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Abstract. We prove several properties of finite p-groups which are generated by two

elements of prime order p and which have a fixed-point-free automorphism of order

seven.

Key words: p-group, nilpotent class, fixed-point-free automorphism.

1. Introduction

In this paper, we study properties of finite p-groups which are gener-
ated by two elements of prime order p and which have a fixed-point-free
automorphism of order seven.

An automorphism α of a group G is said to have a fixed point g in G

if gα = g. CG(α) denotes the subgroup of G consisting of all the elements
fixed by α: CG(α) := {g ∈ G | gα = g}. If CG(α) = 1, then α is called
fixed-point-free (for brevity, f.p.f.).

In [6] Thompson showed that if a finite group has a f.p.f. automorphism
of prime order, then, it is nilpotent. In [3] Higman showed that if a finite
nilpotent group has a f.p.f. automorphism of prime order q, then its nilpotent
class is bounded by a function depending only on q. It is well-known results
that if q = 2 then its nilpotent class is 1 and that if q = 3 then its one is less
than 3. Without the aid of Lie algebra theory, the purpose of this paper is
to prove the following theorem.

Theorem 1 Let p ≥ 7 be a prime and let P be a finite p-group which has
two generators of prime order p. If P has a f.p.f. automorphism α of order
7, then it has nilpotent class less than 7.

Moreover, suppose that p ≡ 1 (mod 7) and let a, b be generators of P

such that aα = auw1, bα = bvw2 (w1, w2 ∈ Φ(P )). Then
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1. If v ≡ u (mod p), then for all (x1, . . . , x7) ∈ {a, b}7,

[x1, x2, x3, x4, x5, x6, x7] = 1.

2. If v ≡ u2 (mod p), [a, b, b, b] = [a, b, b, a, a] = [a, b, a, a, a, a] = 1.

3. If v ≡ u3 (mod p), [a, b, b] = [a, b, a, a, a] = 1.

4. If v ≡ u6, [a, b] = 1.

Our notation is standard possibly except for the following:

Φ(G): Frattini subgroup of a group G,

Cij : the commutator of xi and xj ,

Ci...k: the commutator [xi, . . . , xk] of xi, . . . , xk,

Cab...z: the commutator [a, b, . . . , z] of a, b, . . . , z,

Li(G): the lower central series of G.

We use the “bar” convertion for homomorphic images. Thus if G is
a group, N is a normal subgroup and Ḡ denotes the factor group G/N ,
then, for any subset X of G, X̄ denotes the image of X under the natural
projection G → Ḡ.

The organization of the paper is as follows. Section 2 contains prelimi-
nary results. In Section 3, we discuss properties of finite p-groups which are
generated by two elements of prime order p and which have nilpotent class
5 and 6. We prove our theorem in Section 4.

2. Preliminary results

In this section, we collect a number of preliminary lemmas to be used
in later section.

The equations below are fundamental to commutator calculus. Let
x, y, z be elements of a group. Then:

C1 [x, y] = [y, x]−1

C2 [xy, z] = [x, z]y[y, z] = [x, z][x, z, y][y, z]

C3 [x, yz] = [x, z][x, y]z = [x, z][x, y][x, y, z]

C4 [x, y−1] = ([x, y]y
−1

)−1

C5 [x−1, y] = ([x, y]x
−1

)−1
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C6 [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1

The properties of the lower central series are listed here ([2]).

L1 Li(G) char G for all i.

L2 Li+1(G) ⊆ Li(G).

L3 Li(G)/Li+1(G) is included in the center of G/Li+1(G).

(Let x, x′ ∈ Li(G), y, y′ ∈ Lj(G), z ∈ Lk(G).)

L4 [x, y] ∈ Li+j(G).

L5 If x ≡ x′ (mod Li+1(G)) and y ≡ y′ (mod Lj+1(G)), then [x, y] ≡
[x′, y′] (mod Li+j+1(G)).

L6 [xx′, y] ≡ [x, y][x′, y] (mod Li+j+1(G)).

L7 [x, yy′] ≡ [x, y][x, y′] (mod Li+j+1(G)).

L8 [x, y, z][y, z, x][z, x, y] ≡ 1 (mod Li+j+k+1(G)).

L9 For any non-negative integer a, [x, y]a ≡ [xa, y] ≡ [x, ya] (mod
Li+j+1(G)).

