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Abstract. In the framework of a pre-inner product C*-module over a unital C*-
algebra, we show several reverse Cauchy—Schwarz type inequalities of additive and
multiplicative types, by using some ideas in N. Elezovi¢ et al. [Math. Inequal. Appl.,
8 (2005), no. 2, 223-231]. We apply our results to give Klamkin-Mclenaghan, Shisha-
Mond and Cassels type inequalities. We also present a Griiss type inequality.
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1. Introduction

A Hilbert C*-module is a generalization of a Hilbert space in which
the inner product takes its values in a C*-algebra instead of the complex
numbers. The theory of Hilbert C*-modules is different from that of Hilbert
spaces, for example, not any bounded linear operator between Hilbert C*-
modules is adjointable and not any closed submodule of a Hilbert C'*-module
is complemented, see [10].

The theory of Hilbert C*-modules over commutative C*-algebras was
first appeared in a work of Kaplansky [8] in 1953. The research on this
subject started in 1970’s independently by Paschke [16] and Rieffel [17] and
since then it has grown rapidly and has played significant roles in the theory
of operator algebras and noncommutative geometry.

Let o7 be a unital C*-algebra with the unit element e and the center
Z(/). For a € o/, we denote the real part of a by Re a = 1(a + a*).
If a € o/ is positive (that is selfadjoint with positive spectrum), then az
denotes a unique positive b € o7 such that b?> = a. For a € &/, we denote
the absolute value of a by |a| = (a*a)2. If @ € Z(&) is positive, then
az € Z(&). If a,b € & are positive and ab = ba, then ab is positive and
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(ab)% = a2bo.

Let 2" be an algebraic left &/-module which is a complex linear space
fulfilling a(Az) = (Aa)z = A az) (z € Z,a € &/, \ € C). The space 2
is called a (left) pre-inner product </ -module (or a pre-inner product C*-
module over the unital C*-algebra <7) if there exists a mapping (-, ): 2" X
X — o satisfying

(i) (z,2) >

<Afv+y7> Mz, 2) +(y, 2),
(az,y) = alz,y),

iv) (y,x) = (x,9)",

i)
(ii)
(iii)
(

for all x,y,z € &', a € o/, A € C. Moreover, if
(v) z =0 whenever (z,z) =0,

then 2" is called an inner product <7 -module. In this case ||z| = +/||{x, z)]|,
where the latter norm denotes the C*-norm on 7. If this norm is complete,
then 2 is called a Hilbert o/ -module. Any inner product space is an inner
product C-module and any C*-algebra 7 is a Hilbert C*-module over itself
via (a,b) = ab* (a,b € o). For more details on Hilbert C*-modules, see
[10]. Notice that (iii) and (iv) imply (x,ay) = (x,y)a* for all z,y € 2,
a€ .
The Cauchy—Schwarz inequality asserts that

(z,y)(y, ) < [[{y, v)|| {x, x) (1.1)

in a pre-inner product module 2" over &7; see [10, Proposition 1.1]. This
is a generalization of the classical Cauchy—Schwarz inequality. There have
been proved several reverse Cauchy—Schwarz inequalities of additive and
multiplicative types in the literature. The reader is refereed to [2], [6], [13],
[14], [15] and references therein for more information.

In this paper, as a continuation of [13] and by using some ideas of
[4], we investigate complementary Cauchy-Schwarz type inequalities in the
framework of pre-inner product C*-modules over a unital C*-algebra. We
apply our results to present Klamkin-Mclenaghan, Shisha-Mond and Cassels
type inequalities. We also present a Griiss type inequality.
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2. Reverse Cauchy—Schwarz type inequality I

