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The structure of group C -algebras
of some discrete solvable semi-direct products

Takahiro SUDO
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Abstract. We describe the algebraic structure of group C*-algebras of some discrete
solvable semi-direct products in terms of finite composition series, and show that some
subquotients are decomposed into C*-algebras of continuous fields with their fibers non-
isomorphic to noncommutative tori. We also discuss some applications of these results.
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0. Introduction

This paper is a continuation (to discrete cases) of the study on the al-
gebraic structure of group C*-algebras of either connected or disconnected
Lie groups (cf. [16, 17] for the connected cases and [18, 19, 20] for the dis-
connected cases). Namely, we investigate the algebraic structure of group
C*-algebras of some discrete solvable semi-direct products. We first consider
the case of some discrete nilpotent semi-direct products in both Sections 1
and 2. It is shown that their group C*-algebras are decomposed into finite
composition series, and their subquotients are decomposed into C*-algebras
of continuous fields whose fibers are non-isomorphic to noncommutative tori
in general. We next consider the case of some discrete (non-nilpotent) solv-
able semi-direct products similarly. In particular, they include the discrete
ax + b groups and discrete Dixmier groups which are defined in Sections
3 and 4 respectively. The results of each section would be useful for the
study on the algebraic structure of group C*-algebras of more general dis-
crete solvable groups. Also, the stable rank of group C*-algebras of those
discrete solvable semi-direct products can be estimated by using their alge-
braic structures (cf. [13-15, 17-24]). Furthermore, the primitive ideal spaces
of those group C*-algebras are determined by those of their subquotients.
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Notation Denote by C*(G) the group C*-algebra of a discrete group G
(cf. [3]). Denote by Co(X) the C*-algebra of all continuous complex-valued
functions on a locally compact Hausdorff space X vanishing at infinity, and
let C(X) = Cp(X) when X is compact. Let U x, G be the C*-crossed prod-
uct of a C*-algebra 2 by G with a an action (cf. [11]). Let To(X, {2} tex)
be the C*-algebra of a continuous field on X vanishing at infinity with C*-
algebras 2y fibers (cf. [3], [8]). Set I'(+) = I'o(-) when X is compact. As
a review for two applications mentioned above, we recall that for an exact
sequence of C*-algebras: 0 — J — 2l — /T — 0, we have

max{sr(3J), sr(A/F)} < sr(?) < max{sr(J), sr(A/T), csr(A/T)},
csr(R) < max{csr(J), csr(2A/7)},

where sr( ), csr( - ) mean the stable rank and connected stable rank respec-
tively [13], and the primitive ideal space of 2 is identified with the union of
all primitive ideals of J and of % /J by taking either J < JNTJ or J < J/J
for a primitive ideal J of & with either J 4 J or J D J respectively (cf. [3,
Proposition 2.11.5]). On the other hand, for any continuous field C*-algebra

Co(X, {Ae}eex) [21],
sr(To(X, {Athex)) < supsr(Co(X, Ay)),
teX

est(To( X, {Ae}iex)) < tSél}Ig max{sr(Co(X, As)), csr(Co(X, As))},

where Cp(X, ;) is the C*-algebra of all ;-valued continuous functions on
X vanishing at infinity (cf. [21, 22], [4]), and the primitive ideal space of
Co(X, {¥Ut}+ex) is regarded as a fiber space over X with fibers the primitive
ideal spaces of {4 }+ex (cf. [8]). Moreover, it is known by [2] that any simple
noncommutative torus has stable rank one. The method of [2] is applicable
to some subquotients non-isomorphic to noncommutative tori given below.
Recall that a noncommutative n-torus 2 is the (universal) C*-algebra
generated by unitaries {U;}7.; with the relation U;Uy, = >0k U U; for
ik € R (1 < j,k < n)and © = (§;)7 -, & skew adjoint n x n matrix
with 6;; = 0 (1 < j < n). In particular, let % denote a noncommutative
2-torus, that is, a rotation algebra.
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1. Certain discrete nilpotent semi-direct products by Z

First define N, 1 (n > 1) to be the discrete nilpotent semi-direct prod-
ucts Z™ X4 Z, where the action « of Z on Z" is defined by the multiplication
of the matrix:

0 1

Then Nj 1 = 72, and the discrete Heisenberg group is a special case of Np 1
with t12 = 1. Note that the groups NV, ; are n-step nilpotent in general
since the subgroups Z* x (II""*#{0}) (1 < k < n) of Z" are a-invariant and
their k-th components of Z* are fixed under a.

Let C*(Np, 1) be the group C*-algebra of Ny 1 = Z" Xo Z. By the
Fourier transform, it is obtained that

C*(Np,1) = C*(Z") o Z = C(T™) x4 Z
where the action & is defined by the duality (a:(s)|z) = (s|du(z)) for s € Z™,
z = (z;) € T", and o = (a1)® (t-times multiple of a1). Specifically,

A — t12 t13 t23 tin b2 tn—1)n
G1(z) = (21, 212, 278257223, ..., 21" 2™ - 2,77 " 2n).

