Finite \boldsymbol{p}-groups with a fixed-point-free automorphisms of order seven

Shousaku Abe

(Received July 17, 2009; Revised June 11, 2010)

Abstract

We prove several properties of finite p-groups which are generated by two elements of prime order p and which have a fixed-point-free automorphism of order seven.

Key words: p-group, nilpotent class, fixed-point-free automorphism.

1. Introduction

In this paper, we study properties of finite p-groups which are generated by two elements of prime order p and which have a fixed-point-free automorphism of order seven.

An automorphism α of a group G is said to have a fixed point g in G if $g^{\alpha}=g . C_{G}(\alpha)$ denotes the subgroup of G consisting of all the elements fixed by $\alpha: C_{G}(\alpha):=\left\{g \in G \mid g^{\alpha}=g\right\}$. If $C_{G}(\alpha)=1$, then α is called fixed-point-free (for brevity, f.p.f.).

In [6] Thompson showed that if a finite group has a f.p.f. automorphism of prime order, then, it is nilpotent. In [3] Higman showed that if a finite nilpotent group has a f.p.f. automorphism of prime order q, then its nilpotent class is bounded by a function depending only on q. It is well-known results that if $q=2$ then its nilpotent class is 1 and that if $q=3$ then its one is less than 3. Without the aid of Lie algebra theory, the purpose of this paper is to prove the following theorem.

Theorem 1 Let $p \geq 7$ be a prime and let P be a finite p-group which has two generators of prime order p. If P has a f.p.f. automorphism α of order 7, then it has nilpotent class less than 7.

Moreover, suppose that $p \equiv 1(\bmod 7)$ and let a, b be generators of P such that $a^{\alpha}=a^{u} w_{1}, b^{\alpha}=b^{v} w_{2}\left(w_{1}, w_{2} \in \Phi(P)\right)$. Then

1. If $v \equiv u(\bmod p)$, then for all $\left(x_{1}, \ldots, x_{7}\right) \in\{a, b\}^{7}$,

$$
\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right]=1
$$

2. If $v \equiv u^{2}(\bmod p),[a, b, b, b]=[a, b, b, a, a]=[a, b, a, a, a, a]=1$.
3. If $v \equiv u^{3}(\bmod p),[a, b, b]=[a, b, a, a, a]=1$.
4. If $v \equiv u^{6},[a, b]=1$.

Our notation is standard possibly except for the following:
$\Phi(G)$: Frattini subgroup of a group G,
$C_{i j}$: the commutator of x_{i} and x_{j},
$C_{i \ldots k}$: the commutator $\left[x_{i}, \ldots, x_{k}\right]$ of x_{i}, \ldots, x_{k},
$C_{a b \ldots z}$: the commutator $[a, b, \ldots, z]$ of a, b, \ldots, z,
$L_{i}(G)$: the lower central series of G.
We use the "bar" convertion for homomorphic images. Thus if G is a group, N is a normal subgroup and \bar{G} denotes the factor group G / N, then, for any subset X of G, \bar{X} denotes the image of X under the natural projection $G \rightarrow \bar{G}$.

The organization of the paper is as follows. Section 2 contains preliminary results. In Section 3, we discuss properties of finite p-groups which are generated by two elements of prime order p and which have nilpotent class 5 and 6. We prove our theorem in Section 4.

2. Preliminary results

In this section, we collect a number of preliminary lemmas to be used in later section.

The equations below are fundamental to commutator calculus. Let x, y, z be elements of a group. Then:

$$
\begin{aligned}
& \mathrm{C} 1[x, y]=[y, x]^{-1} \\
& \mathrm{C} 2[x y, z]=[x, z]^{y}[y, z]=[x, z][x, z, y][y, z] \\
& \mathrm{C} 3[x, y z]=[x, z][x, y]^{z}=[x, z][x, y][x, y, z] \\
& \mathrm{C} 4\left[x, y^{-1}\right]=\left([x, y]^{y^{-1}}\right)^{-1} \\
& \mathrm{C} 5\left[x^{-1}, y\right]=\left([x, y]^{x^{-1}}\right)^{-1}
\end{aligned}
$$

$\mathrm{C} 6\left[x, y^{-1}, z\right]^{y}\left[y, z^{-1}, x\right]^{z}\left[z, x^{-1}, y\right]^{x}=1$
The properties of the lower central series are listed here ([2]).
L1 $L_{i}(G) \operatorname{char} G$ for all i.
L2 $L_{i+1}(G) \subseteq L_{i}(G)$.
L3 $L_{i}(G) / L_{i+1}(G)$ is included in the center of $G / L_{i+1}(G)$.
(Let $x, x^{\prime} \in L_{i}(G), y, y^{\prime} \in L_{j}(G), z \in L_{k}(G)$.)
$\mathrm{L} 4[x, y] \in L_{i+j}(G)$.
L5 If $x \equiv x^{\prime}\left(\bmod L_{i+1}(G)\right)$ and $y \equiv y^{\prime}\left(\bmod L_{j+1}(G)\right)$, then $[x, y] \equiv$ $\left[x^{\prime}, y^{\prime}\right]\left(\bmod L_{i+j+1}(G)\right)$.
$\mathrm{L} 6\left[x x^{\prime}, y\right] \equiv[x, y]\left[x^{\prime}, y\right]\left(\bmod L_{i+j+1}(G)\right)$.
$\mathrm{L} 7\left[x, y y^{\prime}\right] \equiv[x, y]\left[x, y^{\prime}\right]\left(\bmod L_{i+j+1}(G)\right)$.
$\mathrm{L} 8[x, y, z][y, z, x][z, x, y] \equiv 1\left(\bmod L_{i+j+k+1}(G)\right)$.
L9 For any non-negative integer $a,[x, y]^{a} \equiv\left[x^{a}, y\right] \equiv\left[x, y^{a}\right](\bmod$ $\left.L_{i+j+1}(G)\right)$.
Proposition 1 Let p, q be prime numbers. If a non-abelian p-group P which is generated by two elements of P has a fixed-point-free automorphism α of order q, then $p \equiv 1(\bmod q)$.