Proposition 1 Let p, q be prime numbers. If a non-abelian p-group P

which is generated by two elements of P has a fixed-point-free automorphism
α of order q, then p ≡ 1 (mod q).

Proof. α induces a fixed-point-free automorphism on X := L2(P )/L3(P ).
Since X is cyclic, its subgroup Y of order p is characteristic. Hence α induces
a fixed-point-free automorphism on Y . We get p = 1 + qk ≡ 1 (mod q). ¤

Lemma 1 Let P be a group. Let l, m be natural numbers, and yλ ∈ Lk1(P )
(1 ≤ λ ≤ l), zµ ∈ Lk2(P ) (1 ≤ µ ≤ m), w1 ∈ Lk1+1(P ) and w2 ∈ Lk2+1(P ).
We get the following equation

[( ∏

1≤λ≤l

yλ

)
w1,

( ∏

1≤µ≤m

zµ

)
w2

]
≡

∏

1≤λ≤l
1≤µ≤m

[yλ, zµ] (mod Lk1+k2+1(P )).

Proof. By induction on l + m, we have
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[( ∏

1≤λ≤l

yλ

)
w1,

( ∏

1≤µ≤m

zµ

)
w2

]

=
[( ∏

1≤λ≤l

yλ

)
w1, w2

][( ∏

1≤λ≤l

yλ

)
w1,

∏

1≤µ≤m

zµ

]w2

(by C3)

≡
[( ∏

1≤λ≤l

yλ

)
w1,

∏

1≤µ≤m

zµ

]
(mod Lk1+k2+1(P )) (by L4 and L3)

≡
[ ∏

1≤λ≤l

yλ,
∏

1≤µ≤m

zµ

]w1
[
w1,

∏

1≤µ≤m

zµ

]
(mod Lk1+k2+1(P )) (by C2)

≡
[ ∏

1≤λ≤l

yλ,
∏

1≤µ≤m

zµ

]
(mod Lk1+k2+1(P )) (by L4 and L3)

≡
[ ∏

1≤λ≤l−1

yλ,
∏

1≤µ≤m

zµ

][
yl,

∏

1≤µ≤m

zµ

]
(mod Lk1+k2+1(P )) (by L6)

≡
[ ∏

1≤λ≤l−1

yλ,
∏

1≤µ≤m−1

zµ

][ ∏

1≤λ≤l−1

yλ, zm

]

·
[
yl,

∏

1≤µ≤m−1

zµ

]
[yl, zm] (mod Lk1+k2+1(P )) (by L7)

≡
( ∏

1≤λ≤l−1
1≤µ≤m−1

[yλ, zµ]
)( ∏

1≤λ≤l−1

[yλ, zm]
)( ∏

1≤µ≤m−1

[yl, zµ]
)

[yl, zm]

(mod Lk1+k2+1(P )) (by induction)

≡
∏

1≤λ≤l
1≤µ≤m

[yλ, zµ] (mod Lk1+k2+1(P )) ¤

Lemma 2 Let y1 ∈ Lk1(P ), y2 ∈ Lk2(P ), w1 ∈ Lk1+1(P ), w2 ∈ Lk2+1(P )
and n1, n2 natural numbers. We obtain

[
yn1
1 w1, y

n2
2 w2

] ≡ [y1, y2]n1n2 (mod Lk1+k2+1(P )).

Proof. In lemma 1, we put l = n1, m = n2, yλ = y1 and zµ = y2. ¤
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Lemma 3 Let yi ∈ L1(P ), wi ∈ L2(P ) and let ni be natural numbers
(1 ≤ i ≤ t). One gets

[
yn1
1 w1, y

n2
2 w2

] ≡ [y1, y2]n1n2 (mod L3(P )),
[
yn1
1 w1, y

n2
2 w2, y

n3
3 w3

] ≡ [y1, y2, y3]n1n2n3 (mod L4(P )),
[
yn1
1 w1, y

n2
2 w2, . . . , y

nt
t wt

] ≡ [y1, y2, . . . , yt]n1n2...nt (mod Lt+1(P )).

Proof.

