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Abstract. In this paper, we characterize 42 ovoids with a certain property in a

projective space PG(3, 2) described in Yucas [6]. As a corollary, we construct the

Steiner 4-wise balanced design S(4, {5,6},17) with 252 blocks which is an extension of

the point-plane design A of an affine space AG(4, 2). The construction leads to not

only the uniqueness of such an extension, but also a (usual) extension of the 2-repeated

design 2.A.
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1. Introduction

A t-(v,K, λ) structure is a pair (P,B) where P is a set of v elements
(called points) and B is a multi-set of subsets of P (called blocks) such that
the size of every block is contained in K and every t-subset of P is contained
in exactly λ blocks. If λ = 1 then the structure, which does not allow
repeated blocks, is called a Steiner t-wise balanced design and denoted by
S(t,K, v), and furthermore denoted by S(t, k, v) if K = {k}.

For two t-(v,K, λ) structures D and E , we define an isomorphism ϕ from
D onto E to be a one-to-one mapping from the points of D onto the points
of E and the blocks of D onto the blocks of E such that p is in B if and only
if ϕ(p) is in ϕ(B) for each point p and each block B of D, and say that D
and E are isomorphic.

Let D := (P,B) be a t-(v,K, λ) structure and p ∈ P. A pair (P\{p},B′)
where B′ is a multi-set of B \ {p} for all B ∈ B containing p is called the
derived structure of D at p and denoted by Dp. Let D := (P,B) be an
S(t, k, v). A pair (P,B′) where B′ is a multiple set in which each block of
D is repeated λ times is clearly a t-(v, k, λ) structure and denoted by λ.D,
which is extendable if there exist a (t + 1)-(v + 1, k + 1, λ) structure E and
a point p of E such that Ep is isomorphic to λ.D. The structure E is called
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a (usual) extension of λ.D.
Let V be a 4-dimensional vector space over F2. The 15 non-zero vectors

of V together with the 35 blocks (called lines) of l \ {0} for 2-dimensional
subspaces l form an S(2, 3, 15). The 16 vectors of V together with 140
blocks of cosets of 2-dimensional subspaces of V form an S(3, 4, 16), which
is denoted by A2(4, 2) according to Dembowski [2], but for convenience we
call it A.

Kramer and Mathon [3] have showed by exhaustive computer search
that there is a unique S(4,K, 17) with |K| ≥ 2. In Yucas [6], the Steiner
4-wise balanced design S(4, {5, 6}, 17) with 252 blocks has been constructed
by extending A. There are 42 blocks of the design which do not contain
a new point ∞ and contain the zero vector 0. These blocks are ovoids in
the projective space PG(V ) and also cover the triangles of PG(V ) once
each. We will characterize the 42 ovoids in PG(V ) with this property. As
a corollary, we will give another construction of the S(4, {5, 6}, 17) which is
an extension of A. The construction is based on a set of certain alternating
forms on V associated with the alternating group A7 of degree 7 (see Section
3) and leads to not only the uniqueness of such an extension of A, but also
a (usual) extension of 2.A. Finally, such a set of certain alternating forms
could not be found in [3] and [6].

The paper is divided into four sections. In Section 2, we give some
observations of the affine space AG(V ), and study the alternating forms and
the quadratic forms on V . Since it is known that there is a bijection between
the non-degenerate alternating forms on V and the non-singular vectors of an
orthogonal geometry (W,Q), where W is a 6-dimensional vector space and
Q is a non-degenerate quadratic form on W whose the Witt index is 3 (see
e.g. Taylor [5, p. 195]), Section 3 contains some detailed observations about
non-singular vectors of (W,Q) and the introduction of such a bijection. In
Section 4, we characterize the 42 ovoids which cover the triangles of PG(V )
once each as mentioned above.

2. The Affine Space AG(V )

We begin with a detailed study of AG(V ).

A triangle is a 3-subset of V \{0} which is linearly independent. A double
triangle is the set {p} ∪ l where (p, l) is a non-incident point-line pair in
PG(V ). An oval is a block of A not containing the zero vector 0. There are
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exactly 105 ovals. An ovoid is a 5-subset of V \{0} in which any four vectors
are linearly independent. The set of ovoids is denoted by O. We denote by
X the set of unordered bases and set L = {l ∪m | l, m : two disjoint lines}.

Elementary counting arguments show the following lemma:

Lemma 2.1 There are exactly :

(1) 420 triangles,
(2) 420 double triangles,
(3) 840 unordered bases,
(4) one ovoid containing a given X ∈ X,
(5) 168 ovoids,
(6) four ovoids containing a given triangle,
(7) three elements of L containing a given X ∈ X,
(8) 280 elements of L.

