
Hokkaido Mathematical Journal Vol. 35 (2006) p. 905–934

Bifurcations of holonomic systems

of general Clairaut type
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Abstract. In the previous paper [20], we have classified generic holonomic systems

of general Clairaut type. The notion of holonomic systems of general Clairaut type is

one of the generalized notions of the classical Clairaut equations and Clairaut type. We

give a generic classification of bifurcations of them as an application of the theory of

complete Legendrian unfoldings and transversality theorem. In the list of normal forms,

the Lagrangian equation appears. Moreover, there appears several new equations.

Key words: holonomic system, holonomic system of general Clairaut type, bifurcation,

Legendrian singularity theory.

1. Introduction

In the classical theory of first order differential equations the notion of
classical (or, smooth) complete solutions plays an important role (cf. [3], [6]).
The Clairaut equation (Alex Claude Clairaut [4], 1734) is one of the typi-
cal example of first order differential equations which has a classical com-
plete solution and a singular solution such that the singular solution is
the envelope of the family of hyperplanes given by the complete solution
(cf. [16], [17]). In this paper, we consider systems of first order partial
differential equations with classical complete solution like as the Clairaut
equation which is called a system of general Clairaut type. In particular,
the system of general Clairaut type with regular property which is called
a system of Clairaut type has been investigated in [13, 18]. Also in the pre-
vious paper [20], we have classified holonomic systems of general Clairaut
type. The next problem is to consider the bifurcations of these systems. We
give a generic classification of one-parameter families of holonomic systems
of general Clairaut type in any dimension as an application of singularity
theory (see, [1], [15], [21]).
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Since our concern is the local classification of differential equations, we
can formulate as follows (cf. [13], [14], [18], [19], [20]): Let π : PT ∗Rn+1 −→
Rn+1 be the projective cotangent bundle over Rn+1. We have a local coordi-
nate (x, y, p) = (x1, . . . , xn, y, p1, . . . , pn) of PT ∗Rn+1 so that (x, y) gives the
canonical coordinate of Rn+1 and the hypersurface in T(x,y)Rn+1 given by
dy −∑n

i=1 pi dxi = 0. This coordinate is called the canonical coordinate of
PT ∗Rn+1. The canonical contact form on PT ∗Rn+1 is defined by θ = dy−∑n

i=1 pi dxi on the canonical coordinate. Using this approach, a first order
differential equation is most naturally interpreted as being a closed subset of
PT ∗Rn+1. However, here we consider that a holonomic system of first order
differential equation germ (or, briefly, a holonomic system) is defined to be
the image of a smooth map germ f : (Rn+1, 0) −→ PT ∗Rn+1. We say that
f is completely integrable if there exists a submersion germ µ : (Rn+1, 0) −→
(R, 0) such that dµ∧ f∗θ = 0. The pair (µ, f) : (Rn+1, 0) −→ R×PT ∗Rn+1

is called a holonomic system with complete integral. If π ◦ f |µ−1(s) is a non-
singular map for each s ∈ (R, 0), then f is called a holonomic system of
general Clairaut type (cf. [20]). Moreover, if the equation f is an immer-
sion germ then we simply call f a holonomic system of Clairaut type. The
term “general” means that f is not necessarily an immersion germ, that is,
f might have a singularity at the origin.

One-parameter family of first order differential equation germ (or,
one-parameter family of holonomic system) is defined to be a smooth
map germ f : (Rn+1 × R, 0) −→ PT ∗Rn+1. Denote a smooth map germ
ft : (Rn+1, 0) −→ PT ∗Rn+1 by ft(u1, . . . , un+1) = f(u1, . . . , un+1, t). We
also say that f is a one-parameter completely integrable if there exist
a smooth function germ µ : (Rn+1×R, 0) −→ (R, 0) such that µt is a submer-
sion germ and dµt ∧ f∗t θ = 0 for each t ∈ (R, 0), where µt(u1, . . . , un+1) =
µ(u1, . . . , un+1, t). The pair (µ, f) : (Rn+1 × R, 0) −→ R × PT ∗Rn+1 is
called a one-parameter family of holonomic system with complete integral.
If π ◦ ft|µ−1

t (s) is a non-singular map for each t, s ∈ (R, 0), then f is called
a one-parameter family of holonomic system of general Clairaut type. Fur-
thermore, if ft is an immersion germ for each t ∈ (R, 0), then f is called
a one-parameter family of holonomic system of Clairaut type which has been
investigated in [18, 19].

Let (µ, g) be a pair of smooth map germs g : (Rn+1×R, 0) −→ (Rn+1, 0)
and µ : (Rn+1 × R, 0) −→ (R, 0) such that µt is a submersion for each
t ∈ (R, 0). Then the divergence diagram
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(R, 0)
µ←− (Rn+1 × R, 0)

g−→ (Rn+1, 0)

or, briefly, (µ, g) is called a one-parameter family of integral diagram if there
exists a one-parameter family of holonomic system f : (Rn+1 × R, 0) −→
PT ∗Rn+1 such that (µ, f) is a one-parameter family of holonomic system
with complete integral and π ◦ f = g.

Following S. Lie, the most natural equivalence relation among equa-
tion germs is given by point transformation. In order to define the
one-parameter point transformation, we consider unfolding germs of f
and µ. Define F : (Rn+1 × R, 0) −→ PT ∗Rn+1 × R by F (u1, . . . , un+1, t) =
(f(u1, . . . , un+1, t), t) for a one-parameter family of holonomic system f .
In this case, F is called a one-parameter unfolding of holonomic system
associated to f . We also define µ̂ : (Rn+1 × R, 0) −→ (R × R, 0) by
µ̂(u1, . . . , un+1, t) = (µ(u1, . . . , un+1, t), t). The pair (µ̂, F ) or (µ, F ) is called
a one-parameter unfolding of holonomic system with complete integral.

Let F and F ′ be one-parameter unfoldings of holonomic system asso-
ciated to f and f ′ respectively. We define F and F ′ are equivalent if the
diagram

(Rn+1 × R, 0) F−−−→ (PT ∗Rn+1 × R, (z, 0)) π×id−−−→ (Rn+1 × R, 0)

ψ

y
yΦ

yφ
(Rn+1 × R, 0) −−−→

F ′
(PT ∗Rn+1 × R, (z′, 0)) −−−→

π×id
(Rn+1 × R, 0)

commutes for some germs of diffeomorphisms ψ, Φ and φ of the following
form

ψ(u1, . . . , un+1, t) = (ψ1(u1, . . . , un+1, t), ϕ(t)),

Φ(x1, . . . , x2n+1, t) = (φ̂t(x1, . . . , x2n+1), ϕ(t)),

φ(x1, . . . , xn+1, t) = (φ1(x1, . . . , xn+1, t), ϕ(t)).

Here φ̂t is the unique contact lift of φt and φt = φ|Rn+1×{t} :
(Rn+1 × {t}, 0) −→ (Rn+1 × {ϕ(t)}, 0).

Let (µ̂, G) be the pair of a smooth map germ G : (Rn+1 × R, 0) −→
(Rn+1, 0) and a smooth map germ µ̂ : (Rn+1×R, 0) −→ (R×R, 0) such that
µt is a submersion for each t ∈ (R, 0). Then the diagram

(R× R, 0)
µ̂←− (Rn+1 × R, 0) G−→ (Rn+1 × R, 0)
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or, briefly, (µ̂, G) is called a one-parameter unfolding of integral diagram if
there exists a one-parameter family of holonomic system f such that (µ̂, F )
is a one-parameter unfolding of holonomic system with complete integral
and (π× id) ◦ F = G where F is the one-parameter unfolding of holonomic
system associated to f .