[
yn1
1 w1, y

n2
2 w2

] ≡ [y1, y2]n1n2 (mod L3(P )) (by Lemma 1)
[
yn1
1 w1, y

n2
2 w2, y

n3
3 w3

]
=

[
[y1, y2]n1n2z1, y

n3
3 w3

]
(z1 ∈ L3(P ))

≡ [y1, y2, y3]n1n2n3 (mod L4(P )) (by Lemma 1)
[
yn1
1 w1, y

n2
2 w2, . . . , y

nt
t wt

]
=

[
[y1, y2, . . . , yt−1]n1n2...nt−1zt, y

nt
t wt

]

(zt ∈ Lt(P ))

≡ [y1, y2, . . . , yt]n1n2...nt (mod Lt+1(P ))
(by Lemma 1) ¤

Lemma 4 Let y1, y2 ∈ Lk1(P ), y3 ∈ Lk2(P ) and let n1, n2, n3 be natural
numbers. Then one obtains

[
yn1
1 yn2

2 , yn3
3

] ≡ [y1, y3]n1n3 [y2, y3]n2n3 (mod Lk1+k2+1(P )).

Proof.

[
yn1
1 yn2

2 , yn3
3

] ≡ [
yn1
1 , yn3

3

][
yn2
2 , yn3

3

]
(mod Lk1+k2+1(P )) (by L6)

≡ [y1, y3]n1n3 [y2, y3]n2n3 (mod Lk1+k2+1(P ))
(by Lemma 1) ¤

Lemma 5 If a finite nilpotent group G is generated by two elements a, b,
then for each i ≥ 2 Li(G)/Li+1(G) is generated by {[x1, x2, . . . , xi]Li+1(G) |
(xj) ∈ {a, b}i, x1 6= x2}. And a element of Li(G)/Li+1(G) is reprsented by

∏

i

[x1, x2, . . . , xi]nxLi+1(G),
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where the product
∏

i runs over x = (xj) ∈ {a, b}i such that x1 6= x2.

Proof. When i = 2, we shall show that xL3(G) = [aξ11bξ12w1,

aξ21bξ22w2]L3(G) (w1, w2 ∈ L2(G)) is reprsented by [a, b]L3(G).

xL3(G) =
[
aξ11bξ12 , aξ21bξ22

]
L3(G)

=
[
aξ11 , aξ21bξ22

][
bξ12 , aξ21bξ22

]
L3(G)

=
[
aξ11 , bξ22

][
bξ12 , aξ21

]
L3(G)

= [a, b]ξ11ξ22−ξ21ξ12L3(G)

When i− 1, let us suppose that the claim is true. It is enough that for any
y ∈ Li−1(G) and any z ∈ G, [y, z]Li+1(G) is reprsented in the form

∏

i

[x1, x2, . . . , xi]lxLi+1(G).

By induction, one has y =
( ∏

i−1[x1, x2, . . . , xi−1]nx
)
v for some v ∈ Li(G)

and z = aξi1bξi2wi for some wi ∈ L2(G). Hence, from Lemma 1,

[y, z]Li+1(G) =
[( ∏

i−1

[x1, x2, . . . , xi−1]nx

)
v, aξi1bξi2wi

]
Li+1(G)

=
[ ∏

i−1

[x1, x2, . . . , xi−1]nx , aξi1

]

·
[ ∏

i−1

[x1, x2, . . . , xi−1]nx , bξi2

]
Li+1(G)

=
∏

i−1

[
[x1, x2, . . . , xi−1]nx , aξi1

]

·
∏

i−1

[
[x1, x2, . . . , xi−1]nx , bξi2

]
Li+1(G)

=
∏

i

[x1, x2, . . . , xi]lxLi+1(G). ¤

We shall need the following lemmas.
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Lemma 6 Let p be an odd prime and let i (2 ≤ i ≤ 5) be natural number. If
a nilpotent group P is generated by two elements a, b both of which have order
p, then for all x1, . . . , xi ∈ {a, b}, and for all natural numbers n1, . . . , ni, a
commutator [xn1

1 , xn2
2 , . . . , xni

i ] of weight i have order p or 1 on Li+1(P ).

Proof.

[
xn1

1 , xn2
2 , . . . , xni

i

]p ≡ [
xn1

1 , xn2
2 , . . . , xpni

i

]
(mod Li+1(P )) (by L7)

≡ [
xn1

1 , xn2
2 , . . . , x

ni−1
i−1 , 1

]
(mod Li+1(P ))

≡ 1 (mod Li+1(P )). ¤

Lemma 7 Let p be an odd prime number. If a group P is generated by
two elements a, b both of which has order p, then L4(P )/L5(P ) is generated
by three elements [a, b, a, a]L5(P ), [a, b, b, a]L5(P ), and [a, b, b, b]L5(P ).

