Hokkaido Mathematical Journal Vol. 36 (2007) p. 111-120

On the Lefschetz module

Ryousuke FUJITA

(Received September 2, 2005)

Abstract. Let G be a finite group. We define a Lefschets module $L(G, \Pi)$ which consists of equivalent classes of all Π -maps and prove that it is isomorphic to the Burnside module $\Omega(G, \Pi)$.

Key words: G-complex, G-map, G-poset, Lefschets module.

1. Introduction and statement of results

The purpose of this paper is to define a Lefschets module and to show that it is isomorphic to a Burnside module. R. Oliver and T. Petrie introduced the Burnside module $\Omega(G, \Pi)$ to solve a topological problem [10], where G is a finite group and Π is a partially ordered set with a G-action. This notion is a generalization of the Burnside ring $\Omega(G)$. The study of this direction is done by T. Yoshida [13], in which he presented an antecednt such that the free abelian group $\Omega(G, \mathfrak{X})$ has a ring structure. On the other hand, E. Laitinen and W. Lück defined the Lefschetz ring L(G) [8]. It is well-known that the Burnside ring is isomorphic to the Lefschetz ring. In this paper, we study the Lefschets module $L(G, \Pi)$ which is a group version of the Lefschetz ring.

Our main theorem is the following.

Theorem 1.1 Let (Π, ρ) be a *G*-poset. Then a map

 $\overline{\varphi}\colon \Omega(G,\,\Pi)\longrightarrow L(G,\,\Pi)$

given by $[(G_{\alpha}/\rho(\alpha))^+] \mapsto [\mathrm{id}_{(G_{\alpha}/\rho(\alpha))^+}]$ is an group isomorphism, where $\mathrm{id}_{(G_{\alpha}/\rho(\alpha))^+} \colon (G_{\alpha}/\rho(\alpha))^+ \to (G_{\alpha}/\rho(\alpha))^+$ is the identity map on $(G_{\alpha}/\rho(\alpha))^+$.

The proof of Theorem 1.1 is carried out in Section 4. We set

$$S((G), \alpha) = \{ K \in S(G) \mid (K/\rho(\alpha)) \in \Phi(G_{\alpha}/\rho(\alpha)) \text{ and } K/\rho(\alpha) \text{ is cyclic} \},\$$

²⁰⁰⁰ Mathematics Subject Classification : 57S17, 57S25.

where S(G) is the set of all subgroups of G, G_{α} denotes an isotropy subgroup of G at α ($\alpha \in \Pi$) and $\Phi(G)$ is the conjugacy class set of G. Applying the above theorem, we have a Burnside relation for the Lefschetz module.

Corollary 1.2 Let α be an element of Π . Given a Π -map $f: X \to X$, one has

$$\sum_{K \in S((G),\alpha)} \frac{|G_{\alpha}/\rho(\alpha)|}{|N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha))|} \cdot \phi(|K/\rho(\alpha)|) \cdot \overline{\Lambda}(f_{\alpha}^{K}) \equiv 0$$

mod $|G_{\alpha}/\rho(\alpha)|$.

where $(|G_{\alpha}/\rho(\alpha)|)/(|N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha))|)$ is the order of $(G_{\alpha}/\rho(\alpha))/(N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha)))$ and $\phi(|K/\rho(\alpha)|)$ is the number of generators of the cyclic group $K/\rho(\alpha)$.

2. Notations and Preliminaries

Notations G always denotes a finite group. The set of all subgroups of G is denoted by S(G). We regard S(G) as a G-set via the action $(g, H) \mapsto gHg^{-1}(g \in G \text{ and } H \in S(G))$ and as a partially ordered set via

 $H \leq K$ if and only if $H \supseteq K$ $(H, K \in S(G))$.

By a *G*-complex we will mean a *CW*-complex *X* together with an action of *G* on *X* which permutes the cells. Thus we have for each $g \in G$ a homeomorphism $x \mapsto gx$ of *X* such that the image $g\sigma$ of any cell σ of *X* is again a cell. For example, if *X* is a simplicial complex on which *G* acts simplicially, then *X* is a *G*-complex.