In a semi-inner product space (7, (-,-)), the classical Cauchy-Schwarz
inequality says that [(z,9)]? < (z,2)(y,y) for all z,y € #. We discuss
around Cauchy-Schwarz inequality under a non-commutative situation. In
a pre-inner product C*-module 2~ over a unital C*-algebra o7, since the
product (x,z)(y,y) is not selfadjoint in general, we would expect that a
symmetric form |{(x,y)|(y,y) "!|[{z,y)| < (z,x) holds for x,y € 2 such that
(y,y) is invertible. But we have a counterexample. As a matter of fact,
let & = M5(C) be the C*-albegra of 2 x 2 matrices with an inner prod-
uct (z,y) = zy* for z,y € &. Put z = (§4§) and y = (39). Then we
have [{x,y)|{y,y) " |{z,y)| £ (x,z). In this section, we present some reverse
Cauchy—Schwarz inequalities of additive and multiplicative types which dif-
fers from [13, Theorem 3.3]. For this, we need the following lemma:

Lemma 2.1 Let 2 be a pre-inner product C*-module over a unital C*-
algebra o7 . Suppose that x,y € Z such that (x,y) is normal and

Re(Ay —x,x —ay) >0 (2.1)
for some a, A € Z(/). Then
(z,2) + Re(Aa”)(y,y) < |a + A[|[(z,y)|. (22)
Proof.  Since Re (Ay — z,xz — ay) > 0, we have
(z,2) + Re(Aa”)(y,y) < Re(A(z,y)" +a*(z,y))
= Re(A%(z,y) +a™(z,y)) = Re((4" + a")(z,y))
< (A" + a*)(x,y)| by the normality of (A* + a*)(x,y)
= |A+al [z, y)]. O

Theorem 2.2 Let 2" be a pre-inner product C*-module over a unital C*-
algebra <f . Suppose that x,y € 2 such that (x,y) is normal, Re(Aa*) is
a positive invertible operator for A,a € Z(/) and (2.1) holds. If (y,y) is
invertible, then

(i) (z,2) < iRe(Aa*)_llA+a|2|<:v,y>|<y,y>_1|<w,y>|,
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(i) {w,2) = [z, 9) |y 9) " [z, 9)]|
< JRe(4a*) 14 ~ af (2,5} {9, ) ).
Proof.  For (i), it follows from Lemma 2.1 that
(z,7) < [A+ all(z,y)| — Re(Aa"){y,y)
= iRe(Aa*)_llA +al?|{z, ) [{y, y) " (e, )| - XX,

where X = Re(Aa*)7 (y,y)? — tRe(Aa*)~2|A+a|(y,y)~?|(z,y)| and hence
we get (i). For (ii), it follows from (i) that

(@, 2) = 1z, 1)y, )~ (2, )]

< %Re(Aa*)’l\A +al? (@, ) [y, v) (@, 9)| = [, 9) [y, 0) " {, y)|
= %Re(Aa*)_l(lA + af? — 4Re(Aa”)) (2, )| (v, v) " (2, )]
= TRe(4a") A~ a[(r, ) {9, ) (@, 9)] O

The next result is a generalization of both Klamkin—Mclenaghan’s in-
equality and Shisha—Mond’s inequality [4, Theorem 2].

Theorem 2.3 Let 2 be a pre-inner product C*-module over a unital C*-
algebra o . Suppose that x,y € X such that (x,y) is normal and invertible,
(y,y) is invertible and A,a € Z(o/) satisfy Re(Aa*) > 0 and (2.1). Then

[, 9)| 72 (&, 2) (2, )| 72 = [z, ) |2 (y, 9) {2, )2
< |A+a| — 2Re(Aa*)=.
Proof. It follows from Lemma 2.1 that
[, )| % () ()| % = [, )2 (o)~ s )2

<A+ a| = Re(Aa®)[(z, y)| "2 {y, )| (2, 9)| 7 — [{z, )|2 (v, ) [z, )] 2
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= [A+a] - 2Re(4a")* — (Re(Aa™)*(|{z, )| ™% (y, ), )] ~*)*
— (@) )" eyl D))’
< |A + a| — 2Re(Aa*)? . O
The next result is an integral version of Klamkin—-Mclenaghan’s inequal-
ity.