Proof. Since Lemma 4, it is enough to prove that [a, b, a, b]L5(P ) is repre-
sented by [a, b, b, a]L5(P ).

[a, b, a, b]

≡ [a, b, a, b]a
−1

(mod L5(P ))

≡ [
b, [a, b]−1, a−1

]−[a,b][
a−1, b−1, [a, b]

]−b (mod L5(P ))

≡ [
[b, [a, b]]−[a,b]−1

, a−1
]−1[[a, b−1]−a−1

, [a, b]
]−1 (mod L5(P ))

≡ [
[a, b, b][a, b, b, [a, b]−1], a−1

]−1[[a, b]b
−1a−1

, [a, b]
]−1 (mod L5(P ))

≡ [
[a, b, b], a−1

]−1[[a, b][a, b, b−1a−1], [a, b]
]−1 (mod L5(P ))

≡ [a, b, b, a]a
−1[

[a, b], [a, b]
]−1 (mod L5(P ))

≡ [a, b, b, a] (mod L5(P )). ¤

3. Examples

3.1. p-group of class 5
We will get the following equations for p-groups which are generated by

two elements of order p and which have nilpotent class five. We study the
following group:
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P5 :=
〈
a, b | ap = bp = 1, [x1, x2, x3, x4, x5, x6] = 1 for all (xi) ∈ {a, b}6〉.

We have the following equations.

Q1
[
Ci

123, C
j
45

]
= Cij

12345C
−ij
12354

Q2
[
x1, x

i
2

]
= Ci

12C
(i
2)

122C
(i
3)

1222C
(i
4)

12222C
(i
3)

12212C
−(i

3)
12221

Q3
[
xi

1, x2

]
= Ci

12C
(i
2)

121C
(i
3)

1211C
(i
4)

12111C
(i−1)i(2i−1)/6
12112 C

−(i−1)i(2i−1)/6
12121

Q4 C2134 = C−1
1234

Q5 C21345 = C−1
12345

Q6 C213 = C−1
123C12312C

−1
12321

Q7 C12212 = C12221

Q8 C12112 = C12121

Proposition 2 L5(P5) is generated by four elements [a, b, a, a, a],
[a, b, b, a, a], [a, b, b, b, a] and [a, b, b, b, b].

Proof. Since L4(P5)/L5(P5) is generated by three elements [a, b, a, a],
[a, b, a, b] and [a, b, b, b], we deduce that L5(P5)/L6(P5) ∼= L5(P5) is gen-
erated by six elements [a, b, a, a, a], [a, b, a, a, b], [a, b, a, b, a], [a, b, a, b, b],
[a, b, b, b, a], and [a, b, b, b, b]. From the equations above, we get

Cabaab = Cababa (by Q8)

= Cabbaa (by Lemma 7),

Cabbab = Cabbba. (by Q7)

Therefore L5(P5)/L6(P5) is generated by four elements [a, b, a, a, a],
[a, b, b, a, a], [a, b, b, b, a], and [a, b, b, b, b]. ¤

Proof. Equations (Q1)–(Q3) follow from induction and (C1)–(C6).

(Q4) C2134 =
[
C−1

12 , x3, x4

]

=
[
C
−C−1

12
123 , x4

]
(by C5)

= C
−C

−C
−1
12

123
1234 (by C5)

= C−1
1234.
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(Q5) C21345 =
[
C−1

1234, x5

]
(by Q4)

= C
−C−1

1234
12345 (by C5)

= C−1
12345.

(Q6) C213 =
[
C−1

12 , x3

]

= C
−C−1

12
123 (by C5)

= C−1
123

[
C−1

123, C
−1
12

]

= C−1
123C12312C

−1
12321. (by Q1)

(Q7) Indeed

[
x1, x

i
2

]
=

[
xi

2, x1

]−1

=
(
Ci

21C
(i
2)

212C
(i
3)

2122C
(i
4)

21222C
(i−1)i(2i−1)/6
21221 C

−(i−1)i(2i−1)/6
21212

)−1

(by Q3)

= C
(i−1)i(2i−1)/6
21212 C

−(i−1)i(2i−1)/6
21221 C

−(i
4)