Remark 2.2 Given a X := {e1, e2, e3, e4} ∈ X, the unique ovoid contain-
ing X is X ∪ {e1 + e2 + e3 + e4}.

A k-cap is a k-subset of V \ {0} in which any three vectors are linearly
independent.

Lemma 2.3 Any 5-subset of V \ {0} is one of following four types:

• a union of two meeting lines.
• a form {x, y, z, w, x + y} for some {x, y, z, w} ∈ X.
• a 5-cap which contains exactly one oval.
• an ovoid.

Proof. Let S be a 5-subset of V \ {0}. If S is a 5-cap and not an ovoid,
then some 4-subset {s1, s2, s3, s4} of S is a 4-cap and linearly dependent, so
s4 = s1 + s2 + s3. If we take s5 ∈ S \ {s1, s2, s3, s4} then s5 /∈ 〈s1, s2, s3〉, so
ovals contained in S are just the {s1, s2, s3, s4}. If S is not a 5-cap, then we
can take some line l := {x, y, x + y} contained in S. Let S = l ∪ {z, w} and
m be the line containing {z, w}. If |l∩m| = 1 then S = l∪m. If |l∩m| = 0
then S = {x, y, z, w, x + y}, where {x, y, z, w} ∈ X. ¤

Next, to see the intersection of any two elements of O ∪ L, we describe
the elements of O ∪ L which correspond to the non-degenerate quadratic
forms.
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Let Γ be the set of non-degenerate alternating forms and F the set of
non-degenerate quadratic forms. We define the action of GL(V ) on Γ by
left multiplication:

σ · γ : V × V 3 (x, y) 7−→ γ(σ−1x, σ−1y) ∈ F2

for all σ ∈ GL(V ) and γ ∈ Γ, and similarly define the action of GL(V ) on
F by left multiplication:

σ · f : V 3 x 7−→ f(σ−1x) ∈ F2

for all σ ∈ GL(V ) and f ∈ F . For f ∈ F , we set

Qf = {x ∈ V | f(x) = 0},

and call the type of f minus or plus according as the Witt index of f is 1
or 2. If f is a minus type then Qf \ {0} is in O and |Qf | = 6. If f is a plus
type then the complementary set Qf := V \Qf of Qf is in L and |Qf | = 6.

Let γ ∈ Γ and Fγ be the set of quadratic forms whose polar form is γ.
Set

F+
γ = {f ∈ Fγ | f is a plus type} and

F−γ = {f ∈ Fγ | f is a minus type}.

For the following lemma, we refer to Cameron and van Lint [1, Example
5.17] and Taylor [5, Exercise 11.17].

Lemma 2.4 |F+
γ | = 10, |F−γ | = 6 and the pair

(
V, {Qf | f ∈ F−γ } ∪ {Qf | f ∈ F+

γ }
)

is a symmetric 2-(16, 6, 2) design. Thus any two blocks in the design have
two common points.

Moreover, since |Γ| = 28 and |⋃γ∈Γ F−γ | = 28 · 6 = |O|, we see that the
map f 7→ Qf \ {0} is a bijection between

⋃
γ∈Γ F−γ and O. Similarly, the

map f 7→ Qf is also a bijection between
⋃

γ∈Γ F+
γ and L since |⋃γ∈Γ F+

γ | =
28 · 10 = |L|.
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Lemma 2.5 For γ, δ ∈ Γ such that γ + δ is non-degenerate, let f ∈ Fγ

and g ∈ Fδ.

( i ) If both f and g are minus types, then |Qf ∩Qg| = 1 or 3.
( ii ) If both f and g are plus types, then |Qf ∩Qg| = 1 or 3.
(iii) If f is a minus type and g is a plus type, then |Qf ∩Qg| = 1 or 3.

Proof. We give the proof only for (i) because the other cases are similar to
(i). Noting that f+g is non-degenerate and Qf4Qg = {x ∈ V | (f+g)(x) =
1} = Qf+g, we have |Qf ∩Qg| = (|Qf |+ |Qg|−|Qf 4Qg|)/2 = 1 or 3, where
Qf 4Qg is the symmetric difference of Qf and Qg. ¤

Remark 2.6 For γ, δ ∈ Γ such that γ + δ is degenerate, we have similar
results which are not needed in this paper.

