Erratum to: On the group-homological description of the second Johnson homomorphism

Үијі Үокоміго

(Received October 4, 2006)

Abstract. This is an erratum to the paper 'On the group-homological description of the second Johnson homomorphism' (Hokkaido Math. J. 30 (2001), 605–613).

Morita defined a refinement $\tilde{\tau}_k$ of the *k*th Johnson homomorphism τ_k in [3]. In the previous paper [4], we study the second Johnson homomorphism τ_2 and its refinement $\tilde{\tau}_2$. The theorem in [4] erroneously claims that the reduction of $\tilde{\tau}_2$ to τ_2 restricts to the isomorphism on the image.

In [1], Heap obtained actual relationship between τ_k and $\tilde{\tau}_k$ using the theory of Igusa and Orr [2]. We can state his result as follows: the restriction $\tilde{\tau}_k \mid_{\mathcal{M}(l)}$ factors τ_l for $l = k, k + 1, \ldots, 2k - 1$ and that the kernel of $\tilde{\tau}_k$ coincides with $\mathcal{M}(2k - 1)$.

By Lemma 2 in [4], the author meaned that the image of the composition of $\tilde{\tau}_2$ with the projection to the other direct summand $E_{1,2}^{\infty}$ is trivial. In the proof of Lemma 2, we see that the homology class in the image of $\tilde{\tau}_2$ can be represented by a 3-cycle $\sum (\alpha_i, \beta_i, \gamma_i)$ such that one of the elements α_i, β_i and γ_i belongs to \mathcal{L}_2 for each *i*. However, this shows only that the image of the composition of $\tilde{\tau}_2$ with the projection to $E_{3,0}^{\infty}$ is trivial. This means nothing since $E_{3,0}^{\infty}$ is trivial. Therefore we cannot prove what the author wanted to mean by Lemma 2, hence we cannot prove the theorem in [4].

The proof of Lemma 1 in [4] is also invalid. The author misunderstandingly simulated some computation in the proof of Theorem 3.1 in [3].

Acknowledgments The author would like to express his gratitude to the referee for his or her advice.

References

- [1] Heap A., Bordism invariants of the mapping class group. preprint.
- [2] Igusa K. and Orr K.E., Links, pictures and the homology of nilpotent groups. Topology 40 (2001), 1125–1166.

Y. Yokomizo

- [3] Morita S., Abelian quotients of subgroups of the mapping class group of surfaces. Duke Math. J. 70 (1993), 699–726.
- [4] Yokomizo Y., On the group-homological description of the second Johnson homomorphism. Hokkaido Math. J. 30 (2001), 605–613.

E-mail: yokomizo5@yahoo.co.jp

244