Proof. α induces a fixed-point-free automorphism on $X:=L_{2}(P) / L_{3}(P)$. Since X is cyclic, its subgroup Y of order p is characteristic. Hence α induces a fixed-point-free automorphism on Y. We get $p=1+q k \equiv 1(\bmod q)$.
Lemma 1 Let P be a group. Let l, m be natural numbers, and $y_{\lambda} \in L_{k_{1}}(P)$ $(1 \leq \lambda \leq l), z_{\mu} \in L_{k_{2}}(P)(1 \leq \mu \leq m), w_{1} \in L_{k_{1}+1}(P)$ and $w_{2} \in L_{k_{2}+1}(P)$. We get the following equation

$$
\left[\left(\prod_{1 \leq \lambda \leq l} y_{\lambda}\right) w_{1},\left(\prod_{1 \leq \mu \leq m} z_{\mu}\right) w_{2}\right] \equiv \prod_{\substack{1 \leq \lambda \leq l \\ 1 \leq \mu \leq m}}\left[y_{\lambda}, z_{\mu}\right] \quad\left(\bmod L_{k_{1}+k_{2}+1}(P)\right)
$$

Proof. By induction on $l+m$, we have

$$
\begin{align*}
& {\left[\left(\prod_{1 \leq \lambda \leq l} y_{\lambda}\right) w_{1},\left(\prod_{1 \leq \mu \leq m} z_{\mu}\right) w_{2}\right]} \\
& =\left[\left(\prod_{1 \leq \lambda \leq l} y_{\lambda}\right) w_{1}, w_{2}\right]\left[\left(\prod_{1 \leq \lambda \leq l} y_{\lambda}\right) w_{1}, \prod_{1 \leq \mu \leq m} z_{\mu}\right]^{w_{2}} \\
& \equiv\left[\left(\prod_{1 \leq \lambda \leq l} y_{\lambda}\right) w_{1}, \prod_{1 \leq \mu \leq m} z_{\mu}\right] \quad\left(\bmod L_{k_{1}+k_{2}+1}(P)\right) \quad(\text { by L4 and L3) } \\
& \equiv\left[\prod_{1 \leq \lambda \leq l} y_{\lambda}, \prod_{1 \leq \mu \leq m} z_{\mu}\right]^{w_{1}}\left[w_{1}, \prod_{1 \leq \mu \leq m} z_{\mu}\right]\left(\bmod L_{k_{1}+k_{2}+1}(P)\right) \quad(\text { by C2) } \\
& \equiv\left[\prod_{1 \leq \lambda \leq l} y_{\lambda}, \prod_{1 \leq \mu \leq m} z_{\mu}\right] \quad\left(\bmod L_{k_{1}+k_{2}+1}(P)\right) \\
& \equiv\left[\prod_{1 \leq \lambda \leq l-1} y_{\lambda}, \prod_{1 \leq \mu \leq m} z_{\mu}\right]\left[y_{l}, \prod_{1 \leq \mu \leq m} z_{\mu}\right] \quad\left(\bmod L_{k_{1}+k_{2}+1}(P)\right) \quad(\text { by L6 }) \\
& \equiv\left[\prod_{1 \leq \lambda \leq l-1} y_{\lambda}, \prod_{1 \leq \mu \leq m-1} z_{\mu}\right]\left[\prod_{1 \leq \lambda \leq l-1} y_{\lambda}, z_{m}\right] \\
& \cdot\left[y_{l}, \prod_{1 \leq \mu \leq m-1} z_{\mu}\right]\left[y_{l}, z_{m}\right] \quad\left(\bmod L_{k_{1}+k_{2}+1}(P)\right) \tag{byL7}\\
& \equiv\left(\prod_{\substack{1 \leq \lambda \leq l-1 \\
1 \leq \mu \leq m-1}}\left[y_{\lambda}, z_{\mu}\right]\right)\left(\prod_{1 \leq \lambda \leq l-1}\left[y_{\lambda}, z_{m}\right]\right)\left(\prod_{1 \leq \mu \leq m-1}\left[y_{l}, z_{\mu}\right]\right)\left[y_{l}, z_{m}\right] \\
& \left(\bmod L_{k_{1}+k_{2}+1}(P)\right) \quad \text { (by induction) } \\
& \equiv \prod_{\substack{1 \leq \lambda \leq l \\
1 \leq \mu \leq m}}\left[y_{\lambda}, z_{\mu}\right] \quad\left(\bmod L_{k_{1}+k_{2}+1}(P)\right)
\end{align*}
$$

Lemma $2 \operatorname{Let} y_{1} \in L_{k_{1}}(P), y_{2} \in L_{k_{2}}(P), w_{1} \in L_{k_{1}+1}(P), w_{2} \in L_{k_{2}+1}(P)$ and n_{1}, n_{2} natural numbers. We obtain

$$
\left[y_{1}^{n_{1}} w_{1}, y_{2}^{n_{2}} w_{2}\right] \equiv\left[y_{1}, y_{2}\right]^{n_{1} n_{2}} \quad\left(\bmod L_{k_{1}+k_{2}+1}(P)\right)
$$

Proof. In lemma 1, we put $l=n_{1}, m=n_{2}, y_{\lambda}=y_{1}$ and $z_{\mu}=y_{2}$.

Lemma 3 Let $y_{i} \in L_{1}(P), w_{i} \in L_{2}(P)$ and let n_{i} be natural numbers $(1 \leq i \leq t)$. One gets