3. The Orthogonal Geometry for O+(6,2)

To define appropriate new blocks which we need to extend A to the
S(4, {5, 6}, 17) with 252 blocks, we consider the geometry for an orthogonal
group O+(6, 2). Here the notation are consistent with [5].

Let W be an orthogonal geometry of dimension 6 over F2 defined by a
non-degenerate quadratic form Q whose polar form is β and suppose that
the Witt index is 3. Let

O(W ) = {f ∈ GL(W ) | Q(f(w)) = Q(w) for all w ∈ W},

where GL(W ) is the group of invertible linear transformations from W to
itself, and Ω(W ) the derived subgroup of O(W ). O(W ) is also denoted by
O+(6, 2). For a non-singular vector w, the map tw defined by

tw(x) = x + β(x,w)w

for all x ∈ W is an element of O(W ) and is called a reflection. In the
graph ∆ with as vertex set the non-singular vectors and join two vertices
v, w whenever β(v, w) = 0, the following holds:

Lemma 3.1

(1) There are exactly eight 7-cocliques in ∆.
(2) For any 7-coclique C in ∆, the sum of all vectors in C is 0 and any six
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vectors in C are linearly independent.
(3) Any two 7-cocliques in ∆ meet in a unique non-singular vector. More-

over, the size of the intersection of any three 7-cocliques in ∆ is 0.

Proof. Regarding F2 as Z/2Z, we define the subspace

U =
{
x ∈ F8

2 | 2|wt(x)
}

of F8
2, where wt(x) denotes the number of ones in x, and the quadratic form

f : U → F2 by

f(x) =
wt(x)

2
(mod 2)

for all x ∈ U . Then the polar form of f is equal to

f(x + y)− f(x)− f(y) ≡ |supp(x) ∩ supp(y)| (mod 2)

=
8∑

i=1

xiyi,

for all x := (x1, . . . , x8) and y := (y1, . . . , y8) ∈ V , where supp(x) := {i ∈
{1, . . . , 8} | i-th entry in x = 1}. Since U contains the all-1 vector 1 and
{x ∈ radU | f(x) = 0} = 〈1〉, so f induces the non-degenerate quadratic
form f from U := U/〈1〉 to F2 by f(x) := f(x) for all x := x + 〈1〉 ∈ U .
Moreover f is a plus type, that is, the Witt index of f is 3. Therefore two
orthogonal geometries (U, f) and (W,Q) are isomorphic. For non-singular
vector x, since we may have wt(x) = 2 and identify x with supp(x), we write
ij in the place of {i, j}, where 1 ≤ i 6= j ≤ 8. Then it is straightforward to
see that there are exactly eight 7-cocliques in ∆ as follows:

{18, 28, 38, 48, 58, 68, 78}, . . . , {21, 31, 41, 51, 61, 71, 81}.

This easily yields (2) and (3). ¤

Suppose that G is a group acting on a set Ω and X ⊆ Ω. Then we set
G{X} = {g ∈ G | gX = X}.
Lemma 3.2 Let C = {w1, . . . , w7} be a 7-coclique in ∆.

(1) O(W ){C} = 〈twi+wj | 1 ≤ i < j ≤ 7〉 and it is isomorphic to S7.
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(2) Ω(W ){C} = 〈twi+wj
twk+wl

| {i, j}, {k, l} : two disjoint 2-subsets of
{1, . . . , 7}〉 and it is isomorphic to A7.

Proof. O(W ){C} acts faithfully on C and is identified with the subgroup
of S(C) = S7. If {v1, . . . , v7} is another 7-coclique in ∆ then there ex-
ists f ∈ O(W ) such that f(wi) = vi for all i ∈ {1, . . . , 7}. This implies
O(W ){C} = S(C) since |O(W ){C}| = |O(W )|/8 = |S7|. The derived sub-
group of O(W ){C} is A(C) = A7 and clearly contained in Ω(W ){C}. Any
transposition (wi wj) of S(C) is identified with a reflection twi+wj

, but
twi+wj

/∈ Ω(W ) and so |Ω(W ){C}| ≤ |A7|. This implies that Ω(W ){C} =
A(C). Thus the result follows. ¤

The lemmas above show the following:

Proposition 3.3 Ω(W ) acts transitively on the set of eight 7-cocliques in
∆.

We next apply the above observations to the special orthogonal ge-
ometry for O+(6, 2). The exterior algebra of V is introduced in [5]. Let
e1, e2, e3, e4 be a basis for V and ẽ := e1 ∧ e2 ∧ e3 ∧ e4. For ξ :=∑

1≤i<j≤4 pijei ∧ ej ∈ Λ2V , where Λ2V is the second exterior power of
V, we put

Q(ξ) = p12p34 + p13p24 + p14p23.

