z) to a single valued holomorphic
function on the simply connected domain C− [1,∞).

The Gauss hypergeometric series F (α, β, γ; z) satisfies the following
functional equation due to Vidūnas.

Fact 1 ((23) in [V]) For z sufficiently near to 0, we have

F

(
α,

1 + α

3
,
2 + 2α

3
; z

)

= (1 + ω̄z)−αF

(
α

3
,
1 + α

3
,
2α + 2

3
;
3(2ω + 1)z(z − 1)

(z + ω)3

)
,

where α 6= −1,− 5
2 ,−4,− 11

2 ,−7, . . . , ω̄ is the complex conjugate of ω and
(1 + ω̄z)−α = 1 at z = 0.

Our first theorem is as follows.
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Theorem 1 The common limit m∞
∗ (a, b) of the pair of sequences (2) can

be expressed by the Gauss hypergeometric function:

m∞
∗ (a, b) =

a

F
(

1
3 , 2

3 , 4
3 ; 1− (

b
a

)3
) .

Remark 1

(1) Since 1 − b3/a3 ∈ C − [1,∞) for any (a, b) ∈ D, Theorem 1 is effective
for any (a, b) ∈ D.

(2) The monodromy group of the Gauss hypergeometric differential equa-
tion E(1/3, 2/3, 4/3) is isomorphic to the triangle group (3, 3, 3). In
[HKM], several analogs of the arithmetic-geometric mean are studied
and the triangle groups (r1, r2, r3) with 1/r1 + 1/r2 + 1/r3 = 1 ex-
cept (3, 3, 3) appear. Theorem 1 completes the correspondence between
analogs of the arithmetic-geometric mean and the triangle groups acting
on Euclidean space C.

Proof of Theorem 1. We apply Proposition 1 to m(a, b) = (m1(a, b),
m2(a, b)) in this section and µ(a, b) = a/F (1/3, 2/3, 4/3; 1−b3/a3). We have
shown in Section 3.1 that the map m satisfies the conditions for Proposi-
tion 1. We have only to show the condition (i) and (ii) in Proposition
1 for µ(a, b). Since F (α, β, γ; 0) = 1 for any parameters α, β, γ, we have
µ(a, a) = a for any a ∈ C∗; (i) is satisfied. We remark that we need the
assumption m∞

∗ (a, b) 6= 0.
Let us show that µ(a, b) satisfies the condition (ii). By using Fact 1 with

α = 1 and a well-known formula

F (α, β, γ; z) = (1− z)γ−α−βF (γ − α, γ − β, γ; z),

we have

F

(
1
3
,
2
3
,
4
3
; z

)
=

3
√

1− z

1 + ω̄z
F

(
1
3
,
2
3
,
4
3
;
3(2ω + 1)z(z − 1)

(z + ω)3

)
,

which is equivalent to

F

(
1
3
,
2
3
,
4
3
; 1− x

)
=

3
√

x

1 + ω̄(1− x)
F

(
1
3
,
2
3
,
4
3
; 1−

(
x + ω

ωx + 1

)3)
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under the variable change z = 1−x. By substituting (x+ω)/(ωx+1) = b/a,
we can transform the above equality into

a

F
(

1
3 , 2

3 , 4
3 ; 1− b3

a3

) =
m1(a, b)

F
(

1
3 , 2

3 , 4
3 ; 1− m2(a,b)3

m1(a,b)3

) ,

which implies that (ii) is satisfied. ¤

4. Limit of a triple of sequences

In this section, we consider a map

m : z = (z1, z2, z3) 7→ (m1(z),m2(z),m3(z)),

m1(z) =
z1 + z2 + z3

3
, mω(z) =

z1 + ωz2 + ω̄z3

3
,

mω̄(z) =
z1 + ω̄z2 + ωz3

3
,

m2(z) = 3
√

m1(z)3 −mω(z)3, m3(z) = 3
√

m1(z)3 −mω̄(z)3,

on a domain

D =
{

z ∈ (C∗)3 | | arg(z2/z1)|, | arg(z3/z1)| < π

3

}
,

which satisfies (1, 1, 1) ∈ D and t · (z1, z2, z3) ∈ D for any t ∈ C∗ and
(z1, z2, z3) ∈ D. By assigning branches of the functions m2 and m3, we
study the iteration of the map m.

Remark 2 The limit of the iteration of m is studied in [KS1] when z1, z2

and z3 are positive real numbers.