Preliminaries. 1. A *G*-poset (=a partially ordered set with a *G*-action). Suppose that Π is a partially ordered set and *G* acts on it preserving the partial order. For any $\alpha \in \Pi$, we set

 $\Pi_{\alpha} = \{ \beta \in \Pi \mid \beta \ge \alpha \}, \text{ and } G_{\alpha} = \{ g \in G \mid g\alpha = \alpha \}.$

In particular, G_{α} is called an *isotropy subgroup* of G at α . Let $\rho: \Pi \to S(G)$ be an order preserving G-map. A pair (Π, ρ) is called a G-poset if it is satisfying the following condition: for any $\alpha \in \Pi$,

$$\rho(\alpha) \lhd G_{\alpha} \quad \text{and} \quad \rho \colon \Pi_{\alpha} \to S(G)_{\rho(\alpha)} \quad \text{is injective.}$$

Note that $S(G)_{\rho(\alpha)} = S(\rho(\alpha)) \subset S(G_{\alpha})$ and $G_{\alpha} \subset G_{\rho(\alpha)} = N_G(\rho(\alpha))$, the normalizer of $\rho(\alpha)$ in G. As example of a G-poset, consider (S(G), id).

2. Burnside modules. References: Oliver-Petrie [10], Fujita [5]. Let a pair (Π, ρ) be a *G*-poset. A finite *G*-complex *X* with a base point * is called a Π -complex if it is equipped with a specified set $\{X_{\alpha} \mid \alpha \in \Pi\}$ of subcomplexes X_{α} of *X*, satisfying the following four conditions: (i) $* \in X_{\alpha}$,

(ii) $gX_{\alpha} = X_{g\alpha}$ for $g \in G, \alpha \in \Pi$, (iii) $X_{\alpha} \subseteq X_{\beta}$ if $\alpha \leq \beta$ in Π , and (iv) for any $H \in S(G)$,

$$X^H = \bigvee_{\alpha} X_{\alpha}$$
 (the wedge sum of X_{α} 's).

$$\alpha \in \Pi$$
 with $\rho(\alpha) = H$

On some examples of Π -complexes and its basic properties, see [4] for details. Let \mathcal{F} denote the family of all Π -complexes and define the equivalence relation \sim on \mathcal{F} by

$$Z \sim W$$
 if and only if $\chi(Z_{\alpha}) = \chi(W_{\alpha})$ for all $\alpha \in \Pi$ $(Z, W \in \mathcal{F})$

where $\chi(Z_{\alpha})$ is the Euler characteristic of Z_{α} .

The set $\Omega(G, \Pi) = \mathcal{F}/\sim$ is an abelian group via

 $[Z] + [W] = [Z \lor W] \quad (Z, W \in \mathcal{F}).$

The unit element is the equivalence class of a point. We call $\Omega(G, \Pi)$ the Burnside module associated with a G-poset Π .

Let α be any element of Π and X a Π -complex. Construct a new space X' by attaching α -cells $G/\rho(\alpha) \times D^i$'s to X. Each attachment map

 $\varphi \colon G/\rho(\alpha) \times S^{i-1} \to X$

is defined such that $\varphi(g\rho(\alpha) \times S^{i-1}) \subset X_{g\alpha}$. The space X' is equipped with a Π -complex structure:

$$(X')_{\beta} = X_{\beta} \cup \left(\bigcup \{ g\rho(\alpha) \times D^i \mid g\alpha \leq \beta, g \in G \} \right) \text{ for } \beta \in \Pi.$$

Any Π -complex is constructed from one point by attaching α -cells for $\alpha \in \Pi$.