We introduce equivalence relations among one-parameter unfoldings of
integral diagrams. Let (µ̂, G) and (µ̂′, G′) be one-parameter unfoldings of
integral diagrams. We define (µ̂, G) and (µ̂′, G′) are equivalent as one-
parameter unfoldings of integral diagrams (respectively, strictly equivalent)
if the diagram

(R× R, 0)
µ̂←−−− (Rn+1 × R, 0) G−−−→ (Rn+1 × R, 0)

κ

y ψ

y
yφ

(R× R, 0) ←−−−
µ̂′

(Rn+1 × R, 0) −−−→
G′

(Rn+1 × R, 0)

commutes for some germs of diffeomorphisms κ, ψ and φ of the form

κ(s, t) = (κ1(s, t), ϕ(t)) (respectively, κ1(s, t) = s),

ψ(u1, . . . , un+1, t) = (ψ1(u1, . . . , un+1, t), ϕ(t)),

φ(x1, . . . , xn+1, t) = (φ1(x1, . . . , xn+1, t), ϕ(t)).

If (µ̂, G) and (µ̂′, G′) are strictly equivalent, then we also say that (µ,G)
and (µ′, G′) are strictly equivalent.

We shall show that two one-parameter unfoldings of holonomic sys-
tems F and F ′ are equivalent if and only if induced one-parameter unfold-
ings of integral diagrams (µ̂, (π× id)◦F ) and (µ̂′, (π× id)◦F ′) are equivalent
for generic (µ, F ) and (µ′, F ′) (cf. Theorem 2.4).

If (µ, f) is a one-parameter family of holonomic system of general
Clairaut type, then (µ̂, F ) or (µ, F ) is called a one-parameter unfolding
of holonomic system of general Clairaut type.

We denote by E(x1,...,xn+1,t) the ring of all smooth function germs of
Rn+1×R at 0 with coordinate (x1, . . . , xn+1, t) and denote by M(x1,...,xn+1,t)

the unique maximal ideal of E(x1,...,xn+1,t).
The main result in this paper is the following theorem which gives

a generic classification of one-parameter unfoldings of holonomic systems of
general Clairaut type:
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Theorem 1.1 For a generic one-parameter unfolding of holonomic sys-
tem of general Clairaut type

(µ, F ) : (Rn+1 × R, 0) −→ R× PT ∗Rn+1 × R,
the one-parameter unfolding of integral diagram (µ,G = (π × id) ◦ F ) is
strictly equivalent to one of germs in the following list:

(DA1): µ=un+1,

G=(u1, . . . ,un+1, t).

(DA2): µ=un+1− 1
2
u1,

G=(u1, . . . ,un,u
2
n+1, t).

(DA0
2): µ=un+1 +

1
2
(u2

1 + · · ·+u2
n)−

1
2
t,

G=(u1, . . . ,un,u
2
n+1, t).

(DAk2) (1≤k≤n): µ=un+1− 1
2
(u2

1 + · · ·+u2
k−u2

k+1−· · ·−u2
n)

− 1
2
t,

G=(u1, . . . ,un,u
2
n+1, t).

(D̃A
0

3): µ=un+1 +α◦G for α∈M(x1,...,xn+1,t),

G=
(
u1, . . . ,un,

u3
n+1 +(t+u2

1 + · · ·+u2
n)un+1

)
.

(D̃A
k

3) (1≤k≤n): µ=un+1 +α◦G for α∈M(x1,...,xn+1,t),

G=
(
u1, . . . ,un,u

3
n+1 +(t− (u2

1 + · · ·+u2
k

−u2
k+1−· · ·−u2

n))un+1

)
.

(DA`) (3≤`≤n+1): µ=un+1,

G=
(
u1, . . . ,un,u

`
n+1 +

`−1∑

i=1

uiu
i
n+1, t

)
.

(D̃An+2): µ=un+1 +α◦G for α∈M(x1,...,xn+1,t),

G=
(
u1, . . . ,un,u

n+2
n+1 +

n∑

i=1

uiu
i
n+1, t

)
.
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(D̃An+3): µ=un+1 +α◦G for α∈M(x1,...,xn+1,t),

G=
(
u1, . . . ,un,u

n+3
n+1 +

n∑

i=1

uiu
i
n+1

+β(u1, . . . ,un, t)un+1
n+1, t

)

for β∈M(u1,...,un,t) and
∂β

∂t
(0) 6=0.

We remark that the normal forms DA` (1 ≤ ` ≤ n + 1), D̃An+2 and
D̃An+3 are holonomic systems of Clairaut type, namely, the map germ ft is
an immersion germ for each t ∈ (R, 0) which have been already classified
in [19].

Also the normal forms DAk2 (0 ≤ k ≤ n) is equivalent to (µ,G) =(
un+1 − (1/2)(u2

1 + · · · + u2
k − u2

k+1 − · · · − u2
n), u1, . . . , un, u

2
n+1

)
. These

types already have been appeared as a generic holonomic system of general
Clairaut type with the generalized cross-cap singularity in [8, 20].

We call the function germ α which appears in the normal form D̃A
k

3

(0 ≤ k ≤ n), D̃An+2 and D̃An+3, a one-parameter functional moduli and
the function germ β which appears in the normal form D̃An+3, a second
functional moduli.

In the final remark in §4, we will describe why the second functional
moduli appears in the normal form D̃An+3. The meaning of the genericity
in the above theorem will be described in §2 (cf. Theorem 2.2).

The normal forms D̃A
k

3 (0 ≤ k ≤ n) are the new one which shall go
into details in Example 1.3 and 1.4. We now give the typical examples of
one-parameter families of holonomic systems of general Clairaut type.

Example 1.2 (One-parameter families of ordinary Clairaut differential
equations) Consider the following one-parameter family of ordinary clas-
sical Clairaut equations

y =
dy

dx
+ gt

(
dy

dx

)
,

where g(t, p) is a smooth function and p = dy/dx. A germ of a smooth map
(µ, f) : (R2 × R, 0) −→ R× PT ∗R2 given by

(µ, f)(u1, u2, t) = (u2, u1, u1u2 + gt(u2), u2).
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Then we can show that (µ, f) is one-parameter family of ordinary differ-
ential equation of Clairaut type. By definition, of course, (µ, f) is also
one-parameter family of general Clairaut type. For the normal forms DA1,
D̃A3 where α = 0 and D̃A4 where α = 0, β = t in Theorem 1.1 for n = 1
are examples of one-parameter families of classical Clairaut equations. In
this case, the complete solution is a family of straight lines. We have been
drawn the picture of the phase portrait {π ◦ ft(µ−1

t (c))}c∈R of D̃A3 where
α = 0 and D̃A4 where α = 0, β = t in [18].

