Basis properties and complements of complex exponential systems

Akihiro Nakamura

(Received September 15, 2005; Revised December 12, 2005)

Abstract

In this note, we show that some families of complex exponentials are either Riesz sequences or not basic sequences in $L^{2}[-\pi, \pi]$. Besides, we show that every incomplete complex exponential system satisfying some condition can be complemented up to a complete and minimal system of complex exponentials in $L^{2}[-\pi, \pi]$.

Key words: basis, Riesz basis, Riesz sequence, complete and minimal sequence.

1. Introduction

Let $\lambda=\left\{\lambda_{n}\right\},-\infty<n<\infty$, be a sequence of distinct complex numbers, then a system $e(\lambda) \equiv\left\{e^{i \lambda_{n} t}\right\}$ is said to be a basis for $L^{2}[-\pi, \pi]$ if any function $f(t)$ in $L^{2}[-\pi, \pi]$ has a unique expansion

$$
f(t)=\sum_{n} c_{n} e^{i \lambda_{n} t} \text { (in the mean) }
$$

for some sequence $\left\{c_{n}\right\}$. Also, $e(\lambda)$ is said to be a basic sequence if it is a basis of the closure of the space spanned by the distinct elements $e^{i \lambda_{n} t}$. Next $e(\lambda)$ is said to be a Riesz basis if there exists an isomorphism

$$
T: L^{2}[-\pi, \pi] \longrightarrow L^{2}[-\pi, \pi]
$$

and

$$
T\left(e^{i n t}\right)=e^{i \lambda_{n} t}
$$

for any n. Moreover, $e(\lambda)$ is said to be a Riesz sequence if it is a Riesz basis of the closure of the space spanned by the distinct elements $e^{i \lambda_{n} t}$. $e(\lambda)$ is said to be complete in $L^{2}[-\pi, \pi]$ if the linear subspace spanned by the distinct elements $e^{i \lambda_{n} t}$ is dense in $L^{2}[-\pi, \pi]$. And $e(\lambda)$ is said to be minimal in $L^{2}[-\pi, \pi]$ if each element of $e(\lambda)$ lies outside the closed linear span of the others. Obviously, we see that if $e(\lambda)$ is a Riesz basis, then it is a basis and if it is a basis, then it is complete and minimal. We say the system $\left\{e^{i \lambda_{n} t}\right\}$

[^0]has excess N if it remains complete and becomes minimal when N terms $e^{i \lambda_{n} t}$ are removed and we define
$$
E(\lambda)=N
$$

Conversely we define the excess

$$
E(\lambda)=-N
$$

if it becomes complete and minimal when N terms

$$
e^{i \mu_{1} t}, \ldots, e^{i \mu_{N} t}
$$

are adjoined. By convention we define $E(\lambda)=\infty$ if arbitrarily many terms can be removed without losing completeness and $E(\lambda)=-\infty$ if arbitrarily many terms can be adjoined without getting completeness. It is obvious that $\left\{e^{i \lambda_{n} t}\right\}$ is to be complete and minimal if and only if $E(\lambda)=0$.

We refer to N. Levinson [L], R.M. Young [Y4] and R.M. Redheffer [R] on the theory of nonharmonic Fourier series which we take up in this note.
R.M. Young showed in the proof of [Y2, Theorem 2] that if

$$
\lambda_{n}= \begin{cases}n-\frac{1}{4}, & n>0 \tag{1.1}\\ n+\frac{1}{4}, & n<0,\end{cases}
$$

then $e(\lambda)$ was not a basis. Besides he showed in [Y3, Theorem 2] that if

$$
\mu_{n}= \begin{cases}n+\frac{1}{4}, & n>0 \tag{1.2}\\ 0, & n=0 \\ n-\frac{1}{4}, & n<0\end{cases}
$$

then $e(\mu)$ was not also a basis. In this note, we first show that if

$$
\lambda_{n}=\left\{\begin{array}{lc}
n-\alpha, & n>0 \\
n+\alpha, & n<0
\end{array}\right.
$$

and

$$
\mu_{n}= \begin{cases}n+\alpha, & n>0 \\ 0, & n=0 \\ n-\alpha, & n<0\end{cases}
$$

then $e(\lambda)$ and $e(\mu)$ are either Riesz sequences or not basic sequences in $L^{2}[-\pi, \pi]$ for $0<\alpha<1$.

