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The structure of δ-stable minimal hypersurfaces in Rn+1
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Abstract. Let Mn(n ≥ 3) be a complete δ
`

>
(n−1)2

n2
´
-stable minimal hypersurface

in an (n+1)-dimensional Euclidean space Rn+1. We prove that there are no nontrivial

L2 harmonic 1-forms on M and the first de Rham’s cohomology group with compact

support of M is trivial. As corollaries, M has only one end. This implies that if M

has finite total curvature, then M is a hyperplane.
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1. Introduction

Let Mn be a minimal hypersurface in Rn+1. M is said to be stable if

0 ≤
∫

M

(|∇f |2 − |A|2f2
)
, ∀f ∈ C∞0 (M), (1.1)

where |A| is the norm of the second fundamental form of M . For some
number 0 < δ ≤ 1, it is defined that M is δ-stable if

0 ≤
∫

M

(|∇f |2 − δ|A|2f2
)
, ∀f ∈ C∞0 (M). (1.2)

Obviously, given δ1 > δ2, δ1-stable implies δ2-stable. So, that M is
stable implies that M is δ-stable. By Lemma 1 in [8], M is δ-stable if and
only if there is a positive function g satisfying the equation (∆+δ|A|2)g = 0
on M . Tam and Zhou showed that a catenoid in Rn+1(n ≥ 3) is n−2

n -stable
since its second fundamental form A satisfies ∆|A|n−2

n + n−2
n |A|2|A|n−2

n = 0
in [17].
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There are some works on δ-stable complete minimal hypersurfaces in
Rn+1. It is known that a complete stable minimal surface in R3 must be
a plane, which was proved by do Carmo and Peng, and Fischer-Cobrie and
Schoen independently [5], [8]. Kawai proved that a δ(> 1

8 )-stable complete
minimal surface in R3 must be a plane [9]. For higher dimension n ≥ 3,
Do Carmo and Peng [6] have showed that a stable complete minimal hy-
persurface with finite L2-norm of the second fundamental form in Rn+1 is
a hyperplane. Shen and Zhu [16] have proved that a complete stable min-
imal hypersurface in Rn+1 with finite total curvature, i.e.,

∫
M
|A|n < +∞,

is a hyperplane. Tam and Zhou [17] showed that an n−2
n -stable complete

minimal hypersurface whose second fundamental form satisfies some decay
conditions in Rn+1 is either a hyperplane or a catenoid. In [4], Cheng and
Zhou proved that if M is an n−2

n -stable complete minimal hypersurface
in Rn+1 and has bounded norm of the second fundamental from, then M

must either have only one end or be a catenoid. Recently Li and the au-
thor generalize the above result [7]. However, not much is known for the
geometric structure of stable minimal hypersurfaces in Rn+1 with n ≥ 3.
Cao-Shen-Zhu proved a topological obstruction for complete stable minimal
hypersurface Mn of Rn+1 with n ≥ 3 that M must have only one end [2]. Its
strategy was to utilize a result of Schoen-Yau asserting that a complete sta-
ble minimal hypersurface of Rn+1 can not admit a non-constant harmonic
function with finite Dirichlet integral [15]. Assuming that Mn has more
than one end, they constructed a non-constant harmonic function with fi-
nite Dirichlet integral in [2]. According to the work of Li-Tam [11], Li-Wang
modified this proof to show that each end of a complete immersed minimal
submanifold Mn of Rn+p with n ≥ 3 must be non-parabolic in [12]. Due
to this connection with harmonic functions, this allows one to estimate the
number of ends of the above hypersurface by estimating the dimension of
the space of bounded harmonic functions with finite Dirichlet integral [11].
Since the exterior differential form of harmonic function with finite Dirichlet
integral is an L2 harmonic 1-form, the theory of L2 harmonic forms give one
to study minimal submanifolds in Rn+1 [12], [18]. In this direction related
with stable hypersurfaces, there are some known results. For instance, If
M is a complete immersed stable minimal hypersurface in Rn+1, then there
exist no nontrivial L2 harmonic 1-forms on M [13], [14].

In this paper, we study an n-dimensional complete δ
(

> (n−1)2

n2

)
-stable

minimal hypersurface in an (n + 1)-dimensional Euclidean space Rn+1. Let
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H1(L2(M)) denote the space of L2 harmonic 1-forms on M , H1
0 (M) denote

the first de Rham’s cohomology group with compact support of M and ∆
denote the Laplacian on M .