Since {1} x T*"! is invariant under &, the following exact sequence is ob-
tained:

0= Col(T\ {1}) x T") x4 Z — C(T") x4 Z
— C(T" ) xg Z — 0.
Moreover, it follows that
Co((T\ {1}) x T") %5 Z
= To(T\ {1}, {C(T") X4, 2 Z}aem{1})

where the fibers C(T™ ') x4, ,, Z correspond to the restrictions of & to {21 } x
T 1 for z; € T\ {1} (cf. [7, Theorem 4]). The following decomposition is
obtained inductively:

0— Co((T\ {1}) x TF 1) x4 Z — C(T*) x4 Z
— C(TF 1Y %gZ — 0
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for2<k<n-—1,and
Co((T\{1}) x T*™*) x4 Z
= To(T\ {1}, {C(T*1) X4, 2_is1 Z}a_preT\(1});
and C(T) x4 Z = C(T?). Note that the fibers C(T) X4, ,,_, Z are noncom-

t(n—l)n

mutative 2-tori since &1(zp) = 2, " zn, and if they are simple, they are

AT-algebras, i.e. inductive limits of finite direct sums of matrix algebras
over C(T) [5]. The fibers C(T*™) x4,,, ,., Z (k > 3) are not noncommu-
tative tori if ¢;; # O for some n —k+2 <1 < j < n. If the fibers are simple,
they are crossed products by minimal diffeomorphisms on T*~! (k > 3) so
that they are approximately subhomogeneous, i.e. inductive limits of subho-
mogeneous algebras (cf. [9]). This remarkable fact is helpful for computing
their stable rank.
To sum up we obtain

Theorem 1.1 Let Ny 1 = Z" X Z as above. Then C*(Ny, 1) has the fol-
lowing finite composition series {J;}7_, with Jo = {0}: Jp/Tpn—1 = C(T?),
and

Tt/ In— ZTo(T\ {1}, {C(T* ") ¥4, 20_pss Lo, prrem\(1})
for2<k<n.

Moreover, the fibers C(T*=1) X&, 2z i1 L (k > 3) are not noncommutative
tori if ty; #0 for somen —k+2<i<j<n.

Proof. Under the above situation, the following exact sequence is obtained:
0= Jp1 = C(T") X4 Z — C(T) x4 Z — 0

where Jp—1 = Co(T™ \ T) x4 Z. Moreover, the following exact sequence is
also obtained:

0— TJpoo — Tny — Co((T\{1}) xT) x4 Z — 0

where Jn,_g = Co(T™\ (TU((T\{1}) xT))) x4 Z. Inductively, the following
exact sequences are obtained:

0 — Tnek = Jnersr — Co((T\{1}) x TF ) x4 Z — 0

for 2 <k <n. -
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Remark 1.2 Simple quotients of the C*-algebras of compactly generated,
locally compact 2-step nilpotent groups are isomorphic to tensor products
of noncommutative tori and the C*-algebra of compact operators on ei-
ther a finite or an infinite dimensional Hilbert space ([12]). The fibers
C(T*1) X &, zn_per L (k > 3) can be simple, but not be noncommutative
tori.

Next define Np n,, to be the discrete nilpotent semi-direct products
Z™ X Z™, where the action o of Z™ on Z" is defined by the multiplication
of the matrices as follows:

a(l)znzl o all e a1m7 alk = ‘. . — (t(k))'n; =1 & GLn(Z)
0 1
for 1y € Z™ with 1, = (0, ..., 0, 1, 0, ..., 0) (only k-th component nonzero).

Note that the groups N, , are n-step nilpotent in general. It is obtained
by the same way as Theorem 1.1 that

Theorem 1.3 Let Ny = Z™ X Z™ as above. Then C*(Npm) has the
following finite composition series {J;}7_;: Jo = {0}, Tn/Tn-1 = C(THm),
and

Tn—tt1/In-k = To(T\ {1}, {C(T* ) %4, 201 2™} 2 psrem\(1})
for2 <k <n.

Moreover, the fibers C(T*~1) X&, 2y i1 L™ (k > 3) are mot noncommutative
tori z'ftg-c) #0 forsomen—k+2<i<j<nandl<k<m.

Remark 1.4 Note that the fibers C(T) x4, ,,_, Z™ are noncommutative
(m + 1)-tori since 1, (zn) = = (kln)zn with t(k, n) = tEn) W 1<k<L
m) (a multi-rotational action for a fixed z,_1), and they are isomorphic
to C(T™) x Z by considering their generating unitaries. If these fibers are
simple, they are AT-algebras by [6, 7], and so they have stable rank one.