Next let

$$
\lambda_{n}= \begin{cases}n-\alpha_{n}, & n>0, \\ n+\alpha_{n}, & n<0\end{cases}
$$

for $0<\alpha_{n}<1$, then we consider whether $e(\lambda)$ is a Riesz basis or not, and moreover it is a basis or not. One of the problems is whether $e(\lambda)$ is a basis or not in the case of which

$$
\varepsilon_{n} \rightarrow 0 \quad \text { as } n \rightarrow \pm \infty \text { and } \sum_{n}\left|\varepsilon_{n}\right|=\infty
$$

for $\alpha_{n}=3 / 4+\varepsilon_{n}$.
In this note, we need the following "stability results".
Theorem A (see [Y4, p. 161, Corollary]) If e(λ) is a Riesz basis for $L^{2}[-\pi, \pi]$, then there is a positive constant L with the property that $e(\mu)$ is also a Riesz basis for $L^{2}[-\pi, \pi]$ whenever $\left|\lambda_{n}-\mu_{n}\right| \leq L$ for every n.

Theorem B (see [Y4, p. 165, Prob. 2]) Let e(λ) be a basis for $L^{2}[-\pi, \pi]$ and suppose that $\sup _{n}\left|\operatorname{Im} \lambda_{n}\right|<\infty$. If $\mu=\left\{\mu_{n}\right\}$ satisfies

$$
\sum_{n}\left|\lambda_{n}-\mu_{n}\right|<\infty,
$$

then, $e(\mu)$ is also a basis for $L^{2}[-\pi, \pi]$.
The following result follows from Theorem B immediately. We see also Lemma II.4.11 of S.A. Avdonin and S.A. Ivanov [AI] about the same result.

Corollary 1.1 We suppose that $\sup _{n}\left|\operatorname{Im} \lambda_{n}\right|<\infty$ and $e(\lambda)$ is a basis. If we replace finitely many points λ_{n} by the same number of points $\mu_{n} \notin$ $\left\{\lambda_{n}\right\}, \mu_{n} \neq \mu_{m}, n \neq m$, then the basis property of $e(\lambda)$ is not violated. Consequently the same applies to any Riesz basis.

Remark 1.1 Theorem A holds even if "Riesz sequence" that excess is finite is taken. So far as we know, it is unknown whether Theorem A holds or not if a Riesz basis is replaced with a basis. However, it is also unknown whether such a basis which is conditional exists or not.

In $\S 4$, we show that every incomplete complex exponential system sat-
isfying some condition can be complemented up to a complete and minimal system of complex exponentials. It is unknown, so far as we know, whether every incomplete complex exponential system can be complemented up to a complete and minimal system of complex exponentials in $L^{2}[-\pi, \pi]$ or not. This problem is originated in [Y1, Remark]. On the other hand, K. Seip has shown in [S , Theorem 2.8] that there exists a Riesz sequence of complex exponentials which cannot be complemented up to a Riesz basis. He has given a sequence

$$
e(\lambda)=\left\{e^{ \pm i(n+\sqrt{n}) t}\right\}_{n>1}
$$

as an example of such a Riesz sequence.
And he raised the next question personally:
Question Can every Riesz sequence of complex exponentials be complemented up to a complete and minimal system of complex exponentials?

In this section, we show that it is possible for some families of comlex exponential systems which include many Riesz sequnces of $E(\lambda)=-\infty$. Let $e(\lambda)$ be a complex exponential system which has the excess $E(\lambda)=-\infty$. Our method is to construct a sequence $\mu=\left\{\mu_{n}\right\}$ such that $\lambda \subset \mu$ and the system $e(\mu)$ has a finite excess. If we can construct such a sequence μ, then we see that the system $e(\lambda)$ can be complemented up to a complete and minimal system of complex exponentials in $L^{2}[-\pi, \pi]$. For this purpose, we use the next theorem:

Theorem C ([R, Theorem 47]) For $-\infty<n<\infty$, let $\lambda \equiv\left\{\lambda_{n}\right\}$ be a sequence of complex numbers satisfying $\left|\lambda_{n}-n\right| \leq h$ where h is a positive constant. Then $E(\lambda)$ satisfies

$$
-\left(4 h+\frac{1}{2}\right)<E(\lambda) \leq 4 h+\frac{1}{2} .
$$

2. Basis properties of complex exponential systems

We first consider the system $e(\lambda)$,

$$
\lambda_{n}= \begin{cases}n-\alpha, & n>0 \tag{2.1}\\ n+\alpha, & n<0\end{cases}
$$

for $0<\alpha<1$. We see from Kadec's $1 / 4$-theorem(M.I. Kadec, 1964; see [Y4, p. 36]) that $e(\lambda)$ is a Riesz sequence for $0<\alpha<1 / 4$. It has been shown in
[Y2, Theorem 2] that $e(\lambda)$ is not a basis for $L^{2}[-\pi, \pi]$ for $\alpha=1 / 4$. Besides, it has been also known that $e(\lambda)$ is a Riesz basis for $L^{2}[-\pi, \pi]$ for $1 / 4<$ $\alpha<3 / 4$ by using the isometric isomorphism

$$
\phi(t) \longmapsto e^{i t / 2} \phi(t)
$$

on $L^{2}[-\pi, \pi]$ and Kadec's $1 / 4$-theorem.
Proposition 2.1 Let $\lambda=\left\{\lambda_{n}\right\}$ be a sequence given by (2.1).
(i) Let $\alpha=3 / 4$. If we remove any element $\lambda_{n_{0}}$ in λ, then $e\left(\lambda^{\prime}\right)$ for $\lambda^{\prime}=$ $\lambda-\left\{\lambda_{n_{0}}\right\}$ is complete and minimal, but it is not a basis for $L^{2}[-\pi, \pi]$;
(ii) $e\left(\lambda^{\prime}\right)$ of (i) is a Riesz basis for $L^{2}[-\pi, \pi]$ for $3 / 4<\alpha<1$.

Proof. We see that $e\left(\lambda^{\prime}\right)$ is complete and minimal by [N, Theorem 1.1]. But if we write

$$
n-\frac{3}{4}=(n-1)+\frac{1}{4}, \quad-n+\frac{3}{4}=-(n-1)-\frac{1}{4}
$$

for $n \geq 1$, then we see that $e\left(\lambda^{\prime}\right)$ is not a basis for $L^{2}[-\pi, \pi]$ because $e(\mu)$, where the μ_{n} are given by (1.2), is not a basis. This prove (i).

Now if we write

$$
n-\alpha=(n-1)+(1-\alpha), \quad-n+\alpha=-(n-1)-(1-\alpha)
$$

for $n \geq 1$, then (ii) is trivial by Kadec's $1 / 4$-theorem.
Next we consider the system $e(\mu)$,

$$
\mu_{n}= \begin{cases}n+\alpha, & n>0 \tag{2.2}\\ 0, & n=0 \\ n-\alpha, & n<0\end{cases}
$$

for $0<\alpha<1$.
It has already been known by Kadec's $1 / 4$-theorem that $e(\mu)$ is a Riesz basis for $0<\alpha<1 / 4$. It has also been shown in [Y3, Theorem 2] that $e(\mu)$ is not a basis for $L^{2}[-\pi, \pi]$ for $\alpha=1 / 4$.

Proposition 2.2 Let $\mu=\left\{\mu_{n}\right\}$ be a sequence given by (2.2).
(i) $e(\mu)$ is not a basic sequence for $\alpha=3 / 4$;
(ii) $e(\mu)$ is a Riesz sequence for $1 / 4<\alpha<3 / 4$ or $3 / 4<\alpha<1$.

Proof. If we write

$$
n+\frac{3}{4}=(n+1)-\frac{1}{4}, \quad-n-\frac{3}{4}=-(n+1)+\frac{1}{4}
$$

for $n \geq 1$, then (i) is an immediate consequence from the fact that $e(\lambda)$, where the λ_{n} are given by (1.1), is not a basis for $L^{2}[-\pi, \pi]$. Next we write

$$
\begin{equation*}
n+\alpha=(n+1)-(1-\alpha), \quad-n-\alpha=-(n+1)+(1-\alpha) \tag{2.3}
\end{equation*}
$$

for $n \geq 1$. We see that $e(\mu)$ is a Riesz sequence from (2.3) and the known result which $e(\lambda)$ given by (2.1) is a Riesz basis for $1 / 4<\alpha<3 / 4$. Moreover, it is a Riesz sequence by (2.3) and Kadec's $1 / 4$-theorem for $3 / 4<\alpha<$ 1.