$$
\begin{aligned}
{\left[y_{1}^{n_{1}} w_{1}, y_{2}^{n_{2}} w_{2}\right] } & \equiv\left[y_{1}, y_{2}\right]^{n_{1} n_{2}} \quad\left(\bmod L_{3}(P)\right), \\
{\left[y_{1}^{n_{1}} w_{1}, y_{2}^{n_{2}} w_{2}, y_{3}^{n_{3}} w_{3}\right] } & \equiv\left[y_{1}, y_{2}, y_{3}\right]^{n_{1} n_{2} n_{3}} \quad\left(\bmod L_{4}(P)\right), \\
{\left[y_{1}^{n_{1}} w_{1}, y_{2}^{n_{2}} w_{2}, \ldots, y_{t}^{n_{t}} w_{t}\right] } & \equiv\left[y_{1}, y_{2}, \ldots, y_{t}\right]^{n_{1} n_{2} \ldots n_{t}} \quad\left(\bmod L_{t+1}(P)\right) .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& {\left[y_{1}^{n_{1}} w_{1}, y_{2}^{n_{2}} w_{2}\right] } \equiv\left[y_{1}, y_{2}\right]^{n_{1} n_{2}} \quad\left(\bmod L_{3}(P)\right) \quad(\text { by Lemma } 1) \\
& {\left[y_{1}^{n_{1}} w_{1}, y_{2}^{n_{2}} w_{2}, y_{3}^{n_{3}} w_{3}\right] }=\left[\left[y_{1}, y_{2}\right]^{n_{1} n_{2}} z_{1}, y_{3}^{n_{3}} w_{3}\right] \quad\left(z_{1} \in L_{3}(P)\right) \\
& \equiv\left[y_{1}, y_{2}, y_{3}\right]^{n_{1} n_{2} n_{3}}\left(\bmod L_{4}(P)\right) \quad(\text { by Lemma } 1) \\
& {\left[y_{1}^{n_{1}} w_{1}, y_{2}^{n_{2}} w_{2}, \ldots, y_{t}^{n_{t}} w_{t}\right] }=\left[\left[y_{1}, y_{2}, \ldots, y_{t-1}\right]^{n_{1} n_{2} \ldots n_{t-1}} z_{t}, y_{t}^{n_{t}} w_{t}\right] \\
& \equiv\left[y_{1}, y_{2}, \ldots, y_{t}\right]^{n_{1} n_{2} \ldots n_{t}} \quad\left(z_{t} \in L_{t}(P)\right) \\
&\left.\bmod L_{t+1}(P)\right) \\
&(\text { by Lemma } 1) \quad \square
\end{aligned}
$$

Lemma 4 Let $y_{1}, y_{2} \in L_{k_{1}}(P), y_{3} \in L_{k_{2}}(P)$ and let n_{1}, n_{2}, n_{3} be natural numbers. Then one obtains

$$
\left[y_{1}^{n_{1}} y_{2}^{n_{2}}, y_{3}^{n_{3}}\right] \equiv\left[y_{1}, y_{3}\right]^{n_{1} n_{3}}\left[y_{2}, y_{3}\right]^{n_{2} n_{3}} \quad\left(\bmod L_{k_{1}+k_{2}+1}(P)\right)
$$

Proof.

$$
\begin{align*}
{\left[y_{1}^{n_{1}} y_{2}^{n_{2}}, y_{3}^{n_{3}}\right] } & \equiv\left[y_{1}^{n_{1}}, y_{3}^{n_{3}}\right]\left[y_{2}^{n_{2}}, y_{3}^{n_{3}}\right] \quad\left(\bmod L_{k_{1}+k_{2}+1}(P)\right) \tag{byL6}\\
& \equiv\left[y_{1}, y_{3}\right]^{n_{1} n_{3}}\left[y_{2}, y_{3}\right]^{n_{2} n_{3}} \quad\left(\bmod L_{k_{1}+k_{2}+1}(P)\right)
\end{align*}
$$

(by Lemma 1)
Lemma 5 If a finite nilpotent group G is generated by two elements a, b, then for each $i \geq 2 L_{i}(G) / L_{i+1}(G)$ is generated by $\left\{\left[x_{1}, x_{2}, \ldots, x_{i}\right] L_{i+1}(G) \mid\right.$ $\left.\left(x_{j}\right) \in\{a, b\}^{i}, x_{1} \neq x_{2}\right\}$. And a element of $L_{i}(G) / L_{i+1}(G)$ is reprsented by

$$
\prod_{i}\left[x_{1}, x_{2}, \ldots, x_{i}\right]^{n_{x}} L_{i+1}(G)
$$

where the product \prod_{i} runs over $x=\left(x_{j}\right) \in\{a, b\}^{i}$ such that $x_{1} \neq x_{2}$.
Proof. When $i=2$, we shall show that $x L_{3}(G)=\left[a^{\xi_{11}} b^{\xi_{12}} w_{1}\right.$, $\left.a^{\xi_{21}} b^{\xi_{22}} w_{2}\right] L_{3}(G)\left(w_{1}, w_{2} \in L_{2}(G)\right)$ is reprsented by $[a, b] L_{3}(G)$.

$$
\begin{aligned}
x L_{3}(G) & =\left[a^{\xi_{11}} b^{\xi_{12}}, a^{\xi_{21}} b^{\xi_{22}}\right] L_{3}(G) \\
& =\left[a^{\xi_{11}}, a^{\xi_{21}} b^{\xi_{22}}\right]\left[b^{\xi_{12}}, a^{\xi_{21}} b^{\xi_{22}}\right] L_{3}(G) \\
& =\left[a^{\xi_{11}}, b^{\xi_{22}}\right]\left[b^{\xi_{12}}, a^{\xi_{21}}\right] L_{3}(G) \\
& =[a, b]^{\xi_{11} \xi_{22}-\xi_{21} \xi_{12}} L_{3}(G)
\end{aligned}
$$

When $i-1$, let us suppose that the claim is true. It is enough that for any $y \in L_{i-1}(G)$ and any $z \in G,[y, z] L_{i+1}(G)$ is reprsented in the form

$$
\prod_{i}\left[x_{1}, x_{2}, \ldots, x_{i}\right]^{l_{x}} L_{i+1}(G)
$$

By induction, one has $y=\left(\prod_{i-1}\left[x_{1}, x_{2}, \ldots, x_{i-1}\right]^{n_{x}}\right) v$ for some $v \in L_{i}(G)$ and $z=a^{\xi_{i 1}} b^{\xi_{i 2}} w_{i}$ for some $w_{i} \in L_{2}(G)$. Hence, from Lemma 1,