Corollary 2.4 Let (X, u) be a probability space and f,g € L (u) with
mg < f < Mg for some scalars M > m > 0. Then

[ 1fPdp B | Jx fgdu|
| [x fodu|  [xlgl*du

Proof. % = L>®(X,p) is regarded as a subspace of L?(X, ) via (f,g) =
Jx fgdp (f,g € Z°). Then Theorem 2.3 implies the desired inequality
since (Mg — f, f —mg) > 0. O

< (VM - y/m)®. (2.3)

Considering C" equipped with the natural inner product defined with
weights (w1, ..., w,) or, equivalently, starting with a weighted counting mea-
sure p = 2?21 w;0;, where w;’s are positive numbers and ¢§;’s are the Dirac
delta functions, a discrete version of the above is a weighted Shisha—Mond’s
inequality as follows:

Corollary 2.5 Ifzy,...,z, and yi1,...,Yyn are sequences of positive real
numbers satisfying the condition 0 < m; < y;, < M; < 00 and 0 < mg <
x; < My < oo, then

Doy Wit} _ D iy WiTiYi < (\/M2/m1 B \/mg/M1)2
D it WiTiYi Dl wiy;
Now we give an additive reverse Cauchy—Schwarz inequality, which
seems to be nicer than [13, Theorem 3.1].

Theorem 2.6 Let 2" be a pre-inner product C*-module over a unital C*-
algebra of . Suppose that x,y € 2 such that (x,y) is normal, and A,a €
Z(d) such that |A + a| is invertible and (2.1) holds. Then

0 Re(lm,a)? ()?) ~ 1@y < 714 a4 +al " (y,).
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If moreover Re(Aa*) is positive invertible, then

. 1 1 1 _ o
(i) Re((@,2)* (y.9)?) — [(w.)| < 714 — aP|A + | ' Re(Aa”) !z, ).
Proof.  For (i), by Lemma 2.1, we have
Re((z, )% (1)) — {z,9)|
< Re((z, )7 (,9)?) = |[A+a| {z,z) — |4 + a| "Re(4a")(y, )
1
= [F14+ ol = Rea) -+ ol )
L1 N\ 2
~ 1A al ()t - 1At dl )
1 " _
Z[\A%—aﬂ 4Re(Aa )]|A+a| 1<y,y>
= Z‘A —al’|A+al "y, y).
For (ii), it similarly follows from

Re((z,2)% (y,9)7) — [{z,1)|

< Z|A —al*|A + a| 'Re(Aa*) "z, z)

Re(Aa*)|A+a|—1<< >%f 5|4+ alRe(Aa™)” <x,x>%>. O

Corollary 2.7 Let ¢ be a positive linear functional on a C*-algebra <f
and let x,y € o be such that

Rep((Ay —x)"(z — Ay)) >0

for some A\, A € C. Then

1/2 )12 < A+ Al

< ——le(y" ).
2¢/Re(AA) o

(1) @@ 2)Zp(yy
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| °

Vo) = ol a)| < o w9 plaa)).

(i) (e’

Proof. The C*-algebra o7 can be regarded as a pre-inner product module
over C via (z,y) = ¢(y*z). Now (i) and (ii) follow from Theorem 2.2 and
Theorem 2.6 and an obvious symmetry argument, respectively. ([

Remark 2.8 Let &/ be a C*-algebra, z,y € & such that xy = yz,
my <z < My, my <y < My and ¢ is a positive linear functional on 2.
Setting A\ = my/Ms and A = M;/mso, we observe that z — Ay > 0 and
Ay — z > 0, whence

p((Ay —x)(z — Ay)*) > 0.

Thus the requirements of Theorems 2.2 and 2.6 are fulfilled.

Considering the C*-algebra &/ = B() of all bounded linear oper-
ators on a Hilbert space . and the positive linear functional ¢(R) =
S (Re;,e;), where eq,...,e, € # we deduce the following result from
(i) and (ii) of Corollary 2.7.