From the above results, we have obtained the following results:
Corollary 2.1 Let $e(\gamma)$ be a system given by (2.1) or (2.2), then $e(\gamma)$ is either a Riesz sequence or not a basic sequence in $L^{2}[-\pi, \pi]$.

Now we next consider the system $e(\lambda)$,

$$
\lambda_{n}= \begin{cases}n-\alpha_{n}, & n>0 \tag{2.4}\\ n+\alpha_{n}, & n<0\end{cases}
$$

for $0<\alpha_{n}<1$. The cases of $\sup _{n} \alpha_{n}<1 / 4$ and $1 / 4<\inf _{n} \alpha_{n} \leq \sup _{n} \alpha_{n}<$ $3 / 4,3 / 4<\inf _{n} \alpha_{n}$ are trivial by Kadec's $1 / 4$-theorem, and so we deal with the case which the numbers α_{n} behave the neighborhood of $1 / 4$ or $3 / 4$.
Theorem 2.1 Let $\alpha_{n}=3 / 4+\varepsilon_{n}$ or $\alpha_{n}=1 / 4+\varepsilon_{n}$. Then we obtain the following results for $e(\lambda)$ given by (2.4):
(1) If $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \pm \infty$, then $e(\lambda)$ is not a Riesz basis for $L^{2}[-\pi, \pi]$.
(2) Furthermore, if $\sum_{n}\left|\varepsilon_{n}\right|<\infty$, then $e(\lambda)$ is not a basis for $L^{2}[-\pi, \pi]$.

Proof. First we consider the case of $\alpha_{n}=3 / 4+\varepsilon_{n}$ in (2.4). Then

$$
\lambda_{n}= \begin{cases}n-\frac{3}{4}-\varepsilon_{n}, & n>0 \\ n+\frac{3}{4}+\varepsilon_{n}, & n<0\end{cases}
$$

Now, if we take

$$
\gamma_{n}= \begin{cases}n-\frac{3}{4}, & n>0 \\ n+\frac{3}{4}, & n<0\end{cases}
$$

$e(\gamma)$ is not a basis for $L^{2}[-\pi, \pi]$ by (i) of Proposition 2.1.
We suppose $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \pm \infty$. We refer to [RY, p. 107, Corollary] about the next arguement. If $e(\lambda)$ is a Riesz basis for $L^{2}[-\pi, \pi]$, then there exists a positive constant L by Theorem A such that if

$$
\left|\lambda_{n}-\delta_{n}\right| \leq L \text { for } \forall n
$$

$e(\delta)$ is also a Riesz basis for $L^{2}[-\pi, \pi]$. By the hypothesis, we can choose a positive integer n_{0} such that

$$
\left|\lambda_{n}-\gamma_{n}\right|=\left|\varepsilon_{n}\right| \leq L \text { for } \forall|n| \geq n_{0}
$$

Hence,

$$
\left\{e^{i \lambda_{n} t}\right\}_{|n|<n_{0}} \bigcup\left\{e^{i \gamma_{n} t}\right\}_{|n| \geq n_{0}}
$$

is a Riesz basis for $L^{2}[-\pi, \pi]$. Consequently, by Corollary 1.1, $e(\gamma)$ is also a Riesz basis for $L^{2}[-\pi, \pi]$. This contradicts, hence $e(\lambda)$ is not a Riesz basis for $L^{2}[-\pi, \pi]$.

Next we suppose $\sum_{n}\left|\varepsilon_{n}\right|<\infty$. If $e(\lambda)$ is a basis for $L^{2}[-\pi, \pi]$, then $e(\gamma)$ is also a basis for $L^{2}[-\pi, \pi]$ by Theorem B. This contradicts, hence $e(\lambda)$ is not a basis.

