The structure of group C -algebras of some discrete solvable semi-direct products

Takahiro Sudo

(Received September 30, 2002; Revised March 13, 2003)

Abstract. We describe the algebraic structure of group C^* -algebras of some discrete solvable semi-direct products in terms of finite composition series, and show that some subquotients are decomposed into C^* -algebras of continuous fields with their fibers non-isomorphic to noncommutative tori. We also discuss some applications of these results.

Key words: group C*-algebra, discrete solvable group, stable rank.

0. Introduction

This paper is a continuation (to discrete cases) of the study on the algebraic structure of group C^* -algebras of either connected or disconnected Lie groups (cf. [16, 17] for the connected cases and [18, 19, 20] for the disconnected cases). Namely, we investigate the algebraic structure of group C^* -algebras of some discrete solvable semi-direct products. We first consider the case of some discrete nilpotent semi-direct products in both Sections 1 and 2. It is shown that their group C^* -algebras are decomposed into finite composition series, and their subquotients are decomposed into C^* -algebras of continuous fields whose fibers are non-isomorphic to noncommutative tori in general. We next consider the case of some discrete (non-nilpotent) solvable semi-direct products similarly. In particular, they include the discrete ax + b groups and discrete Dixmier groups which are defined in Sections 3 and 4 respectively. The results of each section would be useful for the study on the algebraic structure of group C^* -algebras of more general discrete solvable groups. Also, the stable rank of group C^* -algebras of those discrete solvable semi-direct products can be estimated by using their algebraic structures (cf. [13-15, 17-24]). Furthermore, the primitive ideal spaces of those group C^* -algebras are determined by those of their subquotients.

 $^{2000\} Mathematics\ Subject\ Classification:$ Primary 46L05; Secondary 22D25, 46L80, 19K56.

Notation Denote by $C^*(G)$ the group C^* -algebra of a discrete group G (cf. [3]). Denote by $C_0(X)$ the C^* -algebra of all continuous complex-valued functions on a locally compact Hausdorff space X vanishing at infinity, and let $C(X) = C_0(X)$ when X is compact. Let $\mathfrak{A} \rtimes_{\alpha} G$ be the C^* -crossed product of a C^* -algebra \mathfrak{A} by G with G an action (cf. [11]). Let $\Gamma_0(X, {\mathfrak{A}_t}_{t \in X})$ be the C^* -algebra of a continuous field on X vanishing at infinity with C^* -algebras \mathfrak{A}_t fibers (cf. [3], [8]). Set $\Gamma(\cdot) = \Gamma_0(\cdot)$ when X is compact. As a review for two applications mentioned above, we recall that for an exact sequence of C^* -algebras: $0 \to \mathfrak{I} \to \mathfrak{A}/\mathfrak{I} \to 0$, we have

$$\max\{\operatorname{sr}(\mathfrak{I}), \, \operatorname{sr}(\mathfrak{A}/\mathfrak{I})\} \leq \operatorname{sr}(\mathfrak{A}) \leq \max\{\operatorname{sr}(\mathfrak{I}), \, \operatorname{sr}(\mathfrak{A}/\mathfrak{I}), \, \operatorname{csr}(\mathfrak{A}/\mathfrak{I})\},$$
$$\operatorname{csr}(\mathfrak{A}) \leq \max\{\operatorname{csr}(\mathfrak{I}), \, \operatorname{csr}(\mathfrak{A}/\mathfrak{I})\},$$

where $\operatorname{sr}(\cdot)$, $\operatorname{csr}(\cdot)$ mean the stable rank and connected stable rank respectively [13], and the primitive ideal space of $\mathfrak A$ is identified with the union of all primitive ideals of $\mathfrak I$ and of $\mathfrak A/\mathfrak I$ by taking either $J \leftrightarrow J \cap \mathfrak I$ or $J \leftrightarrow J/\mathfrak I$ for a primitive ideal J of $\mathfrak A$ with either $J \not\supset \mathfrak I$ or $J \supset \mathfrak I$ respectively (cf. [3, Proposition 2.11.5]). On the other hand, for any continuous field C^* -algebra $\Gamma_0(X, \{\mathfrak A_t\}_{t\in X})$ [21],

$$\begin{split} & \operatorname{sr}(\Gamma_0(X, \{\mathfrak{A}_t\}_{t \in X})) \leq \sup_{t \in X} \operatorname{sr}(C_0(X, \mathfrak{A}_t)), \\ & \operatorname{csr}(\Gamma_0(X, \{\mathfrak{A}_t\}_{t \in X})) \leq \sup_{t \in X} \max \{\operatorname{sr}(C_0(X, \mathfrak{A}_t)), \operatorname{csr}(C_0(X, \mathfrak{A}_t))\}, \end{split}$$

where $C_0(X, \mathfrak{A}_t)$ is the C^* -algebra of all \mathfrak{A}_t -valued continuous functions on X vanishing at infinity (cf. [21, 22], [4]), and the primitive ideal space of $\Gamma_0(X, \{\mathfrak{A}_t\}_{t\in X})$ is regarded as a fiber space over X with fibers the primitive ideal spaces of $\{\mathfrak{A}_t\}_{t\in X}$ (cf. [8]). Moreover, it is known by [2] that any simple noncommutative torus has stable rank one. The method of [2] is applicable to some subquotients non-isomorphic to noncommutative tori given below. Recall that a noncommutative n-torus \mathfrak{A}_{Θ} is the (universal) C^* -algebra generated by unitaries $\{U_j\}_{j=1}^n$ with the relation $U_jU_k=e^{2\pi i\theta_{jk}}U_kU_j$ for $\theta_{jk}\in\mathbb{R}$ $(1\leq j,k\leq n)$ and $\Theta=(\theta_{jk})_{j,k=1}^n$ a skew adjoint $n\times n$ matrix with $\theta_{jj}=0$ $(1\leq j\leq n)$. In particular, let \mathfrak{A}_{θ} denote a noncommutative 2-torus, that is, a rotation algebra.

1. Certain discrete nilpotent semi-direct products by \mathbb{Z}

First define $N_{n,1}$ $(n \ge 1)$ to be the discrete nilpotent semi-direct products $\mathbb{Z}^n \rtimes_{\alpha} \mathbb{Z}$, where the action α of \mathbb{Z} on \mathbb{Z}^n is defined by the multiplication of the matrix:

$$\alpha_1 = \begin{pmatrix} 1 & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix} = (t_{ij})_{i,j=1}^n \in \mathrm{GL}_n(\mathbb{Z}).$$

Then $N_{1,1} = \mathbb{Z}^2$, and the discrete Heisenberg group is a special case of $N_{2,1}$ with $t_{12} = 1$. Note that the groups $N_{n,1}$ are n-step nilpotent in general since the subgroups $\mathbb{Z}^k \times (\Pi^{n-k}\{0\})$ $(1 \le k \le n)$ of \mathbb{Z}^n are α -invariant and their k-th components of \mathbb{Z}^k are fixed under α .

Let $C^*(N_{n,1})$ be the group C^* -algebra of $N_{n,1} = \mathbb{Z}^n \rtimes_{\alpha} \mathbb{Z}$. By the Fourier transform, it is obtained that

$$C^*(N_{n,1}) \cong C^*(\mathbb{Z}^n) \rtimes_{\alpha} \mathbb{Z} \cong C(\mathbb{T}^n) \rtimes_{\hat{\alpha}} \mathbb{Z}$$

where the action $\hat{\alpha}$ is defined by the duality $\langle \alpha_t(s)|z\rangle = \langle s|\hat{\alpha}_t(z)\rangle$ for $s \in \mathbb{Z}^n$, $z = (z_i) \in \mathbb{T}^n$, and $\alpha_t = (\alpha_1)^t$ (t-times multiple of α_1). Specifically,

$$\hat{\alpha}_1(z) = (z_1, z_1^{t_{12}} z_2, z_1^{t_{13}} z_2^{t_{23}} z_3, \dots, z_1^{t_{1n}} z_2^{t_{2n}} \cdots z_{n-1}^{t_{(n-1)n}} z_n).$$

Since $\{1\} \times \mathbb{T}^{n-1}$ is invariant under $\hat{\alpha}$, the following exact sequence is obtained:

$$0 \to C_0((\mathbb{T} \setminus \{1\}) \times \mathbb{T}^{n-1}) \rtimes_{\hat{\alpha}} \mathbb{Z} \to C(\mathbb{T}^n) \rtimes_{\hat{\alpha}} \mathbb{Z}$$
$$\to C(\mathbb{T}^{n-1}) \rtimes_{\hat{\alpha}} \mathbb{Z} \to 0.$$

Moreover, it follows that

$$C_0((\mathbb{T}\setminus\{1\})\times\mathbb{T}^{n-1})\rtimes_{\hat{\alpha}}\mathbb{Z}$$

$$\cong \Gamma_0(\mathbb{T}\setminus\{1\}, \{C(\mathbb{T}^{n-1})\rtimes_{\hat{\alpha}, z_1}\mathbb{Z}\}_{z_1\in\mathbb{T}\setminus\{1\}})$$

where the fibers $C(\mathbb{T}^{n-1}) \rtimes_{\hat{\alpha}, z_1} \mathbb{Z}$ correspond to the restrictions of $\hat{\alpha}$ to $\{z_1\} \times \mathbb{T}^{n-1}$ for $z_1 \in \mathbb{T} \setminus \{1\}$ (cf. [7, Theorem 4]). The following decomposition is obtained inductively:

$$0 \to C_0((\mathbb{T} \setminus \{1\}) \times \mathbb{T}^{k-1}) \rtimes_{\hat{\alpha}} \mathbb{Z} \to C(\mathbb{T}^k) \rtimes_{\hat{\alpha}} \mathbb{Z}$$
$$\to C(\mathbb{T}^{k-1}) \rtimes_{\hat{\alpha}} \mathbb{Z} \to 0$$

for $2 \le k \le n-1$, and

$$C_0((\mathbb{T}\setminus\{1\})\times\mathbb{T}^{k-1})\rtimes_{\hat{\alpha}}\mathbb{Z}$$

$$\cong \Gamma_0(\mathbb{T}\setminus\{1\}, \{C(\mathbb{T}^{k-1})\rtimes_{\hat{\alpha}, z_{n-k+1}}\mathbb{Z}\}_{z_{n-k+1}\in\mathbb{T}\setminus\{1\}}),$$

and $C(\mathbb{T}) \rtimes_{\hat{\alpha}} \mathbb{Z} \cong C(\mathbb{T}^2)$. Note that the fibers $C(\mathbb{T}) \rtimes_{\hat{\alpha}, z_{n-1}} \mathbb{Z}$ are noncommutative 2-tori since $\hat{\alpha}_1(z_n) = z_{n-1}^{t_{(n-1)n}} z_n$, and if they are simple, they are AT-algebras, i.e. inductive limits of finite direct sums of matrix algebras over $C(\mathbb{T})$ [5]. The fibers $C(\mathbb{T}^{k-1}) \rtimes_{\hat{\alpha}, z_{n-k+1}} \mathbb{Z}$ $(k \geq 3)$ are not noncommutative tori if $t_{ij} \neq 0$ for some $n-k+2 \leq i < j \leq n$. If the fibers are simple, they are crossed products by minimal diffeomorphisms on \mathbb{T}^{k-1} $(k \geq 3)$ so that they are approximately subhomogeneous, i.e. inductive limits of subhomogeneous algebras (cf. [9]). This remarkable fact is helpful for computing their stable rank.