Example 1.3 (One-parameter families of ordinary Lagrangian equations)
We consider classical equations which are more general than Clairaut differ-
ential equations. The equations of the following form is called a Lagrangian
equation (cf. [5, page 466]):

y = ϕ

(
dy

dx

)
x+ ψ

(
dy

dx

)
,

where ϕ and ψ are smooth functions. Therefore we consider the one-
parameter family of Lagrangian equations given by

y = ϕt

(
dy

dx

)
x+ ψt

(
dy

dx

)
,

where ϕ(t, p) and ψ(t, p) are smooth functions and p = dy/dx. We consider
a germ of a smooth map (µ, f) : (R2 × R, 0) −→ R× PT ∗R2 defined by

(µ, f)(u1, u2, t) =
(
u2, u1, ϕt(u2)u1 + ψt(u2), ϕt(u2)

)
,

and also call it a one-parameter family of Lagrangian equations.
If ϕt(p) has critical point at the origin, then ft is not an immersion germ.
In this case, (µ, f) is a one-parameter family of holonomic system of general
Clairaut type, but not Clairaut type.

We put ϕt(p) = p2 and ψt(p) = p3 + tp, the one-parameter family of

Lagrangian equation is strictly equivalent to the normal form D̃A
1

3 where
α = −(1/

√
3)x in Theorem 1.1 for n = 1.

Then the above equation is one of the examples of one-parameter fam-
ilies of general Clairaut type, but not Clairaut type. We can draw the
picture of the image of equations (see, Fig. 1) and the phase portraits {π ◦
ft(µ−1

t )(c)}c∈R (see, Fig. 2).
We remark that in generic classification of general (single) Clairaut

type equations, the Lagrangian equations except for the immersive equa-
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t < 0 t = 0 t > 0

Fig. 1. Image of equations of one-parameter family of Lagrangian equations
where ϕt(u2) = u2

2, ψt(u2) = u3
2 + tu2.

t < 0 t = 0 t > 0

Fig. 2. Bifurcation of the phase portraits {π ◦ ft(µ−1
t )(c)}c∈R of the equation of

Fig. 1.

tions does not appear (cf. [8, 20]). But our theorem assert that in generic
classification of one-parameter family of general Clairaut type equations,
a one-parameter family of Lagrangian equations appears.

Moreover, we can also draw the picture of the image of equations (see,

Fig. 3 and Fig. 5) about D̃A
0

3 and D̃A
1

3 where α = 0 in Theorem 1.1 for
n = 1 and the corresponding to the phase portraits {π ◦ ft(µ−1

t )(c)}c∈R of
them respectively (see, Fig. 4 and Fig. 6).

The above examples describe how two cross caps meat and how the
corresponding web structures bifurcate.

Example 1.4 (cf. [20, Example 1.3]) Here we consider the one-parameter

unfoldings of holonomic systems of integral diagram of D̃A
k

3 where α = 0
for n = 2. For the case of D̃A

0

3 where α = 0, one of component of phase
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t < 0 t = 0 t > 0

Fig. 3. Image of equations of the normal form D̃A
0

3 where α = 0.

t < 0 t = 0 t > 0

Fig. 4. Bifurcation of the phase portraits {π ◦ ft(µ−1
t )(c)}c∈R of D̃A

0

3 where
α = 0.

t < 0 t = 0 t > 0

Fig. 5. Image of equations of the normal form D̃A
1

3 where α = 0.
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t < 0 t = 0 t > 0

Fig. 6. Bifurcation of the phase portraits {π ◦ ft(µ−1
t )(c)}c∈R of D̃A

1

3 where
α = 0.

c = −1 c = 0 c = 1

Fig. 7.

portrait is given by

π ◦ ft(µ−1
t (c)) = (u1, u2, c

3 + (t+ u2
1 + u2

2)c)

We can draw these pictures when t < 0 and c = −1, 0, 1, respectively
in Fig. 7 and superimpose these pictures (that is, the phase portrait)

{π ◦ ft(µ−1
t (c))}c∈R of D̃A

0

3 when t < 0, see on the left hand side of Fig. 8.

In a similar way, we can draw the phase portraits of D̃A
0

3 when t = 0 and
t > 0, see Fig. 8.

Furthermore, for D̃A
1

3 and D̃A
2

3 where α = 0, the phase portraits are
given by

π ◦ ft(µ−1
t (c)) = (u1, u2, c

3 + (t+ u2
1 − u2

2)c)

and
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t < 0 t = 0 t > 0

Fig. 8. Bifurcation of the phase portraits {π ◦ ft(µ−1
t (c))}c∈R of D̃A

0

3 where
α = 0.

t < 0 t = 0 t > 0

Fig. 9. Bifurcation of the phase portraits {π ◦ ft(µ−1
t (c))}c∈R of D̃A

1

3 where
α = 0.

π ◦ ft(µ−1
t (c)) = (u1, u2, c

3 + (t− u2
1 − u2

2)c)

respectively. We draw these phase portraits {π ◦ ft(µ−1
t (c))}c∈R, see Fig. 9

and 10.

In §2, we define one-parameter complete Legendrian unfoldings cor-
responding to the one-parameter family of holonomic systems of general
Clairaut type and describe the meaning of the genericity of properties for
one-parameter unfoldings of holonomic systems of general Clairaut type.
In §3, we consider the equivalence relations among the one-parameter com-
plete Legendrian unfoldings and generating families. In order to prove The-
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t < 0 t = 0 t > 0

Fig. 10. Bifurcation of the phase portraits {π ◦ ft(µ−1
t (c))}c∈R of D̃A

2

3 where
α = 0.

orem 1.1, we use a kind of the versality theory (cf. [7]). In §5 Appendix, we
introduce the unfolding theory of function germs which will be useful for
the proof of Theorem 1.1. We shall give a proof of Theorem 1.1 in §4.

All map germs considered in this paper are of class C∞, unless stated
otherwise.

2. Genericity and one-parameter unfolding of holonomic systems
of general Clairaut type

Our aim is to construct a family of Legendrian immersions depending
on holonomic system of general Clairaut type (µ, f). We therefore con-
sider the projective cotangent bundle Π: PT ∗(R × Rn+1) −→ R × Rn+1.
We have a local coordinate (σ, x, y, ρ, p) = (σ, x1, . . . , xn, y, ρ, p1, . . . , pn) of
PT ∗(R×Rn+1), such that (σ, x, y) gives the canonical coordinate of R×Rn+1

and the hyperplane in T(σ,x,y)(R×Rn+1) given by dy−∑n
i=1 pi dxi−ρ dσ = 0.

This coordinate is called the canonical coordinate of PT ∗(R × Rn+1). The
canonical contact form is defined by Θ = dy−∑n

i=1 pi dxi−ρ dσ = θ−ρ dσ.
Let (µ, f) be a one-parameter family of holonomic systems with complete
integral. Then there exists a unique element ht ∈ Eu such that ht · dµt =
f∗t θ, where Eu is the ring of function germs of u = (u1, . . . , un+1)-variables.
Define a map germ

`(µ,f) : (Rn+1 × R, 0) −→ PT ∗(R× Rn+1).

by
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`(µ,f)(u, t) =
(
µ(u, t), x ◦ f(u, t), y ◦ f(u, t), h(u, t), p ◦ f(u, t)

)
,

where h(u, t) = ht(u). Then we have (`(µ,f)|Rn+1×{t})∗Θ = 0 for each
t ∈ (R, 0).

We say that the pair (µ, `) : (Rn+1 × R, 0) −→ R × PT ∗(R × Rn+1) is
a Legendrian family if `s = `|µ−1(s) is a Legendrian immersion germ for each
s ∈ (R, 0) (cf. [11]). We have the following simple but important lemma:

Lemma 2.1 ([11, Lemma 2.1]) Let (µ, `) be a Legendrian family. Then
there exists a unique element k ∈ E(u,t) such that `∗Θ = k · dµ.