Proposition 2.1 ([10, Proposition 1.5]) One has

$$\Omega(G, \Pi) \cong \bigoplus_{\alpha \in \mathcal{A}} \mathbb{Z}.$$

Any finite Π -complex X is equivalent in $\Omega(G, \Pi)$ to a sum of the form $\sum_{\alpha \in \mathcal{A}} a_{\alpha}[(G/\rho(\alpha))^+]$, and the map $[X] \to \{a_{\alpha}\}_{\alpha \in \mathcal{A}}$ defines the group isomorphism.

3. Definitions

For a G-complex X and a self-map $f: X \to X$, we define

$$\Lambda(f) = \sum_{i=0}^{\infty} (-1)^i \operatorname{trace}[f_* \colon H_i(X; \mathbb{Q}) \to H_i(X; \mathbb{Q})],$$

which is called the Lefschetz number of f. Remark that each homology group is a vector space over \mathbb{Q} ; moreover, $f: X \to X$ is continuous, then $f_*: H_i(X; \mathbb{Q}) \to H_i(X; \mathbb{Q})$ can be seen to be a linear transformation, and so the trace of f_* is now the usual trace of linear algebra. If a self-map f is an identity map, $\Lambda(f)$ is equal to the Euler characteristic of X. Here we set $\overline{\Lambda}(f) = \Lambda(f) - 1$, which is called the *reduced Lefschetz number* of f. If $\{*\} \in$ X is a base point, and two base point preserving maps are homotopic, each reduced Lefschetz number coincides. Let A be a base pointed G-subcomplex of X. Then X/A is naturally equipped with a G-complex structure. Let f_A be the restriction of f to A and $f_{X/A}$ the quotient map $X/A \to X/A$. If the following diagram

$$A \longrightarrow X \longrightarrow X/A$$

$$\downarrow f_A \qquad \downarrow f \qquad \downarrow f_{X/A}$$

$$A \longrightarrow X \longrightarrow X/A$$

commutes, then we have $\overline{\Lambda}(f) = \overline{\Lambda}(f_A) + \overline{\Lambda}(f_{X/A})$. Moreover let $\sum f$ be the suspension map of f. An easy computation shows that $\overline{\Lambda}(\sum f) = -\overline{\Lambda}(f)$.

Let X, Y be Π -complexes. The map f is called a Π -map if a map $f: X \to Y$ be a base point preserving G-map such that

 $f(X_{\alpha}) \subset Y_{\alpha}$ for all $\alpha \in \Pi$.

We denote by f_{α} the restriction of f to X_{α} . For self Π -maps $f: X \to X$,

 $g: Y \to Y$, we define a equivalence relation by

$$\overline{\Lambda}(f_{\alpha}) = \overline{\Lambda}(g_{\alpha}) \quad \text{for all } \alpha \in \Pi.$$

Let \mathcal{F}_{map} denote the set of all self Π -maps. Then we let $L(G, \Pi)$ the quotient set of \mathcal{F}_{map} by the equivalence relation. The quotient set is an abelian group via

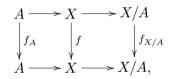
$$[f] + [g] = [f \lor g] \quad (f, g \in \mathcal{F}_{\mathrm{map}}),$$

where a map $f \lor g$ is the standard wedge map. We call $L(G, \Pi)$ the Lefschetz module associated with a G-poset Π .

4. Proof of the main theorem

We need the following lemma to prove Theorem 1.1.

Lemma 4.1 Let X be a Π -complex with a subcomplex A and $f: X \to X$ be a Π -map with $f(A) \subset A$. Then for the commutative diagram



 $[f] = [f_A] + [f_{X/A}] \in L(G, \Pi)$, where f_A is the restriction of f to A and $f_{X/A}$ is the quotient map $X/A \to X/A$.