Corollary 2.9 Let 7 be a Hilbert space, eq,...,e, € A, T,S € B(J)
with TS = ST and mS <T < MS for some scalars M > m > 0. Then

n 1/2 , n 1/2
(ZIITeA!Z) (Zus@u?) sMW]ZTeZ,SeZ
1=1 =1

n 1/2 n 1/2 n
(Cirel?) (ZHS«W) S s
=1 1

=1

< Qiomt mm{ZHSeW ann?}

3. Reverse Cauchy—Schwarz type inequality II

In [6], Ilisevi¢ and Varosanec sharpened (1.1) in a restricted case: If
z,y € 2 and (z,z) € Z(</), then

[z, )] < (@, 2)(y, ), (3.1)
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which implies

(M
[SIE

[(z,y)| < (z,2)2(y,y)>. (3.2)

We present another version of the Cauchy—Schwarz inequality in a pre-

inner product C*-module, in which we assume the invertibility of (y,y) in-
stead of (z,x) € Z():

Proposition 3.1 Let 2 be a pre-inner product C*-module over a unital
C*-algebra /. Suppose that x,y € Z such that (y,y) is invertible. Then

(@, )y, y) "z, y)* < (x, ). (3.3)

Proof. By the module properties and the Cauthy—Schwarz inequality (1.1),
we have

(@, y) () "Ny x) = (2, (g, y) " 2y) (g, y) "2y, a)
< Iy, )2y, (g, y) "2y ||(, )
= (z,z). O

To obtain reverse inequalities of additive and multiplicative types to the
Cauchy-Schwarz one (3.3), we need the following lemma which differs from
Lemma 2.1:

Lemma 3.2 Let Z be a pre-inner product C*-module over a unital C*-
algebra <. Suppose that x,y € X such that

(Ay —x,x —ay) >0 (3.4)
for some positive invertible elements a, A € Z(<7). Then
(z,2) < (A+ a)Re(z,y) — Aaly, y). (3.5)
Proof. The assumption (3.4) implies
Aly,z) — Ay, y)a — (z,z) + (z,y)a > 0. (3.6)

Taking the adjoint in (3.6),
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(y,2)*A — aly,y)A — (z,z) + a{z,y)* > 0. (3.7)

Combining with (3.6) and (3.7), since a, A € Z(&/) are positive, we have
the desired inequality (3.5). O

Theorem 3.3 Let 2" be a pre-inner product C*-module over a unital C*-
algebra of . Suppose that x,y € X such that (y,y) is invertible and (3.4)
holds for some positive invertible elements a, A € Z(<f). Then

() (.2) < (A0 (A + ) (@) (y. 1)~ e y)"

(i) () — (@, y) (v, y) )" < (A2 -

Proof.  For (i), it follows from Lemma 3.2 that

=~ \
=
m\»—A

a®) Re(z,y).

(z,2) < (A+ a)Re(z,y) — Aaly,y)

— %(A“)fl(A+G)2(x,y><y,y)*1<m,y>* . X*X,

ol
ol

where X = (Aa)
have (i).
For (ii), by using Lemma 3.2 again, we have

— %(Aa)_%(A + a){y,y)" 2 (z,y)* and hence we

{v,9)

*

(@, x) = (,9)(y,v) "z, y)
< (A+a)Re(z,y) — Aaly,y) — (2,9)(y,y) " (z,9)*
= (A +a —2(Aa)?)Re(z, y)
— ((4a)? (y,9)7 = (@, )y, y) ~/™*") ((Aa)? (y, ) )’
< (A% —a®)"Re(z,y). O

ol
[SIES

—(z,9){(y,y)~

We can also obtain the following reverse Cauchy-Schwarz type inquali-
ties related to (3.2):

Theorem 3.4 Let Z be a pre-inner product C*-module over & . Suppose
that x,y € 2 such that (3.4) holds for some positive invertible elements
A,a € Z(of). Then
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(i) Re((z,2)%(y,y)?) < =(Aa) 2 (A + a)Re(z,y).

(i) Re((z,2)% (y,y)% — (z,9)) < (A —a)*(A+a) Yy, y).
(i) Re((z.)} (5,9 — (@) < +(A— (A +0) " (4a) "z, ).