If (µ, f) is a one-parameter family of holonomic systems of general
Clairaut type, then `(µ,f)|Rn+1×{t} is an immersion germ for each t ∈ (R, 0).
We can apply Lemma 2.1 to (π2, `(µ,f)), where π2 : (Rn+1 × R) −→ (R, 0);
π2(u, t) = t, so that there exists a unique element k ∈ E(u,t) such that
`∗(µ,f)Θ = k · dt. We also consider the projective cotangent bundle

Π̃ : PT ∗(R × Rn+1 × R) −→ R × Rn+1 × R. Let (σ, x, t, y, ρ, p, τ) be the
canonical coordinate on PT ∗(R× Rn+1 × R). Here the canonical 1-form is
given by Θ̃ = dy −∑n

i=1 pi dxi − ρ dσ − τ dt = Θ − τ dt. We define a map
germ

`(µ,F ) : (Rn+1 × R, 0) −→ PT ∗(R× Rn+1 × R)

by

`(µ,F )(u, t)

=
(
µ(u, t), x ◦ F (u, t), t, y ◦ F (u, t), h(u, t), p ◦ F (u, t), k(u, t)

)
.

We can easily show that `(µ,F ) is a Legendrian immersion germ (i.e., `(µ,F ) is
an immersion germ with `∗(µ,F )Θ̃ = 0). We call `(µ,F ) a one-parameter com-
plete Legendrian unfolding associated to (µ, F ). If F is a one-parameter un-
folding of equation associated to f , then we also call `(µ,F ) a one-parameter
complete Legendrian unfolding associated to (µ, f).

By the aid of the notion of one-parameter complete Legendrian unfold-
ings, one-parameter unfoldings of holonomic systems of general Clairaut
type are characterized as follows (cf. [18, Proposition 4.1]):

Proposition 2.2 Let (µ, F ) : (Rn+1×R, 0) −→ R×PT ∗Rn+1×R be a one-
parameter unfolding of holonomic system with complete integral. Then
(µ, F ) is a one-parameter unfolding of holonomic system of general Clairaut
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type if and only if `(µ,F ) is a Legendrian non-singular, that is, Π̃ ◦ `(µ,F ) is
non-singular.

We now establish the notion of the genericity. Let U × V ⊂
Rn+1 × R be an open set. We denote by Clair(U × V,R × PT ∗Rn+1 × R)
the set of one-parameter unfoldings of holonomic systems of general
Clairaut type (µ, F ) : U × V −→ R × PT ∗Rn+1 × R. We also define
LR(U × V, PT ∗(R × Rn+1 × R)) to be the set of one-parameter complete
Legendrian unfoldings `(µ,F ) : U × V −→ PT ∗(R × Rn+1 × R) such that
`(µ,F ) is Legendrian non-singular.

These sets are topological spaces equipped with the Whitney
C∞-topology. A subset of either spaces is said to be generic if it is an
open dense subset in the space.

The genericity of a property of germs are defined as follows: Let
P be a property of one-parameter unfoldings of holonomic systems of
general Clairaut type (µ, F ) : U × V −→ R × PT ∗Rn+1 × R (respec-
tively, one-parameter complete Legendrian unfoldings `(µ,F ) : U × V −→
PT ∗(R × Rn+1 × R)). For an open set U × V ⊂ Rn+1 × R, we define
P(U ×V ) to be the set of (µ, F ) ∈ Clair(U ×V,R×PT ∗Rn+1×R) (respec-
tively, `(µ,F ) ∈ LR(U ×V, PT ∗(R×Rn+1×R))) such that the germ at (u, t)
whose representative is given by (µ, F ) (respectively, `(µ,F )) has property P
for any (u, t) ∈ U × V .

The property P is said to be generic if for some neighbourhood
U × V of 0 in Rn+1 × R, the set P(U × V ) is a generic subset in
Clair(U×V,R×PT ∗Rn+1×R) (respectively, LR(U×V, PT ∗(R×Rn+1×R))).

By the construction, we have a well-defined continuous mapping

(Π1)∗ : LR(U × V, PT ∗(R× Rn+1 × R))

−→ Clair(U × V,R× PT ∗Rn+1 × R)

defined by (Π1)∗(`(µ,F )) = Π1 ◦ `(µ,F ) = (µ, F ), where Π1 : PT ∗(R×Rn+1×
R) −→ R×PT ∗Rn+1×R is canonical projection. Then we have the following
fundamental theorem.

Theorem 2.3 The continuous map

(Π1)∗ : LR(U × V, PT ∗(R× Rn+1 × R))

−→ Clair(U × V,R× PT ∗Rn+1 × R)

is a homeomorphism.
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The proof follows from a direct analogy of the proof for Theorem 4.4
in [12], so that we omit it.

This theorem asserts that the genericity of a property of one-parameter
unfoldings of holonomic system of general Clairaut type can be interpreted
by the genericity of the corresponding property of one-parameter complete
Legendrian unfoldings.

We can assert the following theorem which reduces the equivalence
problem for one-parameter unfoldings of holonomic systems with complete
integral to that for the corresponding induced one-parameter unfolding of
integral diagrams.

Theorem 2.4 ([18, Theorem 3.3]) Let (µ, F ) : (Rn+1 × R, 0) −→
(R×PT ∗Rn+1×R, (0, z,0)) and (µ′,F ′): (Rn+1×R,0)−→ (R×PT ∗Rn+1×R,
(0, z′, 0)) be one-parameter unfoldings of holonomic systems with complete
integral such that the sets of singular points of π ◦ ft and π ◦ f ′t are closed
sets without interior points except for isolated t. Then the following are
equivalent:

(1) F and F ′ are equivalent
(2) (µ̂, (π×id)◦F ) and (µ̂′, (π×id)◦F ′) are equivalent as one-parameter

unfoldings of integral diagrams.

Remark that in the assumption of Theorem 2.4, the condition that
singular points of π ◦ ft is closed sets without interior points except for
isolated t is satisfied for generic equations.

3. Equivalence of one-parameter complete Legendrian unfoldings
and generating families

The main idea of the proof for Theorem 1.1 is to define an equivalence
relation which can ignore one-parameter functional moduli and to do every-
thing in terms of generating families for one-parameter complete Legendrian
unfoldings analogous to those of in [12, 13, 18].

Let (µ, f) be a one-parameter family of holonomic system of general
Clairaut type. Since `(µ,F ) is a Legendrian immersion germ, there ex-
ists a generating family of `(µ,F ) by the theory of Legendrian singularities
(see, [1, 21]). Let G : ((R× Rn × R)× Rk, 0) −→ (R, 0) be a function germ
such that d2G|0×Rn×{t}×Rk is non-singular, where
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d2G(s, x, t, q) =
(
∂G

∂q1
(s, x, t, q), . . . ,

∂G

∂qk
(s, x, t, q)

)
.