Proof. Let α be any element of Π . Consider the following cellular chain complex

$$0 \longrightarrow \overline{C_*}(A_\alpha) \longrightarrow \overline{C_*}(X_\alpha) \longrightarrow \overline{C_*}(X_\alpha/A_\alpha) \longrightarrow 0.$$

Since each term of this chain complex is a vevtor space over \mathbb{Q} , it splits, therefore $\overline{C_*}(X_\alpha) \cong \overline{C_*}(A_\alpha) \oplus \overline{C_*}(X_\alpha/A_\alpha)$. To calculate trace $(f_\alpha)_{\sharp}$, consider the following diagram:

$$\overline{C_*}(X_{\alpha}) \cong \overline{C_*}(A_{\alpha}) \oplus \overline{C_*}(X_{\alpha}/A_{\alpha})
\downarrow^{(f_{\alpha})_{\sharp}} \qquad \downarrow^{(f_{A_{\alpha}})_{\sharp}} \qquad \downarrow^{(f_{X_{\alpha}/A_{\alpha}})_{\sharp}}
\overline{C_*}(X_{\alpha}) \cong \overline{C_*}(A_{\alpha}) \oplus \overline{C_*}(X_{\alpha}/A_{\alpha}).$$

Let (a, b) be an element of $\overline{C_*}(A_\alpha) \oplus \overline{C_*}(X_\alpha/A_\alpha)$ and the image of (a, b) by

 $(f_{\alpha})_{\sharp}$ be $(f_1(a, b), f_2(a, b))$. Then

$$\begin{pmatrix} f_1(a, b) \\ f_2(a, b) \end{pmatrix} = \begin{pmatrix} (f_{A_{\alpha}})_{\sharp} & * \\ 0 & (f_{X_{\alpha}/A_{\alpha}})_{\sharp} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}.$$

Hence we have $\operatorname{trace}(f_{\alpha})_{\sharp} = \operatorname{trace}(f_{A_{\alpha}})_{\sharp} + \operatorname{trace}(f_{X_{\alpha}/A_{\alpha}})_{\sharp}$. By [12, Lemma 9.18], $\overline{\Lambda}(f_{\alpha}) = \overline{\Lambda}(f_{A_{\alpha}}) + \overline{\Lambda}(f_{X_{\alpha}/A_{\alpha}})$. Thus we get the assertion.

Proof of Theorem 1.1. It is obvious that $\overline{\varphi}$ is a group homomorphism. Moreover since

$$\overline{\chi}((G_{\alpha}/\rho(\alpha))^{+}) = \chi(G_{\alpha}/\rho(\alpha)) = \Lambda(\mathrm{id}_{G_{\alpha}/\rho(\alpha)}) = \overline{\Lambda}(\mathrm{id}_{(G_{\alpha}/\rho(\alpha))^{+}}),$$

we easily verify that $\overline{\varphi}$ is injective. We shall show the surjectivity of $\overline{\varphi}$. For any $[f: X \to X] \in L(G, \Pi)$, we want to show $\operatorname{Im} \overline{\varphi} \ni [f]$. We proceed by induction on the number of *G*-cell. The Π -complex *X* is composed with the cell structure:

$$X = X_0 \cup_{\varphi_0} \left(\prod_{i_0 \in I_0} (G/\rho(\alpha) \times D^0)_{i_0} \right)$$
$$\cup \dots \cup_{\varphi_n} \left(\prod_{i_n \in I_n} (G/\rho(\alpha) \times D^n)_{i_n} \right),$$

where X_0 is a subcomplex of X. Moreover we may suppose that $\rho(\alpha)$ is a minimum isotropy subgroup of $X \setminus \{*\}$ and $X_0 \setminus \{*\}$ contains no cells the isotropy type of which is $(\rho(\alpha))$. It then follows that the Π -map $f: X \to$ X satisfies $f(X_0) \subset X_0$. Let f_0 be the restriction of f to X_0 and f' be the quotient map $X/X_0 \to X/X_0$. By Lemma 2.1, we have $[f] = [f_0] +$ $[f'] \in L(G, \Pi)$. In the case of $X_0 \setminus \{*\} \neq \emptyset$, the assertion is already done by induction. As for the case where $X_0 \setminus \{*\} = \emptyset$, namely, $X = \{*\} \cup$ $\{$ the cell's of its isotropy type $(\rho(\alpha)) \}$, X has the following cell structure:

$$X = X^{n-1} \cup_{\varphi_n} \left(\prod_{i_n \in I_n} (G/\rho(\alpha) \times D^n)_{i_n} \right),$$

where X^{n-1} is the (n-1)-skeleton of X. By considering the map on the homotopic level, we may assume that the Π -map f is a cellular map, so that, $f(X^{n-1}) \subset X^{n-1}$ (This is done by the cellular approximation theorem). If $X^{n-1} \neq \{*\}$, by Lemma 4.1 and induction, we have $[f] \in \operatorname{Im} \overline{\varphi}$. Finally we consider the case of $X^{n-1} = \{*\}$. (Remark that $[f] = [f_{X^{n-1}}] +$

 $[f_{X/X^{n-1}}] \in L(G, \Pi)$ in this case, but we can not prove the surjectivity of $\overline{\varphi}$ by induction.) Then X is expressible as a wegde sum of some suspensions:

$$X = \bigvee_{i \in I} \left((G/\rho(\alpha))^+ \wedge S^n \right)_i = \bigvee_{i \in I} \left(\sum^n (G/\rho(\alpha))^+ \right)_i,$$

where $\sum_{n=1}^{n} f(x)$ is the *n*-th suspension operator. Next we compute the chain complex of X.

Claim 4.2

$$\overline{C_n}(X) = \bigoplus_{i \in I} (\mathbb{Q}[G/\rho(\alpha)])_i$$

Proof. We now compute:

$$\overline{C_n}(X) = \overline{C_n} \left(\bigvee_{i \in I} \left(\sum^n (G/\rho(\alpha))^+ \right) \right)$$
$$= \bigoplus_{i \in I} \overline{C_0} ((G/\rho(\alpha))^+)$$
$$= \bigoplus_{i \in I} \overline{H_0} \left((G/\rho(\alpha))^+; \mathbb{Q} \right)$$
$$= \bigoplus_{i \in I} (\mathbb{Q}[G/\rho(\alpha)])_i,$$

where each $(\mathbb{Q}[G/\rho(\alpha)])_i$ is the copy of $\mathbb{Q}[G/\rho(\alpha)]$.

Let f_{\sharp} be a self-chain map on the cellular chain complex $\overline{C_*}(X)$, where $f_{i\sharp}: \overline{C_i}(X) \to \overline{C_i}(X)$ is the *i*-th term of the chain map f_{\sharp} . Note that each $\overline{C_i}(X)$ is a finite-dimensional vector space over \mathbb{Q} and the map $f_{i\sharp}$ is a linear transformation then a choice of basis of $\overline{C_i}(X)$ associates a square matrix A to $f_{i\sharp}$. Let m be the order of the index set I. Let f_{ij} be a linear transformation from $(\mathbb{Q}[G/\rho(\alpha)])_i$ to $(\mathbb{Q}[G/\rho(\alpha)])_j$. Then there exists the following diagram:

$$\overline{C_n}(X) \cong (\mathbb{Q}[G/\rho(\alpha)])_1 \oplus \cdots \oplus (\mathbb{Q}[G/\rho(\alpha)])_m
\downarrow f_{n\sharp} \qquad \qquad \downarrow f_{11} \qquad \qquad \downarrow f_{mm}
\overline{C_n}(X) \cong (\mathbb{Q}[G/\rho(\alpha)])_1 \oplus \cdots \oplus (\mathbb{Q}[G/\rho(\alpha)])_m.$$

If $\{x_{i_1}, \ldots, x_{i_n}\}$ is a basis of $(\mathbb{Q}[G/\rho(\alpha)])_i$, one extends it to a basis of