Proof.  For (i), by Lemma 3.2, we have

N

+2(Aa)?Re((z, )% (y, y)

)

For (ii), it follows from Lemma 3.2 that (z,z) < (A + a)Re(x,y) —
Aa(y,y) and since A + a is invertible,

(A+a) "z, z) + Aa(A + a)" (y,y) < Re(z,y).
Therefore we have

(y,y)* — (z,y))

< Re((z,2)% (y,y)?) — (A+a) Yz, z) — Aa(A+a) Yy, y)

[N

Re((z, z)

—3A+@*m—@%%w—m+@4(@wﬁ—;m+@@wﬁf
< A - (At a) ().
For (iii), it similarly follows from
Re((z,7)? (y,9)? — (z,9))
< (A= a(A+a)" (Aa) (o, 2)
—Aa(A+a)—1(<y,y>é —;(A+a)(Aa)_1(x,x>5>2. 0
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Remark 3.5 Theorem 3.4 is also a non-commutative version of the fol-
lowing results in [3, Theorem 2.2] and [4, Theorem 4]: Let (H,(-,-)) be an
inner product over a complex number field C. If z,y € H and ¢,C € C such
that Re(Cy — z,z — cy) > 0 and Re(C¢) > 0, then

z,z)(y,y C+c C—cf
walyy) o 10+ e -l < S

(=, )] 21/Re(C7) 4C + ¢

4. Cassels type inequalities

In 1952 Cassels (see [18] and [15]) established that if for some real
numbers m, M the positive n—tuples (aq,...,a,) and (by,...,b,) satisfy
O<m§g—:§M<oo(1§k§n) for some scalars M > m > 0, then

Zwkakzwkb2 (). (Zwkakbk> (4.1)

for any weight (wy,...,wy,).

In this section, we consider Cassels type inequalities by using the geo-
metric mean of (x,z) and (y,y). We recall that the geometric mean of two
positive elements a,b € o7 is defined by

if a is invertible, also see [9]. We notice that if ¢ and b commute, then
afb= azbs. Unfortunately, the following Cauchy-Schwarz type inequality
Re(z,y) < (z,x) t (y,y) does not hold in general. As a matter of fact, let
o/ = M5(C) be the C*-albegra of 2 x 2 matrices with an inner product
(x,y) =ay* for z,y € &. Put . = (99) and y = ({ ). Then we have
Re(z,y) £ (x,z) § (y,y). However, we can obtain Cassels type inequalities
by virtue of Lemma 3.2 again:

Theorem 4.1 Let 2" be a pre-inner product C*-module over a unital C*-
algebra <of . Suppose that x,y € Z such that (3.4) holds for some positive
invertible elements a, A € Z(</). Then

() (r2) # {y.) < 5(Aa)F (A + a)Re(r, ).
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(ii) (z,z) # (y,y) — Re(z,y) < i(Aa)_l(A +a)H (A - a)*(z,2).

() (y.9)  (22) ~ Re(r,y) < {(4+0) 7 (4~ )(y,)

Proof. For any € > 0, since (x,z) + ee is invertible, it follows from the
arithmetic-geometric mean inequality and Lemma 3.2 that

(Aa)2 ({z, ) +ee) £ (y,y) = ((x,2) +e) ¢ (Aaly,y))

< -((z,z) + e+ Aaly, y))

< =((A+ a)Re(x,y) + ee).

1
2
1
2
As e | 0, we get (i).

Similarly we may assume that (z,z) and (y,y) are invertible to prove
(i) and (iii).

For (i), set X := (2z,2)"2(y,y)(x,2)"2. Then it follows from
Lemma 3.2 and invertibility of A 4+ a that

(z,2) § (y,y) — Re(z,y)
< <$7$>%X%<$,SL‘>% —(A+a) N, z) — Aa(A+a) "y, )

= (2,2)2 (X2 — (A+a)"' — Aa(A + a) ' X) (z, )3
<(Aa(A +a)) YA -a)?

=

= <£L’,$> 4

— Aa(A+a)™! (X% —~ W)Q) (z,2)

(Aa(A+a)) YA - a)*(z,z).