To sum up we obtain

Theorem 1.1 Let $N_{n,1} = \mathbb{Z}^n \rtimes_{\alpha} \mathbb{Z}$ as above. Then $C^*(N_{n,1})$ has the following finite composition series $\{\mathfrak{I}_j\}_{j=1}^n$ with $\mathfrak{I}_0 = \{0\}$: $\mathfrak{I}_n/\mathfrak{I}_{n-1} \cong C(\mathbb{T}^2)$, and

$$\mathfrak{I}_{n-k+1}/\mathfrak{I}_{n-k} \cong \Gamma_0(\mathbb{T} \setminus \{1\}, \{C(\mathbb{T}^{k-1}) \rtimes_{\hat{\alpha}, z_{n-k+1}} \mathbb{Z}\}_{z_{n-k+1} \in \mathbb{T} \setminus \{1\}})$$

$$for \ 2 \le k \le n.$$

Moreover, the fibers $C(\mathbb{T}^{k-1}) \rtimes_{\hat{\alpha}, z_{n-k+1}} \mathbb{Z}$ $(k \geq 3)$ are not noncommutative tori if $t_{ij} \neq 0$ for some $n-k+2 \leq i < j \leq n$.

Proof. Under the above situation, the following exact sequence is obtained:

$$0 \to \mathfrak{I}_{n-1} \to C(\mathbb{T}^n) \rtimes_{\hat{\alpha}} \mathbb{Z} \to C(\mathbb{T}) \rtimes_{\hat{\alpha}} \mathbb{Z} \to 0$$

where $\mathfrak{I}_{n-1} = C_0(\mathbb{T}^n \setminus \mathbb{T}) \rtimes_{\hat{\alpha}} \mathbb{Z}$. Moreover, the following exact sequence is also obtained:

$$0 \to \mathfrak{I}_{n-2} \to \mathfrak{I}_{n-1} \to C_0((\mathbb{T} \setminus \{1\}) \times \mathbb{T}) \rtimes_{\hat{\alpha}} \mathbb{Z} \to 0$$

where $\mathfrak{I}_{n-2} = C_0(\mathbb{T}^n \setminus (\mathbb{T} \cup ((\mathbb{T} \setminus \{1\}) \times \mathbb{T}))) \rtimes_{\hat{\alpha}} \mathbb{Z}$. Inductively, the following exact sequences are obtained:

$$0 \to \mathfrak{I}_{n-k} \to \mathfrak{I}_{n-k+1} \to C_0((\mathbb{T} \setminus \{1\}) \times \mathbb{T}^{k-1}) \rtimes_{\hat{\alpha}} \mathbb{Z} \to 0$$
 for $2 < k < n$.

Remark 1.2 Simple quotients of the C^* -algebras of compactly generated, locally compact 2-step nilpotent groups are isomorphic to tensor products of noncommutative tori and the C^* -algebra of compact operators on either a finite or an infinite dimensional Hilbert space ([12]). The fibers $C(\mathbb{T}^{k-1}) \rtimes_{\hat{\alpha}, z_{n-k+1}} \mathbb{Z}$ $(k \geq 3)$ can be simple, but not be noncommutative tori.

Next define $N_{n,m}$ to be the discrete nilpotent semi-direct products $\mathbb{Z}^n \rtimes_{\alpha} \mathbb{Z}^m$, where the action α of \mathbb{Z}^m on \mathbb{Z}^n is defined by the multiplication of the matrices as follows:

$$\alpha_{(1)_{k=1}^m} = \alpha_{1_1} \cdots \alpha_{1_m}, \quad \alpha_{1_k} = \begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix} = (t_{ij}^{(k)})_{i,j=1}^n \in GL_n(\mathbb{Z})$$

for $1_k \in \mathbb{Z}^m$ with $1_k = (0, \ldots, 0, 1, 0, \ldots, 0)$ (only k-th component nonzero). Note that the groups $N_{n,m}$ are n-step nilpotent in general. It is obtained by the same way as Theorem 1.1 that

Theorem 1.3 Let $N_{n,m} = \mathbb{Z}^n \rtimes_{\alpha} \mathbb{Z}^m$ as above. Then $C^*(N_{n,m})$ has the following finite composition series $\{\mathfrak{I}_j\}_{j=1}^n$: $\mathfrak{I}_0 = \{0\}$, $\mathfrak{I}_n/\mathfrak{I}_{n-1} \cong C(\mathbb{T}^{1+m})$, and

$$\mathfrak{I}_{n-k+1}/\mathfrak{I}_{n-k} \cong \Gamma_0(\mathbb{T} \setminus \{1\}, \{C(\mathbb{T}^{k-1}) \rtimes_{\hat{\alpha}, z_{n-k+1}} \mathbb{Z}^m\}_{z_{n-k+1} \in \mathbb{T} \setminus \{1\}})$$

$$for \ 2 \le k \le n$$

Moreover, the fibers $C(\mathbb{T}^{k-1}) \rtimes_{\hat{\alpha}, z_{n-k+1}} \mathbb{Z}^m$ $(k \geq 3)$ are not noncommutative tori if $t_{ij}^{(k)} \neq 0$ for some $n-k+2 \leq i < j \leq n$ and $1 \leq k \leq m$.

Remark 1.4 Note that the fibers $C(\mathbb{T}) \rtimes_{\hat{\alpha}, z_{n-1}} \mathbb{Z}^m$ are noncommutative (m+1)-tori since $\hat{\alpha}_{1_k}(z_n) = z_{n-1}^{t(k,n)} z_n$ with $t(k,n) = t_{(n-1)n}^{(k)}$ $(1 \leq k \leq m)$ (a multi-rotational action for a fixed z_{n-1}), and they are isomorphic to $C(\mathbb{T}^m) \rtimes \mathbb{Z}$ by considering their generating unitaries. If these fibers are simple, they are AT-algebras by [6,7], and so they have stable rank one.

Remark 1.5 If the action α is the diagonal sum: $\alpha_{(1)_{k=1}^m} = \alpha_{1_1} \oplus \cdots \oplus \alpha_{1_m}$ of $\alpha_{1_k} \in GL_{n_k}(\mathbb{Z})$ on a direct product $\mathbb{Z}^n = \prod_{k=1}^m \mathbb{Z}^{n_k}$ where $n = \sum_{k=1}^m n_k$, then $C^*(N_{n,m}) \cong (\otimes_{k=1}^m C(\mathbb{T}^{n_k})) \rtimes_{\hat{\alpha}} \mathbb{Z}^m$ is isomorphic to the tensor product $\otimes_{k=1}^m (C(\mathbb{T}^{n_k}) \rtimes_{\hat{\alpha}_k} \mathbb{Z})$.

2. Certain discrete nilpotent semi-direct products by $H_3^{\mathbb{Z}}$

Next consider the structure of the group C^* -algebra of the semi-direct product $L_7^{\mathbb{Z}} = (\mathbb{Z}^2 \times \mathbb{Z}^2) \rtimes_{(\alpha,\beta)} H_3^{\mathbb{Z}}$ where $H_3^{\mathbb{Z}}$ is the discrete Heisenberg group of rank 3 consisting of the following matrices:

$$\begin{pmatrix} 1 & n & l \\ 0 & 1 & m \\ 0 & 0 & 1 \end{pmatrix} \in GL_3(\mathbb{Z}), \quad l, m, n \in \mathbb{Z}$$

and α_m , $\beta_n \in \mathrm{GL}_2(\mathbb{Z})$ for $(l, m, n) \in H_3^{\mathbb{Z}}$, and

$$\alpha_1 = \beta_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{Z}).$$

Note that $H_3^{\mathbb{Z}} \cong \mathbb{Z}^2 \rtimes_{\gamma} \mathbb{Z}$ where $\gamma_n(l, m) = (l + nm, m)$, and the groups $L_7^{\mathbb{Z}}$, $H_3^{\mathbb{Z}}$ are 2-step nilpotent. Then

$$C^*(L_7^{\mathbb{Z}}) \cong C^*(\mathbb{Z}^2 \times \mathbb{Z}^2) \rtimes_{(\alpha,\,\beta)} H_3^{\mathbb{Z}} \cong C(\mathbb{T}^2 \times \mathbb{T}^2) \rtimes_{(\hat{\alpha},\,\hat{\beta})} H_3^{\mathbb{Z}}$$

where $\hat{\alpha}_g(z_1, z_2) = (z_1, z_1^m z_2)$ and $\hat{\beta}_g(w_1, w_2) = (w_1, w_1^n w_2)$ for $(z_1, z_2, w_1, w_2) \in \mathbb{T}^4$ and $g = (l, m, n) \in H_3^{\mathbb{Z}}$, and $C^*(H_3^{\mathbb{Z}}) \cong C^*(\mathbb{Z}^2) \rtimes_{\gamma} \mathbb{Z} \cong C(\mathbb{T}^2) \rtimes_{\hat{\gamma}} \mathbb{Z}$ where $\hat{\gamma}_n(p, q) = (p, p^n q)$ for $(p, q) \in \mathbb{T}^2$. Moreover, it follows that

$$0 \to C(X_1) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}} \to C(\mathbb{T}^2 \times \mathbb{T}^2) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}}$$
$$\to C((\{1\} \times \mathbb{T}) \times (\{1\} \times \mathbb{T}))) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}} \to 0$$

and $C((\{1\} \times \mathbb{T}) \times (\{1\} \times \mathbb{T}))) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}} \cong C(\mathbb{T}^2) \otimes C^*(H_3^{\mathbb{Z}})$, and X_1 is the complement of $(\{1\} \times \mathbb{T})^2$ in \mathbb{T}^4 . Moreover, the ideal of the above exact sequence has the following decomposition:

$$0 \to C(X_2) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}} \to C(X_1) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}}$$

$$\to C_0(((\mathbb{T} \setminus \{1\}) \times \mathbb{T}) \times (\{1\} \times \mathbb{T})) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}} \to 0$$

and $C_0(((\mathbb{T}\setminus\{1\})\times\mathbb{T})\times(\{1\}\times\mathbb{T}))\rtimes_{(\hat{\alpha},\hat{\beta})}H_3^{\mathbb{Z}}\cong C(\mathbb{T})\otimes C_0(((\mathbb{T}\setminus\{1\})\times\mathbb{T}))\rtimes_{\hat{\alpha}}H_3^{\mathbb{Z}}$ (Case A), where X_2 is the complement of $((\mathbb{T}\setminus\{1\})\times\mathbb{T})\times(\{1\}\times\mathbb{T})$ in X_1 . Moreover, the following exact sequence is obtained:

$$0 \to C(X_3) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}} \to C(X_2) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}}$$
$$\to C_0((\{1\} \times \mathbb{T}) \times ((\mathbb{T} \setminus \{1\}) \times \mathbb{T})) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}} \to 0$$

and $C_0((\{1\} \times \mathbb{T}) \times ((\mathbb{T} \setminus \{1\}) \times \mathbb{T})) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}} \cong C(\mathbb{T}) \otimes C_0((\mathbb{T} \setminus \{1\}) \times \mathbb{T})) \rtimes_{\hat{\beta}} H_3^{\mathbb{Z}}$ (Case B), where $X_3 = ((\mathbb{T} \setminus \{1\}) \times \mathbb{T}) \times ((\mathbb{T} \setminus \{1\}) \times \mathbb{T})$ and

$$C(X_3) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}}$$

$$= C_0(((\mathbb{T} \setminus \{1\}) \times \mathbb{T}) \times ((\mathbb{T} \setminus \{1\}) \times \mathbb{T})) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}} \qquad (Case C).$$