4.1. Iteration of three terms
We begin with the following elementary lemma.

Lemma 4 Let z1 and z2 be different elements of C∗ and let θ be arg(z2/z1).
If |θ| < π/3 then

|z1 − z2| < 3

√∣∣z3
1 − z3

2

∣∣.
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Proof. We have |z1−z2|2 = |z1|2 + |z2|2−2|z1||z2| cos |θ|. If |z1| = |z′1| and
|z2| = |z′2|, then

|θ| > |θ′| = ∣∣ arg(z′2/z′1)
∣∣ ⇒ |z1 − z2| > |z′1 − z′2|

for −π < θ, θ′ < π. Since |θ| < π/3, we have | arg(ωz2/z1)|, | arg(ω̄z2/z1)| >
|θ|. Thus inequalities |z1 − z2| < |z1 − ωz2| and |z1 − z2| < |z1 − ω̄z2| hold.
Hence if z1 6= z2 then

|z1 − z2|3
|z3

1 − z3
2 |

=
|z1 − z2|2

|z1 − ωz2||z1 − ω̄z2| < 1,

which implies this Lemma. ¤

Lemma 5

(1) If z = (z1, z2, z3) belongs to D then the functions (mω(z)/m1(z))3 and
(mω̄(z)/m1(z))3 do not take values in the interval [1,∞).

(2) If z = (z1, z2, z3) ∈ D satisfies |z2|, |z3| < 2|z1| then

|mω(z)|, |mω̄(z)| < |m1(z)|.

Proof. (1) Put z2/z1 = a+ b
√−1 and z3/z1 = c+ d

√−1, where a, b, c, d ∈
R. By the assumption, we have

a, c > 0, |b| <
√

3a, |d| <
√

3c. (3)

Suppose that (mω(z)/m1(z))3 ∈ R. Then one of

Im
(

mω(z)
m1(z)

)
= 0, Im

(
ω

mω(z)
m1(z)

)
= 0, Im

(
ω2 mω(z)

m1(z)

)
= 0

is satisfied. The condition Im(mω(z)/m1(z)) = 0 is equivalent to

a2 + b2 − c2 − d2 + a−
√

3b− c−
√

3d = 0.

By solving this quadratic equation with respect to d, we have

d = −
√

3
2
± 1

2

√
4a2 + 4b2 − 4c2 + 4a− 4b

√
3− 4c + 3.
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Substitute this into

Re(1−mω(z)/m1(z))

=
(3a2 + b2 + c2 + d2 + a + c + 2ac + 2bd) +

√
3(b− d− 2ad + 2bc)

2((1 + a + c)2 + (b + d)2)
.

Then we have

Re(1−mω(z)/m1(z)) =

√
3
(√

3(a + c) + (b− d)
)

2(a + c + 1)
,

which is positive under the assumption (3).
The conditions Im(ωmω(z)/m1(z)) = 0 and Im(ω2mω(z)/m1(z)) = 0

are equivalent to

a2 + b2 + bd + ac− c− 1 +
√

3(bc− ad− d) = 0,

c2 + d2 + ac + bd− a− 1 +
√

3(−ad + bc + b) = 0,

respectively. By these relations, we have

d =
a2 + b2 + ac +

√
3bc− c− 1√

3a− b +
√

3
,

b = −c2 + d2 + ac−√3ad− a− 1√
3c + d +

√
3

.

We can transform Re(1−ωmω(z)/m1(z)) and Re(1−ω2mω(z)/m1(z)) into

√
3

2

√
3 +

√
3a− b

1 + a + c
,

√
3

2

√
3 +

√
3c + d

1 + a + c
,

respectively. They are positive under the assumption (3). Use a similar
argument for (mω̄(z)/m1(z))3.
(2) By the assumption, we have the additional condition |b|, |d| <

√
3. A

straightforward calculation implies
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3
√

3
|z1|2 (|m1(z)|2 − |mω(z)|2)

=
(√

3a + b
)

+
(√

3c− d
)

+
(√

3ac +
√

3bd + ad− bc
)
. (4)

It is clear that the first term (
√

3a + b) and the second term (
√

3c − d) of
(4) are positive. The last term (

√
3ac +

√
3bd + ad − bc) of (4) is positive

for the following cases

b, d ≥ 0 ⇒ (√
3a− b

)
c +

√
3bd + ad > 0,

b, d ≤ 0 ⇒ (√
3c + d

)
a +

√
3bd− bc > 0,

b ≤ 0, d ≥ 0 ⇒ 1√
3

(
(3ac + bd) +

(√
3a + b

)
d− b

(√
3c− d

))
> 0.