Remark 1.5 If the action « is the diagonal sum: auyn =01, Day,

of a1, € GLy, (Z) on a direct product Z" = IIJ* ;Z™ where n =y ' ng,
then C*(N, m) ( 1C(T™)) x4 Z™ is isomorphic to the tensor product
Q1 (C(T™) x4 )
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2. Certain discrete nilpotent semi-direct products by Hg

Next consider the structure of the group C*-algebra of the semi-direct
product LZ = (Z? x Z?%) X (a, B) HZ where HZ is the discrete Heisenberg
group of rank 3 consisting of the following matrices:

1 n I
0 1 m|eGLs(Z), I,mneZ
0 0 1

and aum, B € GL2(Z) for (I, m, n) € HZ, and

a1 =p1 = <é i) € GLy(Z).

Note that HZ = 72 x, Z where y,(l, m) = (I+nm, m), and the groups LZ,
H 3Z are 2-step nilpotent. Then

C*(L7) 2 CHZ* X Z%) X(a,p) H = C(T? X T?) x4 3 Hy

where 6ig(21, 22) = (21, 2722) and fg(w1, wa) = (w1, wws) for (21, 22, wi,
we) € T*and g = (I, m, n) € HZ, and C*(HE) = C*(Z2)x,Z = C(T?) x5 Z
where 4, (p, ¢) = (p, p"q) for (p, q) € T?. Moreover, it follows that

0 — C(X1) %4 gy HY — C(T> x T?) %4 5 HE

— C(({1} x T) x ({1} x T))) %4, 4 HY — 0

and C(({1} x T) x ({1} x T))) (5. f) HE = O(T?) @ C*(HE), and X; is
the complement of ({1} x T)? in T4. Moreover, the ideal of the above exact
sequence has the following decomposition:
0 — C(X2) %4 p) HE — C(Xy) X(a8) HE
= Co(((T\{1}) x T) x ({1} x T)) %5, gy Hs — 0

and Co(((T\{1}) xT) x ({1} xT)) % 4, 3 HEF = C(T)@Co(((T\{1}) xT)) x4
HZ (Case A), where X» is the complement of (T \ {1}) x T) x ({1} x T) in
X1. Moreover, the following exact sequence is obtained:

0= C(Xa) %4 ) Hy = C(X3) x4, 5) H5

= Co(({1} x T) x ((T\{1}) x T)) %14, 5 Hy — 0
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and Co(({1} x T) x ((T'\ {1}) x T)) (4, f) HZ = C(T) ® Co((T \ {1}) x
T)) %5 HZ (Case B), where X3 = ((T\ {1}) x T) x ((T'\ {1}) x T) and
C(X3) %4, 5 HE
= Go((T\{1}) < T) x (T\{1}) x ) s 5y B (Case ©).
Case A:  For a further analysis of Co(((T \ {1}) x T)) x4 HZ, note that
Co(((T\{1}) x T)) x4 HE 2 To(T\ {1}, {C(T) 2,5 H5 breminy),

where (z, &) corresponds to {z} x T, and the fibers have the following
isomorphisms:

C(T) x, 4 HE 2 C(T) x4 4 (Z* %, Z)
= ((C(T) %z,6 Z) X Z) 3y = (U, ® C(T)) %5 Z,
where HZ = 72 x., Z as above, z = 21 = €™ and 2y, is the rotation
algebra corresponding to 8,. Moreover, it follows that (s, ® C(T)) x4 Z =

(T, {&s, Xp,4 Z}pet) Where the actions (p, 4) of the fibers correspond to
the restrictions to g, ® C({p}).

Case B:  For a further analysis of Co(((T\{1}) x T)) 4 HZ it is obtained
that

Co(((T\{1}) x T)) x5 HE = To(T\ {1}, {C(T) 1, s HE}uemyiny),

where (w, 8) corresponds to {w} x T, and the fibers have the following
isomorphisms:

C(T) x,, 5 HY=CO(T) x,, 5 (Z° %, Z) = (C(T) ® C(T?)) x

=T(T, {C(T?) %y, 4), (5, 5) Lhven);
where the actions (p, 4) correspond to the restrictions to {p} x T in T x
{p} xT.

Case C:  For a further analysis for Co(((T\{1}) xT) x ((T\{1}) xT)) x
H?%)

w,B3,%) Z

(& B)

Co(((T\ {13) x T) x (T\ {1}) x T)) x4 5, HE
= To((T\ {1}) x (T\{1}), {C(T%) %, , 5 5 HS Yo wpemizp?)s
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where the actions (z, w, &, ) correspond to the restrictions to {z} x T x
{w} x T. Moreover, the fibers have the following isomorphisms:

C(r?) 2 O(12) (22 0, 2) 2 (B, 8 CT2) %y 4.5
= (T, {(™. ®C(T)) w, ), (0,9) ZL}per)-