 $\overline{C_n}(X)$. The matrix A of $f_{n\sharp}$ with respect to the extended basis is

$$\begin{bmatrix} A_{11} & * & * & * \\ & A_{22} & * & * \\ & & \ddots & * \\ 0 & & & A_{nn} \end{bmatrix},$$

where A_{ii} is the matrix of f_{ii} with respect to $\{x_{i_1}, \ldots, x_{i_n}\}$. Hence we have that $\operatorname{trace}(f_{n\sharp}) = \sum_{i=1}^m \operatorname{trace}(f_{ii})$, and so $\overline{\Lambda}(f) = (-1)^n \sum_{i=1}^m \operatorname{trace}(f_{ii})$. For each $i = 1, \ldots, m$, we denote by A_i the copy of the subset $\bigvee_{g \in G} (g\rho(\alpha) \wedge S^n)$ of X. A new map g_i is the composition:

$$A_i \xrightarrow{i} X \xrightarrow{f} X \xrightarrow{q_i} A_i,$$

which is a Π -map. In this diagram, $i: A_i \to X$ denotes an inclusion map and $q_i: X \to A_i$ is the *i*-th term projection map. It then follows that $g_{i\sharp} = f_{ii}: \overline{C_n}(A_i) \to \overline{C_n}(A_i)$. Therefore $\overline{\Lambda}(f) = (-1)^n \sum_{i=1}^m \operatorname{trace}(g_{i\sharp})$. By restricting f to X_{α} , we have $\overline{\Lambda}(f_{\alpha}) = \sum_{i=1}^m \overline{\Lambda}((g_i)_{\alpha})$, and so $[f] = \sum_{i=1}^m [g_i]$. We show that each $[g_i] \in \overline{\varphi}(\Omega(G, \Pi))$. We also denote by f the Π -map $\sum^n (G/\rho(\alpha))^+ \to \sum^n (G/\rho(\alpha))^+$ without confusion. The desired map f_i is the composition:

$$g_i \rho(\alpha) / \rho(\alpha) \xrightarrow{j} \sum^n (G/\rho(\alpha))^+ \xrightarrow{f} \sum^n (G/\rho(\alpha))^+ \xrightarrow{q_i} g_i \rho(\alpha) / \rho(\alpha),$$

which is not a Π -map. In this diagram, $j: g_i\rho(\alpha)/\rho(\alpha) \to \sum^n (G/\rho(\alpha))^+$ denotes an inclusion map and $q_i: \sum^n (G/\rho(\alpha))^+ \to g_i\rho(\alpha)/\rho(\alpha)$ is the *i*-th term projection map. Let g_1 be the unit element of G. Now consider the following diagram:

$$\begin{array}{cccc} g_1\rho(\alpha)/\rho(\alpha) \times S^n & \xrightarrow{f_1} & g_1\rho(\alpha)/\rho(\alpha) \times S^n \\ g_i & & & \downarrow^{g_i} \\ g_i\rho(\alpha)/\rho(\alpha) \times S^n & \xrightarrow{f_i} & g_i\rho(\alpha)/\rho(\alpha) \times S^n. \end{array}$$

Here the symbol f_i denotes a map from $g_i\rho(\alpha)/\rho(\alpha) \times S^n$ to itself and g_i is the left translation by g_i . This diagram is obviously commutative. Moreover g_i is a homeomorphism. Hence $\overline{\Lambda}(f_i) = \overline{\Lambda}(f_1)$. Let β be any element of Π .

Since
$$\sum^{n} (G/\rho(\alpha))_{\beta}^{+} = \vee \{g_{i}\rho(\alpha)/\rho(\alpha) \times S^{n} \mid g_{i}\alpha \leq \beta\}$$
, we see that
 $\overline{\Lambda}(f_{\beta}) = \sum_{i} \overline{\Lambda}(f_{i})$ (the index *i* satisfies $g_{i}\alpha \leq \beta$)
 $= \sum_{i} \overline{\Lambda}(f_{1})$
 $= \overline{\Lambda}(f_{1})|(G/\rho(\alpha))_{\beta}|$
 $= \overline{\Lambda}(f_{1})\overline{\chi}((G/\rho(\alpha))_{\beta}^{+}),$

and hence that $[f] \in \operatorname{Im} \overline{\varphi}$. This concludes the proof.