Now we can mention our results as follows.

Theorem 1.1 If Mn(n ≥ 3) is a complete δ
(

> (n−1)2

n2

)
-stable minimal

hypersurface in Rn+1, then H1(L2(M)) = 0.

Corollary 1.2 If Mn(n ≥ 3) is a complete δ
(

> (n−1)2

n2

)
-stable minimal

hypersurface in Rn+1, then M has only one end. Moreover, H1
0 (M) = 0.

A theorem due to Anderson [1] says that the n-dimensional complete
minimal submanifold with only one end and finite total curvature in Rn+p

with n ≥ 3 is an affine plane. Hence by Corollary 1.2 we have the following

Corollary 1.3 If Mn(n ≥ 3) is a complete δ
(

> (n−1)2

n2

)
-stable minimal

hypersurface with finite total curvature in Rn+1, then M is a hyperplane.

Remark 1.4 Theorem 1.1, Corollary 1.2 and Corollary 1.3 can be re-
garded as generalization of main theorem in [13], [14], [2] and [16] respec-
tively.

2. Proof of the theorem

Before proving our results, we list some known facts we need.

Definition 2.1 Let D ⊂ M be a compact subset of M . An end E of M

with respect to D is a connected unbounded component of M\D. When we
say that E is an end, it is implicitly assumed that E is an end with respect
to some compact subset D ⊂ M .

Definition 2.2 A manifold is said to be parabolic if it does not admit
a positive Green’s function. Conversely, a nonparabolic manifold is one
which admits a positive Green’s function. An end E of a manifold is said
to be nonparabolic if it admits a positive Green’s function with Neumann
boundary condition on ∂E. Otherwise, it is said to be parabolic.

Lemma 2.3 ([11]) Let M be a complete manifold. Let H0
D(M) denote the

space of bounded harmonic functions with finite Dirichlet integral. Then the
number of non-parabolic ends of M is at most the dimension of H0

D(M).

Lemma 2.4 ([12]) Let Mn be a complete minimal submanifold of Rm. If
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n ≥ 3, then each end of M must be nonparabolic.

Before we prove Theorem 1.1, we need the generalized Kato’s inequality.
Although it was proved in [12], for completeness, we also write it out.

Lemma 2.5 Let ω be an L2 harmonic 1-form on a Riemannian manifold
M of dimension n. Then

n

n− 1

∣∣∇|ω|∣∣2 ≤ |∇ω|2. (2.1)

Proof. By choosing an orthonormal co-frame {ω1, . . . , ωn} such that
|ω|ω1 = ω, we have ω =

∑n
i=1 aiωi. Since ω is an L2 harmonic 1-form,

it must be both closed, i.e., ai,j = aj,i, and co-closed, i.e.,
∑n

i=1 ai,i = 0. So
we get

|∇ω|2 = a2
i,j ≥ a2

1,1 +
n∑

i=2

a2
i,i + 2

n∑

i=2

a2
1,i

≥ a2
1,1 +

( ∑n
i=2 ai,i

)2

n− 1
+ 2

n∑

i=2

a2
1,i

≥ n

n− 1

(
a2
1,1 +

n∑

i=2

a2
1,i

)

=
n

n− 1

∣∣∇|ω|∣∣2.

This completes the proof of Lemma 2.5. ¤

Proof of Theorem 1.1. For each ω ∈ H1(L2(M)), we have the following
well-known Bochner formula.

∆|ω|2 = 2
(|∇ω|2 + RicM (ω], ω])

)
, (2.2)

where RicM denotes the Ricci curvature of M and ω] denotes the vector
field dual to ω. On the other hand, we have

∆|ω|2 = 2
(|ω|∆|ω|+ ∣∣∇|ω|∣∣2). (2.3)

From (2.1), (2.2) and (2.3), we obtain
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|ω|∆|ω| ≥ RicM (ω], ω]) +
1

n− 1

∣∣∇|ω|
∣∣2. (2.4)

By the Gauss equation, we have

|A|2 ≥ h2
11 +

n∑

i=2

h2
ii + 2

n∑

i=2

h2
1i

≥ h2
11 +

( ∑n
i=2 hii

)2

n− 1
+ 2

n∑

i=2

h2
1i

≥ n

n− 1

(
h2

11 +
n∑

i=2

h2
1i

)

= − n

n− 1
RicM (e1, e1).