Case A: For a further analysis of $C_0(((\mathbb{T}\setminus\{1\})\times\mathbb{T}))\rtimes_{\hat{\alpha}}H_3^{\mathbb{Z}}$, note that

$$C_0(((\mathbb{T}\setminus\{1\})\times\mathbb{T}))\rtimes_{\hat{\alpha}}H_3^{\mathbb{Z}}\cong\Gamma_0(\mathbb{T}\setminus\{1\},\,\{C(\mathbb{T})\rtimes_{z,\,\hat{\alpha}}H_3^{\mathbb{Z}}\}_{z\in\mathbb{T}\setminus\{1\}}),$$

where $(z, \hat{\alpha})$ corresponds to $\{z\} \times \mathbb{T}$, and the fibers have the following isomorphisms:

$$C(\mathbb{T}) \rtimes_{z,\hat{\alpha}} H_3^{\mathbb{Z}} \cong C(\mathbb{T}) \rtimes_{z,\hat{\alpha}} (\mathbb{Z}^2 \rtimes_{\gamma} \mathbb{Z})$$

$$\cong ((C(\mathbb{T}) \rtimes_{z,\hat{\alpha}} \mathbb{Z}) \rtimes_{\gamma} \mathbb{Z}) \rtimes_{\gamma} \mathbb{Z} \cong (\mathfrak{A}_{\theta_z} \otimes C(\mathbb{T})) \rtimes_{\hat{\gamma}} \mathbb{Z},$$

where $H_3^{\mathbb{Z}} \cong \mathbb{Z}^2 \rtimes_{\gamma} \mathbb{Z}$ as above, $z = z_1 = e^{2\pi i \theta_z}$ and \mathfrak{A}_{θ_z} is the rotation algebra corresponding to θ_z . Moreover, it follows that $(\mathfrak{A}_{\theta_z} \otimes C(\mathbb{T})) \rtimes_{\hat{\gamma}} \mathbb{Z} \cong \Gamma(\mathbb{T}, {\mathfrak{A}_{\theta_z} \rtimes_{p,\hat{\gamma}} \mathbb{Z}}_{p \in \mathbb{T}})$ where the actions $(p, \hat{\gamma})$ of the fibers correspond to the restrictions to $\mathfrak{A}_{\theta_z} \otimes C(\{p\})$.

Case B: For a further analysis of $C_0(((\mathbb{T}\setminus\{1\})\times\mathbb{T}))\rtimes_{\hat{\beta}}H_3^{\mathbb{Z}}$, it is obtained that

$$C_0(((\mathbb{T}\setminus\{1\})\times\mathbb{T}))\rtimes_{\hat{\beta}}H_3^{\mathbb{Z}}\cong\Gamma_0(\mathbb{T}\setminus\{1\},\,\{C(\mathbb{T})\rtimes_{w,\,\hat{\beta}}H_3^{\mathbb{Z}}\}_{w\in\mathbb{T}\setminus\{1\}}),$$

where $(w, \hat{\beta})$ corresponds to $\{w\} \times \mathbb{T}$, and the fibers have the following isomorphisms:

$$\begin{split} C(\mathbb{T}) \rtimes_{w,\hat{\beta}} H_3^{\mathbb{Z}} &\cong C(\mathbb{T}) \rtimes_{w,\hat{\beta}} (\mathbb{Z}^2 \rtimes_{\gamma} \mathbb{Z}) \cong (C(\mathbb{T}) \otimes C(\mathbb{T}^2)) \rtimes_{(w,\hat{\beta},\hat{\gamma})} \mathbb{Z} \\ &\cong \Gamma(\mathbb{T}, \, \{C(\mathbb{T}^2) \rtimes_{(w,\hat{\beta}),\, (p,\hat{\gamma})} \mathbb{Z}\}_{p \in \mathbb{T}}), \end{split}$$

where the actions $(p, \hat{\gamma})$ correspond to the restrictions to $\{p\} \times \mathbb{T}$ in $\mathbb{T} \times \{p\} \times \mathbb{T}$.

Case C: For a further analysis for $C_0(((\mathbb{T}\setminus\{1\})\times\mathbb{T})\times((\mathbb{T}\setminus\{1\})\times\mathbb{T}))\rtimes_{(\hat{\alpha},\hat{\beta})}H_3^{\mathbb{Z}}$,

$$C_0(((\mathbb{T}\setminus\{1\})\times\mathbb{T})\times((\mathbb{T}\setminus\{1\})\times\mathbb{T}))\rtimes_{(\hat{\alpha},\hat{\beta})}H_3^{\mathbb{Z}}$$

$$\cong \Gamma_0((\mathbb{T}\setminus\{1\})\times(\mathbb{T}\setminus\{1\}),\{C(\mathbb{T}^2)\rtimes_{z,w,\hat{\alpha},\hat{\beta}}H_3^{\mathbb{Z}}\}_{(z,w)\in(\mathbb{T}\setminus\{1\})^2}),$$

where the actions $(z, w, \hat{\alpha}, \hat{\beta})$ correspond to the restrictions to $\{z\} \times \mathbb{T} \times \{w\} \times \mathbb{T}$. Moreover, the fibers have the following isomorphisms:

$$\begin{split} C(\mathbb{T}^2) \rtimes_{z,w,\hat{\alpha},\hat{\beta}} H_3^{\mathbb{Z}} & \cong C(\mathbb{T}^2) \rtimes (\mathbb{Z}^2 \rtimes_{\gamma} \mathbb{Z}) \!\cong\! (\mathfrak{A}_{\theta_z} \otimes C(\mathbb{T}^2)) \rtimes_{(w,\hat{\beta}),\hat{\gamma}} \mathbb{Z} \\ & \cong \Gamma(\mathbb{T}, \, \{ (\mathfrak{A}_{\theta_z} \otimes C(\mathbb{T})) \rtimes_{(w,\hat{\beta}),(p,\hat{\gamma})} \mathbb{Z} \}_{p \in \mathbb{T}}). \end{split}$$

Summing up the above argument, it is obtained that

Theorem 2.1 The group C^* -algebra $C^*(L_7^{\mathbb{Z}}) = C^*(\mathbb{Z}^4 \rtimes_{(\alpha,\beta)} H_3^{\mathbb{Z}})$ has the following finite composition series $\{\mathfrak{K}_j\}_{j=1}^4$: $\mathfrak{K}_4/\mathfrak{K}_3 \cong C(\mathbb{T}^2) \otimes C^*(H_3^{\mathbb{Z}})$, and

$$\begin{cases}
\mathfrak{K}_3/\mathfrak{K}_2 \cong C(\mathbb{T}) \otimes \Gamma_0(\mathbb{T} \setminus \{1\}, \{C(\mathbb{T}) \rtimes_{z,\hat{\alpha}} H_3^{\mathbb{Z}}\}_{z \in \mathbb{T} \setminus \{1\}}), \\
\mathfrak{K}_2/\mathfrak{K}_1 \cong C(\mathbb{T}) \otimes \Gamma_0(\mathbb{T} \setminus \{1\}, \{C(\mathbb{T}) \rtimes_{w,\hat{\beta}} H_3^{\mathbb{Z}}\}_{w \in \mathbb{T} \setminus \{1\}}), \\
\mathfrak{K}_1 \cong \Gamma_0((\mathbb{T} \setminus \{1\})^2, \{C(\mathbb{T}^2) \rtimes_{z,w,\hat{\alpha},\hat{\beta}} H_3^{\mathbb{Z}}\}_{(z,w) \in (\mathbb{T} \setminus \{1\})^2}).
\end{cases}$$

Moreover, it follows that

$$\left\{ \begin{array}{l} C(\mathbb{T}) \rtimes_{z,\hat{\alpha}} H_3^{\mathbb{Z}} \cong \Gamma(\mathbb{T}, \, \{\mathfrak{A}_{\theta_z} \rtimes_{p,\hat{\gamma}} \mathbb{Z}\}_{p \in \mathbb{T}}), \\ C(\mathbb{T}) \rtimes_{w,\hat{\beta}} H_3^{\mathbb{Z}} \cong \Gamma(\mathbb{T}, \, \{C(\mathbb{T}^2) \rtimes_{(w,\hat{\beta}), \, (p,\hat{\gamma})} \mathbb{Z}\}_{p \in \mathbb{T}}), \\ C(\mathbb{T}^2) \rtimes_{z, \, w, \, \hat{\alpha}, \, \hat{\beta}} H_3^{\mathbb{Z}} \cong \Gamma(\mathbb{T}, \, \{(\mathfrak{A}_{\theta_z} \otimes C(\mathbb{T})) \rtimes_{(w,\hat{\beta}), \, (p,\hat{\gamma})} \mathbb{Z}\}_{p \in \mathbb{T}}) \end{array} \right.$$

where $p \in \mathbb{T}$ corresponds to the dual of $l \in (\mathbb{Z}, 0, 0)$ in $H_3^{\mathbb{Z}} = \mathbb{Z}^2 \rtimes_{\gamma} \mathbb{Z}$, and \mathfrak{A}_{θ_z} is the rotation algebra $C(\mathbb{T}) \rtimes_{z, \hat{\alpha}} \mathbb{Z}$ with $z = e^{2\pi i \theta_z}$.