We have a Burnside relation for the Lefschetz module. We set

$$\begin{split} S((G), \, \alpha) \\ &= \{ K \in S(G) \mid (K/\rho(\alpha)) \in \Phi(G_{\alpha}/\rho(\alpha)) \text{ and } K/\rho(\alpha) \text{ is cyclic} \}. \end{split}$$

From Theorem 1.1, we have the following corollary (see [5, Theorem 1.6]).

Corollary 1.2 Let α be an element of Π . Given a Π -map $f: X \to X$, one has

$$\sum_{K \in S((G), \alpha)} \frac{|G_{\alpha}/\rho(\alpha)|}{|N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha))|} \cdot \phi(|K/\rho(\alpha)|) \cdot \overline{\Lambda}(f_{\alpha}^{K}) \equiv 0$$

mod $|G_{\alpha}/\rho(\alpha)|$.

where $|G_{\alpha}/\rho(\alpha)|/|N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha))|$ is the order of $G_{\alpha}/\rho(\alpha)/N_{G_{\alpha}/\rho(\alpha)}(K/\rho(\alpha))$ and $\phi(|K/\rho(\alpha)|)$ is the number of generators of the cyclic group $K/\rho(\alpha)$.

Proof. From Theorem 1.1, the group $L(G, \Pi)$ is generated by the isomorphism classes of the identity maps of the form $[\mathrm{id}_{(G_{\alpha}/\rho(\alpha))^{+}}]$. It is sufficient to prove for $\mathrm{id}_{X} \colon X \to X$ for a Π -complex X. Then clearly $\overline{\chi}(X_{\alpha}^{K}) = \overline{\Lambda}(\mathrm{id}_{X_{\alpha}^{K}})$, so that we have the desired result. \Box

References

- Dovermann K.H. and Rothenberg M., The generalized whitehead torsion of a G-fibre homotopy equivalence. Transformation Groups, Kawakubo Katsuo 1987, Lecure Notes in Math. vol. 1375, Springer-Verlag, Berlin, 1989, pp. 60–88.
- [2] tom Dieck T., Transformation Groups and Representation Theory. Lecture Notes in Math, vol. 766, Springer-Verlag, Berlin, 1978.

- [3] tom Dieck T., Transformation Groups. de Gruyter Studies in Math 8, Walter de Gruyter, Berlin, 1987.
- [4] Fujita R., The resolution module of a space and its universal covering space. Journal of The Faculty of Environment Science and Technology, Okayama Univ. 5 (2000), 57–69.
- [5] Fujita R., Congruences for the Burnside module. Hokkaido Math. J. 32 (2003), 117–126.
- [6] Kawakubo K., The Theory of Transformation Groups. Oxford University Press, London, 1991.
- [7] Komiya K., Congruences for the Burnside ring. Transformation Groups, Kawakubo Katsuo 1987, Lecure Notes in Math. vol. 1375, Springer-Verlag, Berlin, 1989, pp. 191–197.
- [8] Laitinen E. and Lück W., Equivariant Lefschetz Class. Osaka J. Math. 26 (1989), 491–525.
- [9] Morimoto M., The Burnside Ring Revisited. Current Trends in Transformation Groups, Bak Anthony, Morimoto Masaharu and Ushitaki Fumihiro, K-Monographs in Mathematics., vol. 7, Kluwer Academic Publishers, London, 2002, pp. 129–145.
- [10] Oliver R. and Petrie T., G-CW-surgery and $K_0(\mathbb{Z}G)$. Math. Z. 179 (1982), 11–42.
- [11] Rim D.S., Modules over finite groups. Ann. Math. 69 (1958), 700–712.
- [12] Rotman J.J., An introduction to Algebraic Topology. Graduate Texts in Mathematics 119, Springer-Verlag, New York, 1988.
- [13] Yoshida T., The generalized Burnside ring of a finite group. Hokkaido Math. J. 19 (1990), 509–574.

General Education Wakayama National College of Technology Noshima 77, Nada-Cho, Gobo Wakayama, 644-0023 Japan E-mail: fujita@wakayama-nct.ac.jp