21222C
−(i

3)
2122 C

−(i
2)

212 C−i
21

= C
−(i−1)i(2i−1)/6
12212 C

(i−1)i(2i−1)/6
12221 C

(i
4)

12222︸ ︷︷ ︸
(by Q5)

C
(i
3)

1222︸ ︷︷ ︸
(by Q4)

· C(i
2)

122C
−(i

2)
12212C

(i
2)

12221︸ ︷︷ ︸
(by Q6)

Ci
12

= Ci
12C

(i
2)

122C
−(i

2)
12212C

(i
2)

12221 C
i(i

2)
12212C

−i(i
2)

12221︸ ︷︷ ︸
(by Q1)

C
(i
3)

1222C
(i
4)

12222

· C(i−1)i(2i−1)/6
12212 C

−(i−1)i(2i−1)/6
12221

= Ci
12C

(i
2)

122C
(i
3)

1222C
(i
4)

12222C
(i−1)i(5i−4)/6
12212 C

−(i−1)i(5i−4)/6
12221

and (Q2) so that

C
(i−1)i(4i−2)/6
12212 = C

(i−1)i(4i−2)/6
12221 .
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Since there exists an integer i such that 1 ≤ i ≤ p − 1 and f(i) =
(i− 1)i(2i− 1)/3 6= 0, one has

C12212 = C12221.

(Q8) Interchanging the index 1 and 2 in (Q7), we obtain

C21121 = C21112.

From (Q5),

C12121 = C12112. ¤

3.2. p-group of class 6
We study the following group:

P6 :=
〈
a, b | ap = bp = 1,

[x1, x2, x3, x4, x5, x6, x7] = 1 for all (xi) ∈ {a, b}7〉.

We obtain the following equations.

R1
[
Ci

123, C
j
45

]
= Cij

12345C
−ij
12354C

−ij
123445C

ij
123454C

ij
123554C

−ij
123545

R2
[
Ci

1234, C
j
56

]
= Cij

123456C
−ij
123465

R3
[
Ci

12345, x
j
6

]
= Cij

123456

R4
[
Ci

1234, x
j
5

]
= Cij

12345C
i(j

2)
123455

R5
[
C123, C456

]
= C−1

123645C123654C123456C
−1
123546

R6 C121112 = C121121

R7 C122212 = C122221

R8
[
Ci

123, x
j
4

]
= Cij

1234C
i(j

2)
12344C

i(j
3)

123444

R9 C121212 = C121221

Proposition 3 L6(P6) is generated by five elements [a, b, a, a, a, a],
[a, b, b, a, a, a], [a, b, b, b, a, a], [a, b, b, b, b, a] and [a, b, b, b, b, b].

Proof. Since L5(P6)/L6(P6) is generated by [a, b, a, a, a], [a, b, b, a, a],
[a, b, b, b, a], and [a, b, b, b, b] by Proposition 2, L6(P6)/L7(P6) is generated
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by [a, b, a, a, a, a], [a, b, a, a, a, b], [a, b, b, a, a, a], [a, b, b, a, a, b], [a, b, b, b, a, a],
[a, b, b, b, a, b], [a, b, b, b, b, a], and [a, b, b, b, b, b]. And from the above equa-
tions, we obtain

Cabaaab = Cabaaba (by R6)

= Cababaa (by Q8)

= Cabbaaa (by Lemma 7),

Cabbaab = Cabbaba (by R9)

= Cabbbaa (by Q7),

Cabbbab = Cabbbba (by R7).

This completes the proof. ¤

Proof. Equations (R1)–(R4) and (R8) follow from induction and (C1)–
(C6).

(R5)
[
C123, C456

]

=
[
C123, C

−1
45 x−1

6 C45x6

]

=
[
C123, x

−1
6 C45x6

][
C123, C

−1
45

] [
C123, C

−1
45 , x−1

6 C45x6

]
︸ ︷︷ ︸

∈L7(P6)

= [C123, C45x6]
[
C123, x

−1
6

][
C123, x

−1
6 , C45x6

]
(
C12354C

−1
12345C

−1
123554C123545C123445C

−1
123454

)
(by R1)

= [C123, x6][C123, C45][C123, C45, x6]
(
C−1

1236C
(−1

2 )
12366C

(−1
3 )

123666

)

︸ ︷︷ ︸
(by R8)