Then Q is a non-degenerate quadratic form of the Witt index 3 on Λ2V . We
let β denote the polar form of Q. We note that Q does not depend on the
basis chosen for V and it is uniquely determined. By [5, Theorems 12.17,
12.20], the map

GL(V ) 3 f 7→ Λ2f ∈ Ω(Λ2V )

is an isomorphism, and furthermore by [5, p. 195] there is a bijection ϕ from
the set of all non-singular bivectors of Λ2V to Γ defined by

ϕ(ξ)(x ∧ y) = β(x ∧ y, ξ)

for any non-singular bivector ξ of Λ2V and all x, y ∈ V .
Let ξ, η be the non-singular bivectors corresponding to distinct γ, δ ∈ Γ,

respectively. Since γ + δ = β(−, ξ + η)α2, it is seen that γ + δ is non-
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degenerate if and only if β(ξ, η) = 1. Take eight 7-cocliques C1, . . . , C8 in
the graph ∆ and put C1 = {ξ1, . . . , ξ7}. Moreover, take γi ∈ Γ corresponding
to each ξi and put C1 = {γ1, . . . , γ7}. For each i ∈ {2, . . . , 8}, we similarly let
Ci denote the image of Ci under the correspondence. We define the following
four sets:

O1 =
7⋃

i=1

{
Qf \ {0} | f ∈ F−γi

}
, O1 = O \ O1,

L1 =
7⋃

i=1

{
Qf | f ∈ F+

γi

}
, L1 = L \ L1.

From Lemma 2.5 we have |O1| = 7 · 6 = 42, |L1| = 7 · 10 = 70. In this way,
for each of C2, . . . , C8, we give the other seven sets of ovoids which we denote
O2, . . . ,O8.

We let
(
Ω
k

)
denote the set of all k-subsets of a set Ω.

Lemma 3.4

(1) Each triangle is contained in a unique ovoid of O1.
(2) Each double triangle is contained in a unique element of L1.

Proof. We have

{T | T is a triangle} ⊇
⋃

O∈O1

(
O

3

)

and so equality holds by Lemmas 2.4 and 2.5, thus (1) follows. The proof
of (2) is similar to that of (1). ¤

Proposition 3.5 GL(V ) acts transitively on {O1, . . . ,O8}.
Proof. It is enough to show that, for i ∈ {1, . . . , 8}, there exists τ ∈ GL(V )
such that τO1 = Oi. From Proposition 3.3 there exists σ ∈ Ω(Λ2V ) such
that σC1 = Ci. Therefore, take τ ∈ GL(V ) such that Λ2τ = σ, put ηj =
σ(ξj) for each j ∈ {1, . . . , 7} and take δj ∈ Ci corresponding to each ηj .
Then
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(τ · γj)(x, y) = γj(τ−1(x), τ−1(y)) = β(τ−1(x) ∧ τ−1(y), ξj)

= β((Λ2τ
−1)(x ∧ y), ξj) = β(σ−1(x ∧ y), ξj)

= β(x ∧ y, σ(ξj)) = β(x ∧ y, ηj) = δj(x, y)

for all x, y ∈ V and so τ · γj = δj . Hence τC1 = Ci.
For O ∈ O1, there exist f ∈ F−γj

and j ∈ {1, . . . , 7} such that O ∪{0} =
Qf . Then τ(O ∪ {0}) ⊆ Qτ ·f and the polar form of τ · f is τ · γj = δj . For
distinct x, y ∈ Qτ ·f \ {0}, taking x′, y′ ∈ V such that x = τ(x′), y = τ(y′),
we have f(x′) = f(y′) = 0 and 1 = γj(x′, y′) = (τ · γj)(x, y) = δj(x, y).
Thus no two vectors of Qτ ·f \ {0} are orthogonal with respect to δj and so
we must have τ · f ∈ F−δj

. This proves that τO1 ⊆ Oi, so equality holds, as
required. ¤

4. Extending A to an S(4, {5,6},17) with 252 blocks

In this section, we first characterize O1 which covers the triangles
of PG(V ) once each. As a corollary, A is uniquely extended to an
S(4, {5, 6}, 17) with 252 blocks.