Summing up the above argument, it is obtained that

Z

zwaﬁ

Theorem 2.1 The group C*-algebra C*(L%) = C*(Z* X (a,5) HE) has the
following finite composition series {&; }J 1 Ra/83 2 C(T?) @ C*(HE), and

R3/Ro = C(T) @To(T\ {1}, {C(T) xz,6 HE} e 1)),
Ro/f1 = C(T) @ To(T\ {1}, {C(T) x,, 5 HF }uwem\1});
A1 2 To((T\ {112 {C(T?) %, ,, 5.5 H Yz weminp?)-

Moreover, it follows that
C(T) 5,6 HY = T(T, {Ag, Xp 5 Z}pet),
C(T) x, 5 HY = T(T, {C(T?) %, 4y (.5) LIveT)s
C(T?) % zwaﬁHZ’:Pm‘ {(%e, ® C(T)) %, 4. (p.4) L}veT)

where p € T corresponds to the dual of | € (Z, 0, 0) in HZ = Z? Xy L, and
g, 1s the rotation algebra C(T) X, 4 Z with z = ™%,

Remark 2.2 The group C*-algebra C*(HZ) is regarded as the C*-algebra
of a continuous field on T, i.e. C*(HE) = C(T?) x5 Z = I(T, {2, }per)
with g, = C(T) X(p,4) Z and p = > Note that £; as a C*-algebra
of continuous fields above has no local triviality over (T \ {1})?, so that
it has no meaningful composition series. Also, all the fibers 2y, % 5 Z,
C(T?) X (w, ), (0, 4) Z a0d Ry, ® C(T)) X (w, B), (p,5) L 8T€ noncommutative
tori since they are generated by the following unitaries respectively (cf. [19]):

Ur, U, Us: UhUp=2U3Uh, UsUs=pUslUs,

Up, U, Us:  UsUp =wlhUs, UsUs = pUsUs,

Ul, UQ, U3, U4: U1U2 =ZU2U1, U2U4=’LUU4U2, U3U4 =pU4U3.
On the other hand, the center Z of L% consists of all elements ((s, 0), (¢, 0),
(1,0,0)) € (Z?> x Z*) x HZ. Thus Z = Z3 and Z = T3. By [8, Theorem
4], C*(L%) is isomorphic to the C*-algebra of a continuous field on T3, i.e.
T(T3, {%B,}yers) with $B,, certain fibers. However, this decomposition is not
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the same as ours, and the fibers %8, are just given by (g, ®C(T)) (w,8), (0,3)

Z for (z, w, p) = u € T® by using our analysis.

Similarly, we consider a generalization of Theorem 2.1 in what follows.
Let HZ, ., be the generalized discrete Heisenberg group of rank (2n + 1)
consisting of the following (n + 2) x (n + 2) matrices:

1 (n]) l

0 1, mt| e GLpy2(2), (’I’Lj), m = (mj) eZ” ez,

0 0 1
where m! means the transpose of m, and 1, is the n x n identity matrix.
Let L%nﬂ = Z* %, HE | with the action o = (a!, ..., a®") such that
o, oz%jj € GLo(Z) for (I, (my)7_q, (ny)7=y) € HZ ., and

11
oz} =...= a%n = <O 1) € GLy(Z).

Note that HE, ., = Z"* x, Z" where 7y, (I, m) = (1437, nymy, m) for
(nj), m € Z™ and | € Z, and the groups L%M_l, H2Zn+1 are 2-step nilpotent.
Then C*(Z*" x HE, 1) 2= C(T*") xa HE, 1, and C*(HE, 1) = C*(Z") x,
Z" = C(T™) x5 Z" where 4,,)(p, (¢j)f=1) = (0, 0™¢;)7—,) € T for
(’I’Lj) S

Theorem 2.3 Let LZ ., = Z' x, HZ, ., as above. Then the group
C*-algebra C* (L%nﬂ) has the following finite composition series {Rj}ii'{l:
£ = {0},

Ront1/Ron = C(TPM) © C*(HE, 1),
Ban—j1/Fan—s = BU7) O(17)

@ To((T\{1})7, {C(T9) Xz, 6 Hiy 1 re(myf1p)i)
for 1 < j < 2n, where (23”) is the combination 2,C;. Moreover, it follows
that

| C(T9) X4 Hiniy = T(T, {(0%%,) ® (852, ) Xp,4 Z)
® (& C(T?) x4, (,4) L)
® (®™[(As,,, ® C(T)) X4, (5,%) Z)) }peT)

where g, and 22[92(8) are the rotation algebras corresponding to p = e>™r
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and zos_1 = e2™02(5) (1 < s < n) respectively, and ki + ko + 2ks =
and Y0 ok = n with 0 < ki, kg, 2k3 < j and 0 < ko < n, and p € T
corresponds to the dual of 1 € (Z, 0, ..., 0) in HZ, | = Z"*! x, Z".