$$
\begin{aligned}
{[y, z] L_{i+1}(G)=} & {\left[\left(\prod_{i-1}\left[x_{1}, x_{2}, \ldots, x_{i-1}\right]^{n_{x}}\right) v, a^{\xi_{i 1}} b^{\xi_{i 2}} w_{i}\right] L_{i+1}(G) } \\
= & {\left[\prod_{i-1}\left[x_{1}, x_{2}, \ldots, x_{i-1}\right]^{n_{x}}, a^{\xi_{i 1}}\right] } \\
& \cdot\left[\prod_{i-1}\left[x_{1}, x_{2}, \ldots, x_{i-1}\right]^{n_{x}}, b^{\xi_{i 2}}\right] L_{i+1}(G) \\
= & \prod_{i-1}\left[\left[x_{1}, x_{2}, \ldots, x_{i-1}\right]^{n_{x}}, a^{\xi_{i 1}}\right] \\
& \cdot \prod_{i-1}\left[\left[x_{1}, x_{2}, \ldots, x_{i-1}\right]^{n_{x}}, b^{\xi_{i 2}}\right] L_{i+1}(G) \\
= & \prod_{i}\left[x_{1}, x_{2}, \ldots, x_{i}\right]^{l_{x}} L_{i+1}(G)
\end{aligned}
$$

We shall need the following lemmas.

Lemma 6 Let p be an odd prime and let $i(2 \leq i \leq 5)$ be natural number. If a nilpotent group P is generated by two elements a, b both of which have order p, then for all $x_{1}, \ldots, x_{i} \in\{a, b\}$, and for all natural numbers n_{1}, \ldots, n_{i}, a commutator $\left[x_{1}^{n_{1}}, x_{2}^{n_{2}}, \ldots, x_{i}^{n_{i}}\right]$ of weight i have order p or 1 on $L_{i+1}(P)$. Proof.

$$
\begin{align*}
{\left[x_{1}^{n_{1}}, x_{2}^{n_{2}}, \ldots, x_{i}^{n_{i}}\right]^{p} } & \equiv\left[x_{1}^{n_{1}}, x_{2}^{n_{2}}, \ldots, x_{i}^{p n_{i}}\right] \quad\left(\bmod L_{i+1}(P)\right) \tag{byL7}\\
& \equiv\left[x_{1}^{n_{1}}, x_{2}^{n_{2}}, \ldots, x_{i-1}^{n_{i-1}}, 1\right] \quad\left(\bmod L_{i+1}(P)\right) \\
& \equiv 1 \quad\left(\bmod L_{i+1}(P)\right)
\end{align*}
$$

Lemma 7 Let p be an odd prime number. If a group P is generated by two elements a, b both of which has order p, then $L_{4}(P) / L_{5}(P)$ is generated by three elements $[a, b, a, a] L_{5}(P),[a, b, b, a] L_{5}(P)$, and $[a, b, b, b] L_{5}(P)$.

Proof. Since Lemma 4, it is enough to prove that $[a, b, a, b] L_{5}(P)$ is represented by $[a, b, b, a] L_{5}(P)$.

$$
\begin{aligned}
& {[a, b, a, b] } \\
& \equiv[a, b, a, b]^{a^{-1}} \quad\left(\bmod L_{5}(P)\right) \\
& \quad \equiv\left[b,[a, b]^{-1}, a^{-1}\right]^{-[a, b]}\left[a^{-1}, b^{-1},[a, b]\right]^{-b} \quad\left(\bmod L_{5}(P)\right) \\
& \quad \equiv\left[[b,[a, b]]^{-[a, b]^{-1}}, a^{-1}\right]^{-1}\left[\left[a, b^{-1}\right]^{-a^{-1}},[a, b]\right]^{-1} \quad\left(\bmod L_{5}(P)\right) \\
& \quad \equiv\left[[a, b, b]\left[a, b, b,[a, b]^{-1}\right], a^{-1}\right]^{-1}\left[[a, b]^{b^{-1} a^{-1}},[a, b]\right]^{-1} \quad\left(\bmod L_{5}(P)\right) \\
& \quad \equiv\left[[a, b, b], a^{-1}\right]^{-1}\left[[a, b]\left[a, b, b^{-1} a^{-1}\right],[a, b]\right]^{-1} \quad\left(\bmod L_{5}(P)\right) \\
& \quad \equiv[a, b, b, a]^{a^{-1}}[[a, b],[a, b]]^{-1} \quad\left(\bmod L_{5}(P)\right) \\
& \quad \equiv[a, b, b, a] \quad\left(\bmod L_{5}(P)\right) .
\end{aligned}
$$

3. Examples

3.1. $\quad p$-group of class 5

We will get the following equations for p -groups which are generated by two elements of order p and which have nilpotent class five. We study the following group:

$$
\left.P_{5}:=\langle a, b| a^{p}=b^{p}=1,\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right]=1 \text { for all }\left(x_{i}\right) \in\{a, b\}^{6}\right\rangle .
$$

We have the following equations.
$\mathrm{Q} 1\left[C_{123}^{i}, C_{45}^{j}\right]=C_{12345}^{i j} C_{12354}^{-i j}$
$\mathrm{Q} 2\left[x_{1}, x_{2}^{i}\right]=C_{12}^{i} C_{122}^{\binom{i}{2}} C_{1222}^{\binom{i}{3}} C_{12222}^{\binom{i}{4}} C_{12212}^{\binom{i}{3}} C_{12221}^{-\binom{i}{3}}$
Q3 $\left[x_{1}^{i}, x_{2}\right]=C_{12}^{i} C_{121}^{\binom{i}{2}} C_{1211}^{\binom{i}{3}} C_{12111}^{\binom{i}{4}} C_{12112}^{(i-1) i(2 i-1) / 6} C_{12121}^{-(i-1) i(2 i-1) / 6}$
Q4 $C_{2134}=C_{1234}^{-1}$
Q5 $C_{21345}=C_{12345}^{-1}$
Q6 $C_{213}=C_{123}^{-1} C_{12312} C_{12321}^{-1}$
Q7 $C_{12212}=C_{12221}$
Q8 $C_{12112}=C_{12121}$
Proposition $2 L_{5}\left(P_{5}\right)$ is generated by four elements $[a, b, a, a, a]$, $[a, b, b, a, a],[a, b, b, b, a]$ and $[a, b, b, b, b]$.