Remark 2.2 The group C^* -algebra $C^*(H_3^{\mathbb{Z}})$ is regarded as the C^* -algebra of a continuous field on \mathbb{T} , i.e. $C^*(H_3^{\mathbb{Z}}) \cong C(\mathbb{T}^2) \rtimes_{\hat{\gamma}} \mathbb{Z} \cong \Gamma(\mathbb{T}, \{\mathfrak{A}_{\theta_p}\}_{p \in \mathbb{T}})$ with $\mathfrak{A}_{\theta_p} = C(\mathbb{T}) \rtimes_{(p,\,\hat{\gamma})} \mathbb{Z}$ and $p = e^{2\pi i \theta_p}$. Note that \mathfrak{K}_1 as a C^* -algebra of continuous fields above has no local triviality over $(\mathbb{T} \setminus \{1\})^2$, so that it has no meaningful composition series. Also, all the fibers $\mathfrak{A}_{\theta_z} \rtimes_{p,\hat{\gamma}} \mathbb{Z}$, $C(\mathbb{T}^2) \rtimes_{(w,\,\hat{\beta}),\,(p,\,\hat{\gamma})} \mathbb{Z}$ and $(\mathfrak{A}_{\theta_z} \otimes C(\mathbb{T})) \rtimes_{(w,\,\hat{\beta}),\,(p,\,\hat{\gamma})} \mathbb{Z}$ are noncommutative tori since they are generated by the following unitaries respectively (cf. [19]):

$$\begin{cases} U_1,\,U_2,\,U_3: & U_1U_2=zU_2U_1,\ U_2U_3=pU_3U_2,\\ U_1,\,U_2,\,U_3: & U_3U_1=wU_1U_3,\ U_2U_3=pU_3U_2,\\ U_1,\,U_2,\,U_3,\,U_4:\,U_1U_2=zU_2U_1,\ U_2U_4=wU_4U_2, & U_3U_4=pU_4U_3. \end{cases}$$

On the other hand, the center Z of $L_7^{\mathbb{Z}}$ consists of all elements $((s, 0), (t, 0), (l, 0, 0)) \in (\mathbb{Z}^2 \times \mathbb{Z}^2) \rtimes H_3^{\mathbb{Z}}$. Thus $Z \cong \mathbb{Z}^3$ and $\hat{Z} \cong \mathbb{T}^3$. By [8, Theorem 4], $C^*(L_7^{\mathbb{Z}})$ is isomorphic to the C^* -algebra of a continuous field on \mathbb{T}^3 , i.e. $\Gamma(\mathbb{T}^3, \{\mathfrak{B}_u\}_{u\in\mathbb{T}^3})$ with \mathfrak{B}_u certain fibers. However, this decomposition is not

the same as ours, and the fibers \mathfrak{B}_u are just given by $(\mathfrak{A}_{\theta_z} \otimes C(\mathbb{T})) \rtimes_{(w,\hat{\beta}), (p,\hat{\gamma})} \mathbb{Z}$ for $(z, w, p) = u \in \mathbb{T}^3$ by using our analysis.

Similarly, we consider a generalization of Theorem 2.1 in what follows. Let $H_{2n+1}^{\mathbb{Z}}$ be the generalized discrete Heisenberg group of rank (2n+1) consisting of the following $(n+2)\times(n+2)$ matrices:

$$\begin{pmatrix} 1 & (n_j) & l \\ 0 & 1_n & m^t \\ 0 & 0 & 1 \end{pmatrix} \in GL_{n+2}(\mathbb{Z}), \quad (n_j), \ m = (m_j) \in \mathbb{Z}^n, \quad l \in \mathbb{Z},$$

where m^t means the transpose of m, and 1_n is the $n \times n$ identity matrix. Let $L_{6n+1}^{\mathbb{Z}} = \mathbb{Z}^{4n} \rtimes_{\alpha} H_{2n+1}^{\mathbb{Z}}$ with the action $\alpha = (\alpha^1, \ldots, \alpha^{2n})$ such that $\alpha_{n_j}^j, \alpha_{m_j}^{n+j} \in GL_2(\mathbb{Z})$ for $(l, (m_j)_{j=1}^n, (n_j)_{j=1}^n) \in H_{2n+1}^{\mathbb{Z}}$ and

$$\alpha_1^1 = \dots = \alpha_1^{2n} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \mathrm{GL}_2(\mathbb{Z}).$$

Note that $H_{2n+1}^{\mathbb{Z}} \cong \mathbb{Z}^{n+1} \rtimes_{\gamma} \mathbb{Z}^n$ where $\gamma_{(n_j)}(l, m) = (l + \sum_{j=1}^n n_j m_j, m)$ for $(n_j), m \in \mathbb{Z}^n$ and $l \in \mathbb{Z}$, and the groups $L_{6n+1}^{\mathbb{Z}}, H_{2n+1}^{\mathbb{Z}}$ are 2-step nilpotent. Then $C^*(\mathbb{Z}^{4n} \rtimes H_{2n+1}^{\mathbb{Z}}) \cong C(\mathbb{T}^{4n}) \rtimes_{\hat{\alpha}} H_{2n+1}^{\mathbb{Z}}$, and $C^*(H_{2n+1}^{\mathbb{Z}}) \cong C^*(\mathbb{Z}^{n+1}) \rtimes_{\gamma} \mathbb{Z}^n \cong C(\mathbb{T}^{n+1}) \rtimes_{\hat{\gamma}} \mathbb{Z}^n$ where $\hat{\gamma}_{(n_j)}(p, (q_j)_{j=1}^n) = (p, (p^{n_j}q_j)_{j=1}^n) \in \mathbb{T}^{n+1}$ for $(n_j) \in \mathbb{Z}^n$.

Theorem 2.3 Let $L_{6n+1}^{\mathbb{Z}} = \mathbb{Z}^{4n} \rtimes_{\alpha} H_{2n+1}^{\mathbb{Z}}$ as above. Then the group C^* -algebra $C^*(L_{6n+1}^{\mathbb{Z}})$ has the following finite composition series $\{\mathfrak{K}_j\}_{j=1}^{2n+1}$: $\mathfrak{K}_0 = \{0\}$,

$$\begin{cases}
\mathfrak{K}_{2n+1}/\mathfrak{K}_{2n} \cong C(\mathbb{T}^{2n}) \otimes C^*(H_{2n+1}^{\mathbb{Z}}), \\
\mathfrak{K}_{2n-j+1}/\mathfrak{K}_{2n-j} \cong \bigoplus^{\binom{2n}{j}} C(\mathbb{T}^{2n-j}) \\
\otimes \Gamma_0((\mathbb{T} \setminus \{1\})^j, \{C(\mathbb{T}^j) \rtimes_{z, \hat{\alpha}} H_{2n+1}^{\mathbb{Z}}\}_{z \in (\mathbb{T} \setminus \{1\})^j})
\end{cases}$$

for $1 \leq j \leq 2n$, where $\binom{2n}{j}$ is the combination $_{2n}C_j$. Moreover, it follows that

$$\begin{split} C(\mathbb{T}^j) \rtimes_{z,\hat{\alpha}} H_{2n+1}^{\mathbb{Z}} &\cong \Gamma(\mathbb{T}, \, \{(\otimes^{k_0}\mathfrak{A}_{\theta_p}) \otimes (\otimes^{k_1}\mathfrak{A}_{\theta_{z(s)}} \rtimes_{p,\hat{\gamma}} \mathbb{Z}) \\ & \otimes (\otimes^{k_2} C(\mathbb{T}^2) \rtimes_{\hat{\alpha}, \, (p, \hat{\gamma})} \mathbb{Z}) \\ & \otimes (\otimes^{k_3} [(\mathfrak{A}_{\theta_{z(s)}} \otimes C(\mathbb{T})) \rtimes_{\hat{\alpha}, \, (p, \hat{\gamma})} \mathbb{Z}])\}_{p \in \mathbb{T}}) \end{split}$$

where \mathfrak{A}_{θ_p} and $\mathfrak{A}_{\theta_{z(s)}}$ are the rotation algebras corresponding to $p=e^{2\pi i \theta_p}$

and $z_{2s-1}=e^{2\pi i\theta_{z(s)}}$ $(1 \leq s \leq n)$ respectively, and $k_1+k_2+2k_3=j$ and $\sum_{l=0}^3 k_l=n$ with $0 \leq k_1,\,k_2,\,2k_3 \leq j$ and $0 \leq k_0 < n$, and $p \in \mathbb{T}$ corresponds to the dual of $l \in (\mathbb{Z},\,0,\,\ldots,\,0)$ in $H_{2n+1}^{\mathbb{Z}}=\mathbb{Z}^{n+1}\rtimes_{\gamma}\mathbb{Z}^n$.

Proof. The C^* -algebras \mathfrak{K}_j in the finite composition series $\{\mathfrak{K}_j\}_{j=1}^{2n+1}$ of $C^*(D_{6n+1}^{\mathbb{Z}})$ cited above are defined by $\mathfrak{K}_j = C_0(X_j) \rtimes_{\hat{\alpha}} H_{2n+1}^{\mathbb{Z}}$, where $\hat{\alpha}$ is defined by

$$\hat{\alpha}_g((z_j, z_{j+1})_{j=1}^{2n-1}, (z_{2n+j}, z_{2n+j+1})_{j=1}^{2n-1})$$

$$= ((z_j, z_j^{n_j} z_{j+1})_{j=1}^{2n-1}, (z_{2n+j}, z_{2n+j}^{m_j} z_{2n+j+1})_{j=1}^{2n-1}) \in \mathbb{T}^{4n}$$

for $g = (l, (m_j)_{j=1}^n, (n_j)_{j=1}^n) \in H_{2n+1}^{\mathbb{Z}}$, and $X_{2n+1} = \mathbb{T}^{4n}$, and $X_{2n+1} \setminus X_{2n} = (\{1\} \times \mathbb{T})^{2n}$ is a $\hat{\alpha}$ -fixed closed subspace of X_{2n+1} so that

$$\mathfrak{K}_{2n+1}/\mathfrak{K}_{2n} \cong C((\{1\} \times \mathbb{T})^{2n}) \rtimes_{\hat{\alpha}} H_{2n+1}^{\mathbb{Z}} \cong C(\mathbb{T}^{2n}) \otimes C^*(H_{2n+1}^{\mathbb{Z}}),$$

and

$$X_j \setminus X_{j-1} = \bigsqcup_{\binom{2n}{2n-j+1}} ((\mathbb{T} \setminus \{1\}) \times \mathbb{T})^{2n-j+1} \times (\{1\} \times \mathbb{T})^{j-1}$$

for $1 \leq j \leq 2n$, where the combination $\binom{2n}{2n-j+1}$ corresponds to choosing $\hat{\alpha}$ -invariant subspaces of X_j which are homeomorphic to $((\mathbb{T}\setminus\{1\})\times\mathbb{T})^{2n-j+1}\times(\{1\}\times\mathbb{T})^{j-1}$ (that is, the product spaces of (2n-j+1)-copies of $(\mathbb{T}\setminus\{1\})\times\mathbb{T}$ and (j-1)-copies of $\{1\}\times\mathbb{T}$ in $\mathbb{T}^{4n}=(\mathbb{T}^2)^{2n}$). Thus,

$$\mathfrak{K}_{j}/\mathfrak{K}_{j-1} \cong C_{0}(X_{j} \setminus X_{j-1}) \rtimes_{\hat{\alpha}} H_{2n+1}^{\mathbb{Z}}$$

$$\cong \bigoplus_{(2n-j+1)}^{2n} C_{0}(((\mathbb{T} \setminus \{1\}) \times \mathbb{T})^{2n-j+1}$$

$$\times (\{1\} \times \mathbb{T})^{j-1}) \rtimes_{\hat{\alpha}} H_{2n+1}^{\mathbb{Z}}$$

with $\hat{\alpha} = (\hat{\alpha}^1, \dots, \hat{\alpha}^{2n})$. Since $\hat{\alpha}^j$ for $1 \leq j \leq 2n$ are defined as above (cf. the actions $\hat{\alpha}$, $\hat{\beta}$ in Theorem 2.1), it is deduced that

$$C_0(((\mathbb{T}\setminus\{1\})\times\mathbb{T})^{2n-j+1}\times(\{1\}\times\mathbb{T})^{j-1})\rtimes_{\hat{\alpha}}H_{2n+1}^{\mathbb{Z}}$$

$$\cong C(\mathbb{T}^{j-1})$$

$$\otimes \Gamma_0((\mathbb{T}\setminus\{1\})^{2n-j+1}, \{C(\mathbb{T}^{2n-j+1})\rtimes_{z,\hat{\alpha}}H_{2n+1}^{\mathbb{Z}}\}_{z\in(\mathbb{T}\setminus\{1\})^{2n-j+1}}).$$

