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On the excesses of sequences of complex exponentials

Alexander KHEYFITS
(Received August 26, 2002; Revised April 24, 2003)

Abstract. We derive an equation for the excess in L%(—m, @) of a sequence of complex
exponentials {e?*nt}%_ with |\, — n| < A < 00, Vn, consider examples, and study the
stability of the excess under small perturbations of A,
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1. Introduction
Let A = {An}52 _o be a sequence of complex numbers and
E(A) = {1},

The system E(A) is said to be closed in L?(a, b) if there is no nontrivial
function f € L?(a, b) orthogonal to all functions in E(A). The system
E(A) is said to be complete in L?(a, b) if each function f € L?(a, b) can be
approximated by the functions in E(A) in the L?(a, b)-norm.

Otherwise, the system is called incomplete in L?(a, b). It is known [9,
Section 11] that in L? these two properties are equivalent.

The system is called minimal in L?(a, b) if each element of the system
lies outside the closed linear span of the others. A closed minimal system is
called ezact. A closed system that remains closed if » > 0 of its terms are
removed, but fails to be closed after removing r + 1 terms, is said to have
the excess r = exc(E(A)) = r(A). If a non-closed system becomes exact
after adding —r, r < 0, elements, the system is said to have the deficiency
(negative excess) r. Thus, the system is exact if and only if its excess r = 0.
If the system remains closed after removing any finite number of its terms,
then the excess r = oo, and if the system cannot be made closed by adding
any finite number of elements, then the excess r = —c0.

Since ”The terminology of the subject is not uniform...” (R. Young [12,
p. 16, footnote]), it should be mentioned that in terminology we follow [9].

An extensive literature devoted to the study of closed, minimal, etc.,
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systems of complex exponentials can be traced back to the well-known
monographs of R. Paley and N. Wiener [9] and N. Levinson [7] and the
works mentioned there. Extensive lists of references can be found in the
survey of R. Redheffer [10] and the monograph of R. Young [12]. Our work
was inspired by recent papers of N. Fujii, A. Nakamura, and R. Redheffer
[2], and A. Nakamura [8].

Since any interval (a, b) can be reduced to (—7, 7) by a linear change
of variable, we can consider the latter interval without loss of generality.
As in the sources cited, we consider only sequences A with all different A,
which are bounded shifts of the integers, that is,

A =7+dn, |do| <A, n=0,%1, £2, ..., (1)

where {d,} is a bounded sequence of complex numbers and the constant
A < o0o. Throughout the paper we use these ’standard’ assumptions without
repeating them.

Under the condition (1) the function

N
fa(z) = Jim <1 - f—) (2)
n=—N n

is an entire function of the exponential type m whose properties are intrin-
sically connected with the closeness properties of the sequence A. If \g =0,
(2) should be replaced by limy zHT]y:_N’ nzo(l — 2/An). In particular
[9], the system E(A) is closed in L2(—m, ) if and only if f4 ¢ L?(—c0, 00).
The results in the references above are stated either in terms of the function
fa or in terms of the counting function of its zeros.

Let us denote the sequence of shifts by D = {d,}52_,. To study
properties of functions like (2), M. Krein and B. Levin [4], see also [5,
Appendix VI] or [6, Section 22.2], introduced a special functional

>
n
Lo n(M)= Y {dntw — dn}m

n=—00
v n

where h is a fixed non-zero real number and w is an integer parameter. We
interchangeably use the symbols L, (A) and L, »(D) as synonyms.
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Later on the present author [3] considered a modified functional

[ew}

L,(D) = Z _dﬂ“’n__dn
n=-—o00,n#0

and used it to study certain properties of the functions (2) and the com-
pleteness properties of the system E(A). In this note we use the functional
L,(D) to extend some results of (2] and [8] and, in particular, to calculate
the excesses of some systems of complex exponentials.

As it can be immediately seen from the exposition, many of our re-
sults can be carried over to a more general setting, for the weighted spaces
LP(—m, w) with 0 < p < oo, however, we do not pursue this subject here.
[z] everywhere stands for the integer part of z.

2. Main results

Our results are based on the following proposition which gives an exact
control over the change in the functional L,(A) after removing one term
from (or adding to) the sequence A.

Lemma 1 Let the sequence A be as above and A1 = A\ {A,, } with any
fizxed ny € Z. Let D1 = D\ {dn,}. Then

L,(D)—L,(D1) =ln|w|+ O0(1), w— Foo,

that s, the deletion of a term from the sequence A leads to asymptotical
decrease of L,(D) by In|w|. So that, the deletion of k terms decreases the
functional Ly, by kln|w|, that s, if A = A\ {Any; Angy oo o) Ang ), then

L,(D) — Ly(Dg) = kln|w| +0(1), w — *co.