Lemma 4.1 For distinct i, j ∈ {1, . . . , 8}, Oi ∩ Oj contains exactly six
ovoids of which any two ovoids meet in a unique point. Moreover, for all
distinct i, j, k ∈ {1, . . . , 8}, |Oi ∩ Oj ∩ Ok| = 0.

Proof. Lemma 3.1(3) shows that two 7-cocliques Ci, Cj in ∆ corresponding
to Ci, Cj , respectively, meet in a unique non-singular vector, and so |Ci∩Cj | =
1. Therefore from Lemma 2.4 the first half of the lemma follows. Moreover,
from Lemma 3.1(3) again, the latter half of the lemma holds. ¤

By Proposition 3.5, each Oi is characterized in the following:

Theorem 4.2 There are exactly eight members S of
(O
42

)
satisfying the

following condition:

each triangle is contained in a unique ovoid of S. (∗)

Proof. For distinct p, q ∈ V \ {0}, we define O(p, q) to be the set of ovoids
containing {p, q}. Define the set of (T, O) where T is a triangle containing
{p, q}, O ∈ O(p, q) and T ⊂ O, and counting the set in two ways, we have
|O(p, q)| = 16. So the pair (V \ {0},O) is a 2-(15, 5, 16) design. Fix distinct
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p, q ∈ V \ {0}. Applying the method of intersection triangles to this design
(see [1, p. 21]), we have ]{B ∈ O | B ∩O = {p, q}} = 6 for each O ∈ O(p, q).
We define the set Ni of i-subsets of O in which the intersection of any two
is equal to {p, q} for each i ∈ {2, 4}. Then a counting argument shows that
|N2| = 16 · 6/2 = 48. For {O1, O2} ∈ N2, we define aij to be the number of
ovoids O of O(p, q) satisfying |O∩O1| = i and |O∩O2| = j for i, j ∈ {2, 3, 5}.
Then we have the following four equations:

16 = |O(p, q)| = a22 + a23 + a32 + a33 + 1 + 1,

]
{
(r,O) ∈ (O1 ∪O2 \ {p, q})×O(p, q) | r ∈ O

}

= 6 · 4 = a23 + a32 + 2a33 + 3 + 3,

]
{
(r,O) ∈ (O1 \ {p, q})×O(p, q) | r ∈ O

}

= 3 · 4 = a32 + a33 + 3,

]
{
(r,O) ∈ (O2 \ {p, q})×O(p, q) | r ∈ O

}

= 3 · 4 = a23 + a33 + 3.

Put e1 = p, e2 = q. We write O1 as {e1, e2, e3, e4, e1 + e2 + e3 + e4}
for some {e1, e2, e3, e4} ∈ X and temporarily write 1, 2, 3, 4, 12, 123, . . . for
e1, e2, e3, e4, e1 + e2, e1 + e2 + e3, . . . , respectively. In particular, we can
enumerate the 6 ovoids of {B ∈ O(1, 2) | B ∩O1 = {1, 2}} as follows:

B1 := {1, 2} ∪ {13, 124, 134}, B2 := {1, 2} ∪ {13, 24, 34},
B3 := {1, 2} ∪ {23, 14, 34}, B4 := {1, 2} ∪ {23, 124, 234},
B5 := {1, 2} ∪ {123, 14, 134}, B6 := {1, 2} ∪ {123, 24, 234}.

By suitably interchanging e1, e2, e3 and e4, we may assume that O2 = B1 or
B2.

(i) If O2 = B1, then we can enumerate all the ovoids of {O ∈ O(1, 2) |
|O1 ∩O| = |O2 ∩O| = 3} as follows:

{1, 2} ∪ {3, 124, 34}, {1, 2} ∪ {3, 134, 24},
{1, 2} ∪ {4, 13, 234}, {1, 2} ∪ {4, 134, 23},
{1, 2} ∪ {1234, 13, 14}, {1, 2} ∪ {1234, 124, 123}.
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(ii) If O2 = B2, then we can enumerate all the ovoids of {O ∈ O(1, 2) |
|O1 ∩O| = |O2 ∩O| = 3} as follows:

{1, 2} ∪ {3, 24, 134}, {1, 2} ∪ {3, 34, 124},
{1, 2} ∪ {4, 13, 234}, {1, 2} ∪ {4, 34, 123},
{1, 2} ∪ {1234, 13, 14}, {1, 2} ∪ {1234, 24, 23}.