Moreover, replacing 2n - j - 1 with j, it follows that for $1 \le j \le 2n$,

$$C(\mathbb{T}^j) \rtimes_{z,\hat{\alpha}} H_{2n+1}^{\mathbb{Z}} \cong C(\mathbb{T}^j) \rtimes_{z,\hat{\alpha}} (\mathbb{Z}^{n+1} \rtimes_{\gamma} \mathbb{Z}^n)$$

$$\cong \Gamma(\mathbb{T}, \{ (C(\mathbb{T}^j) \rtimes_{z,\hat{\alpha}} \mathbb{Z}^n) \rtimes_{\hat{\alpha},(p,\hat{\gamma})} \mathbb{Z}^n \}_{p \in \mathbb{T}}),$$

where the action $(p, \hat{\gamma})$ corresponds to the restriction of $\hat{\gamma}$ to $\{p\} \times \mathbb{T}^n$. Furthermore, the space \mathbb{T}^j is decomposed into $\mathbb{T}^{k_1} \times \mathbb{T}^{k_2} \times \Pi^{k_3} \mathbb{T}^2$, and the actions $\hat{\alpha}^s$, $\hat{\alpha}^{n+s}$, and $(\hat{\alpha}^s, \hat{\alpha}^{n+s})$ for some $1 \leq s \leq n$ act on each direct factor of \mathbb{T}^{k_1} , \mathbb{T}^{k_2} and $\Pi^{k_3} \mathbb{T}^2$ respectively. Then it is obtained that

$$\begin{split} (C(\mathbb{T}^j) \rtimes_{z,\hat{\alpha}} \mathbb{Z}^n) \rtimes_{\hat{\alpha},(p,\hat{\gamma})} \mathbb{Z}^n \\ &\cong (\otimes^{k_0} C(\mathbb{T}) \rtimes_{p,\hat{\gamma}} \mathbb{Z}) \otimes (\otimes^{k_1} (C(\mathbb{T}) \rtimes_{\hat{\alpha}^s} \mathbb{Z}) \rtimes_{p,\hat{\gamma}} \mathbb{Z}) \\ & \otimes (\otimes^{k_2} (C(\mathbb{T}) \otimes C^*(\mathbb{Z})) \rtimes_{\hat{\alpha}^{n+s},(p,\hat{\gamma})} \mathbb{Z}) \\ & \otimes (\otimes^{k_3} (C(\mathbb{T}^2) \rtimes_{\hat{\alpha}^s} \mathbb{Z}) \rtimes_{\hat{\alpha}^{n+s},(p,\hat{\gamma})} \mathbb{Z}) \\ &\cong (\otimes^{k_0} \mathfrak{A}_{\theta_p}) \otimes (\otimes^{k_1} \mathfrak{A}_{\theta_{z(s-1)}} \rtimes_{p,\hat{\gamma}} \mathbb{Z}) \\ & \otimes (\otimes^{k_2} C(\mathbb{T}^2) \rtimes_{\hat{\alpha}^{n+s},(p,\hat{\gamma})} \mathbb{Z}) \\ & \otimes (\otimes^{k_3} [(\mathfrak{A}_{\theta_{z(s-1)}} \otimes C(\mathbb{T})) \rtimes_{\hat{\alpha}^{n+s},(p,\hat{\gamma})} \mathbb{Z}]), \end{split}$$

where \mathfrak{A}_{θ_p} and $\mathfrak{A}_{\theta_{z(s-1)}}$ are the rotation algebras corresponding to $p = e^{2\pi i \theta_p}$ and $z_{2(s-1)-1} = e^{2\pi i \theta_{z(s-1)}}$ $(1 \le s \le n)$ respectively.

Remark 2.4 The group C^* -algebra $C^*(H_{2n+1}^{\mathbb{Z}})$ is regarded as a C^* -algebra of continuous fields on \mathbb{T} , i.e.

$$C^*(H_{2n+1}^{\mathbb{Z}}) \cong C(\mathbb{T}^{n+1}) \rtimes_{\hat{\gamma}} \mathbb{Z}^n \cong \Gamma(\mathbb{T}, \{ \otimes^n \mathfrak{A}_{\theta_z} \}_{z \in \mathbb{T}})$$

where $C(\{z\} \times \mathbb{T}^n) \rtimes_{\hat{\gamma}} \mathbb{Z}^n \cong \otimes^n(C(\mathbb{T}) \rtimes_{z,\hat{\gamma}} \mathbb{Z})$ and $C(\mathbb{T}) \rtimes_{z,\hat{\gamma}} \mathbb{Z} = \mathfrak{A}_{\theta_z}$ the rotation algebra corresponding to $z = e^{2\pi i \theta_z}$. In the above decomposition of $C(\mathbb{T}^j) \rtimes_{z,\hat{\alpha}} H_{2n+1}^{\mathbb{Z}}$ into the continuous field on \mathbb{T} , its fibers are tensor products of noncommutative tori, so that they are also noncommutative tori. See [18, 19, 20] for the results on the stable rank of group C^* -algebras of some disconnected Lie groups, related with the structures of Theorems 2.1 and 2.3.

3. The C -algebras of the discrete ax + b groups

We first consider discrete solvable groups of the form $\mathbb{Z} \rtimes_{\alpha} \mathbb{Z}$ with α nontrivial. Since $\operatorname{Aut}(\mathbb{Z}) = \{\pm \operatorname{id}\}$ where id is the identity automorphism of \mathbb{Z} , we assume that $\alpha_1 = -\operatorname{id}$. Let $\Gamma = \mathbb{Z} \rtimes_{\alpha} \mathbb{Z}$. Note the following quotient:

$$\Gamma = \mathbb{Z} \rtimes_{\alpha} \mathbb{Z} \ni (s, t) \mapsto \begin{pmatrix} e^{\pi i t} & s \\ 0 & 1 \end{pmatrix} \in \mathrm{GL}_{2}(\mathbb{Z}).$$

Therefore, we say that Γ is the (extended) discrete ax + b group.

Theorem 3.1 Let Γ be the discrete ax + b group defined above. Then $C^*(\Gamma)$ has the following finite composition series $\{\mathfrak{F}_j\}_{j=1}^3 \colon \mathfrak{F}_3/\mathfrak{F}_2 \cong C(\mathbb{T}) \oplus C(\mathbb{T})$, and

$$\mathfrak{F}_2/\mathfrak{F}_1\cong C_0(\mathbb{R})\otimes M_2(\mathbb{C}), \quad and \quad \mathfrak{F}_1\cong C_0(\mathbb{R}^2)\otimes M_2(\mathbb{C}).$$

Proof. Note that $C^*(\Gamma) \cong C(\mathbb{T}) \rtimes_{\hat{\alpha}} \mathbb{Z}$, where $\hat{\alpha}$ is the reflection on \mathbb{T} . Since $\pm 1 \in \mathbb{T}$ is fixed under $\hat{\alpha}$, the following exact sequence is obtained:

$$0 \to C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes \mathbb{Z} \to C(\mathbb{T}) \rtimes_{\hat{\alpha}} \mathbb{Z} \to \oplus^2 C^*(\mathbb{Z}) \to 0$$

with $C^*(\mathbb{Z}) \cong C(\mathbb{T})$. Since $\hat{\alpha}^2 = \mathrm{id}$ on $\mathbb{T} \setminus \{\pm 1\}$, the above ideal has the following decomposition:

$$0 \to C_0(\mathbb{R}) \otimes (C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes \mathbb{Z}_2 \to C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes \mathbb{Z}$$
$$\to C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes \mathbb{Z}_2 \to 0.$$

In fact, $C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes \mathbb{Z}$ is regarded as the mapping torus M_β of the dual action β of \mathbb{Z}_2 on $C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes_{\hat{\alpha}} \mathbb{Z}_2 \equiv \mathcal{Q}$, that is, $M_\beta = \{f : [0, 1] \to \mathcal{Q} \mid \text{continuous and } f(1) = \beta_1(f(0))\}$ (cf. cite[p. 179]25), where β is trivial on $C_0(\mathbb{T} \setminus \{\pm 1\})$ and acts on \mathbb{Z}_2 by $\beta_l(t) = \langle t, l \rangle t$ for $t \in \mathbb{Z}_2$ and $l \in \hat{\mathbb{Z}}_2 \cong \mathbb{Z}_2$. Moreover, it is obtained that

$$C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes \mathbb{Z}_2 \cong C_0((0, \pi)) \otimes (C(\{\pm i\}) \rtimes \mathbb{Z}_2)$$

 $\cong C_0((0, \pi)) \otimes (\mathbb{C}^2 \rtimes \mathbb{Z}_2)$

and $\mathbb{C}^2 \rtimes \mathbb{Z}_2 \cong M_2(\mathbb{C})$, where the first isomorphism is deduced from the identifications: $\mathbb{T} \setminus \{\pm 1\} \ni z = e^{i\lambda} \leftrightarrow i\lambda \in i(0, \pi) \sqcup i(\pi, 2\pi)$ and $i(\pi, 2\pi) \approx (-i)(0, \pi)$ (homeomorphic). Note that $(0, \pi)$ is homeomorphic to \mathbb{R} .

Remark 3.2 Note that $M_2(\mathbb{C}) \cong C^*(\mathbb{Z}_2) \rtimes \mathbb{Z}_2 \cong C^*(\mathbb{Z}_2 \rtimes \mathbb{Z}_2)$ with the action of \mathbb{Z}_2 the left multiplication on \mathbb{Z}_2 . On the other hand, we can show that $\operatorname{sr}(C^*(\Gamma)) = 2$ and $\operatorname{csr}(C^*(\Gamma)) = 2$ as explained in the introduction using [13, Theorem 6.1], [15, p. 381].

Next define the generalized (extended) discrete ax + b groups Γ_{n+1} to be the groups with the quotient map to the following $(n+1) \times (n+1)$

matrices:

$$\Gamma_{n+1} \ni (s_1, \ldots, s_n, t) \mapsto \begin{pmatrix} e^{\pi i t} & 0 & \cdots & 0 & s_1 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ \vdots & & e^{\pi i t} & s_n \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} \in GL_{n+1}(\mathbb{Z})$$

for $t, s_i \in \mathbb{Z}$ $(1 \le j \le n)$. Then $\Gamma_{n+1} = \mathbb{Z}^n \rtimes_{\alpha} \mathbb{Z}$.