Proof. The C*-algebras #; in the finite composition series {Rj}??__'fl of
C*(DE, ) cited above are defined by &; = Co(X;) x5 HE,.,, where & is
defined by

&g((2, 2+1)327", (244> Zantj+1)iny")
= (25, 23" 2341) 527", (Zontgs Zopyj2omtj41) sy ) € T

for g= (l, (mj)?zl, (nj);?zl) & HZZn—i—l’ and X2n+1 = T4n, and X2n+1\X2n =
({1} x T)?" is a G-fixed closed subspace of Xa,.1 so that

Ront1/Ran = C(({1} x T)*™) xg Hgyy = C(T%") @ C*(Hj 1),
and

X\ X;oi= | ] ((T\{1}) xT)> 7 x ({1} x T)'

(2n37;+1)

for 1 € j < 2n, where the combination (2nz’; +1) corresponds to choosing &-

invariant subspaces of X; which are homeomorphic to ((T\{1}) x T)?»~i+1 x
({1} xT)I~! (that is, the product spaces of (2n— j+1)-copies of (T\{1})xT
and (j — 1)-copies of {1} x T in T** = (T?)?"). Thus,

Rj/Rj-1 2 Co(X;\ Xj-1) ¥a Hoyg

(2n37;+1)
= D Gol((T\{1}) x T>nI+
x ({1} x TV ™) xa HE, i

with & = (&, ..., 4®"). Since & for 1 < j < 2n are defined as above (cf.
the actions &, § in Theorem 2.1), it is deduced that

Co(((T\ {1}) x T+ 5 ({1} x T) ™) xg Hiys
>~ C(T971)
& FO((T \ {1})277.—_7‘-}-1, {C(Tzn—j+1) Nz, & HZZn+1}z€(T\{1})2n—j+1)-

Moreover, replacing 2n — j — 1 with 7, it follows that for 1 < j < 2n,
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C(T7) Xz,6 Hip gy = O(TY) 3,6 (27 20, Z7)
2 T(T, {(C(TY) %,,4 Z") X4, (p,4) Z" }per),
where the action (p, §) corresponds to the restriction of 4 to {p} x T".
Furthermore, the space T7 is decomposed into T* x T*2 x II¥T?, and the

actions &°, @™, and (&% &™"¢) for some 1 < s < m act on each direct
factor of T®1, T*2 and IT*T? respectively. Then it is obtained that

O(T9) %z,a L") X, (p,5) Z"
= (R*C(T) xp,4 Z) ® (8" (C(T) x5 Z) %p,4 Z)
® (8% (C(T) ® C*(Z)) ants, 5,5) Z)
® (8" (C(T?) xas Z) Xgn+s (p,4) L)
(@"2Ap,) ® (@ 2g,,_,, p,4 Z)
® (®2C(T?) 4n+s, (p,5) Z)
® (®"[(g, ,_, ® C(T)) Xan+s, (p,9) Z]);

IR

where g, and g, ,_,, are the rotation algebras corresponding to p = g2mifp
and 29(5_1)—1 = 2mi(s—1) (1 < s < n) respectively. a

Remark 2.4 The group C*-algebra C*(HZ, ) is regarded as a C*-algebra
of continuous fields on T, i.e.

C*(Hzpy1) 2 C(T™) x5 27 = T(T, {®"Ug, }zet)

where C({z} x T") x5 Z" = @™(C(T) %, 4 Z) and C(T) x, 5 Z = Ay, the
rotation algebra corresponding to z = e?™=. In the above decomposition
of C(T?) x, 4 HZ, ., into the continuous field on T, its fibers are tensor
products of noncommutative tori, so that they are also noncommutative
tori. See [18, 19, 20] for the results on the stable rank of group C*-algebras
of some disconnected Lie groups, related with the structures of Theorems
2.1 and 2.3.

3. The C -algebras of the discrete ax + b groups

We first consider discrete solvable groups of the form Z %, Z with «
nontrivial. Since Aut(Z) = {£id} where id is the identity automorphism of
Z, we assume that a1 = —id. Let I' = Z x4, Z. Note the following quotient:
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it s

D=ZXaZ>(s,t)— <eo 1) € GLy(Z).

Therefore, we say that [ is the (extended) discrete az + b group.

Theorem 3.1 Let I' be the discrete ax + b group defined above. Then
C*(T") has the following finite composition series {33‘}?:11 F3/Fo=2C(T)®
C(T), and

F2/T1 2 Co(R) ® Ma(C), and F1 = Co(R?) @ M»(C).

Proof. Note that C*(I') & C(T) x4 Z, where & is the reflection on T. Since
+1 € T is fixed under &, the following exact sequence is obtained:

0 — Co(T\ {£1}) X Z — C(T) x4 Z — &2C*(Z) — 0

with C*(Z) = C(T). Since 62 = id on T \ {£1}, the above ideal has the
following decomposition:

0 — Co(R) ® (Co(T\{+£1}) 3 Zz — Co(T\ {£1}) x Z
— Co(T\{#1}) x Z2 — 0.