Hence a33 = 6, a23 = a32 = 3 and a22 = 2. Therefore we can determine the
unique element of N4 containing {O1, O2}, which is first row or second row
of the following array (by adding {O1, O2}) according as O2 = B1 or B2:

{1, 2} ∪ {23, 14, 34} {1, 2} ∪ {123, 24, 234}
{1, 2} ∪ {23, 124, 234} {1, 2} ∪ {123, 14, 134}

Thus a counting argument shows that |N4| = 48 · 1/
(
4
2

)
= 8.

First, it is immediate from Lemma 3.4(1) that each Oi satisfy the con-
dition (∗). To prove the converse, let S be a set of 42 ovoids satisfying (∗).
An elementary counting argument shows that, for distinct r, s ∈ V \ {0},
{r, s} is in exactly four ovoids of S. This implies that

N4 = {O1 ∩ O(r, s), . . . ,O8 ∩ O(r, s)}

for all {r, s} ∈ (
V \{0}

2

)
. Therefore there exists i ∈ {1, . . . , 8} such that

S ∩ O(p, q) = Oi ∩ O(p, q). To show that i is independent of {p, q}, for
{r, s} ∈ (

V \{0}
2

)
, we take j ∈ {1, . . . , 8} such that S ∩O(r, s) = Oj ∩O(r, s),

and it is enough to show that i = j. Suppose that i 6= j. Then we will lead
a contradiction. Since there exist two triangles T1, T2 such that {p, q} ⊂
T1, {r, s} ⊂ T2, |T1 ∩ T2| = 2 and T1 ∩ T2 /∈ {{p, q}, {r, s}}, we take k ∈
{1, . . . , 8} such that S ∩ O(T1 ∩ T2) = Ok ∩ O(T1 ∩ T2). Let B1 and B2 be
the ovoids in S containing T1 and T2, respectively. We note the following
lemmas:

Lemma 4.3 Let i, j be distinct elements of {1, . . . , 8}. If O ∈ Oi ∩ Oj

and {x, y} ∈ (
O
2

)
, then

(1) There are exactly three ovoids of Oi which meet O in {x, y}.
(2) {B ∈ O | B ∩ O = {x, y}} is the disjoint union of {B ∈ Oi | B ∩ O =

{x, y}} and {B ∈ Oj | B ∩O = {x, y}}.
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Lemma 4.4 All the elements of {Oi∩Oj | {i, j} is a 2-subset of {1, . . . , 8}}
partition O.

Indeed, Lemma 4.3 (1) follows from the fact that the pair (V \ {0},Oi)
is a 2-(15, 5, 4) design. By Lemma 4.1, Lemma 4.3(2) and Lemma 4.4 follow.

We turn to the proof of Theorem 4.2. Suppose first that k ∈ {i, j}. By
interchanging i and j, we may assume that k = i.

(i) Suppose that B1 = B2. There exists t ∈ V \ B1 such that T3 :=
{p, q, t} is a triangle. Taking B3 ∈ S containing T3, by Lemma 4.3(2), we
have l ∈ {1, . . . , 8} \ {i} so that B3 ∈ Oi ∩Ol, and l 6= j by Lemma 4.1. By
interchanging p and q, we may assume that p ∈ T1 ∩ T2. Let

ni := ]{B ∈ (S ∩ O(T1 ∩ T2)) \ {B1} | |B ∩B3| = i}, 0 ≤ i ≤ 5.

Since B3 /∈ S ∩ O(T1 ∩ T2), we obtain i ≤ 3. Since p ∈ B3, we have n0 = 0,
and the condition (∗) implies n3 = 0. Therefore it follows that n1 ≤ 1 and
n2 ≥ 2. Let B and C be two elements of (S ∩O(T1∩T2))\{B1} which meet
B3 in exactly two points. From Lemma 4.3(1) we have B,C ∈ Oi∪Ol and so
we may assume that B ∈ Oi and C ∈ Ol. Thus it follows that C ∈ Oi ∩Ol,
which contradicts Lemma 4.1.

(ii) Suppose that B1 6= B2. Taking l ∈ {1, . . . , 8} \ {i} so that B1 ∈
Oi ∪ Ol, we have l 6= j. By interchanging r and s, we may assume that
r ∈ T1 ∩ T2. Then the argument similar to (i) shows that there are two
elements of (S ∩ O(r, s)) \ {B2} which meet B1 in exactly two points, but
one of these elements lies in Oi ∩ Oj , which contradicts Lemma 4.1.

Suppose finally that k /∈ {i, j}. Lemma 4.1 shows that B1 6= B2. By
interchanging r and s, we may assume that r ∈ T1 ∩ T2. Similarly there are
two elements of (S ∩ O(r, s)) \ {B2} which meet B1 in exactly two points,
but one of these elements lies in Ok ∩ Oj , which contradicts Lemma 4.1.