Theorem 3.3 Let Γ_{n+1} be the generalized discrete ax + b group defined above. Then $C^*(\Gamma_{n+1})$ has the following finite composition series $\{\mathfrak{F}_j\}_{j=1}^{n+1}$: $\mathfrak{F}_0 = \{0\}, \mathfrak{F}_{n+1}/\mathfrak{F}_n \cong \bigoplus^{2^n} C(\mathbb{T}), \text{ and }$

$$\mathfrak{F}_j/\mathfrak{F}_{j-1} \cong \bigoplus_{(n-j+1)}^{\binom{n}{n-j+1}} C_0((\mathbb{T} \setminus \{\pm 1\})^{n-j+1}) \rtimes \mathbb{Z},$$

for $1 \leq j \leq n$. Moreover, it is obtained by putting $Z_j = (\mathbb{T} \setminus \{\pm 1\})^{n-j+1}$ that

$$0 \to C_0(\mathbb{R}^{n-j+1}) \otimes (\bigoplus^{n-j+1} M_2(\mathbb{C})) \to C_0(Z_j) \rtimes \mathbb{Z}$$
$$\to \bigoplus^{n-j+1} M_2(\mathbb{C}) \to 0.$$

Proof. Note that $C^*(\Gamma_{n+1}) \cong C(\mathbb{T}^n) \rtimes_{\hat{\alpha}} \mathbb{Z}$. Since the points $(\pm 1, \ldots, \pm 1) \in \mathbb{T}^n$ are fixed under $\hat{\alpha}$, the following exact sequence is obtained:

$$0 \to C_0(\mathbb{T}^n \setminus \{(\pm 1, \ldots, \pm 1)\}) \times \mathbb{Z} \to C(\mathbb{T}) \rtimes_{\hat{\alpha}} \mathbb{Z} \to \oplus^{2^n} C(\mathbb{T}) \to 0.$$

Put $Y_{n+1} \equiv \mathbb{T}^n \setminus \{(\pm 1, \ldots, \pm 1)\}$. Then $C_0(Y_{n+1}) \rtimes \mathbb{Z}$ has the following finite composition series $\{\mathfrak{F}_j\}_{j=1}^n$: $\mathfrak{F}_0 = \{0\}$, $\mathfrak{F}_j = C_0(Y_j) \rtimes \mathbb{Z}$ and

$$\mathfrak{F}_j/\mathfrak{F}_{j-1} \cong \bigoplus_{n-j+1}^{\binom{n}{n-j+1}} C_0((\mathbb{T} \setminus \{\pm 1\})^{n-j+1}) \rtimes \mathbb{Z}.$$

Put $Z_j \equiv (\mathbb{T} \setminus \{\pm 1\})^{n-j+1}$. Since $\hat{\alpha}^2 = \text{id}$ on Z_j , each direct factor of the above subquotients has the following decomposition:

$$0 \to C_0(\mathbb{R}) \otimes (C_0(Z_j) \rtimes \mathbb{Z}_2) \to C_0(Z_j) \rtimes \mathbb{Z} \to C_0(Z_j) \rtimes \mathbb{Z}_2 \to 0$$

by the same way as in the proof of Theorem 3.1. Moreover, it follows that

$$C_0(Z_i) \rtimes \mathbb{Z}_2 \cong C_0(\mathbb{R}^{n-j+1}) \otimes (C(\Pi^{n-j+1}\{\pm i\}) \rtimes \mathbb{Z}_2)$$

since $\mathbb{T}\setminus\{\pm 1\}\approx i(0,\pi)\sqcup i(\pi,2\pi)\approx i(0,\pi)\sqcup(-i)(0,\pi)$ and $(0,\pi)\approx\mathbb{R}$ (homeomorphic), and $C(\Pi^{n-j+1}\{\pm i\})\rtimes\mathbb{Z}_2\cong\mathbb{C}^{2(n-j+1)}\rtimes\mathbb{Z}_2\cong\oplus^{n-j+1}M_2(\mathbb{C})$ since $\Pi^{n-j+1}\{\pm i\}$ is decomposed into the disjoint union of the orbits of its points.

Remark 3.4 It can be shown as explained in the introduction that

$$\operatorname{sr}(C_0(\mathbb{R}^n) \otimes M_2(\mathbb{C})) = \{ [n/2]/2 \} + 1$$

$$\leq \operatorname{sr}(C^*(\Gamma_{n+1})) \leq \{ [(n+1)/2]/2 \} + 1$$

and $\operatorname{csr}(C^*(\Gamma_{n+1})) \leq \{[(n+1)/2]/2\} + 1$, where [x] means the maximum integer $\leq x$, and $\{x\}$ means the least integer $\geq x$ ([13, Theorem 6.1], [14, Theorem 4.7], [10]). Compare this situation with some previous results on the stable rank of group C^* -algebras of connected or disconnected Lie groups ([17-20] and [23, 24]).

Next define the generalized (extended) discrete Mautner groups $M_{2n}^{\mathbb{Z}}$ to be the groups with the quotient map to the following $(n+1) \times (n+1)$ matrices:

$$M_{2n}^{\mathbb{Z}} \ni (s_1, \dots, s_n, t_1, \dots, t_n) \mapsto \begin{pmatrix} e^{\pi i t_1} & 0 & \cdots & 0 & s_1 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & e^{\pi i t_n} & s_n \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$
$$\in GL_{n+1}(\mathbb{Z})$$

for t_j , $s_j \in \mathbb{Z}$ $(1 \leq j \leq n)$ (See [1] or [18] for another definition of the discrete Mautner group (cf. [20])). Then $M_{2n}^{\mathbb{Z}} = \mathbb{Z}^n \rtimes_{\alpha} \mathbb{Z}^n$.

Theorem 3.5 Let $M_{2n}^{\mathbb{Z}}$ be the generalized discrete Mautner group defined above. Then $C^*(M_{2n}^{\mathbb{Z}})$ has the following finite composition series $\{\mathfrak{I}_j\}_{j=1}^{3^n}$: $\mathfrak{I}_0 = \{0\}$,

$$\mathfrak{I}_j/\mathfrak{I}_{j-1}\cong \mathfrak{F}_{1_j}\otimes\cdots\otimes \mathfrak{F}_{n_j}$$

for $1 \leq l_j \leq 3$ and $l_{j-1} \leq l_j$ for $1 \leq l \leq n$, and $\mathfrak{F}_3 \cong C(\mathbb{T}) \oplus C(\mathbb{T})$, and $\mathfrak{F}_2 \cong C_0(\mathbb{R}) \otimes M_2(\mathbb{C})$, and $\mathfrak{F}_1 \cong C_0(\mathbb{R}^2) \otimes M_2(\mathbb{C})$.

Proof. Note that $M_{2n}^{\mathbb{Z}} \cong \Pi^n(\mathbb{Z} \rtimes_{\alpha} \mathbb{Z}) \cong \Pi^n\Gamma$, where Γ is the discrete ax + b group. Thus $C^*(M_{2n}^{\mathbb{Z}}) \cong \otimes^n C^*(\Gamma)$. Therefore, the finite composition series in the statement is obtained from Theorem 3.1.

Remark 3.6 It can be shown that

$$\operatorname{sr}(C(\mathbb{T}^n)) = \left[\frac{n}{2}\right] + 1 \le \operatorname{sr}(C^*(M_{2n}^{\mathbb{Z}})) \le \left[\frac{n+1}{2}\right] + 1$$

and $csr(C^*(M_{2n}^{\mathbb{Z}})) \leq [(n+1)/2] + 1$ (cf. Remark 3.4).

4. Certain discrete solvable semi-direct products by $H_3^{\mathbb{Z}}$

Let $\Delta_5 = (\mathbb{Z} \times \mathbb{Z}) \rtimes_{(\alpha,\beta)} H_3^{\mathbb{Z}}$, where $\alpha_m = e^{\pi i m}$ and $\beta_n = e^{\pi i n}$ for $(l, m, n) \in H_3^{\mathbb{Z}}$. Then $C^*(\Delta_5) \cong C(\mathbb{T}^2) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}}$ with $\hat{\alpha}, \hat{\beta}$ reflections on each direct factor \mathbb{T} of \mathbb{T}^2 . Recall that $H_3^{\mathbb{Z}} \cong \mathbb{Z}^2 \rtimes_{\gamma} \mathbb{Z}$ and $C^*(H_3^{\mathbb{Z}}) \cong C(\mathbb{T}^2) \rtimes_{\hat{\gamma}} \mathbb{Z}$ as before Theorem 2.1.

Theorem 4.1 Let Δ_5 be the discrete solvable group defined above. Then $C^*(\Delta_5)$ has the following finite composition series

$$\{\mathfrak{D}_j\}_{j=1}^3 \colon \mathfrak{D}_3/\mathfrak{D}_2 \cong \oplus^4 C^*(H_3^{\mathbb{Z}}),$$

and

$$\begin{cases} \mathfrak{D}_2/\mathfrak{D}_1 \cong [C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes_{\hat{\alpha}} H_3^{\mathbb{Z}}] \oplus [C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes_{\hat{\beta}} H_3^{\mathbb{Z}}], \\ \mathfrak{D}_1 \cong C_0((\mathbb{T} \setminus \{\pm 1\})^2) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}}. \end{cases}$$

Moreover, it is obtained that

$$\begin{cases}
C_0(\mathbb{T}\setminus\{\pm 1\}) \rtimes_{\hat{\alpha}} H_3^{\mathbb{Z}} \\
\cong \Gamma(\mathbb{T}, \{C_0(\mathbb{R}) \otimes (\mathbb{C}^2 \otimes C(\mathbb{T})) \rtimes_{\hat{\alpha}, (\bar{z}, \hat{\gamma})} \mathbb{Z}\}_{z \in \mathbb{T}}), \\
C_0(\mathbb{T}\setminus\{\pm 1\}) \rtimes_{\hat{\beta}} H_3^{\mathbb{Z}} \\
\cong \Gamma(\mathbb{T}, \{C_0(\mathbb{R}) \otimes (\mathbb{C}^2 \otimes C(\mathbb{T})) \rtimes_{\hat{\beta}, (w, \hat{\gamma})} \mathbb{Z}\}_{w \in \mathbb{T}}), \\
C_0((\mathbb{T}\setminus\{\pm 1\})^2) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}} \\
\cong \Gamma(\mathbb{T}, \{C_0(\mathbb{R}^2) \otimes ((\mathbb{C}^2 \rtimes_{\hat{\alpha}} \mathbb{Z}) \otimes \mathbb{C}^2) \rtimes_{(z, \hat{\gamma}) \otimes \hat{\beta}} \mathbb{Z}\}_{z \in \mathbb{T}}),
\end{cases}$$

where $\mathbb{C}^2 = C(\{\pm i\})$, and the actions $(z, \hat{\gamma})$ correspond to the restrictions to $\{z\} \times \mathbb{T}$ in \mathbb{T}^2 of $C(\mathbb{T}^2) \rtimes_{\hat{\gamma}} \mathbb{Z} \cong C^*(H_3^{\mathbb{Z}})$.