Proof. Since $L_{4}\left(P_{5}\right) / L_{5}\left(P_{5}\right)$ is generated by three elements $\overline{[a, b, a, a]}$, $\overline{[a, b, a, b]}$ and $\overline{[a, b, b, b]}$, we deduce that $L_{5}\left(P_{5}\right) / L_{6}\left(P_{5}\right) \cong L_{5}\left(P_{5}\right)$ is generated by six elements $\overline{[a, b, a, a, a]}, \overline{[a, b, a, a, b]}, \overline{[a, b, a, b, a]}, \overline{[a, b, a, b, b]}$, $\overline{[a, b, b, b, a]}$, and $\overline{[a, b, b, b, b]}$. From the equations above, we get

$$
\begin{aligned}
& C_{a b a a b}=C_{a b a b a} \quad(\text { by Q8) } \\
& =C_{a b b a a} \quad(\text { by Lemma } 7), \\
& C_{a b b a b}=C_{a b b b a} . \quad(\text { by Q7) }
\end{aligned}
$$

Therefore $L_{5}\left(P_{5}\right) / L_{6}\left(P_{5}\right)$ is generated by four elements $\overline{[a, b, a, a, a]}$, $\overline{[a, b, b, a, a]}, \overline{[a, b, b, b, a]}$, and $\overline{[a, b, b, b, b]}$.

Proof. Equations (Q1)-(Q3) follow from induction and (C1)-(C6).

$$
\begin{align*}
C_{2134} & =\left[C_{12}^{-1}, x_{3}, x_{4}\right] \tag{Q4}\\
& =\left[C_{123}^{-C_{12}^{-1}}, x_{4}\right] \tag{byC5}\\
& =C_{1234}^{-C_{12}^{-C_{12}^{-1}}} \tag{byC5}\\
& =C_{1234}^{-1} .
\end{align*}
$$

(Q5)

$$
\begin{align*}
C_{21345} & =\left[C_{1234}^{-1}, x_{5}\right] \tag{byQ4}\\
& =C_{12345}^{-C_{1234}^{-1}} \tag{byC5}\\
& =C_{12345}^{-1} .
\end{align*}
$$

(by Q4)
(Q6)

$$
\begin{align*}
C_{213} & =\left[C_{12}^{-1}, x_{3}\right] \\
& =C_{123}^{-C_{12}^{-1}} \tag{byC5}\\
& =C_{123}^{-1}\left[C_{123}^{-1}, C_{12}^{-1}\right] \\
& =C_{123}^{-1} C_{12312} C_{12321}^{-1} . \tag{byQ1}
\end{align*}
$$

(Q7) Indeed
and (Q2) so that

$$
C_{12212}^{(i-1) i(4 i-2) / 6}=C_{12221}^{(i-1) i(4 i-2) / 6}
$$

$$
\begin{aligned}
& {\left[x_{1}, x_{2}^{i}\right]=\left[x_{2}^{i}, x_{1}\right]^{-1}} \\
& =\left(C_{21}^{i} C_{212}^{\binom{i}{2}} C_{2122}^{\binom{i}{3}} C_{21222}^{\binom{i}{4}} C_{21221}^{(i-1) i(2 i-1) / 6} C_{21212}^{-(i-1) i(2 i-1) / 6}\right)^{-1} \\
& \text { (by Q3) } \\
& =C_{21212}^{(i-1) i(2 i-1) / 6} C_{21221}^{-(i-1) i(2 i-1) / 6} C_{21222}^{-\binom{i}{4}} C_{2122}^{-\binom{i}{3}} C_{212}^{-\binom{i}{2}} C_{21}^{-i} \\
& =\underbrace{C_{12212}^{-(i-1) i(2 i-1) / 6} C_{12221}^{(i-1) i(2 i-1) / 6} C_{12222}^{(i)}}_{\text {(by Q5) }} \underbrace{C_{1222}^{(i)}}_{\text {(by Q4) }} \\
& \cdot \underbrace{\left.C_{122}^{(i)}{ }_{2}^{2} C_{12212}^{-\binom{i}{2}} C_{12221}^{(i)}{ }_{2}^{2}\right)}_{\text {(by Q6) }} C_{12}^{i} \\
& =C_{12}^{i} C_{122}^{\binom{i}{2}} C_{12212}^{-\binom{i}{2}} C_{12221}^{\binom{i}{2}} \underbrace{\left.C_{12212}^{i\binom{i}{2}} C_{12221}^{-i(i)}{ }_{2}\right)}_{\text {(by Q1) }} C_{1222}^{\binom{i}{3}} C_{12222}^{\binom{i}{4}} \\
& \text { - } C_{12212}^{(i-1) i(2 i-1) / 6} C_{12221}^{-(i-1) i(2 i-1) / 6} \\
& =C_{12}^{i} C_{122}^{\binom{i}{2}} C_{1222}^{\binom{i}{3}} C_{12222}^{\binom{i}{4}} C_{12212}^{(i-1) i(5 i-4) / 6} C_{12221}^{-(i-1) i(5 i-4) / 6}
\end{aligned}
$$

Since there exists an integer i such that $1 \leq i \leq p-1$ and $f(i)=$ $(i-1) i(2 i-1) / 3 \neq 0$, one has

$$
C_{12212}=C_{12221}
$$

(Q8) Interchanging the index 1 and 2 in (Q7), we obtain

$$
C_{21121}=C_{21112}
$$

From (Q5),

$$
C_{12121}=C_{12112}
$$

3.2. p-group of class 6

We study the following group:

$$
\begin{aligned}
P_{6}:=\langle a, b| a^{p}=b^{p} & =1 \\
& {\left.\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right]=1 \text { for all }\left(x_{i}\right) \in\{a, b\}^{7}\right\rangle . }
\end{aligned}
$$

We obtain the following equations.