Second we consider the case of $\alpha_{n}=1 / 4+\varepsilon_{n}$ in (2.4). Then

$$
\lambda_{n}= \begin{cases}n-\frac{1}{4}-\varepsilon_{n}, & n>0 \\ n+\frac{1}{4}+\varepsilon_{n}, & n<0\end{cases}
$$

We suppose that $e(\lambda)$ is a Riesz basis for $L^{2}[-\pi, \pi]$. Considering the isometiric isomorphism

$$
\phi(t) \longmapsto e^{i t / 2} \phi(t)
$$

it follows that $e\left(\lambda^{(1)}\right)$ is also a Riesz basis for $L^{2}[-\pi, \pi]$, where

$$
\lambda_{n}^{(1)}= \begin{cases}n+\frac{1}{4}-\varepsilon_{n}, & n>0 \\ n+\frac{3}{4}+\varepsilon_{n}, & n<0\end{cases}
$$

Moreover, we rewrite

$$
\lambda_{n}^{(1)}=(n+1)-\frac{1}{4}+\varepsilon_{n}, \quad n<0,
$$

and if we substitute 0 for $\lambda_{-1}^{(1)}$, we see that $e\left(\lambda^{(2)}\right)$ is also a Riesz basis for $L^{2}[-\pi, \pi]$, where

$$
\lambda_{n}^{(2)}= \begin{cases}n+\frac{1}{4}-\varepsilon_{n}, & n>0, \\ 0, & n=0, \\ n-\frac{1}{4}+\varepsilon_{n-1}, & n<0,\end{cases}
$$

by Corollary 1.1. By the way, we know that $e(\mu)$ is not a basis for the sequence $\left\{\mu_{n}\right\}$ given by (1.2). Following the arguement of the proof of the case $\alpha_{n}=3 / 4+\varepsilon_{n}$ if $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \pm \infty$, we see $e(\mu)$ is a Riesz basis for $L^{2}[-\pi, \pi]$. This contradicts, hence $e(\lambda)$ is not a Riesz basis for $L^{2}[-\pi, \pi]$. Next we suppose $\sum_{n}\left|\varepsilon_{n}\right|<\infty$. If $e(\lambda)$ is a basis, then $e\left(\lambda^{(2)}\right)$ is also a basis. Now, by the same arguement as the one used in the case $\alpha_{n}=3 / 4+\varepsilon_{n}$, it follows that $e(\mu)$ is also a basis. This contradicts too, hence $e(\lambda)$ is not a basis.

3. Some problems

From the examination until now, we have some problems. We suppose that

$$
\varepsilon_{n} \rightarrow 0 \text { as } n \rightarrow \pm \infty \quad \text { and } \quad \sum_{n}\left|\varepsilon_{n}\right|=\infty
$$

for $\alpha_{n}=3 / 4+\varepsilon_{n}$ in (2.4). Then, we have some questions, i.e., does $e(\lambda)$ become a basis for $L^{2}[-\pi, \pi]$ or a basic sequence?

We write

$$
\lambda_{n}= \begin{cases}n-\alpha_{n}=(n-1)+\frac{1}{4}-\varepsilon_{n}, & n>0, \\ n+\alpha_{n}=(n+1)-\frac{1}{4}+\varepsilon_{n}, & n<0 .\end{cases}
$$

And let $\lambda^{\prime}=\left\{\lambda_{n}^{\prime}\right\}$,

$$
\lambda_{n}^{\prime}= \begin{cases}n+\frac{1}{4}-\varepsilon_{n}, & n>0 \tag{3.1}\\ 0, & n=0 \\ -\lambda_{-n}^{\prime}, & n<0\end{cases}
$$

then, we have $E\left(\lambda-\left\{\lambda_{1}\right\}\right)=E\left(\lambda^{\prime}\right)$ and the basis property of $e\left(\lambda-\left\{\lambda_{1}\right\}\right)$ is same as the one of $e\left(\lambda^{\prime}\right)$ by Corollary 1.1.

1. The case that $e\left(\lambda^{\prime}\right)$ is complete.

As

$$
E\left(\lambda-\left\{\lambda_{1}\right\}\right)=E\left(\lambda^{\prime}\right) \geq 0,
$$

we have $E(\lambda) \geq 1$, hence $e(\lambda)$ is not a basis for $L^{2}[-\pi, \pi]$. This can happen if

$$
\begin{equation*}
\sum_{n} \frac{\left|\varepsilon_{n}\right|}{|n|+1}<\infty \tag{3.2}
\end{equation*}
$$

by [R, p. 45].
2. The case that $e\left(\lambda^{\prime}\right)$ is not complete.