[
C123, x

−1
6 , x6

][
C123, x

−1
6 , C45

][
C123, x

−1
6 , C45, x6

]
(
C12354C

−1
12345C

−1
123554C123545C123445C

−1
123454

)

= C1236

(
C12345C

−1
12354C

−1
123445C123454C123554C

−1
123545

)
(by R1)

[(
C12345C

−1
12354C

−1
123445C123454C123554C

−1
123545

)
, x6

]
(by R1)

(
C−1

1236C
(−1

2 )
12366C

(−1
3 )

123666

)
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[(
C−1

1236C
(−1

2 )
12366C

(−1
3 )

123666

)
, x6

]
(by R8)

[(
C−1

1236C
(−1

2 )
12366C

(−1
3 )

123666

)
, C45

]
(by R8)

(
C12354C

−1
12345C

−1
123554C123545C123445C

−1
123454

)

= C1236

(
C12345C

−1
12354C

−1
123445C123454C123554C

−1
123545

)

[C12345, x6]C
−1
12354

[
C−1

12354, x6

]

(
C−1

1236C
(−1

2 )
12366C

(−1
3 )

123666

)

[
C−1

1236, x6

]C
(−1

2 )
12366

[
C

(−1
2 )

12366, x6

]

[
C−1

1236, C45

]
(
C12354C

−1
12345C

−1
123554C123545C123445C

−1
123454

)

= C1236

(
C12345C

−1
12354C

−1
123445C123454C123554C

−1
123545

)

C123456C
−1
123546 (by R3)

(
C−1

1236C
(−1

2 )
12366C

(−1
3 )

123666

)
(by R4)

C−1
12366C

(−1
2 )

123666 (by R3)

C−1
123645C123654 (by R2)

(
C12354C

−1
12345C

−1
123554C123545C123445C

−1
123454

)

= C123456C
−1
123546C

−1
123645C123654.

(R6) By substituting (x1, x2, x1, x1, x2, x1) for (x1, x2, x3, x4, x5, x6) in
(R5),

1 = [C121, C121] = C−1
121112C121121C121121C

−1
121211.

Using (Q8), we have C121121 = C121211 so that we get

C121112 = C121121.
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(R7) By substituting (x1, x2, x2, x1, x2, x2) for (x1, x2, x3, x4, x5, x6) in
(R5),

1 = [C122, C122] = C−1
122212C122221C122122C

−1
122212.

Using (Q7), we have C122212 = C122122 so that we get

C122212 = C122221.

(R9) By (R5), we have

[C123, C456] = [C456, C123]−1,

1 = C−1
123645C123654C123456C

−1
123546

C−1
456312C456321C456123C

−1
456213.

By substituting (x1, x2, x1, x1, x2, x2) for (x1, x2, x3, x4, x5, x6) in the
above equation, one gets

1 = C121221C
−1
121212

C−1
122112C122121 C122121C

−1
122211︸ ︷︷ ︸

=1 (by Q7)

C−1
121212C121122︸ ︷︷ ︸
=1 (by Q8)

= C121221C
−1
121212

C−1
122112C122121

= C2
121221C

−2
121212. (by Lemma 7) ¤

4. Proof of the theorem

Proof. Since P is generated by two elements of order p, we have Φ(P ) =
L2(P ). If P is an abelian group, then we have the desired conclusion. By
Proposition 1, p ≡ 1 (mod 7). There exists a generator system {a, b} of P

such that a and b are of order p and such that aα = auw1 and bα = bvw2 for
some u, v integers and some w1, w2 ∈ Φ(P ). Thus it is enough that we shall
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prove the remainder of the theorem. Our calculation in Examples allows us
to compare the dimension of the vector space Li(P )/Li+1(P ) over the finite
field Fp with that of the subspace which is generated by the elements fixed
by α.

If v ≡ u6 (mod p), we get

[a, b]α =
[
auw1, b

u6
w2

]

≡ [a, b]u
7

(mod L3(P )) (by Lemma 3)

≡ [a, b] (mod L3(P )). (by Lemma 5)

Since α induces a f.p.f. automorphism on L2(P )/L3(P ), we have [a, b] ∈
L3(P ). Lemma 5 states that L2(P )/L3(P ) is generated by [a, b]L3(P ).
Hence, we get L2(P )/L3(P ) = 1. Since P is nilpotent, we get L2(P ) = 1.
Therefore [a, b] = 1.