$$
\begin{aligned}
& \text { R1 }\left[C_{123}^{i}, C_{45}^{j}\right]=C_{12345}^{i j} C_{12354}^{-i j} C_{123445}^{-i j} C_{123454}^{i j} C_{123554}^{i j} C_{123545}^{-i j} \\
& \text { R2 }\left[C_{1234}^{i}, C_{56}^{j}\right]=C_{123456}^{i j} C_{123465}^{-i j} \\
& \text { R3 }\left[C_{12345}^{i}, x_{6}^{j}\right]=C_{123456}^{i j} \\
& \text { R4 }\left[C_{1234}^{i}, x_{5}^{j}\right]=C_{12345}^{i j} C_{123455}^{i\left(\frac{j}{2}\right)} \\
& \text { R5 }\left[C_{123}, C_{456}\right]=C_{123645}^{-1} C_{123654} C_{123456} C_{123546}^{-1} \\
& \text { R6 } C_{121112}=C_{121121} \\
& \text { R7 } C_{122212}=C_{122221} \\
& \text { R8 }\left[C_{123}^{i}, x_{4}^{j}\right]=C_{1234}^{i j} C_{12344}^{i\left(\frac{j}{2}\right)} C_{123444}^{i\left({ }_{3}^{j}\right)} \\
& \text { R9 } C_{121212}=C_{121221}
\end{aligned}
$$

Proposition $3 L_{6}\left(P_{6}\right)$ is generated by five elements $[a, b, a, a, a, a]$, $[a, b, b, a, a, a],[a, b, b, b, a, a],[a, b, b, b, b, a]$ and $[a, b, b, b, b, b]$.

Proof. Since $L_{5}\left(P_{6}\right) / L_{6}\left(P_{6}\right)$ is generated by $\overline{[a, b, a, a, a]}, \overline{[a, b, b, a, a]}$, $\overline{[a, b, b, b, a]}$, and $\overline{[a, b, b, b, b]}$ by Proposition $2, L_{6}\left(P_{6}\right) / L_{7}\left(P_{6}\right)$ is generated
by $\overline{[a, b, a, a, a, a]}, \overline{[a, b, a, a, a, b]}, \overline{[a, b, b, a, a, a]}, \overline{[a, b, b, a, a, b]}, \overline{[a, b, b, b, a, a]}$, $\overline{[a, b, b, b, a, b]}, \overline{[a, b, b, b, b, a]}$, and $\overline{[a, b, b, b, b, b]}$. And from the above equations, we obtain

$$
\begin{aligned}
C_{a b a a a b} & =C_{a b a a b a} \quad(\mathrm{by} \mathrm{R} 6) \\
& =C_{a b a b a a} \quad(\mathrm{by} \mathrm{Q} 8) \\
& =C_{a b b a a a} \quad(\mathrm{by} \text { Lemma } 7), \\
C_{a b b a a b} & =C_{a b b a b a} \quad(\mathrm{by} \mathrm{R} 9) \\
& =C_{a b b b a a} \quad(\mathrm{by} \mathrm{Q} 7) \\
C_{a b b b a b} & =C_{a b b b b a} \quad(\mathrm{by} \mathrm{R} 7)
\end{aligned}
$$

This completes the proof.
Proof. Equations (R1)-(R4) and (R8) follow from induction and (C1)(C6).
(R5) $\left[C_{123}, C_{456}\right]$

$$
\begin{aligned}
& =\left[C_{123}, C_{45}^{-1} x_{6}^{-1} C_{45} x_{6}\right] \\
& =\left[C_{123}, x_{6}^{-1} C_{45} x_{6}\right]\left[C_{123}, C_{45}^{-1}\right] \underbrace{\left[C_{123}, C_{45}^{-1}, x_{6}^{-1} C_{45} x_{6}\right]}_{\in L_{7}\left(P_{6}\right)}
\end{aligned}
$$

$$
=\left[C_{123}, C_{45} x_{6}\right]\left[C_{123}, x_{6}^{-1}\right]\left[C_{123}, x_{6}^{-1}, C_{45} x_{6}\right]
$$

$$
\begin{equation*}
\left(C_{12354} C_{12345}^{-1} C_{123554}^{-1} C_{123545} C_{123445} C_{123454}^{-1}\right) \tag{byR1}
\end{equation*}
$$

$=\left[C_{123}, x_{6}\right]\left[C_{123}, C_{45}\right]\left[C_{123}, C_{45}, x_{6}\right] \underbrace{\left(C_{1236}^{-1} C_{12366}^{\binom{-1}{2}} C_{123666}^{\binom{-1}{3}}\right)}_{\text {(by R8) }}$

$$
\left[C_{123}, x_{6}^{-1}, x_{6}\right]\left[C_{123}, x_{6}^{-1}, C_{45}\right]\left[C_{123}, x_{6}^{-1}, C_{45}, x_{6}\right]
$$

$$
\left(C_{12354} C_{12345}^{-1} C_{123554}^{-1} C_{123545} C_{123445} C_{123454}^{-1}\right)
$$

$$
\begin{equation*}
=C_{1236}\left(C_{12345} C_{12354}^{-1} C_{123445}^{-1} C_{123454} C_{123554} C_{123545}^{-1}\right) \tag{byR1}
\end{equation*}
$$

$\left[\left(C_{12345} C_{12354}^{-1} C_{123445}^{-1} C_{123454} C_{123554} C_{123545}^{-1}\right), x_{6}\right] \quad$ (by R1)
$\left(C_{1236}^{-1} C_{12366}^{\binom{-1}{2}} C_{123666}^{\binom{-1}{3}}\right)$