Therefore it follows that i = j and S ∩O(p, q) ⊂ Oi for all the 2-subsets
{p, q} of V \ {0}, which implies S ⊆ Oi, so equality holds. This completes
the proof. ¤

We can now obtain the main result of [6]. We define the pair D := (P,B)
as follows:

P = V ∪ {∞1} (where ∞1 is a new point not in V),

B = {B ∪ {∞1} | B is a block of A} ∪ {B ∪ {0} | B ∈ O1} ∪ L1.
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There are 140 blocks of size 5 and 112(= 42 + 70) blocks of size 6. Since(
17
4

)
= 140 · (5

4

)
+ 112 · (6

4

)
, it is enough to show that each X ∈ (P

4

)
is in at

least one block. We have

X ⊇
⋃

O∈O1

(
O

4

)
∪

⋃

L∈L1

{X ∈ X | X ⊂ L},

and the size of the right side is 840(= 42 · 5 + 70 · 9) from Lemmas 2.4 and
2.5, so equality holds. Therefore it is easily seen from Lemma 3.4 that D is
an S(4, {5, 6}, 17) with 252 blocks.

Lemma 4.5

(1) For O ∈ O1 and X ∈ (
O
4

)
, X is contained in a unique element of L1

and in exactly two elements of L1.
(2) For L ∈ L1 and Y ∈ (

L
5

)
, there exists X ∈ X contained in Y such that

a unique ovoid containing X is contained in O1.

Proof. (1) By Lemma 2.1, the unique block of D containing X is in L1,
and the other two elements of L containing X are both in L1.

(2) For distinct elements X1, X2 ∈ X contained in Y , the triangle T :=
X1 ∩X2 is in a unique ovoid O1 ∈ O1. Putting T = {e1, e2, e3} and X1 =
T ∪ {e4}, we have X2 = T ∪ {e3 + e4}. By Lemma 2.1(6), O1 is one of
following four ovoids:

T ∪ {e4, e1 + e2 + e3 + e4}, T ∪ {e1 + e4, e2 + e3 + e4},
T ∪ {e2 + e4, e1 + e3 + e4}, T ∪ {e3 + e4, e1 + e2 + e4}.

We assume that O1 = T ∪{e1 +e4, e2 +e3 +e4} or T ∪{e2 +e4, e1 +e3 +e4}
and will show that this leads to a contradiction. By interchanging e1 and e2,
we may assume that O1 = T ∪ {e1 + e4, e2 + e3 + e4}. Then the other three
ovoids containing T are all in O1. Applying (1) to T ∪{e4, e1 + e2 + e3 + e4}
and X1, we have L1 := {e1, e3, e1 + e3} ∪ {e2, e4, e2 + e4} ∈ L1. Applying
(1) to T ∪ {e3 + e4, e1 + e2 + e4} and X2, we next have L2 := {e1, e3 + e4,

e1 + e3 + e4} ∪ {e2, e3, e2 + e3} ∈ L1. We assume that the ovoid containing
X3 := {e1, e2, e4, e3 + e4}(⊂ Y ) is in O1. Then the other three elements
of L containing X3 are all in L1 since O1 ∈ O1 and L1, L2 ∈ L1, but this
contradicts (1). Thus (2) follows. ¤
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We can now prove the uniqueness of an S(4, {5, 6}, 17) with 252 blocks
of which the derived design at some point is A.

Corollary 4.6 A is uniquely extended to an S(4, {5, 6}, 17) with 252
blocks.

Proof. Let S be an S(4, {5, 6}, 17) with 252 blocks of which the derived
design at a new point ∞ is A and it is enough to show that D (described
above) and S are isomorphic. Since λ = 1, for any triangle T , T ∪ {0} is in
a unique block B and ∞ /∈ B, and each double triangle is in a unique block
B and |{0,∞} ∩B| = 0. We define two sets

B = {B : block of S | 0 ∈ B and ∞ /∈ B},
C = {C : block of S | |{0,∞} ∩ C| = 0}.