Hereafter, O(1) stands for a quantity, depending maybe on A in (1), &
above, or other parameters, and uniformly bounded as w — £co.

Proof. 1t is enough to reassign each shift d, with n > n1 to the subscript
n— 1, that is, to consider a new sequence of shifts D; = {¢n} with ¢, = dj,
for n < ny and @ = 1+ dp41 for n > ny. Without loss of generality we can
assume n1 = 0. If w > 0, then

Lw(D)zlim< ) - 5 %“)

N—oco w
- n=—N+w, n#w n=—N,n#0
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~w—1
; 90w+n Pwtn~1 — 1
=1 r=r—- =

n=—w, n#0

_ $Pn N‘Pn 1—1
S Sl o

n=—N =1

—w—1 o N-1 ©
=1 w+n w=+n
mm (X s Y e
n——w—l,n;é—l

-1 1 -1 @ N-1 o
"L X Rk ow

=L,(D1) +Injw| +0(1), w— Foo.
If w < 0, calculations are similar. O

We need also the following proposition [3], which involves only the real
parts Rd,, of dy-it is well known that their imaginary parts in no way affect
the results under consideration as soon as d,, are uniformly bounded.

Lemma 2 Under our assumptions, the system E(A) is complete in
L%(—m, ) if and only if

oo

> exp{2L,(RD)} = oo,

Ww=—00
where RD = {RNdp, }32 _
The following statement immediately follows from these lemmas.

Theorem 1 Under our standard assumptions, the system E(A) has a fi-
nite (positive or negative) excess exc(E(A)) = r in L%(—x, 7) if and only
if

o

Y el ®D) = o 3)
w=—00, w70
and
Z ® |21T+2 exp{2L,(RD)} < oo, (4)

w=-—00, w#0
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that is, the excess exc(E(A)) is the largest integer r = r(A) such that the
series (3) diverges.
Corollary If L,(RD) = O(1) as w — %00, then exc(E(A)) = 0.

Theorem 1 is analogues to [10, Theorem 22], which determines the
excess r by the following relations

|fa(2)]? dz o | f4(z)|2 da
/0 (1-!—:102) =00 and /0 ———(1+m2)r+1<oo.

However, in (3)-(4) the excess is determined straightforwardly in terms of
the sequence A or D rather than in terms of its associated function fa.
Let us also notice that the functional L, (D) can be rewritten [3] as

M dy —dy Wl —d

n=1 n=1

leading to the following modification of Theorem 1, which is sometimes
eagsier to use in calculations.

Theorem 2 In addition to our standard assumptions, let be

R & dw+n - dw—n
Z——n— =0(1), w — =oo.

n=1

Then the system E(A) has a finite (positive or negative) excess r = r(A) in
L?(—=, 7) if and only if

i ]2 exp{ 2% }:OO (5)

w=—00, w#0

and
o Jwl
§Rdn Rd_rn
> o ‘2T+2 eXp{ 22 } < 0. (6)
w=—00, w#0
For symmetric sequences, d_, = —dy, (5)-(6) reduce to

>4 exp{ 423‘“}

w—l
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and

1 “\ Rd
Z Wexp{—élz Tn} < 0.
w=1 n=1

Example 1 First, we consider a classical example of a sequence with con-
stant symmetric shifts A, = n + d,, d, = a X sign(n), where « is a real
number and sign( - ) is the sign of a number. The assumptions of Theorem
2 are readily verified and the conditions (5)-(6) become

1 > 1
> “5rraa — o°  and > o riarz < O
w=1 w=1
Thus
1
r=r(A)= 5—-204. (7)

In particular, if —1 < o < 1, (7) gives Theorem 1.1 from [8]. If —1/4 < a <
1/4, we get the known example of a system with the zero excess.

Next, we consider the stability of the excess (7) under small perturba-
tions of a. The borderline case occurs when 1/2 — 2« is integer. Denote
1/2 — 2a = 7(A) = ko, that is, @ = (1 — 2kg)/4, and consider a sequence
A={2 352 with

4

where a complex-valued sequence B = {8,}52 _., satisfies the condition
|Brn] — 0 as n — =£oo. A natural question arises for what shifts 3, does
the system E(A) have the same excess r = ko as that of the unperturbed
sequence {n + ((1 — 2ko)/4) sign(n)}?