In fact, Co(T \ {£1}) % Z is regarded as the mapping torus Mg of the dual
action B of Zy on Co(T \ {£1}) X4 Zg = Q, that is, Mg ={f:[0,1] — Q|
continuous and f(1) = B1(f(0))} (cf. cite[p. 179]25), where § is trivial on
Co(T \ {#1}) and acts on Zy by Bi(t) = (¢, [)t for t € Zy and | € Zg = Zs.
Moreover, it is obtained that

Co(T\ {£1}) x Z2 = Co((0, ) ® (C({£i}) x Zg)
=~ Co((0, 7)) ® (C? x Zy)

and C? x Zy & M3(C), where the first isomorphism is deduced from the
identifications: T\ {£1} 3 z = " « i) € 4(0, 7) Ui(n, 27) and i(r, 27) ~
(=)(0, m) (homeomorphic). Note that (0, 7) is homeomorphic to R. O

Remark 3.2 Note that My(C) =2 C*(Zy) % Zo = C*(Zg x Zg) with the
action of Zs the left multiplication on Zs. On the other hand, we can show
that sr(C*(I')) = 2 and csr(C*(I')) = 2 as explained in the introduction
using [13, Theorem 6.1], [15, p. 381].

Next define the generalized (extended) discrete ax + b groups I'p41 to
be the groups with the quotient map to the following (n + 1) x (n + 1)
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matrices:
et 0 ... 0 s
0 :
Tnt1 2 (81,00 Spy t) = | i € GLut1(2)
: e s,
0 v o 0 1

for¢,s; € Z (1 <j<n). ThenT'py1 =Z" x4 Z.

Theorem 3.3 Let I'yy1 be the generalized discrete ax + b group defined
above. Then C*(T'ny1) has the following finite composition series {F;}741:

=1’
Fo = {0}, Fn+1/Fn =2 @*"C(T), and

(n54)

3i/Fi-12 P Co((T\{x1})" ) x Z,

for 1 < j < n. Moreover, it is obtained by putting Z; = (T \ {£1})"~7+1
that

0 — Co(R™ 1) @ (@™ I M5(C)) — Co(Z;) X Z
— @n"j—HMz((C) — 0.

Proof. Note that C*(I'y11) & C(T™)xgZ. Since the points (1, ..., £1) €
T™ are fixed under &, the following exact sequence is obtained:

0— Co(T™\ {(£1, ..., £1)}) X Z — C(T) x4 Z — &> C(T) — 0.

Put Y1 = T\ {(£1, ..., £1)}. Then Cy(Yn+1) X Z has the following
finite composition series {§;}7_1: §o = {0}, F; = Co(¥;) x Z and

(O
5i/5i-12 P Co(T\ {17 x Z.

Put Z; = (T \ {£1})" 7%, Since 4* = id on Z;, each direct factor of the
above subquotients has the following decomposition:

0 — Co(R) ® (Co(Z;) x Za) — Co(Z;) XL — Co(Z;) x Ly — 0
by the same way as in the proof of Theorem 3.1. Moreover, it follows that

Co(Z;) ¥ Lo = Co(R™ ) @ (CII" 7 {£4}) x Zs)
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since T \ {£1} = (0, ) Ui(m, 27) ~ (0, ) U (—i)(0, 7) and (0, v) ~ R
(homeomorphic), and C(II" 7+ {44}) xZg = C2(n—I+1) 5 Zy = @I+ My (CT)
since TI"JT1{+£i} is decomposed into the disjoint union of the orbits of its
points. O

Remark 3.4 It can be shown as explained in the introduction that

sr(Co(R™) ® My(C)) = {[n/2]/2} +1
< st(C(Tnn)) < {[(n+1)/2]/2} +1

and csr(C*(Tpy1)) < {[(n +1)/2]/2} + 1, where [z] means the maximum
integer < z, and {z} means the least integer > z ([13, Theorem 6.1], [14,
Theorem 4.7], [10]). Compare this situation with some previous results
on the stable rank of group C*-algebras of connected or disconnected Lie
groups ([17-20] and [23, 24]).

Next define the generalized (extended) discrete Mautner groups MZ,
to be the groups with the quotient map to the following (n + 1) x (n + 1)
matrices:

e 0 ... 0 s
0
ME 3 (s1, ..., 8n, t1, ..., tn) —
: emtn s,
0 .0 ... 0 1
€ GLn41(Z)

for t;,s; € Z (1 < j < n) (See [1] or [18] for another definition of the
discrete Mautner group (cf. [20])). Then MZ = Z™ x, Z".