Then C(G) = d2G
−1(0) is a smooth (n + 2)-dimensional manifold germ

and πG|C(G)∩(0×Rn×{t}×Rk) : (C(G)∩ (0×Rn×{t}×Rk), 0) −→ R is a sub-
mersion germ for each t ∈ (R, 0), where πG : (C(G), 0) −→ R is given by
πG(s, x, t, q) = s. Define map germs

L̃G : (C(G), 0) −→ J1(Rn,R)

by

L̃G(s, x, t, q) =
(
x,G(s, x, t, q),

∂G

∂x
(s, x, t, q)

)
,

and

LG : (C(G), 0) −→ J1(R× Rn × R,R)

by

LG(s,x, t, q)

=
(
s,x, t,G(s,x, t, q),

∂G

∂s
(s,x, t, q),

∂G

∂x
(s,x, t, q),

∂G

∂t
(s,x, t, q)

)
.

Since ∂G/∂qi = 0 (i = 1, . . . , k) on C(G), we can easily show that
(L̃Gt|π−1

G (s)

)∗
θ = 0.

By definition, LG is a one-parameter complete Legendrian unfolding as-
sociated to (πG, L̃G). By the same method as the theory of Legendrian
singularities in [1, 21], we can also show the following proposition.

Proposition 3.1 All one-parameter complete Legendrian unfolding germs
are constructed by the above method.

We say that G is a generalized phase family of the complete Legendrian
unfolding LG.

Moreover, by Proposition 2.2, `(µ,F ) is Legendrian non-singular. Then
we can choose a family of function germ

G : (R× Rn × R, 0) −→ (R, 0)

such that Image j1Gt = `(µ,f)|Rn+1×{t} and Image j1G(s,t) = ft(µ−1
t (s)) for

each s, t ∈ (R, 0) where Gt(s, x) = G(s, x, t) and G(s,t)(x) = G(s, x, t). We
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remark that a smooth germ

j11Gt : (R× Rn, 0) −→ J1(Rn,R)

defined by j11Gt(s, x) = j1G(s,t)(x) is not necessarily an immersion germ.
In this case, we have (C(G), 0) = (R× Rn × R, 0) and

LG = j1G : (R× Rn × R, 0) −→ J1(R× Rn × R,R),

so that it is a one-parameter complete Legendrian unfolding associated to
(πG, j11G). Thus the generalized phase family of a one-parameter complete
Legendrian unfolding of holonomic system of general Clairaut type LG is
given by the above germ. We define G̃ : (R × Rn × R × R, 0) −→ (R, 0)
by G̃(s, x, t, y) = G(s, x, t) − y. We call G̃ a generating family of a one-
parameter complete Legengrian unfolding of general Clairaut type.

We now consider an equivalence relation among one-parameter unfold-
ings of integral diagrams which ignore one-parameter functional moduli.
Let (µ̂, G) and (µ̂′, G′) be one-parameter unfolding of integral diagrams.
Then (µ̂, G) and (µ̂′, G′) are one-parameter R+-equivalent if there exist
a germ of diffeomorphism Ψ: (R×Rn+1×R, 0) −→ (R×Rn+1×R, 0) of the
form Ψ(s, x, t) = (s + α(x, t), ψ(x, t), ϕ(t)) and a germ of diffeomorphism
Φ: (Rn+1×R, 0) −→ (Rn+1×R, 0) of the form Φ(u, t) = (φ(u, t), ϕ(t)) such
that Ψ ◦ (µ,G) = (µ′, G′) ◦ Φ. We remark that if (µ̂, G) and (µ̂′, G′) are
one-parameter R+-equivalent by the above diffeomorphisms, then we have
µ(u, t) + α ◦ G(u, t) = µ′ ◦ Φ(u, t) and (ψ,ϕ) ◦ G(u, t) = G′ ◦ Φ(u, t) for
any (u, t) ∈ (Rn+1 × R, 0). Thus the one-parameter unfolding of integral
diagram (µ+ α ◦G,G) is strictly equivalent to (µ′, G′).

We now define the corresponding equivalence relation among one-
parameter Legendrian unfoldings. Let `(µ,F ) : (Rn+1 × R, 0) −→ (PT ∗(R ×
Rn+1×R),z) and `(µ′,F ′) : (Rn+1×R,0)−→ (PT ∗(R×Rn+1×R),z′) be one-
parameter complete Legendrian unfoldings. We say that `(µ,F ) and `(µ′,F ′)
are one-parameter SP+-Legendrian equivalent (respectively, one-parameter
SP -Legendrian equivalent) if there exist a germ of contact diffeomorphism
K : (PT ∗(R × Rn+1 × R), z) −→ (PT ∗(R × Rn+1 × R), z′), a germ of dif-
feomorphism Φ : (Rn+1 × R, 0) −→ (Rn+1 × R, 0) of the form Φ(u, t) =
(φ(u, t), ϕ(t)) and a germ of diffeomorphism Ψ: (R × Rn+1 × R, Π̃(z)) −→
(R×Rn+1×R,Π̃(z′)) of the form Ψ(s,x,t)=(s+α(x,t),ψ(x,t),ϕ(t)) (respec-
tively, Ψ(s,x, t) = (s,ψ(x,t),ϕ(t))), such that Π̃◦K = Ψ◦ Π̃ and K ◦ `(µ,F ) =
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`(µ′,F ′) ◦Φ, where Π̃: (PT ∗(R×Rn+1×R),z)−→ (R×Rn+1×R,Π̃(z)) is the
canonical projection. It is clear that if `(µ,F ) and `(µ′,F ′) are one-parameter
SP+-Legendrian equivalent (respectively, one-parameter SP -Legendrian
equivalent), then (µ, (π × id) ◦ F ) and (µ′, (π × id) ◦ F ′) are one-parameter
R+-equivalent (respectively, strictly equivalent). By [21, Theorem 1.1], the
converse is also true for generic (µ, F ) and (µ′, F ′).

We also say that `(µ,F ) and `(µ′,F ′) are P -Legendrian equivalent if there
exist a germ of contact diffeomorphism K : (PT ∗(R × Rn+1 × R), z) −→
(PT ∗(R × Rn+1 × R), z′), a germ of diffeomorphism Φ: (Rn+1 × R, 0) −→
(Rn+1 × R, 0) of the form Φ(u, t) = (φ(u, t), ϕ(t)) and a germ of diffeo-
morphism Ψ: (R× Rn+1 × R, Π̃(z)) −→ (R× Rn+1 × R, Π̃(z′)) of the form
Ψ(s, x, t) = (q(s, x, t), ψ(x, t), ϕ(t)), such that Π̃◦K = Ψ◦Π̃ and K◦`(µ,F ) =
`(µ′,F ′) ◦ Φ.

The notion of stability of one-parameter complete Legendrian unfold-
ings with respect to one-parameter SP+-Legendrian equivalence (respec-
tively, one-parameter SP -Legendrian equivalence and P -Legendrian equiv-
alence) is analogous to the usual notion of the stability of Legendrian im-
mersion germs with respect to Legendrian equivalence. (cf. [1, Part III ]).