Theorem 8 The system E(A) with A, = n+ ((1 — 2kg)/4) sign(n) + Gy
has the excess r(A) = kg if and only if

Ap =1+

= sign(n) + fn,

e o]

S L ep{2L,(RA)} =

w=—00, w#0 |w’

but

0

Z ﬁ exp{2L,(RB)} < 0.

w=—00, w7#0
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Proof. Calculations similar to those in Lemma 1 deduce

Lu(A) = Lo (B) + <k0 - %) In|w| + O(1),

where Ly (B) = 3277 1 20(Butn — Bn)/n, and since the excess of the
unperturbed sequence is kg, Theorem 3 follows from Theorem 1. {1

Example 2 Consider again E(A) with A\, = n+ ((1 ~ 2ko)/4) sign(n) +
Br; we know that if 8, = 0, then r(A) = k. Now, for |n| > 2 let be

b x sign(n)
In” |n|

ﬁn:

and By = B+1 = 0, where b > 0 is a constant. Using Theorem 2, we
immediately deduce that the system has the excess 7(A) = ko whenever
~ > 1. In particular, the system is complete if kg > 0 and v > 1. However,
if y =1, then

o]
So that,
Wl
L,(B) = —2177;2 —— +0(1) = ~2bInln|w| + O(1),

and we arrive at the series
oo

1
2 qgewlPLuB 22 (ol i oy O

w=—00,w#0

diverging if and only if b < 1/4. That is, this system has the excess r(A) =
ko if b <1/4, however, r(A) = kg — 1 if b > 1/4. In particular, if kg = 0, we
get the case p = 2 of {11, Theorem 3].

If 0 < v < 1, (8) still holds true. However, now

|wl

exp{2L.(B) zexp{_élbz 1 }%|w|—4b/{(1—v><ln|w|)v}7
2

nln’n

which implies that the system E(A) with 8, = b x sign(n) x In™7 |n| and
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0 < v < 1 has the excess 7(A) = kp — 1 by Theorem 3.

Let ® = {p,}52 . N. Fujii, A. Nakamura, and R. Redheffer [2] proved
that if the sequence A = {A\,}°2_, is defined by A\, = ¢, +a forn > 0
and \, = ¢, — b for n < 0, where a > 0, b > 0, then r(A) = exc(E(A)) <
7(®) = exc(E(®)). Our method allows to find r(A) exactly.

Theorem 4 If the sequence ® satisfies the conditions of Theorem 2 and
the sequence A is as in the preceding paragraph, then

A) = [P(®) — (a+b)]+1 if a-+bisnotinteger
rib) = r(®) — (a +b) if a-+ b is integer.

Proof. Tt follows from similar calculations that
Ly(RA) = L,(R®) — (a+ b) In|w| + O(1),
and the conclusion follows. O

3. More general example

A. Nakamura [8] considered the sequence A with A\, = n + dp,

0  ifn=0
o ifn=k-1>0

"=V dnekei-j>0 1<j<k-1
—d_, ifn<0,

where —2 < a, —1 < G, and the integer k£ > 2, and calculated the excess of
the corresponding sequence of exponentials, which is

r(8) = |3~ 2(a+ (h-1)8)|. ©)

In this section we calculate the excess of a more general system of
exponentials. Namely, we split all natural numbers into k infinite arithmetic
progressions

Nj={j,i+k j+2k ..}, =1,2,...,k,

where k > 1 is a fixed natural number, and consider the system E(A) with
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An =1+ dyp, where

0 ifn=20
dp = (o7} ianNj, j=1,2,...,k’ (10)
—d_, ifn<0

with any real o;.

Theorem 5 Under the conditions above

k
T 2
r(A) = [5 ~ % aj}. (11)
j=1
When a1 =« and as = -+ - = ag = 3, (11) becomes (9), that is, we get

[8, Theorem 2.1]. If k =1, (11) implies (7).

Proof. By virtue of the same transformation as in Lemma 1, if the sequence
D satisfies (10), then (we consider here w > 0, if w < 0, calculations are
similar)

j 1=0, j+klzw

T ——

j=1

) et} o0

The imaginary unit ¢ has been introduced in the first denominator in
the last sum to avoid possible singularities at w = j + kl; this affects only a
O(1) term. We can sum up these series using the Euler 3 function, that is,
the logarithmic derivative of the I" function,

_Tz) 1 &z
T T(2) ‘—77*;1(z+z)'

L (D)=2w? y a-{ i ! }
T = (G + k(G + k1) —w?)

P(2)

Thus,

Lu(D)=1 zk:aj{qu (%) - zp(i%) - w(’% —i—z)} +0(1)
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B e

It is known [1, Section 1.7.1 (11)] that

PY(—z) = P(z) + mcot{mz) + %

If &z = —m, then 0 < const < | cot 2| < const < co uniformly in Rz, whence

o(12+i) - «p(%——z)w )

and finally,
o)== Se{u(F) w5 1) o

By making use of the asymptotic formula [1, Section 1.7.2(27)]

1
P(z) = lnz+0<|zl> where |arg z| < ,

we conclude that

Lo(D) = —% (i aj> InJu| + O(1)

G=1
and Theorem 5 follows from Theorem 1. O
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