Theorem 3.5 Let MQZn be the generalized discrete Mautner group defined
above. Then C*(MZ) has the following finite composition series {jj}?ill
Jo = {0},

J;/35-1 = 1, @ @,
for 1 <l; <3 andlj_1 <1l for 1 <1< n, and F3 = C(T) & C(T), and
Fo = Co(]R) ® MQ((C), and T1 = CO(RQ) & MQ(C)
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Proof. Note that MZ, = TI"(Z x, Z) = TI"T, where I is the discrete az +b
group. Thus C*(MZ) = @"C*(I"). Therefore, the finite composition series
in the statement is obtained from Theorem 3.1. O

Remark 3.6 It can be shown that
n+1

si(o(r) = | ] +1 < s < |22 +1

and csr(C*(MZ)) < [(n+1)/2] +1 (cf. Remark 3.4).

4. Certain discrete solvable semi-direct products by H??

Let As = (Z X Z) X(q,p) HE, where a,, = ™™ and (3, = €™ for
(I, m,n) € HZ Then C*(As) = C(T?) X (8, B) HZ with &, § reflections
on each direct factor T of T2. Recall that HZ = 7Z? x., Z and C*(H%)
C(T?) x4 Z as before Theorem 2.1.

Theorem 4.1 Let Ay be the discrete solvable group defined above. Then
C*(As) has the following finite composition series

{9,121 D3/D2 = &*C*(HE),
and
Da/D1 2 [Co(T\ {£1}) xa HF] © [Co(T \ {£1}) =5 HF),
{ Dy = Co((T\ {£1})2) n 5 HE.
Moreover, it is obtained that
Co(T \ {£1}) xq HE
= T(T, {Co(R) ® (C* ® C(T)) X4, (5,4) L}zeT),
Co(T\ {1}) x5 HE
= T(T, {Co(R) ® (€2 ® O(T)) 3, (,, 5 Zhuer),
Col(T\ {£1})?) x4, 5y HY
= (T, {Co(R?) @ ((C? x4 Z) ® C?) x(, 1 a5 L}zeT),

\

where C? = C({£i}), and the actions (z, ¥) correspond to the restrictions
to {2z} x T in T? of C(T?) x5 Z = C*(HE).
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Proof. Since the points (£1, +1) € T2 are fixed under (&, ), it is deduced
that

0 — Co(T?\ {(£1, £1)}) x HE — C(T?) x4 p HE
— a'C*(HE) - 0.
Moreover, the ideal has the following decomposition:
(E): 0 — Co((T\ {£1})*) x HF
— Co(T?\ {(£1, £1)}) x Hf — &*Co(T \ {£1}) x H — 0.

Case 13:  One of the two direct factors of the quotient of (E) has the fol-
lowing isomorphisms:

Co(T\ {£1}) xa HY = Co(T \ {£1}) x4 (Z* x, Z) =
((Co(T\ {=£1}) x4 Z) ® C(T)) x Z
= (T, {(Co(T\ {£1}) x4 Z) X, 5 Z}.eT),

where the actions (2, 4) correspond to the restrictions to {z} x T in T? of
C(T?) x5 Z = C*(HE). Moreover, it follows that

(Co(T\{£1}) @8 Z) ¥2,5 Z= Co((T\ {£1}) x T) X4, (z,5) Z
= Co(R) ® (C* @ C(T)) x4, (,%) Z
where the first isomorphism is obtained by exchanging the actions & and
(z, %), and the second one uses the identifications T \ {£1} ~ (0, ) U
i(m, 2m) = i(0, m) U (—i)(0, 7) and (0, ) ~ R (homeomorphic), and C? =
C({i}).
Case 1g:  The other of the two direct factors of the quotient of (E) has the
following isomorphisms:
Co(T\ {1}) x5 HY = Co(T\ {£1}) x4 (Z* %, Z)
= (Co(T\ {£1}) ® C(T%)) ;5 2
= D(T, {Co((T\ {£1}) X T) %3, .5 Zhoer),

where (w, 4) means the same as (z, §) above. Moreover, it follows that
Col(T\{13) X T) 245,y 30 2 = Go(®) (€2 @ O(T)) 15, 1) %
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Case 2:  The ideal of (E) has the following isomorphisms:
Col(T\ (LD x4 5y HE 2 Co(T\ {£1D)?) 4 5 (22 4, Z)
> (Go(T\ {£1}) %6 2) ® C((T\ {£1}) x T)) 5. 2
= DT, {((Co(T \ {£1}) %4 Z) & Co(T\ {£1})) %, 2105 Lhser):

Moreover, it is obtained that
((Co(T\ {£1}) x4 Z) ® Co(T\ {£1})) »(, 4104 Z

>~ Co(R?) @ ((C? x4 Z) @ C?) X, )08 L

where we use the same identification of T \ {1} as above. O

Remark 4.2 The C*-algebras (C2QC(T)) x4, (5,4 %, (C?.@C(T)) X5, (w,4)

Z and ((C? x4 Z) ® C?) X, 4)@a L are not noncommutative tori. In fact,

(C?2® C(T)) X4, (5,9) Z = (C(T) ® C(T)) Xra.= Z, where My *(Ur) = 2™Us
and A\ *(Us) = 2™U; for (I, m, n) € HZ and (U3, 0), (0, Uz) € C(T) &
C(T) the canonical generators of the direct factors C(T). Also, it is able to
consider the actions of the other algebras through the similar isomorphisms
explicitly. Those algebras might be new, but it could be shown that if
those algebras are non-rational, i.e. z and w irrational (rotations), they are
approximately divisible by using the methods of [2]. Thus those simple
algebras have stable rank one.