$$
\begin{aligned}
& {\left[\left(C_{1236}^{-1} C_{12366}^{\binom{-1}{2}} C_{123666}^{\binom{-1}{3}}\right), x_{6}\right]} \\
& {\left[\left(C_{1236}^{-1} C_{12366}^{\binom{-1}{2}} C_{123666}^{\binom{-1}{3}}\right), C_{45}\right]} \\
& \left(C_{12354} C_{12345}^{-1} C_{123554}^{-1} C_{123545} C_{123445} C_{123454}^{-1}\right) \\
& =C_{1236}\left(C_{12345} C_{12354}^{-1} C_{123445}^{-1} C_{123454} C_{123554} C_{123545}^{-1}\right) \\
& {\left[C_{12345}, x_{6}\right]^{C_{12354}^{-1}}\left[C_{12354}^{-1}, x_{6}\right]} \\
& \left(C_{1236}^{-1} C_{12366}^{\binom{-1}{2}} C_{123666}^{\binom{-1}{3}}\right) \\
& {\left[C_{1236}^{-1}, x_{6}\right]^{C_{12366}^{\binom{-1}{2}}}\left[C_{12366}^{\left(\begin{array}{c}
\binom{2}{2}
\end{array}, x_{6}\right]}\right.} \\
& {\left[C_{1236}^{-1}, C_{45}\right]} \\
& \left(C_{12354} C_{12345}^{-1} C_{123554}^{-1} C_{123545} C_{123445} C_{123454}^{-1}\right) \\
& =C_{1236}\left(C_{12345} C_{12354}^{-1} C_{123445}^{-1} C_{123454} C_{123554} C_{123545}^{-1}\right) \\
& C_{123456} C_{123546}^{-1} \\
& \left(C_{1236}^{-1} C_{12366}^{\binom{-1}{2}} C_{123666}^{\binom{-1}{3}}\right) \\
& C_{12366}^{-1} C_{123666}^{\binom{-1}{2}} \\
& C_{123645}^{-1} C_{123654} \\
& \left(C_{12354} C_{12345}^{-1} C_{123554}^{-1} C_{123545} C_{123445} C_{123454}^{-1}\right) \\
& =C_{123456} C_{123546}^{-1} C_{123645}^{-1} C_{123654} \text {. }
\end{aligned}
$$

(R6) By substituting ($x_{1}, x_{2}, x_{1}, x_{1}, x_{2}, x_{1}$) for $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ in (R5),

$$
1=\left[C_{121}, C_{121}\right]=C_{121112}^{-1} C_{121121} C_{121121} C_{121211}^{-1}
$$

Using (Q8), we have $C_{121121}=C_{121211}$ so that we get

$$
C_{121112}=C_{121121} .
$$

(R7) By substituting $\left(x_{1}, x_{2}, x_{2}, x_{1}, x_{2}, x_{2}\right)$ for $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ in (R5),

$$
1=\left[C_{122}, C_{122}\right]=C_{122212}^{-1} C_{122221} C_{122122} C_{122212}^{-1}
$$

Using (Q7), we have $C_{122212}=C_{122122}$ so that we get

$$
C_{122212}=C_{122221}
$$

(R9) By (R5), we have

$$
\begin{aligned}
{\left[C_{123}, C_{456}\right]=} & {\left[C_{456}, C_{123}\right]^{-1} } \\
1= & C_{123645}^{-1} C_{123654} C_{123456} C_{123546}^{-1} \\
& C_{456312}^{-1} C_{456321} C_{456123} C_{456213}^{-1}
\end{aligned}
$$

By substituting $\left(x_{1}, x_{2}, x_{1}, x_{1}, x_{2}, x_{2}\right)$ for $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ in the above equation, one gets

$$
\begin{aligned}
1= & C_{121221} C_{121212}^{-1} \\
& C_{122112}^{-1} C_{122121} \underbrace{C_{122121} C_{122211}^{-1}}_{=1} \\
& \underbrace{C_{121212}^{-1} C_{121122}}_{=1} \\
= & C_{121221} C_{121212}^{-1} \\
& C_{122112}^{-1} C_{122121} \\
= & C_{121221}^{2} C_{121212}^{-2} \quad \quad \text { (by Lemma } 7 \text {) }
\end{aligned}
$$

4. Proof of the theorem

Proof. Since P is generated by two elements of order p, we have $\Phi(P)=$ $L_{2}(P)$. If P is an abelian group, then we have the desired conclusion. By Proposition $1, p \equiv 1(\bmod 7)$. There exists a generator system $\{a, b\}$ of P such that a and b are of order p and such that $a^{\alpha}=a^{u} w_{1}$ and $b^{\alpha}=b^{v} w_{2}$ for some u, v integers and some $w_{1}, w_{2} \in \Phi(P)$. Thus it is enough that we shall
prove the remainder of the theorem. Our calculation in Examples allows us to compare the dimension of the vector space $L_{i}(P) / L_{i+1}(P)$ over the finite field \mathbb{F}_{p} with that of the subspace which is generated by the elements fixed by α.

If $v \equiv u^{6}(\bmod p)$, we get

$$
\begin{align*}
{[a, b]^{\alpha} } & =\left[a^{u} w_{1}, b^{u^{6}} w_{2}\right] \\
& \equiv[a, b]^{u^{7}} \quad\left(\bmod L_{3}(P)\right) \tag{byLemma3}\\
& \equiv[a, b] \quad\left(\bmod L_{3}(P)\right) \tag{byLemma5}
\end{align*}
$$

Since α induces a f.p.f. automorphism on $L_{2}(P) / L_{3}(P)$, we have $[a, b] \in$ $L_{3}(P)$. Lemma 5 states that $L_{2}(P) / L_{3}(P)$ is generated by $[a, b] L_{3}(P)$. Hence, we get $L_{2}(P) / L_{3}(P)=1$. Since P is nilpotent, we get $L_{2}(P)=1$. Therefore $[a, b]=1$.

If $v \equiv u^{3}(\bmod p)$, we get

$$
\begin{align*}
{[a, b, b]^{\alpha} } & =\left[a^{u} w_{1}, b^{u^{3}} w_{2}, b^{u^{3}} w_{2}\right] \\
& \equiv[a, b, b]^{u^{7}} \quad\left(\bmod L_{4}(P)\right) \tag{byLemma3}\\
& \equiv[a, b, b] \quad\left(\bmod L_{4}(P)\right)
\end{align*}
$$

Since α induces a f.p.f. automorphism on $L_{3}(P) / L_{4}(P)$, we have $[a, b, b] \in$ $L_{4}(P)$ and $[a, b, b, a],[a, b, b, b] \in L_{5}(P)$. Then an elementary but tedious calculation shows that

$$
\begin{align*}
{[a, b, b]^{\alpha} } & =[a, b, b] w_{5} \quad \text { for some } w_{5} \in L_{5}(P) \tag{1}\\
{[a, b, a, a, a]^{\alpha} } & =\left[a^{u} w_{1}, b^{u^{3}} w_{2}, a^{u} w_{1}, a^{u} w_{1}, a^{u} w_{1}\right] \\
& \equiv[a, b, a, a, a]^{u^{7}} \quad\left(\bmod L_{6}(P)\right) \quad(\text { by Lemma } 3) \\
& \equiv[a, b, a, a, a] \quad\left(\bmod L_{6}(P)\right)
\end{align*}
$$