Proof. Since the points $(\pm 1, \pm 1) \in \mathbb{T}^2$ are fixed under $(\hat{\alpha}, \hat{\beta})$, it is deduced that

$$0 \to C_0(\mathbb{T}^2 \setminus \{(\pm 1, \pm 1)\}) \rtimes H_3^{\mathbb{Z}} \to C(\mathbb{T}^2) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}}$$
$$\to \oplus^4 C^*(H_3^{\mathbb{Z}}) \to 0.$$

Moreover, the ideal has the following decomposition:

(E):
$$0 \to C_0((\mathbb{T} \setminus \{\pm 1\})^2) \rtimes H_3^{\mathbb{Z}}$$

 $\to C_0(\mathbb{T}^2 \setminus \{(\pm 1, \pm 1)\}) \rtimes H_3^{\mathbb{Z}} \to \oplus^2 C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes H_3^{\mathbb{Z}} \to 0.$

Case 1_1 : One of the two direct factors of the quotient of (E) has the following isomorphisms:

$$C_{0}(\mathbb{T} \setminus \{\pm 1\}) \rtimes_{\hat{\alpha}} H_{3}^{\mathbb{Z}} \cong C_{0}(\mathbb{T} \setminus \{\pm 1\}) \rtimes_{\hat{\alpha}} (\mathbb{Z}^{2} \rtimes_{\gamma} \mathbb{Z}) \cong$$

$$((C_{0}(\mathbb{T} \setminus \{\pm 1\}) \rtimes_{\hat{\alpha}} \mathbb{Z}) \otimes C(\mathbb{T})) \rtimes \mathbb{Z}$$

$$\cong \Gamma(\mathbb{T}, \{(C_{0}(\mathbb{T} \setminus \{\pm 1\}) \rtimes_{\hat{\alpha}} \mathbb{Z}) \rtimes_{z,\hat{\gamma}} \mathbb{Z}\}_{z \in \mathbb{T}}),$$

where the actions $(z, \hat{\gamma})$ correspond to the restrictions to $\{z\} \times \mathbb{T}$ in \mathbb{T}^2 of $C(\mathbb{T}^2) \rtimes_{\hat{\gamma}} \mathbb{Z} \cong C^*(H_3^{\mathbb{Z}})$. Moreover, it follows that

$$(C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes_{\hat{\alpha}} \mathbb{Z}) \rtimes_{z,\hat{\gamma}} \mathbb{Z} \cong C_0((\mathbb{T} \setminus \{\pm 1\}) \times \mathbb{T}) \rtimes_{\hat{\alpha},(\bar{z},\hat{\gamma})} \mathbb{Z}$$
$$\cong C_0(\mathbb{R}) \otimes (\mathbb{C}^2 \otimes C(\mathbb{T})) \rtimes_{\hat{\alpha},(\bar{z},\hat{\gamma})} \mathbb{Z},$$

where the first isomorphism is obtained by exchanging the actions $\hat{\alpha}$ and $(z, \hat{\gamma})$, and the second one uses the identifications $\mathbb{T} \setminus \{\pm 1\} \approx i(0, \pi) \sqcup i(\pi, 2\pi) \approx i(0, \pi) \sqcup (-i)(0, \pi)$ and $(0, \pi) \approx \mathbb{R}$ (homeomorphic), and $\mathbb{C}^2 = C(\{\pm i\})$.

Case 1₂: The other of the two direct factors of the quotient of (E) has the following isomorphisms:

$$\begin{split} C_0(\mathbb{T}\setminus\{\pm 1\}) \rtimes_{\hat{\beta}} H_3^{\mathbb{Z}} &\cong C_0(\mathbb{T}\setminus\{\pm 1\}) \rtimes_{\hat{\beta}} (\mathbb{Z}^2 \rtimes_{\gamma} \mathbb{Z}) \\ &\cong (C_0(\mathbb{T}\setminus\{\pm 1\}) \otimes C(\mathbb{T}^2)) \rtimes_{\hat{\beta},\hat{\gamma}} \mathbb{Z} \\ &\cong \Gamma(\mathbb{T}, \{C_0((\mathbb{T}\setminus\{\pm 1\}) \times \mathbb{T}) \rtimes_{\hat{\beta},(w,\hat{\gamma})} \mathbb{Z}\}_{w\in\mathbb{T}}), \end{split}$$

where $(w, \hat{\gamma})$ means the same as $(z, \hat{\gamma})$ above. Moreover, it follows that $C_0((\mathbb{T} \setminus \{\pm 1\}) \times \mathbb{T}) \rtimes_{\hat{\beta}, (w, \hat{\gamma})} \mathbb{Z} \cong C_0(\mathbb{R}) \otimes (\mathbb{C}^2 \otimes C(\mathbb{T})) \rtimes_{\hat{\beta}, (w, \hat{\gamma})} \mathbb{Z}$.

П

Case 2: The ideal of (E) has the following isomorphisms:

$$C_{0}((\mathbb{T}\setminus\{\pm1\})^{2})\rtimes_{(\hat{\alpha},\hat{\beta})}H_{3}^{\mathbb{Z}}\cong C_{0}((\mathbb{T}\setminus\{\pm1\})^{2})\rtimes_{(\hat{\alpha},\hat{\beta})}(\mathbb{Z}^{2}\rtimes_{\gamma}\mathbb{Z})$$

$$\cong ((C_{0}(\mathbb{T}\setminus\{\pm1\})\rtimes_{\hat{\alpha}}\mathbb{Z})\otimes C((\mathbb{T}\setminus\{\pm1\})\times\mathbb{T}))\rtimes_{\hat{\beta},\hat{\gamma}}\mathbb{Z}$$

$$\cong \Gamma(\mathbb{T},\{((C_{0}(\mathbb{T}\setminus\{\pm1\})\rtimes_{\hat{\alpha}}\mathbb{Z})\otimes C_{0}(\mathbb{T}\setminus\{\pm1\}))\rtimes_{(z,\hat{\gamma})\otimes\hat{\beta}}\mathbb{Z}\}_{z\in\mathbb{T}}).$$

Moreover, it is obtained that

$$((C_0(\mathbb{T}\setminus\{\pm 1\})\rtimes_{\hat{\alpha}}\mathbb{Z})\otimes C_0(\mathbb{T}\setminus\{\pm 1\}))\rtimes_{(z,\hat{\gamma})\otimes\hat{\beta}}\mathbb{Z}$$

$$\cong C_0(\mathbb{R}^2)\otimes ((\mathbb{C}^2\rtimes_{\hat{\alpha}}\mathbb{Z})\otimes\mathbb{C}^2)\rtimes_{(z,\hat{\gamma})\otimes\hat{\beta}}\mathbb{Z},$$

where we use the same identification of $\mathbb{T} \setminus \{\pm 1\}$ as above.

Remark 4.2 The C^* -algebras $(\mathbb{C}^2 \otimes C(\mathbb{T})) \rtimes_{\hat{\alpha}, (\bar{z}, \hat{\gamma})} \mathbb{Z}$, $(\mathbb{C}^2 \otimes C(\mathbb{T})) \rtimes_{\hat{\beta}, (w, \hat{\gamma})} \mathbb{Z}$ and $((\mathbb{C}^2 \rtimes_{\hat{\alpha}} \mathbb{Z}) \otimes \mathbb{C}^2) \rtimes_{(z, \hat{\gamma}) \otimes \hat{\beta}} \mathbb{Z}$ are not noncommutative tori. In fact, $(\mathbb{C}^2 \otimes C(\mathbb{T})) \rtimes_{\hat{\alpha}, (\bar{z}, \hat{\gamma})} \mathbb{Z} \cong (C(\mathbb{T}) \oplus C(\mathbb{T})) \rtimes_{\lambda^{\alpha, \bar{z}}} \mathbb{Z}$, where $\lambda_m^{\alpha, \bar{z}}(U_1) = z^m U_2$ and $\lambda_m^{\alpha, \bar{z}}(U_2) = z^m U_1$ for $(l, m, n) \in H_3^{\mathbb{Z}}$ and $(U_1, 0), (0, U_2) \in C(\mathbb{T}) \oplus C(\mathbb{T})$ the canonical generators of the direct factors $C(\mathbb{T})$. Also, it is able to consider the actions of the other algebras through the similar isomorphisms explicitly. Those algebras might be new, but it could be shown that if those algebras are non-rational, i.e. z and w irrational (rotations), they are approximately divisible by using the methods of [2]. Thus those simple algebras have stable rank one.

Next, let $\Delta_{4n+1} = \mathbb{Z}^{2n} \rtimes_{(\alpha,\beta)} H_{2n+1}^{\mathbb{Z}}$, where $\alpha = (\alpha^1, \ldots, \alpha^n)$, $\beta = (\beta^1, \ldots, \beta^n)$ with $\alpha_{m_j}^j = e^{\pi i m_j}$ and $\beta_{n_j}^j = e^{\pi i n_j}$ for $(l, (m_j)_{j=1}^n, (n_j)_{j=1}^n) \in H_{2n+1}^{\mathbb{Z}}$. Then $C^*(\Delta_{4n+1}) \cong C(\mathbb{T}^{2n}) \rtimes_{(\hat{\alpha},\hat{\beta})} H_{2n+1}^{\mathbb{Z}}$ with $\hat{\alpha}, \hat{\beta}$ reflections on each direct factor \mathbb{T} of $\mathbb{T}^n \times \{0_n\}$ and $\{0_n\} \times \mathbb{T}^n$ respectively. Recall that $H_{2n+1}^{\mathbb{Z}} \cong \mathbb{Z}^{n+1} \rtimes_{\gamma} \mathbb{Z}^n$ and $C^*(H_{2n+1}^{\mathbb{Z}}) \cong C(\mathbb{T}^{n+1}) \rtimes_{\hat{\gamma}} \mathbb{Z}^n$ as before Theorem 2.3. Then it is obtained similarly as Theorem 4.1 that

Theorem 4.3 Let Δ_{4n+1} be the discrete solvable group defined above. Then the group C^* -algebra $C^*(\Delta_{4n+1})$ has the following finite composition series $\{\mathfrak{D}_j\}_{j=1}^{2n+1}$: $\mathfrak{D}_0 = \{0\}$,

$$\begin{cases} \mathfrak{D}_{2n+1}/\mathfrak{D}_{2n} \cong \bigoplus^{2^{2n}} C^*(H_{2n+1}^{\mathbb{Z}}), \\ \mathfrak{D}_j/\mathfrak{D}_{j-1} \cong \bigoplus^{\binom{2n}{2n-j+1}} C_0((\mathbb{T} \setminus \{\pm 1\})^{2n-j+1}) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_{2n+1}^{\mathbb{Z}} \end{cases}$$

for $1 \leq j \leq 2n$. Moreover, it is obtained by putting $Z_j = (\mathbb{T} \setminus \{\pm 1\})^{2n-j+1}$ that

$$C_{0}(Z_{j}) \rtimes_{(\hat{\alpha},\hat{\beta})} H^{\mathbb{Z}}_{2n+1}$$

$$\cong \Gamma(\mathbb{T}, \{C_{0}(\mathbb{R}^{2n-j+1}) \otimes (\otimes^{k_{0}}\mathfrak{A}_{\theta_{z}}) \\ \otimes (\otimes^{k_{1}}(\mathbb{C}^{2} \otimes C(\mathbb{T})) \rtimes_{\hat{\alpha},(\bar{z},\hat{\gamma})} \mathbb{Z}) \\ \otimes (\otimes^{k_{2}}(\mathbb{C}^{2} \otimes C(\mathbb{T})) \rtimes_{\hat{\beta},(z,\hat{\gamma})} \mathbb{Z}) \\ \otimes (\otimes^{k_{3}}((\mathbb{C}^{2} \rtimes_{\hat{\alpha}} \mathbb{Z}) \otimes \mathbb{C}^{2}) \rtimes_{(z,\hat{\gamma}) \otimes \hat{\beta}} \mathbb{Z}\}_{z \in \mathbb{T}}),$$

where \mathfrak{A}_{θ_z} are the rotation algebras corresponding to $z = e^{2\pi i \theta_z}$, and the actions $(z, \hat{\gamma})$ correspond to the restrictions to $\{z\} \times \mathbb{T}^n$ of $C(\mathbb{T}^{n+1}) \rtimes_{\hat{\gamma}} \mathbb{Z}^n \cong C^*(H_{2n+1}^{\mathbb{Z}})$, and $k_1 + k_2 + 2k_3 = j$ and $\sum_{l=0}^3 k_l = n$ with $0 \leq k_1$, k_2 , $2k_3 \leq j$ and $0 \leq k_0 < n$.