Next, let A4n+1' = 7" X (q, B) H%n+1, Where a=(at...,a"), B =
(8%, ..., B™) with ofn; = €™™ and B%; = €™ for (I, (mj);-’zl, (nj)j=) €
HZ _ .. Then C*(Agnt1) = C(T?) X4, B) HZ | with &, ( reflections on
each direct factor T of T™ x {0,} and {0,} x T™ respectively. Recall that
HZ =2 7" %, Z" and C*(HE, |) = C(T™*) x5 Z™ as before Theorem
2.3. Then it is obtained similarly as Theorem 4.1 that

Theorem 4.3 Let Aypy1 be the discrete solvable group defined above.
Then the group C*-algebra C*(Ayn+1) has the following finite composition
series {Qj}?ﬂ'l: Do = {0},

©2n+1/©2n = @22n0*(HQZn+1)’
2n .
/D1 & @lon=in) Co((T\ {1127 94) 3, 5 Hoos

(o7
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for 1 < § < 2n. Moreover, it is obtained by putting Z; = (T \ {£1})*—7+1
that

Co(Zj) X4, ) Hinp
= T'(T, {Co(R*™ 1) @ (@*2,)

(@"(C? ® C(T)) %4, (z,4) Z)
(®"2(C*® C(T)) x5, 4 Z)
® (

k 2
® 3(( NdZ) ®C ) N(;;ﬁ)@ﬁ Z}zET):

®
®
®

where g, are the rotation algebras corresponding to z = €™ and the
actions (z, 4) correspond to the restrictions to {z} x T™ of C(T™1) x5 Z" =
C*(HE, 1), and k1 +ko+2ks = and > oo ki = n with 0 < ky, ko, 2k3 < j
and 0 < kg < n.

Next let D7 (Z*% x 72) x X (a, 8) HZ, where oy, = ™™ @ e™™ on Z2 and
Br = €™ @ ™" on Z2. We say that DZ is the discrete Dixmier group of
rank 7 (cf. [19] for the disconnected Dixmier group). Then it follows that

Theorem 4.4 Let DZ be the discrete Dizmier group of rank 7. Then
C*(D%) has the following finite composition series

{8910 Lo/ Ls 2 @ C(HE),
and
[ 8g/87 2 @2 Co(T \ {£1}) x4 HE,
£7/86 = &%+ Co(T \ {£1}) x5 HE,
L6/L5 = &*Co((T \ {£1})?) x4 HE,
L5/La = &*Co((T\ {£1})?) x4 HE,
£4/83 = Co((T\ {£1}) x (T \ {£1})) x4 5 HE,
L3/82 = @*Co((T\ {#1})* x (T \ {£1})) x4, 3, HY,
£2/81 2 @*Co((T\ {£1}) x (T\ {£1})?) x4, 5 H3,
£122 Go((T\ {=£1})? x (T\ {*1})?) (&, B) HE.

Moreover, it is obtained that

\
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Co((T\ {#1})?) xa HE

= T(T, {Co(R?) ® (C* ® C(T)) X (z,5) L} zeT);
Co((T\ {£1})?) x5 Hf

= I(T, {Co(R?) ® (C* @ C(T)) X w,4) L}lweT),
Co((T\ {1} x (T\ {£1})) x4 5 HE

= T(T, {Co(R?) @ ((C* %15 Z) ® C?) %, +05 L}ecn),
Co((T\{£1}) x (T\ {£1})?) x4 ) HE

=~ T'(T, {Co(R?) ® ((C? x4 Z) @ C*) X (. 4yeh Lzet),
Co((T\ {il})Q x (T\ {il})Q) (&, B) H3Z

= I(T, {Co(RY) ® ((C* %4 Z) ® C4) %, 05 L}eca),

\

where C* = C ({4, 1}), and the actions (z, 4) correspond to the restric-
tions to {2} x T of C(T?) x5 Z = C*(HE).

Remark 4.5 Compare the algebraic structure of C*(D%) cited above with
that of C*(L%) in Theorem 2.1. We can also define D%, by the same way
as LZ ., and construct a finite composition series of C*(D%,.,) as given
in Theorems 2.3 and 4.4, but omit the details.
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