Since α induces a f.p.f. automorphsim on $L_{5}(P) / L_{6}(P)$, we have $[a, b, a, a, a] \in L_{6}(P)$. From Proposition 2, we deduce that $L_{5}(P) / L_{6}(P)=$ 1. This means that $L_{5}(P)=1$. Hence one obtains $[a, b, a, a, a]=1$, $[a, b, b, a, a]=1,[a, b, b, b, a]=1,[a, b, b, b, b]=1,[a, b, b, b]=1$ and $[a, b, b, a]=1$. From equation (1) and $L_{5}(P)=1$ we have $[a, b, b]^{\alpha}=[a, b, b]$.

Therefore we conclude that $[a, b, b]=1$.
If $v \equiv u^{2}(\bmod p)$, we get

$$
\begin{align*}
{[a, b, b, b]^{\alpha} } & =\left[a^{u} w_{1}, b^{u^{2}} w_{2}, b^{u^{2}} w_{2}, b^{u^{2}} w_{2}\right] \\
& \equiv[a, b, b, b]^{u^{7}} \quad\left(\bmod L_{5}(P)\right) \tag{byLemma3}\\
& \equiv[a, b, b, b] \quad\left(\bmod L_{5}(P)\right) .
\end{align*}
$$

Since α induce a f.p.f. automorphism on $L_{5}(P) / L_{6}(P),[a, b, b, b] \in L_{5}(P)$. And $[a, b, b, b, a],[a, b, b, b, b] \in L_{6}(P)$. Then an commutator calculation show that

$$
\begin{align*}
{[a, b, b, b]^{\alpha} } & =[a, b, b, b] w_{6} \quad \text { for some } w_{6} \in L_{6}(P) \tag{2}\\
{[a, b, b, a, a]^{\alpha} } & =\left[a^{u} w_{1}, b^{u^{2}} w_{2}, b^{u^{2}} w_{2}, a^{u} w_{1}, a^{u} w_{1}\right] \\
& \equiv[a, b, b, a, a]^{u^{7}} \quad\left(\bmod L_{6}(P)\right) \quad(\text { by Lemma } 3) \\
& \equiv[a, b, b, a, a] \quad\left(\bmod L_{6}(P)\right)
\end{align*}
$$

Since α induces a f.p.f. automorphsim on $L_{5}(P) / L_{6}(P),[a, b, b, a, a] \in$ $L_{6}(P)$.

$$
\begin{aligned}
{[a, b, a, a, a, a]^{\alpha} } & =\left[a^{u} w_{1}, b^{u^{2}} w_{2}, a^{u} w_{1}, a^{u} w_{1}, a^{u} w_{1}, a^{u} w_{1}\right] \\
& \equiv[a, b, a, a, a, a]^{u^{7}} \quad\left(\bmod L_{7}(P)\right) \quad \text { (by Lemma 3) } \\
& \equiv[a, b, a, a, a, a] \quad\left(\bmod L_{7}(P)\right)
\end{aligned}
$$

Since α induces a f.p.f. automorphsim on $L_{6}(P) / L_{7}(P)$, we have $[a, b, a, a, a, a] \in L_{7}(P)$. From Proposition 3, we deduce that $L_{6}(P) / L_{7}(P)=$ 1. We get $L_{6}(P)=1$. $[a, b, b, b, a]=[a, b, b, b, b]=1$. From equation (2) and $L_{6}(P)=1$ and $[a, b, b, b] \in L_{5}(P)$, we have $[a, b, b, b]^{\alpha}=[a, b, b, b]$. Therefore $[a, b, b, b]=1$.

If $v \equiv u(\bmod p)$, then for all $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right) \in\{a, b\}^{7}$,

$$
\begin{aligned}
& {\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right]^{\alpha}} \\
& \quad=\left[x_{1}^{u} w_{s_{1}}, x_{2}^{u} w_{s_{2}}, x_{3}^{u} w_{s_{3}}, x_{4}^{u} w_{s_{4}}, x_{5}^{u} w_{s_{5}}, x_{6}^{u} w_{s_{6}}, x_{7}^{u} w_{s_{7}}\right] \\
& \left.\quad \equiv\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right]^{u^{7}} \quad\left(\bmod L_{8}(P)\right) \quad \text { (by Lemma } 3\right)
\end{aligned}
$$

$$
\equiv\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right] \quad\left(\bmod L_{8}(P)\right)
$$

Since α induces a f.p.f. automorphism on $L_{7}(P) / L_{8}(P)$, for all $\left(x_{i}\right) \in$ $\{a, b\}^{7}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right] \in L_{8}(P)$. Hence $L_{7}(P) / L_{8}(P)=1$. Therefore $L_{7}(P)=1$.

This completes the proof of the Theorem.

References

[1] Abe S., Finite p-groups with a fixed-point-free automorphism of order five. preprint.
[2] Gorenstein D., Finite Groups. Harper \& Row, New York(1968). Zbl 0185. 05701
[3] Higman G., Groups and rings having automorphisms without non-trivial fixed elements. Jour. London Math. Soc., 32 (1957), 321-334. Zbl 0079. 03203
[4] Robinson D. J. S., A Course in the Theory of Groups. Springer-Verlag, New York, second edition(1996). Zbl 0836.20001
[5] Suzuki M., Group Theory. Springer-Verlag, New York, 1982. Zbl 0472.20001
[6] Thompson J. G., Finite groups with fixed-point-free automorphisms of prime order. Proc. Acad. Sci., 45 (1959), 578-581. Zbl 0086.25101

Department of Mathematical Information Science
Tokyo University of Science
1-3 Kagurazaka Shinjyuku-ku
Tokyo 162-8601, Japan
E-mail: shousaku_abe@yahoo.co.jp