Then we get

RicM ≥ −n− 1
n

|A|2.

Combining with (2.4), we have

|ω|∆|ω| ≥ 1
n− 1

∣∣∇|ω|∣∣2 − n− 1
n

|A|2|ω]|2

≥ 1
n− 1

∣∣∇|ω|∣∣2 − n− 1
n

|A|2|ω|2 (2.5)

for |ω| = |ω]|.
Fixing a point p ∈ M and for r > 0, we choose a C1 cut-off function

η satisfying 0 ≤ η ≤ 1, η ≡ 1 on Br(p) ⊂ M , η ≡ 0 on M\B2r(p), and
|∇η| ≤ 1

r on B2r(p)\Br(p) ⊂ M . Multiplying (2.5) by η2 and integrating
by parts over M , we get

0 ≤
∫

M

(
η2|ω|∆|ω| − 1

n− 1
η2

∣∣∇|ω|
∣∣2 +

n− 1
n

|A|2η2|ω|2
)

= −2
∫

M

η〈∇η,∇|ω|〉|ω| − n

n− 1

∫

M

η2
∣∣∇|ω|

∣∣2 +
n− 1

n

∫

M

η2|A|2|ω|2.
(2.6)
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Choosing f = η|ω| in the stability inequality (1.2), we obtain

δ

∫

M

|A|2η2|ω|2 ≤
∫

M

|∇(η|ω|)|2.

Substituting the above inequality into (2.6), then we have

0 ≤ −2
∫

M

η〈∇η,∇|ω|〉|ω| − n

n− 1

∫

M

η2
∣∣∇|ω|

∣∣2 +
n− 1
nδ

∫

M

|∇(η|ω|)|2

≤ −2
∫

M

η〈∇η,∇|ω|〉|ω|+ n− 1
nδ

∫

M

(|ω|2|∇η|2 + η2
∣∣∇|ω|∣∣2)

+
2(n− 1)

nδ

∫

M

η〈∇η,∇|ω|〉|ω| − n

n− 1

∫

M

η2
∣∣∇|ω|∣∣2

≤ 2
(

n− 1
nδ

− 1
) ∫

M

η〈∇η,∇|ω|〉|ω|+ (n− 1)2 − n2δ

n(n− 1)δ

∫

M

η2
∣∣∇|ω|∣∣2

+
n− 1
nδ

∫

M

|ω|2|∇η|2. (2.7)

Using Schwarz inequality, we get

2
∣∣∣∣
∫

M

η〈∇η,∇|ω|〉|ω|
∣∣∣∣ ≤ ε

∫

M

η2
∣∣∇|ω|∣∣2 +

1
ε

∫

M

|ω|2|∇η|2. (2.8)

From (2.7) and (2.8), we obtain

(
n2δ − (n− 1)2

n(n− 1)δ
− (n(1− δ)− 1)ε

nδ

) ∫

M

η2
∣∣∇|ω|∣∣2

≤ n(1− δ)− 1 + (n− 1)ε
nδε

∫

M

|ω|2|∇η|2

≤ n(1− δ)− 1 + (n− 1)ε
nδε

1
r2

∫

B2r(p)

|ω|2.

Since δ > (n−1)2

n2 and
∫

M
|ω|2 < ∞, choosing ε > 0 sufficiently small and

letting r →∞, we get ∇|ω| = 0 on M , i.e., |ω| is constant. Since
∫

M
|ω|2 <

∞, and the volume of M is infinite by Lemma 1 of [2], we have ω = 0. Hence
H1(L2(M)) = 0. ¤
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Proof of Corollary 1.2. Observe that if f is a harmonic function with finite
Dirichlet integral then its exterior df is an L2 harmonic 1-form. Moreover,
df = 0 if and only if f is identically constant. Hence

dimH0
D(M) ≤ dimH1(L2(M)) + 1.

Due to Lemma 2.3 and Theorem 1.1, we conclude that M has at most a
non-parabolic end. By Lemma 2.4, M has only one end. Moreover, we
obtain H1

0 (M) = 0 according to Lemma 2.3 in [3]. ¤
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