Redheffer and Young have given the next example of the sequence $\left\{\varepsilon_{n}\right\}$ which does not satisfy (3.2):
Theorem D (see [RY, Theorem 3]) Let

$$
\mu_{n}= \begin{cases}0, & n=0 \tag{3.3}\\ 1, & n=1 \\ n+\frac{1}{4}+\frac{\beta}{\log n}, & n \geq 2 \\ -\mu_{-n}, & n<0\end{cases}
$$

then $e(\mu)$ is complete in $L^{2}[-\pi, \pi]$ if $0 \leq \beta \leq 1 / 4$ and not if $\beta>1 / 4$.
More precisely, by $[\mathrm{R}$, Theorem 47] and [FNR], we have $E(\mu)=0$ for $0 \leq \beta \leq 1 / 4$ and $E(\mu)=-1$ for $\beta>1 / 4$.

Problem 3.1 We raise the next problems:
(i) Is the system $e(\mu)$ in Theorem D basis for $0<\beta \leq 1 / 4$?
(ii) Is the system $e(\mu)$ in Theorem D basic sequence for $\beta>1 / 4$?

Moreover we have the problem which is equivalent to the above problem (ii):

Let

$$
\gamma_{1}=\frac{1}{4}, \quad \gamma_{-1}=-\gamma_{1}
$$

and

$$
\gamma_{n}= \begin{cases}n-\frac{3}{4}+\frac{\beta}{\log n}, & n \geq 2 \\ -\gamma_{-n}, & n \leq-2\end{cases}
$$

then is the system $e(\gamma)$ basis for $L^{2}[-\pi, \pi]$ for $\beta>1 / 4$?
In (3.3), if we replace " $n+1 / 4$ " with " $n+1 / 4-\varepsilon$ ", where ε is any small positive number, then the above problems are trivial by Kadec's 1/4theorem.

4. Complements of complex exponential systems

In this section, we show that every incomplete complex exponential system satisfying some condition can be complemented up to a complete and minimal system of complex exponentials in $L^{2}[-\pi, \pi]$. We have the following result.

Theorem 4.1 Let $\left\{\delta_{n}\right\}$ be a real sequence such that

$$
1 \leq \delta_{1}, \quad \delta_{n} \leq \delta_{n+1}
$$

and

$$
\lim _{n \rightarrow \infty} \delta_{n}=\infty
$$

If $\lambda \equiv\left\{\lambda_{n}\right\}$ is a sequence where

$$
\lambda_{0}=0, \lambda_{n}=n+\delta_{n}, \lambda_{-n}=-\lambda_{n}(n=1,2, \ldots),
$$

then the system $e(\lambda) \equiv\left\{e^{i \lambda_{n} t}\right\}$ has the excess $E(\lambda)=-\infty$ in $L^{2}[-\pi, \pi]$ and $e(\lambda)$ can be complemented up to a complete and minimal system of complex exponentials in $L^{2}[-\pi, \pi]$.

Proof. We may choose $\mu=\left\{\mu_{n}\right\}$ such that $\lambda \subset \mu$ and $e(\mu) \equiv\left\{e^{i \mu_{n} t}\right\}$ is complete and it has a finite excess in $L^{2}[-\pi, \pi]$.

Firstly, we choose a positive integer k_{1} such that

$$
k_{1} \leq \delta_{1}<k_{1}+1
$$

Then we take

$$
\mu_{0}=0, \mu_{1}=1, \ldots, \mu_{k_{1}+1}=k_{1}+1
$$

Moreover, we define

$$
\mu_{k_{1}+2}= \begin{cases}k_{1}+2, & \delta_{1}=k_{1} \\ \lambda_{1}, & \delta_{1} \neq k_{1}\end{cases}
$$