N

<

>~ =

For (iii), set Y := (y,y) "2 (z,2)(y,y) "2 as in (ii). Then it follows that

(v,y) & (x,z) — Re(x,y)
<y (Y2 - (A+a)”'V — Aa(A+a) ") (y,y)

NI
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_ <y7y>% <(A+a)_4(A—G) _ (A+CL)_1 (Y; _ (A;_a)> ><y’y>;
< JA+a) T (A- Py, 0

The next result is an integral version of the Cassels inequality:

Corollary 4.2 Let (X, u) be a probability space and f,g € L (u) with
mg < f < Mg. Then
/ fgdﬂ

[ vran [ 1o ap < BT

Proof. % = L*(X,p) is regarded as a subspace of L?(X, ) via (f,g) =
Jx fgdu (f,g € 2°) and use Theorem 4.1 since (Mg — f, f —mg) >0. O

Considering C" equipped with the natural inner product defined with
weights (w1, ..., w,) we obtain the Cassels inequality (4.1).

5. A Griiss type inequality

In order to establish a complement of Chebyshev’s inequality, Griiss [5]
proved the following inequality: If f and g are integrable real functions on
[a,b] such that C < f(z) < D and E < g(x) < F for some real constants
C,D,E,F and for all z € [a,b], then

‘bia/abf(x)g(:r)dx—(b_lay/abf(x)d:r/ g(x)dz| <

and the constant 1/4 is the best possible, see [3], [11], [12] and references
therein.

L(D—C)(F-B);
(5.1)

In the final section, we show a Griiss type inequality in a pre-inner prod-
uct C*-module. Some norm inequalities of Griiss type have been obtained
in [1], [7]. First, we state the following lemma by using some ideas of [7,
Lemma 2.4].

Lemma 5.1 Let 2 be a pre-inner product C*-module over a unital C*-
algebra <7 . Suppose that x,h € 2 such that (h,h) is the unit element e of
o/ and (3.4) holds for some positive invertible elements a, A € Z(</). Then
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0 < (z,2) — |(h,2)]* < ~ (A —a)>. (5.2)

Proof. By the module properties, we have

0 <{(x—(x,h)h,z — (z,h)h)
= (z,2) = (&, h)(h, x) = (2, h)(h, z) + (x, h)(h, h) (h, )
= (z,x) = (x, h)(h, x) — (2, h)(h, ) + (2, h)elh, x)
= (z,x) = (x, h)(h, z)
= (z,2) = |(h,z)|*.

Second, it follows from Lemma 3.2 and (h, h) = e that

(z,z) — |(h,z)|* < (A4 a)Re(z, h) — Aa — (x, h)(h, z)

_—<<:c,h>— A;“) <<:U,h>— A;“)*+ Ao

(4-a)*

< O
- 4

By utilizing Lemma 5.1, we show the following Griiss type inequality in
a pre-inner product C*-module.

Theorem 5.2 Let 2 be a pre-inner product C*-module over a unital C*-
algebra <of . Suppose that x,y,h € 2 such that (h,h) is the unit element e
of o, (y,y) — |(h,y)|? is invertible and

(Ah —z,x —ah) >0 and (Bh—y,y—>bh)>0
hold for some positive invertible elements a, A,b, B € Z(</). Then
1
Proof. It follows from
0 < (& — (w, hYhy z — (a, hYh) = {z,2) — |(h )

that [z, y]n := (x,y)—(z, h)(h,y) is a pre-inner product «7-module. Utilizing
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Proposition 3.1 for [, -], we get

() = (&, k) (hoy) Q) = [ ) P) ™ (2, ) = (2, h) (R, )
< (z,2) = [(h, ).

By Lemma 5.1 and the invertibility of (y,y) — |(h,y)|?, we have

AB=b)"%< ((y,y) — [{hy)*)

and hence

4B = b)7*|{y,z) — (y, h)(h, 2)]* < (A —a)”.

| =

This implies the desired inequality. O
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