If b ≥ 0, d ≤ 0, then the positivity of (4) is shown as follows:

(4) =
(√

3c + b− d +
√

3bd
)

+
(√

3 + d
)
a +

(√
3a− b

)
c

>
(√

3c + b− d + 3d
)

+
(√

3 + d
)
a +

(√
3a− b

)
c

=
(√

3c + d
)

+ (b + d) +
(√

3 + d
)
a +

(√
3a− b

)
c > 0

for |b| ≥ |d|;

(4) =
(√

3a + b− d +
√

3bd
)

+
(√

3− b
)
c +

(√
3c + d

)
a

>
(√

3a + b− d− 3b
)

+
(√

3− b
)
c +

(√
3c + d

)
a

=
(√

3a− b
)

+ (−d− b) +
(√

3− b
)
c +

(√
3c + d

)
a > 0

for |b| ≤ |d|. Similarly we have |m1(z)|2 > |mω̄(z)|2. ¤

The function f(y) = 3
√

1− y3 on the unit disk U = {y ∈ C | |y| < 1} is
defined by the power series

f(y) =
∞∑

n=0

(−1/3, n)
n!

y3n, (5)

It satisfies
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|f(y)|3 = |1− y3|, 3 arg(f(y)) = arg(1− y3) ∈ (−π/2, π/2)

for any y ∈ U , and admits the analytic continuation along any path in
C − {1}. Now we strictly define two functions m2 and m3 on D. When
(z1, z2, z3) ∈ D and |z2|, |z3| < 2|z1|, mω(z)/m1(z) and mω̄(z)/m1(z) belong
to the unit disk U by Lemma 5. Thus we define m2 and m3 by the convergent
power series f(y):

m2(z) = m1(z)f(mω(z)/m1(z)) = m1(z) 3
√

1−mω(z)3/m1(z)3,

m3(z) = m1(z)f(mω̄(z)/m1(z)) = m1(z) 3
√

1−mω̄(z)3/m1(z)3.

We can make their analytic continuations to the whole domain D; the ex-
tended functions m2(z) and m3(z) are single valued on D by Lemma 5. Note
that

mj(1, 1, 1) = 1, mj(t · z) = t ·mj(z) (j = 1, 2, 3)

for any t ∈ C∗ and z ∈ D.

Lemma 6 We have m(D) ⊂ D.

Proof. By Lemma 5, we have inequalities

−π < arg(m2(z)3/m1(z)3), arg(m3(z)3/m1(z)3) < π,

which imply this lemma. ¤

For any (a, b, c) = (a0, b0, c0) ∈ D, we define a triple (an, bn, cn)n∈N of
sequences by the recurrence relation

(an+1, bn+1, cn+1) =
(
m1(an, bn, cn),m2(an, bn, cn),m3(an, bn, cn)

)

= m(an, bn, cn) = m ◦mn(a, b, c). (6)

Note that bn and cn are uniquely determined by the previous terms and that
(an, bn, cn) ∈ D for any n ∈ N by Lemmas 5 and 6.

Proposition 3 The triple (6) of sequences converges uniformly on any
compact set in D, and it has a common limit :
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lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn,

which is denoted by m∞
∗ (a, b, c). If (a, b, c) satisfies

|a− b| < 1
2
|a|, |a− c| < 1

2
|a|, (7)

then limn→∞ an 6= 0.

Proof. Lemma 4 implies

|an − bn| ≤ 3
√
|a3

n − b3
n| =

1
3

∣∣an−1 + ωbn−1 + ω̄cn−1

∣∣

=
1
3

∣∣ω(bn−1 − an−1) + ω̄(cn−1 − an−1)
∣∣

≤ 1
3
(|bn−1 − an−1|+ |cn−1 − an−1|),

|an − cn| ≤ 1
3
(|bn−1 − an−1|+ |cn−1 − an−1|).

Thus we have

|an − bn|+ |an − cn| ≤ 2
3
(|an−1 − bn−1|+ |an−1 − cn−1|)

≤
(

2
3

)2

(|an−2 − bn−2|+ |an−2 − cn−2|)

≤ · · · ≤
(

2
3

)n

(|a0 − b0|+ |a0 − c0|),

which implies

lim
n→∞

(an − bn) = lim
n→∞

(an − cn) = 0. (8)

Since

an+1 − an =
an + bn + cn

3
− an =

(bn − an) + (cn − an)
3

,

an+2 − an+1 =
(bn+1 − an+1) + (cn+1 − an+1)

3
,
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...

an+k − an+k−1 =
(bn+k−1 − an+k−1) + (cn+k−1 − an+k−1)

3
,

we have

an+k − an =
1
3

n+k−1∑

i=n

((bi − ai) + (ci − ai)),

|an+k − an| ≤ 1
3

n+k−1∑

i=n

(|bi − ai|+ |ci − ai|)

≤ |bn − an|+ |cn − an|
3

k−1∑

i=0

(
2
3

)i

≤ |bn − an|+ |cn − an|. (9)

By (8), the sequence (an)n∈N is fundamental. Thus it converges and

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn.