Generally we choose a positive integer k_{j} for $j \geq 2$ such that

$$
k_{j} \leq \delta_{j}<k_{j}+1
$$

If $k_{j}=k_{j-1}+\ell\left(1 \leq \ell \leq k_{j}-k_{j-1}\right)$, we take

$$
\begin{aligned}
& \mu_{k_{j}+j}=k_{j}+j \\
& \mu_{k_{j}+(j-1)}=k_{j}+(j-1) \\
& \quad \vdots \\
& \mu_{k_{j}+(j+1-\ell)}=k_{j}+(j+1-\ell)
\end{aligned}
$$

and

$$
\mu_{k_{j}+(j+1)}= \begin{cases}k_{j}+(j+1), & \delta_{j}=k_{j} \\ \lambda_{j}, & \delta_{j} \neq k_{j}\end{cases}
$$

Next if $k_{j-1}=k_{j}$, we take

$$
\mu_{k_{j}+(j+1)}=\mu_{k_{j-1}+(j+1)}= \begin{cases}k_{j}+(j+1), & \delta_{j}=k_{j} \\ \lambda_{j}, & \delta_{j} \neq k_{j}\end{cases}
$$

Finally let $\mu_{-n}=-\mu_{n}$. Thus we choose the sequence $\mu=\left\{\mu_{n}\right\}$.
For $t>1$, we denote by $n(t)$ and $n_{1}(t)$ the number of integers n inside the interval $|x| \leq t$ and the number of points μ_{n} inside the interval $|x| \leq t$, respectively. From the definition of the sequence $\left\{\mu_{n}\right\}$, we have

$$
n_{1}(t) \geq n(t)
$$

and hence, we see by [Y4, pp. 99~100, Theorem 3, 4] that $e(\mu)$ is complete in $L^{2}[-\pi, \pi]$, i.e. $E(\mu) \geq 0$. Besides, since $k_{j} \leq \delta_{j}<k_{j}+1, \lambda_{j}=j+\delta_{j}$, we have

$$
k_{j}+j \leq \lambda_{j}<k_{j}+(j+1)
$$

Therefore we see that

$$
n-1 \leq \mu_{n} \leq n \quad \text { for } \forall n \geq 1
$$

hold. Since $\mu_{-n}=-\mu_{n}$, the inequalities

$$
\left|\mu_{n}-n\right| \leq 1 \quad \text { for } \forall n
$$

hold. Applying Theorem C, we conclude that

$$
E(\mu) \leq 4
$$

consequently

$$
0 \leq E(\mu) \leq 4
$$

Hence we can reduce $e(\mu)$ to a complete and minimal system. Thus $e(\lambda)$ has the excess $E(\lambda)=-\infty$ in $L^{2}[-\pi, \pi]$ and it can be complemented up to a complete and minimal system of complex exponentials in $L^{2}[-\pi, \pi]$.

Remark 4.1 The author does not know whether the system $e(\lambda)$ in Theorem 4.1 is always a Riesz sequence or not. But some examples of Riesz sequences for $L^{2}[-\pi, \pi]$ seen so far satisfiy the condition in Theorem 4.1 as shown by the examples in the next section.

5. Examples and remark

The first example is given in [S, Theorem 2.8] as an example of a Riesz sequence of complex exponentials which it cannot be complemented up to a Riesz basis of complex exponentials.

Example 5.1 Let $\lambda=\{ \pm(n+\sqrt{n})\}_{n>1}$ and $e(\lambda) \equiv\left\{e^{ \pm i(n+\sqrt{n}) t}\right\}_{n>1}$.
If we take $\delta_{n}=\sqrt{n}$ in Theorem 4.1, then we see that the system $e(\lambda)$ can be complemented up to a complete and minimal system of complex exponentials in $L^{2}[-\pi, \pi]$.

Next we deal with the next example. We may refer to [Y4, p. 136, Theorem 5 and p. 138, Theorem 6].