If v ≡ u3 (mod p), we get

[a, b, b]α =
[
auw1, b

u3
w2, b

u3
w2

]

≡ [a, b, b]u
7

(mod L4(P )) (by Lemma 3)

≡ [a, b, b] (mod L4(P )).

Since α induces a f.p.f. automorphism on L3(P )/L4(P ), we have [a, b, b] ∈
L4(P ) and [a, b, b, a], [a, b, b, b] ∈ L5(P ). Then an elementary but tedious
calculation shows that

[a, b, b]α = [a, b, b]w5 for some w5 ∈ L5(P ). (1)

[a, b, a, a, a]α =
[
auw1, b

u3
w2, a

uw1, a
uw1, a

uw1

]

≡ [a, b, a, a, a]u
7

(mod L6(P )) (by Lemma 3)

≡ [a, b, a, a, a] (mod L6(P )).

Since α induces a f.p.f. automorphsim on L5(P )/L6(P ), we have
[a, b, a, a, a] ∈ L6(P ). From Proposition 2, we deduce that L5(P )/L6(P ) =
1. This means that L5(P ) = 1. Hence one obtains [a, b, a, a, a] = 1,
[a, b, b, a, a] = 1, [a, b, b, b, a] = 1, [a, b, b, b, b] = 1, [a, b, b, b] = 1 and
[a, b, b, a] = 1. From equation (1) and L5(P ) = 1 we have [a, b, b]α = [a, b, b].
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Therefore we conclude that [a, b, b] = 1.
If v ≡ u2 (mod p), we get

[a, b, b, b]α =
[
auw1, b

u2
w2, b

u2
w2, b

u2
w2

]

≡ [a, b, b, b]u
7

(mod L5(P )) (by Lemma 3)

≡ [a, b, b, b] (mod L5(P )).

Since α induce a f.p.f. automorphism on L5(P )/L6(P ), [a, b, b, b] ∈ L5(P ).
And [a, b, b, b, a], [a, b, b, b, b] ∈ L6(P ). Then an commutator calculation show
that

[a, b, b, b]α = [a, b, b, b]w6 for some w6 ∈ L6(P ). (2)

[a, b, b, a, a]α =
[
auw1, b

u2
w2, b

u2
w2, a

uw1, a
uw1

]

≡ [a, b, b, a, a]u
7

(mod L6(P )) (by Lemma 3)

≡ [a, b, b, a, a] (mod L6(P ))

Since α induces a f.p.f. automorphsim on L5(P )/L6(P ), [a, b, b, a, a] ∈
L6(P ).

[a, b, a, a, a, a]α =
[
auw1, b

u2
w2, a

uw1, a
uw1, a

uw1, a
uw1

]

≡ [a, b, a, a, a, a]u
7

(mod L7(P )) (by Lemma 3)

≡ [a, b, a, a, a, a] (mod L7(P ))

Since α induces a f.p.f. automorphsim on L6(P )/L7(P ), we have
[a, b, a, a, a, a] ∈ L7(P ). From Proposition 3, we deduce that L6(P )/L7(P ) =
1. We get L6(P ) = 1. [a, b, b, b, a] = [a, b, b, b, b] = 1. From equation (2) and
L6(P ) = 1 and [a, b, b, b] ∈ L5(P ), we have [a, b, b, b]α = [a, b, b, b]. Therefore
[a, b, b, b] = 1.

If v ≡ u (mod p), then for all (x1, x2, x3, x4, x5, x6, x7) ∈ {a, b}7,

[x1, x2, x3, x4, x5, x6, x7]α

=
[
xu

1ws1 , x
u
2ws2 , x

u
3ws3 , x

u
4ws4 , x

u
5ws5 , x

u
6ws6 , x

u
7ws7

]

≡ [x1, x2, x3, x4, x5, x6, x7]u
7

(mod L8(P )) (by Lemma 3)



66 S. Abe

≡ [x1, x2, x3, x4, x5, x6, x7] (mod L8(P ))

Since α induces a f.p.f. automorphism on L7(P )/L8(P ), for all (xi) ∈
{a, b}7[x1, x2, x3, x4, x5, x6, x7] ∈ L8(P ). Hence L7(P )/L8(P ) = 1. There-
fore L7(P ) = 1.

This completes the proof of the Theorem. ¤
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