Next let $D_7^{\mathbb{Z}} = (\mathbb{Z}^2 \times \mathbb{Z}^2) \rtimes_{(\alpha,\beta)} H_3^{\mathbb{Z}}$, where $\alpha_m = e^{\pi i m} \oplus e^{\pi i m}$ on \mathbb{Z}^2 and $\beta_n = e^{\pi i n} \oplus e^{\pi i n}$ on \mathbb{Z}^2 . We say that $D_7^{\mathbb{Z}}$ is the discrete Dixmier group of rank 7 (cf. [19] for the disconnected Dixmier group). Then it follows that

Theorem 4.4 Let $D_7^{\mathbb{Z}}$ be the discrete Dixmier group of rank 7. Then $C^*(D_7^{\mathbb{Z}})$ has the following finite composition series

$$\{\mathfrak{L}_j\}_{j=1}^9:\mathfrak{L}_9/\mathfrak{L}_8\cong \oplus^{2^4}C^*(H_3^{\mathbb{Z}}),$$

and

$$\begin{cases} \mathcal{L}_8/\mathcal{L}_7 \cong \oplus^{2^2+2^2} C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes_{\hat{\alpha}} H_3^{\mathbb{Z}}, \\ \mathcal{L}_7/\mathcal{L}_6 \cong \oplus^{2^2+2^2} C_0(\mathbb{T} \setminus \{\pm 1\}) \rtimes_{\hat{\beta}} H_3^{\mathbb{Z}}, \\ \mathcal{L}_6/\mathcal{L}_5 \cong \oplus^4 C_0((\mathbb{T} \setminus \{\pm 1\})^2) \rtimes_{\hat{\alpha}} H_3^{\mathbb{Z}}, \\ \mathcal{L}_5/\mathcal{L}_4 \cong \oplus^4 C_0((\mathbb{T} \setminus \{\pm 1\})^2) \rtimes_{\hat{\beta}} H_3^{\mathbb{Z}}, \\ \mathcal{L}_4/\mathcal{L}_3 \cong \oplus^4 C_0((\mathbb{T} \setminus \{\pm 1\}) \times (\mathbb{T} \setminus \{\pm 1\})) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}}, \\ \mathcal{L}_3/\mathcal{L}_2 \cong \oplus^2 C_0((\mathbb{T} \setminus \{\pm 1\})^2 \times (\mathbb{T} \setminus \{\pm 1\})) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}}, \\ \mathcal{L}_2/\mathcal{L}_1 \cong \oplus^2 C_0((\mathbb{T} \setminus \{\pm 1\}) \times (\mathbb{T} \setminus \{\pm 1\})^2) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}}, \\ \mathcal{L}_1 \cong C_0((\mathbb{T} \setminus \{\pm 1\})^2 \times (\mathbb{T} \setminus \{\pm 1\})^2) \rtimes_{(\hat{\alpha}, \hat{\beta})} H_3^{\mathbb{Z}}. \end{cases}$$

Moreover, it is obtained that

$$\begin{cases} C_{0}((\mathbb{T}\setminus\{\pm1\})^{2})\rtimes_{\hat{\alpha}}H_{3}^{\mathbb{Z}} \\ \cong \Gamma(\mathbb{T}, \{C_{0}(\mathbb{R}^{2})\otimes(\mathbb{C}^{4}\otimes C(\mathbb{T}))\rtimes_{(\bar{z},\hat{\gamma})}\mathbb{Z}\}_{z\in\mathbb{T}}), \\ C_{0}((\mathbb{T}\setminus\{\pm1\})^{2})\rtimes_{\hat{\beta}}H_{3}^{\mathbb{Z}} \\ \cong \Gamma(\mathbb{T}, \{C_{0}(\mathbb{R}^{2})\otimes(\mathbb{C}^{4}\otimes C(\mathbb{T}))\rtimes_{(w,\hat{\gamma})}\mathbb{Z}\}_{w\in\mathbb{T}}), \\ C_{0}((\mathbb{T}\setminus\{\pm1\})^{2}\times(\mathbb{T}\setminus\{\pm1\}))\rtimes_{(\hat{\alpha},\hat{\beta})}H_{3}^{\mathbb{Z}} \\ \cong \Gamma(\mathbb{T}, \{C_{0}(\mathbb{R}^{3})\otimes((\mathbb{C}^{4}\rtimes_{\hat{\alpha}}\mathbb{Z})\otimes\mathbb{C}^{2})\rtimes_{(z,\hat{\gamma})\otimes\hat{\beta}}\mathbb{Z}\}_{z\in\mathbb{Z}}), \\ C_{0}((\mathbb{T}\setminus\{\pm1\})\times(\mathbb{T}\setminus\{\pm1\})^{2})\rtimes_{(\hat{\alpha},\hat{\beta})}H_{3}^{\mathbb{Z}} \\ \cong \Gamma(\mathbb{T}, \{C_{0}(\mathbb{R}^{3})\otimes((\mathbb{C}^{2}\rtimes_{\hat{\alpha}}\mathbb{Z})\otimes\mathbb{C}^{4})\rtimes_{(z,\hat{\gamma})\otimes\hat{\beta}}\mathbb{Z}\}_{z\in\mathbb{Z}}), \\ C_{0}((\mathbb{T}\setminus\{\pm1\})^{2}\times(\mathbb{T}\setminus\{\pm1\})^{2})\rtimes_{(\hat{\alpha},\hat{\beta})}H_{3}^{\mathbb{Z}} \\ \cong \Gamma(\mathbb{T}, \{C_{0}(\mathbb{R}^{4})\otimes((\mathbb{C}^{4}\rtimes_{\hat{\alpha}}\mathbb{Z})\otimes\mathbb{C}^{4})\rtimes_{(z,\hat{\gamma})\otimes\hat{\beta}}\mathbb{Z}\}_{z\in\mathbb{Z}}), \end{cases}$$

where $\mathbb{C}^4 = C(\{\pm i, \pm i\})$, and the actions $(z, \hat{\gamma})$ correspond to the restrictions to $\{z\} \times \mathbb{T}$ of $C(\mathbb{T}^2) \rtimes_{\hat{\gamma}} \mathbb{Z} \cong C^*(H_3^{\mathbb{Z}})$.

Remark 4.5 Compare the algebraic structure of $C^*(D_7^{\mathbb{Z}})$ cited above with that of $C^*(L_7^{\mathbb{Z}})$ in Theorem 2.1. We can also define $D_{6n+1}^{\mathbb{Z}}$ by the same way as $L_{6n+1}^{\mathbb{Z}}$, and construct a finite composition series of $C^*(D_{6n+1}^{\mathbb{Z}})$ as given in Theorems 2.3 and 4.4, but omit the details.

Acknowledgment The author would like to thank the referee for reading the manuscript carefully and making many valuable corrections and suggestions for revision.

References

- Baggett L., Representations of the Mautner group, I, Pacific J. Math. 77 (1978),
 7-22
- [2] Blackadar B., Kumjian A. and Rørdam M., Approximately conetral matrix units and the structure of noncommutative tori, K-Theory 6 (1992), 267–284.
- [3] Dixmier J., C^* -algebras, North-Holland, 1962.
- [4] Elhage Hassan N., Rangs stables de certaines extensions, J. London Math. Soc. 52 (1995), 605-624.
- [5] Elliott G.A. and Evans D.E., The structure of the irrational rotation algebra, Ann. Math. 138 (1993), 477-501.
- [6] Elliott G.A. and Lin Q., Cut-down method in the inductive limit decomposition of noncommutative tori, J. London Math. Soc. 54 (1996), 121-134.

- [7] Elliott G.A. and Lin Q., Cut-down method in the inductive limit decomposition of noncommutative tori, II: The degenerate case, Operator Algebras and Their Applications, Fields Ints. Commun. 13 (1997), 91–123.
- [8] Lee R., On the C*-algebras of operator fields, Indiana Univ. Math. J. 25 (1976), 303-314.
- [9] Lin Q. and Phillips N.C., Ordered K-theory for C*-algebras of minimal homeomorphisms, Comtemp. Math. 228 (1998), 289-314.
- [10] Nistor V., Stable range for tensor products of extensions of K by C(X) J. Operator Theory 16 (1986), 387–396.
- [11] Pedersen G.K., C*-Algebras and their Automorphism Groups, Academic Press, London-New York-San Francisco, 1979.
- [12] Poguntke D., Simple quotients of group C*-algebras for two step nilpotent groups and connected Lie groups, Ann. Scient. Éc. Norm. Sup. 16 (1983), 151–172.
- [13] Rieffel M.A., Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 46 (1983), 301–333.
- [14] Rieffel M.A., The homotopy groups of the unitary groups of non-commutative tori,
 J. Operator Theory 17 (1987), 237-254.
- [15] Sheu A.J-L., A cancellation theorem for projective modules over the group C*-algebras of certain nilpotent Lie groups, Canad. J. Math. 39 (1987), 365-427.
- [16] Sudo T., Structure of the C*-algebras of nilpotent Lie groups, Tokyo J. Math. 19 (1996), 211–220.
- [17] Sudo T., Structure of group C^* -algebras of Lie semi-direct products $\mathbb{C}^n \times \mathbb{R}$, J. Operator Theory, 46 (2001), 25–38.
- [18] Sudo T., Structure of group C^* -algebras of semi-direct products of \mathbb{C}^n by \mathbb{Z} , Nihonkai J. Math. 12 (2001), 135–143.
- [19] Sudo T., Structure of group C*-algebras of the generalized disconnected Dixmier groups, Sci. Math. Japon. 54 (2001), 449–454, :e4, 861–866.
- [20] Sudo T., Structure of group C*-algebras of the generalized disconnected Mautner groups, Linear Algebra and Appl. 341 (2002), 317–326.
- [21] Sudo T., Ranks and embedding of C*-algebras of continuous fields, preprint.
- [22] Sudo T., Stable ranks of multiplier algebras of C*-algebras, Commun. Korean Math. Soc. 17 (2002), 475–485.
- [23] Sudo T. and Takai H., Stable rank of the C*-algebras of nilpotent Lie groups, Internat. J. Math. 6 (1995), 439–446.
- [24] Sudo T. and Takai H., Stable rank of the C*-algebras of solvable Lie groups of type
 I, J. Operator Theory, 38 (1997), 67-86.
- [25] Wegge-Olsen N.E., K-theory and C*-algebras, Oxford Univ. Press, 1993.

Department of Mathematical Sciences Faculty of Science University of the Ryukyus Nishihara-cho, Okinawa 903-0213, Japan E-mail: sudo@math.u-ryukyu.ac.jp