On the other hand, we can interpret the above equivalence relation in
terms of generating families. Let G̃, G̃′ : (R × Rn × R × R, 0) −→ (R, 0)
be generating families of one-parameter Legendrian unfoldings of general
Clairaut type, where G̃(s, x, t, y)=G(s, x, t)−y, G̃′(s, x, t, y)=G′(s, x, t)−y.
We say that G̃ and G̃′ are one-parameter P -C+-equivalent (respectively,
one-parameter P -C-equivalent) if there exists a germ of diffeomorphism
Φ: (R× Rn × R× R, 0) −→ (R× Rn × R× R, 0) of the form

Φ(s, x, t, y) = (s+ α(x, t, y), φ1(x, t, y), ϕ(t), φ2(x, t, y))

(respectively,

Φ(s, x, t, y) = (s, φ1(x, t, y), ϕ(t), φ2(x, t, y)))

such that 〈G̃ ◦ Φ〉E(s,x,t,y)
= 〈G̃′〉E(s,x,t,y)

where 〈G̃′〉E(s,x,t,y)
is the ideal gen-

erated by G′ in E(s,x,t,y). We say that G̃(s, x, t, y) is a P -C+ (respectively,
P -C)-versal deformation of g = G̃|t=0 if

E(s,x,y) =
〈
∂g

∂s

〉

E(x,y)

+ 〈g〉E(s,x,y)
+

〈
∂g

∂x1
, . . . ,

∂g

∂xn
,1

〉

E(x,y)

+
〈
∂G

∂t

∣∣∣∣
t=0

〉

R
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(respectively,

E(s,x,y) = 〈g〉E(s,x,y)
+

〈
∂g

∂x1
, . . . ,

∂g

∂xn
, 1

〉

E(x,y)

+
〈
∂G

∂t

∣∣∣∣
t=0

〉

R

)
.

We also say that G̃ and G̃′ are t-P -K-equivalent if there exists a germ
of diffeomorphism Φ: (R × Rn × R × R, 0) −→ (R × Rn × R × R, 0) of the
form

Φ(s, x, t, y) =
(
q(s, x, t, y), φ1(x, t, y), ϕ(t), φ2(x, t, y)

)

such that 〈G̃ ◦ Φ〉E(s,x,t,y)
= 〈G̃′〉E(s,x,t,y)

and G̃(s, x, t, y) is a P -K-versal
deformation of g = G̃|t=0 if

E(s,x,y) =
〈
∂g

∂s
, g

〉

E(s,x,y)

+
〈
∂g

∂x1
, . . . ,

∂g

∂xn
, 1

〉

E(x,y)

+
〈
∂G

∂t

∣∣∣∣
t=0

〉

R
.

By the similar arguments like as those of [1, Theorems 20.8 and 21.4],
we can show the following:

Theorem 3.2 Let G̃, G̃′ : (R×Rn×R×R, 0) −→ (R, 0) be generating fam-
ilies of one-parameter Legendrian unfoldings of general Clairaut type LG,
LG′ respectively. Then

(1) LG and LG′ are one-parameter SP+ (respectively, one-parameter
SP )-Legendrian equivalent if and only if G̃ and G̃′ are one-parameter P -C+

(respectively, one-parameter P -C)-equivalent.
(2) LG is a one-parameter SP+ (respectively, one-parameter SP )-

Legendrian stable if and only if G̃ is a P -C+ (respectively, P -C)-versal
deformation of g = G̃|t=0.

(3) LG is a P -Legendrian stable if and only if G̃ is a P -K-versal defor-
mation of g = G̃|t=0.

For each function germ g : (Rn+2, 0) −→ (R, 0), we set

P -C+- cod(g)

=dimR E(s,x,y)
/(〈

∂g

∂s

〉

E(x,y)

+ 〈g〉E(s,x,y)
+

〈
∂g

∂x1
, . . . ,

∂g

∂xn
,1

〉

E(x,y)

)
.

By the definition, P -C+- cod(g) ≤ 1 then C+- cod(g0) ≤ n + 2 (cf. §5



924 M. Takahashi

Appendix), where g0 = g|R×0. And we set

P -K- cod(g)

= dimR E(s,x,y)
/(〈

∂g

∂s
, g

〉

E(s,x,y)

+
〈
∂g

∂x1
, . . . ,

∂g

∂xn
, 1

〉

E(x,y)

)
.

Since g0 = g|R×0 is a function germ of one-variable, we have
〈dg0/ds〉R + 〈g0〉Es = 〈dg0/ds, g0〉Es . Hence if g satisfy the condition
P -K- cod(g) ≤ 1, then C+- cod(g0) ≤ n+ 2.

4. Proof of Theorem 1.1

The set of P -Legendrian stable one-parameter complete unfoldings is
an open and dense subset in LR(U × V, PT ∗(R×Rn+1×R)). Therefore by
Theorem 2.3, it give a classification of P -Legendrian stable one-parameter
complete Legendrian unfoldings under the one-parameter SP+-Legendrian
equivalence (or, SP -Legendrian equivalent). Let (µ, f) be a one-parameter
family of holonomic system of general Clairaut type such that the
corresponding one-parameter complete Legendrian unfolding `(µ,F ) is
P -Legendrian stable.

We also consider a generic condition of generalized phase family G. Let
Jn+3(n+ 2, 1) be the set of (n+ 3)-jets of function h : (Rn+2, 0) −→ (R, 0).
We consider the following three algebraic subset of Jn+3(n+ 2, 1):

Σ1 =
{
jn+3h(0)

∣∣∣∣
∂h

∂s
(0) = · · · = ∂n+2h

∂sn+2
(0)

=
∂n+3h

∂sn+3
(0)

∂2h

∂s∂x1
(0) · · · ∂

n+1h

∂sn∂xn
(0)

∂n+2h

∂sn+1∂t
(0) = 0

}

Σ2 =
{
jn+3h(0)

∣∣∣∣
∂h

∂s
(0) =

∂2h

∂s∂x1
(0) = · · · = ∂2h

∂s∂xn
(0) =

∂3h

∂s3
(0)

=
∂2h

∂s2
(0)

∂3h

∂s∂x2
1

(0) · · · ∂3h

∂s∂x2
n

(0)
∂2h

∂s∂t
(0) = 0

}

Σ3 =
{
jn+3h(0)

∣∣∣∣
∂h

∂s
(0) =

∂2h

∂s∂x1
(0) = · · · = ∂2h

∂s∂xn
(0) =

∂2h

∂s2
(0)

=
∂3h

∂s3
(0)

∂3h

∂s∂x2
1

(0) · · · ∂3h

∂s∂x2
n

(0)
∂2h

∂s∂t
(0) = 0

}

We consider the union W = Σ1∪Σ2∪Σ3, then it is also an algebraic subset
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of Jn+3(n + 2, 1). We can stratify the algebraic set W by submanifolds
whose codimensions are at least n + 3 in Jn+3(n + 2, 1). By Thom’s jet
transversality theorem, jn+3G(R×Rn×R)∩ (R×Rn×R×R×W ) = ∅ for
a generic function G. Therefore we might assume that G̃ is satisfied above
the condition and the corresponding one-parameter complete Legendrian
unfolding `(µ,F ) is P -Legendrian stable.

By the assumption and Theorem 3.2, the generating family G̃ of `(µ,F )

is a P -K-versal deformation of g = G̃|t=0, then G̃ is a K-versal deformation
of g0 = g|R×0. We remark that G̃ is a K-versal deformation of g0 if and only
if G̃ is a C+-versal deformation of g0. Since Lemma 5.1 and Theorem 5.2 in
§5 Appendix, G̃ is P -C+-equivalent to one of germs in the following list:

(A`) (1 ≤ ` ≤ n+ 1): s` +
`−1∑

i=0

ui+1s
i +

n+2∑

j=`+1

uj ,

(An+2): sn+2 +
n+1∑

i=0

ui+1s
i,

(Ãn+3): sn+3 +
n+1∑

i=0

ui+1s
i,

where (s, u1, . . . , un+2) ∈ (R × Rn+2, 0). We would like to classify these
germs by the one-parameter P -C+-equivalence. By the above normal forms,
there exists a diffeomorphism germ φ : (R × Rn × R, 0) −→ (Rn+2, 0) such
that G̃ is one-parameter P -C+-equivalent the following list:

(A′`) (1 ≤ ` ≤ n+ 1): s` +
`−1∑

i=0

ui+1(x, t, y)si +
n+2∑

j=`+1

uj(x, t, y),

(A′n+2): sn+2 +
n+1∑

i=0

ui+1(x, t, y)si,

(Ã′n+3): sn+3 +
n+1∑

i=0

ui+1(x, t, y)si.