For any B ∈ B, B \ {0} must be in X if |B| = 5 and in O if |B| = 6.
For any C ∈ C, if |C| = 5 then we must have C ∈ O or C = {x, y, z, w,

x + y} for some {x, y, z, w} ∈ X. If |C| = 6 then we will show that C ∈ L.
Suppose first that C contains at least three lines and we take the three
lines l, m, n in C, which are mutually meeting and |l ∩ m ∩ n| = 0 since
|C| = 6. Then C contains an oval, a contradiction. Suppose next that C

contains no line. For p ∈ C, from Lemma 2.3 C \ {p} is an ovoid. Putting
C \ {p} = {e1, e2, e3, e4, e1 + e2 + e3 + e4} for some {e1, e2, e3, e4} ∈ X, we
have p ∈ {e1 + e2 + e3, e1 + e2 + e4, e3 + e4}, but in any case C contains an
oval, a contradiction. Suppose that C contains exactly one line and we take
the line l in C. Put H = 〈x, y, z〉 \ {0} for the triangle C \ l := {x, y, z}.
Since |l ∩ H| ∈ {1, 3}, if |l ∩ H| = 3 then l = {x + y, y + z, z + x}, but C

contains the line {x, y, x + y}(6= l), a contradiction. If |l ∩ H| = 1 then it
is easily seen that C contains at least two lines, a contradiction. Therefore
C contains exactly two lines, which are disjoint since C contains no oval.
Hence C ∈ L.

Set

F = {C ∈ C | |C| = 5 and C /∈ O}

and let

b = |B|, c = |C|, d = ]{B ∈ B | |B| = 5}, e = |C ∩ O| and f = |F|.
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Then by counting arguments we have the following three equations:

]{(T,B) ∈ {T | T is a triangle} ×B | T ∪ {0} ⊂ B}

= 420 =
(

4
3

)
d +

(
5
3

)
(b− d),

]{(S,C) ∈ {S | S is a double triangle} × C | S ⊂ C}
= 420 = 2f + 6(c− e− f),

]{(X, Y ) ∈ X× (B ∪ C) | X ⊂ Y }

= 840 = d +
(

5
4

)
(b− d) +

(
5
4

)
e + 3f + 9(c− e− f).

Moreover we have b + c = 112. Since the four equations yield




c
d
e
f


 =




112
−70
−14
84


 + b




−1
5/3
1/3
−2


 ,

it follows that b = 42, e = f = 0, and so c = 70, d = 0.
By Proposition 3.5 and Theorem 4.2, there exists ρ ∈ GL(V ) such that

{B \ {0} | B ∈ B} = ρO1, and by Lemma 4.5(2) it follows that C ⊆ ρL1,
so equality holds. Thus the map ρ∗ : V ∪ {∞1} → V ∪ {∞} defined by
∞1 7→ ∞ and x 7→ ρ(x) is clearly an isomorphism. ¤

Remark 4.7 We can see that D is not 3-wise balanced. In fact, each
{x, y} ∈ (

V \{0}
2

)
is in exactly 4 ovoids of O1. Therefore {x, y, 0} is in exactly

5(= 1 + 4) blocks, whereas {x, y,∞1} is in exactly 7(= 1 + 6) blocks since
{x, y} is in exactly 6 ovals.

In Österg̊ard and Pottonen [4], it has been shown that an S(4, 5, 17)
does not exist, so that A is not extendable, but the 3-(16, 4, 2) structure
2.A (in which each block of A is repeated 2 times) has a (usual) extension.

Corollary 4.8 2.A is extendable (in the usual meaning).
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Proof. Set

O′1 =
⋃

O∈O1

(
O

4

)

L′1 =
⋃

L∈L1

(
L

5

)

and let A be the multi-set of B ∪ {∞} for all the blocks B of 2.A, where ∞
is a new point not in V . We define the pair (P,B) as follows:

P = V ∪ {∞},
B = A ∪ {X ∪ {0} | X ∈ O′1} ∪ L′1 ∪ O1.

There are 2 · 140+210+420+42 = 952 blocks since |O′1| = 42 · 5 = 210 and
|L′1| = 70 · 6 = 420. Since

(
17
4

) · 2 = 952 · (5
4

)
, it is enough to show that each

S ∈ (P
4

)
is in at least two blocks. If S contains 0 or ∞, then it is clear that

S is in at least two blocks. Thus we may assume that |{0,∞} ∩ S| = 0 and
S is not an oval. If S is a double triangle, then there is a unique element of
L1 containing S, thus S is in at least two blocks. For X ∈ X, we denote by
X̃ the unique ovoid containing X. Suppose that S ∈ X. If S̃ ∈ O1, then S

is in at least two blocks. If S̃ ∈ O1, then from Lemma 4.5(1) there exists
L ∈ L1 containing S, from which S is in at least two blocks. This yields the
result. ¤
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