Example 5.2 Let $\lambda=\left\{\lambda_{n}\right\}$ be a sequence of real numbers such that

$$
\begin{aligned}
& \lambda_{n+1}-\lambda_{n} \geq \gamma>1(n=0,1,2, \ldots) \\
& \lambda_{-n}=-\lambda_{n}(n=0,1,2, \ldots)
\end{aligned}
$$

Then $e(\lambda) \equiv\left\{e^{i \lambda_{n} t}\right\}$ is a Riesz sequence which has the excess $E(\lambda)=-\infty$ in $L^{2}[-\pi, \pi]$. Now we can write

$$
\lambda_{n+1}-\lambda_{n}=1+\varepsilon_{n}, \quad \varepsilon_{n} \geq \varepsilon>0(n=0,1,2, \ldots) .
$$

So we have

$$
\lambda_{n}=n+\sum_{k=0}^{n-1} \varepsilon_{k}, \quad n \geq 1 .
$$

If we take

$$
\delta_{n}=\sum_{k=0}^{n-1} \varepsilon_{k}, \quad n \geq 1,
$$

there exists a positive integer n_{0} such that $\delta_{n_{0}} \geq 1$. We see by Theorem 4.1 that $e\left(\lambda^{\prime}\right) \equiv\left\{e^{i \lambda_{n} t}\right\}_{|n| \geq n_{0}}$ can be complemented up to a complete and minimal system of complex exponentials. Consequently, by [L, p. 7, Theorem 6], the system $e(\lambda)$ can also be complemented up to a complete and minimal system of complex exponentials in $L^{2}[-\pi, \pi]$.

Remark 5.1 Let $n^{+}(r)$ denote the largest number of points from λ to be found in an interval of length of r (see [S, p. 133]) and we define

$$
D^{+}(\lambda)=\lim _{r \rightarrow \infty} \frac{n^{+}(r)}{r} .
$$

Then K. Seip has proved in [S, Theorem 2.2] that if $e(\lambda)$ is a Riesz sequnce, we have $D^{+}(\lambda) \leq 1$. Moreover, he has proved in $[\mathrm{S}$, Theorem 2.4] that if λ satisfies $D^{+}(\lambda)<1, e(\lambda)$ can be complemented up to a Riesz basis of complex exponentials in $L^{2}[-\pi, \pi]$. Consequently, the problem is whether every Riesz sequnce $e(\lambda)$ satisfying $D^{+}(\lambda)=1$ can be complemented up to a complete and minimal system of complex exponentials in $L^{2}[-\pi, \pi]$. If, in Theorem 4.1,

$$
\lim _{n \rightarrow \infty} \frac{\delta_{n}}{n}=0
$$

then we obtain $D^{+}(\lambda)=1$.
Acknowledgment The author thanks Professor Kristian Seip for his suggestions and kindness. Also the author thanks the referee for his useful comments.

References

[AI] Avdonin S.A. and Ivanov S.A., Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, Cambridge, 1995.
[FNR] Fujii N., Nakamura A. and Redheffer R.M., On the Excess of Sets of Complex Exponentials. Proc. Amer. Math. Soc. 127 (1999), 1815-1818.
[L] Levinson N., Gap and Density Theorems. Amer. Math. Soc. Colloquium Publications, 26, 1940.
[N] Nakamura A., On the excess of a sequence of exponentials with perturbations at some subsequences of integers. Hokkaido Math. J. (2) 29 (2000), 303-313.
[R] Redheffer R.M., Completeness of Sets of Complex Exponentials. Advances in Mathematics 24 (1977), 1-62.
[RY] Redheffer R.M. and Young R.M., Completeness and Basis Properties of Complex Exponentials. Trans. Amer. Math. Soc. 277 (1983), 93-111.
[S] Seip K., On the Connection between Exponential Bases and Certain Related Sequence in $L^{2}[-\pi, \pi]$. Journal of Functional Analysis 130 (1995), 131-160.
[Y1] Young R.M., On complete biorthogonal systems. Proc. Amer. Math. Soc. (3) 83 (1981), 537-540.
[Y2] Young R.M., On a Theorem of Ingham on Nonharmonic Fourier Series. Proc. Amer. Math. Soc. 92 (1984), 549-553.
[Y3] Young R.M., On the Stability of Exponential Bases in $L^{2}[-\pi, \pi]$. Proc. Amer. Math. Soc. 100 (1987), 117-122.
[Y4] Young R.M., An Introduction to Nonharmonic Fourier Series. revised first edition, Academic Press, 2001.

Department of Mathematics
Tokai University
316 Nishino, Numazu
Shizuoka, 410-0395 Japan
E-mail: a-nakamu@wing.ncc.u-tokai.ac.jp

[^0]: 2000 Mathematics Subject Classification : 42C15, 42C30, 42C99.