Since G̃ has the form G − y, we assume that (∂u1/∂y)(0) 6= 0. Fur-
thermore, we perform local coordinate change, so that u1(x, t, y) = −y,
ui(x, t, y) = ui(x, t) (i = 2, . . . , n + 2). Hence we classify these germs by
the one-parameter P -C+-equivalence under the condition P -K- cod(g) ≤ 1
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where g = G̃|t=0 and satisfy the transversality conditions.
By transversality conditions, generalized phase family G satisfies one of

the following condition for generic `(µ,F ):

(α1):
∂G

∂s
(0) 6= 0,

(αi) (2 ≤ i ≤ n+ 2):
∂G

∂s
(0) = · · · = ∂i−1G

∂si−1
(0) = 0,

∂iG

∂si
(0) 6= 0,

∂2G

∂s∂xj
(0) 6= 0,

(αn+3):
∂G

∂s
(0) = · · · = ∂n+2G

∂sn+2
(0) = 0,

∂n+3G

∂sn+3
(0)

∂2G

∂s∂x1
(0) · · · ∂

n+1G

∂sn∂xn
(0)

∂n+2G

∂sn+1∂t
(0) 6= 0,

(β):
∂G

∂s
(0) =

∂2G

∂s∂xk
(0) = 0,

∂2h

∂s2
(0)

∂3h

∂s∂x2
1

(0) · · · ∂3h

∂s∂x2
n

(0)
∂2h

∂s∂t
(0) 6= 0,

(γ):
∂G

∂s
(0) =

∂2G

∂s2
(0) =

∂2G

∂s∂xk
(0) = 0,

∂3h

∂s3
(0)

∂3h

∂s∂x2
1

(0) · · · ∂3h

∂s∂x2
n

(0)
∂2h

∂s∂t
(0) = 0,

where j is some integer from 1 to n and k is any integer from 1 to n.
First, we consider the condition (αi) (1 ≤ i ≤ n + 3). In order to

classify germs of (A′`) (1 ≤ ` ≤ n + 2) and (Ã′n+3) with respect to one-
parameter P -C+-equaivalence (one-parameter P -C-equivalence) under the
condition (αi), we consider the t-P -K-equivalence. In this case, we remark
that j11Gt is an immersion germ by the condition (αi). The correspond-
ing one-parameter family of holonomic system of general Clairaut type is
Clairaut type. We can apply the analogous method of the proof for Theo-
rem 1.1 in [18].

Since the P -C+-equivalence is a stronger equivalence relation than the
P -K-equivalence, G̃ is P -K-equivalent to one of germs in the above list.

We now classify these germs by the t-P -K-equivalence under the con-
dition that P -K- cod ≤ 1. We use the result of [2, Theorem 1.2] such that
j11Gt is an immersion germ, i.e.,
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rank
(
∂G

∂s

∂2G

∂s∂x1
· · · ∂

2G

∂s∂xn

)
= 1,

then such a germ is t-P -K-equivalent to one of the following germ:

(a`) (1 ≤ ` ≤ n+ 1): s` − y + t+
`−1∑

i=1

xis
i +

n∑

j=`

xj ,

(an+2): sn+2 − y +
n∑

i=1

xis
i + tsn+1,

(ãn+3): sn+3 − y +
n∑

i=1

xis
i + tsn+1.

Now G̃ is t-P -K-equivalent to one of germs in the above list, then g is
P -K-equivalent to one of the following germ:

(a′`) (1 ≤ ` ≤ n+ 1): s` − y +
`−1∑

i=1

xis
i +

n∑

j=`

xj ,

(a′n+2): sn+2 − y +
n∑

i=1

xis
n,

(ã ′n+3): sn+3 − y +
n∑

i=1

xis
n.

For (a′`) (1 ≤ ` ≤ n + 1) and (a′n+2), g is a K-versal deformation
of g0, so g is a C+-versal deformation of g0. We remark that g0 and si

(i = 1, . . . , n + 2) are K-equivalent, then g0 and si (i = 1, . . . , n + 2) are
C-equivalent. By Theorem 5.2, g is P -C+-equivalent to one of the following
germ:

(a′`) (1 ≤ ` ≤ n+ 1): s` − y +
`−1∑

i=1

xis
i +

n∑

j=`

xj ,

(a′n+2): sn+2 − y +
n∑

i=1

xis
i.

These germ satisfy the condition that P -C+- cod = 0, so that we have
P -C+- cod(g) = 0. By definition, G̃ is a P -C+-versal deformation of g.
By the uniqueness result of P -C+-versal deformation, G̃ is one-parameter
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P -C+-equivalent to one of the following germs:

(a`) (1 ≤ ` ≤ n+ 1): s` − y +
`−1∑

i=1

xis
i +

n∑

j=`

xj + t,

(ãn+2): sn+2 − y +
n∑

i=1

xis
i + t.

On the other hand, we assume that g is a t-P -K-equivalent to the germ
(ãn+3): sn+3 − y +

∑n
i=1 xis

i. By the previous arguments, we consider the
germ of the form G̃(s, x, t, y) = sn+3− y+

∑n+1
i=1 ui(x, t)s

i. We remark that
the P -K-codimension of sn+3− y+

∑n
i=1 xis

i is 1, so that P -K- cod(g) = 1.
We use the transversality condition (αn+3):

∂2h

∂s∂x1
(0) · · · ∂

n+1h

∂sn∂xn
(0)

∂n+2h

∂sn+1∂t
(0) 6= 0.

Therefore we have germ of a diffeomorphism defined by Xi = ui(x, t)
(i = 1, . . . , n) and T = t. It follows that the germ sn+3− y+

∑n
i=1 ui(x, t)s

i

is one-parameter P -C+-equivalent to the germ

(ã′′n+3) sn+3 − y +
n∑

i=1

xis
i + β(x, t)sn+1,

where β ∈ E(x1,...,xn,t) and (∂β/∂t)(0) 6= 0.
Second, we consider the condition (β). It follows that G̃ is a one-

parameter P -C-equivalent to s2− y+(t+ v(x1, . . . , xn)+w(x1, . . . , xn, t))s,
where v(x1, . . . , xn) is a non-degenerate function and w(x1, . . . , xn, t) is a de-
generate function with respect to (x1, . . . , xn) at t = 0. We put h(x, t) =
v(x1, . . . , xn)+w(x1, . . . , xn, t), then h(x, 0) isR-equivalent to v(x1, . . . , xn).
A non-degenerate function v(x1, . . . , xn) is R-equivalent to x2

1 + · · ·+ x2
k −

x2
k+1−· · ·−x2

n for some integer k (0 ≤ k ≤ n) by Morse’s Lemma (cf. [15]).
By the uniqueness result of R+-versal deformation (cf. [7, Corollary 9.9]),
h(x, t) is P -R+-equivalent to x2

1 + · · ·+x2
k−x2

k+1−· · ·−x2
n. Hence G̃ is one-

parameter P -C-equivalent to s2−y+(t+α(t)+x2
1+· · ·+x2

k−x2
k+1−· · ·−x2

n)s,
where α ∈Mt. Since the condition (∂2G/∂s∂t)(0) 6= 0, G̃ is one-parameter
P -C-equivalent to

(bk): s2 − y + (t+ x2
1 + · · ·+ x2

k − x2
k+1 − · · · − x2

n)s.