Note that this convergence is uniformly on any compact set in D by the
inequalities

|an+k − an| ≤ |an − bn|+ |an − cn| ≤
(

2
3

)n

(|a0 − b0|+ |a0 − c0|).

If (a, b, c) satisfies (7), then there exists a small positive real number ε such
that

|a− b|+ |a− c| < |a| − ε.

By putting n = 0 in (9), we have

|a| − |ak| ≤ |a− ak| ≤ |a− b|+ |a− c| < |a| − ε.

Let k →∞ for the above inequality, then we obtain limk→∞ |ak| ≥ ε > 0.
¤
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4.2. Expression of the limit of the triple of sequences
The Appell hypergeometric series F1 of two variables z1, z2 with param-

eters α, β1, β2, γ is defined as

F1(α, β1, β2, γ; z1, z2) =
∞∑

n1,n2≥0

(α, n1 + n2)(β1, n1)(β2, n2)
(γ, n1 + n2)(1, n1)(1, n2)

zn1
1 zn2

2 ,

where γ 6= 0,−1,−2, . . . and zj satisfies |zj | < 1 (j = 1, 2). It is known that
we can make the analytic continuation of the series F1(α, β1, β2, γ; z1, z2)
along any path in

{(z1, z2) ∈ C2 | z1z2(z1 − 1)(z2 − 1)(z1 − z2) 6= 0}

by the Appell hypergeometric system E1(α, β1, β2, γ) of differential equa-
tions. In particular, F1(α, β1, β2, γ; z1, z2) can be regarded as a single valued
holomorphic function on the simply connected domain (C− [1,∞))2.

Fact 2 ([KS1], [MO]) We have a transformation formula

(
1 + z1 + z2

3

)p

F1

(
p

3
,
p + 1

6
,
p + 1

6
,
p + 1

2
; 1− z3

1 , 1− z3
2

)

= F1

(
p

3
,
p + 1

6
,
p + 1

6
,
p + 5

6
; z′1, z

′
2

)
,

where p 6= −1,−3,−5, . . . , z = (z1, z2) is in a small neighborhood of (1, 1),
the value of ( 1+z1+z2

3 )p at (z1, z2) = (1, 1) is 1, and

(
z′1, z

′
2

)
=

((
1 + ωz1 + ω̄z2

1 + z1 + z2

)3

,

(
1 + ω̄z1 + ωz2

1 + z1 + z2

)3)
.

In particular,

(
1 + z1 + z2

3

)
F1

(
1
3
,
1
3
,
1
3
, 1; 1− z3

1 , 1− z3
2

)
= F1

(
1
3
,
1
3
,
1
3
, 1; z′1, z

′
2

)
. (10)

Our second theorem is as follows.

Theorem 2 Let (a, b, c) be any element of D. Then the common limit
m∞
∗ (a, b, c) of the triple (6) of sequences can be expressed by
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m∞
∗ (a, b, c) =

a

F1

(
1
3 , 1

3 , 1
3 , 1; 1− b3

a3 , 1− c3

a3

) .

Remark 3

(1) The right hand side of Theorem 2 is a single valued holomorphic func-
tion. The common limit m∞

∗ (a, b, c) never vanishes for any (a, b, c) ∈ D.
(2) This theorem is an extension of Theorem 2.2 in [KS1].

Proof of Theorem 2. We apply Proposition 1 to the map m in this section
and

µ(a, b, c) =
a

F1

(
1
3 , 1

3 , 1
3 , 1; 1− b3

a3 , 1− c3

a3

) .

Suppose that (a, b, c) ∈ D satisfies (7). Then m∞
∗ (a, b, c) 6= 0 and the

map m satisfies the conditions for Proposition 1. We show the condition
(i) and (ii) in Proposition 1 for µ(a, b, c). Since F (α, β1, β2, γ; 0, 0) = 1,
we have µ(a, a, a) = a for any a ∈ C∗; (i) is satisfied. By substituting
(z1, z2) = (b/a, c/a) in (10), we have

a

F
(

1
3 , 1

3 , 1
3 , 1; 1− b3

a3 , 1− b3

a3

) =
m1(a, b, c)

F
(

1
3 , 1

3 , 1
3 , 1; 1− m2(a,b,c)3

m1(a,b,c)3 , 1− m3(a,b,c)3

m1(a,b,c)3

) ,

which implies that (ii) is satisfied. By the analytic continuation, this theo-
rem is effective and m∞

∗ (a, b, c) 6= 0 for any (a, b, c) ∈ D. ¤
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