Finally, we consider the condition (γ). It follows that G̃ is one-parameter
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P -C+-equivalent to (A′3). By the condition (γ), G̃ is one-parameter
P -C+-equivalent to s3 − y + (t + v(x1, . . . , xn) + w(x1, . . . , xn, t))s, where
v(x1, . . . , xn) is a non-degenerate function and w(x1, . . . , xn, t) is a degen-
erate function with respect to (x1, . . . , xn) at t = 0. We also consider
the same way as (β), the function germ v(x1, . . . , xn) + w(x1, . . . , xn, t) is
P -R+-equivalent to x2

1 + · · ·+ x2
k − x2

k+1 − · · · − x2
n for some integer k (0 ≤

k ≤ n). Therefore G̃ is one-parameter P -C+-equivalent to

(ck): s3 − y + (t+ x2
1 + · · ·+ x2

k − x2
k+1 − · · · − x2

n)s.

We now detect the corresponding normal forms of one-parameter inte-
gral diagrams as follows:

For the case (a`) (1 ≤ ` ≤ n+ 1), we can choose

G(s, x1, . . . , xn, t) = s` +
`−1∑

i=1

xis
i +

n∑

j=`

xj + t,

as a generalized phase family, so that

LG =

(
s, x1, . . . , xn, t, s

` +
`−1∑

i=1

xis
i +

n∑

j=1

xj + t,

`s`−1 +
`−1∑

i=1

ixis
i, s, . . . , s`−1, 1, . . . , 1

)
.

Then we can easily calculate that the corresponding one-parameter unfold-
ing of integral diagram is strictly equivalent to

(DA`) (1 ≤ ` ≤ n+ 1): µ = un+1,

G =

(
u1, . . . , un, u

`
n+1 +

`−1∑

i=1

uiu
i
n+1, t

)
.

This is the normal form in the case of DA` (1 ≤ ` ≤ n + 1). If ` = 2, we
have

µ = un+1, G = (u1, . . . , un, u
2
n+1 + u1un+1, t).

We define a local coordinate transformation by Ui = ui (i = 1, . . . , n),
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Un+1 = un+1 + (1/2)u1, then (µ,G) is strictly equivalent to

µ = un+1 − 1
2
u1, G =

(
u1, . . . , un, u

2
n+1 −

1
4
u2

1, t

)
.

We also apply a local coordinate transformation which is defined by

Xi = xi (i = 1, . . . , n), Y = y +
1
4
x2

1,

then we have the normal form DA2 in Theorem 1.1.
For the case (ãn+2), we can also choose

G(s, x1, . . . , xn, t) = sn+2 +
n∑

i=1

xis
i + t

as a generalized phase family, so that

LG =

(
s, x1, . . . , xn, t, s

n+2 +
n∑

i=1

xis
i + t,

(n+ 2)sn+1 +
n∑

i=1

ixis
i−1, s, . . . , sn, 1

)
.

Then we can easily calculate that the corresponding one-parameter unfold-
ing of integral diagram is one-parameter R+-equivalent to

D̃An+2: µ = un+1, G =

(
u1, . . . , un, u

n+2
n+1 +

n∑

i=1

uis
i, t

)
.

For the case (ã′′n+3), we can also choose

G(s, x1, . . . , xn, t) = sn+3 +
n∑

i=1

xis
i + β(x1, . . . , xn, t)sn+1

as a generalized phase family and calculate one-parameter complete
Legendrian unfolding like as above. Then we can easily calculate that the
corresponding one-parameter unfolding of integral diagram is one-parameter
R+-equivalent to

D̃An+3: µ = un+1,

G =

(
u1, . . . , un, u

n+3
n+1 +

n∑

i=1

uiu
i
n+1 + β(u1, . . . , un, t)un+1

n+1, t

)
.
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For the cases (bk) and (ck), we also apply the same arguments as the

above process, we have the normal forms DAk2 and D̃A
k

3 in the list of
Theorem 1.1.

Since each generalized phase family for (ãn+2), (ã′′n+3) and (ck) are
one-parameter P -C+-equivalent to the normal form but there are not one-
parameter P -C-equivalent, the corresponding one-parameter integral
diagram is strictly equivalent to the normal form D̃An+2, D̃An+3 and D̃A

k

3

in Theorem 1.1.
This completes the proof of Theorem 1.1. ¤

Remark In the above proof, we can show that the P -C+-codimension of
the germ: sn+3 − y +

∑n
i=1 xis

i is infinite. This means that there appears
the second functional moduli in the normal form D̃An+3 in Theorem 1.1.

5. Appendix

In this section we now give a quick review of the theory of unfoldings
of function germs [1, 7, 9, 12, 13].

Let f, f ′ : (R, 0) −→ (R, 0) be germs of function, F, F ′ : (R×Rn, 0) −→
(R, 0) be unfoldings of f , f ′ respectively and F̃ , F̃ ′ : (R × Rn × R, 0) −→
(R, 0) be function germs given by F̃ (s, x, y) = F (s, x) − y, F̃ ′(s, x, y) =
F ′(s, x)− y. We say that F̃ and F̃ ′ are P -C+-equivalent (respectively, P -C-
equivalent) if there exists a germ of diffeomorphism Φ: (R×Rn×R, 0) −→
(R× Rn × R, 0) of the form Φ(s, x, y) = (s+ α(x, y), φ1(x, y), φ2(x, y)) (re-
spectively, Φ(s, x, y) = (s, φ1(x, y), φ2(x, y))) such that 〈F̃ ◦ Φ〉E(s,x,y)

=
〈F̃ ′〉E(s,x,y)

where, 〈F̃ ′〉E(s,x,y)
is the ideal generated by F̃ ′ in E(s,x,y). We

also say that F̃ (s, x, y) is C+ (respectively, C and K)-versal deformation of
f = F |R×0 if

Es =
〈
df

ds

〉

R
+ 〈f〉Es +

〈
∂F

∂x1

∣∣∣∣
R×0

, . . . ,
∂F

∂xn

∣∣∣∣
R×0

, 1
〉

R

(respectively,

Es = 〈f〉Es +
〈
∂F

∂x1

∣∣∣∣
R×0

, . . . ,
∂F

∂xn

∣∣∣∣
R×0

, 1
〉

R

and Es =
〈
df

ds
, f

〉

Es

+
〈
∂F

∂x1

∣∣∣∣
R×0

, . . . ,
∂F

∂xn

∣∣∣∣
R×0

, 1
〉

R

)
.
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Let f and f ′ : (R, 0) −→ (R, 0) be germs of function. We say that f and
f ′ are C-equivalent if and only if 〈f〉Es = 〈f ′〉Es . Then the classification
theory of function germs by the C-equivalence is quite useful for our purpose.
For each function germ f : (R, 0) −→ (R, 0), we set

C- cod(f) = dimR Es/〈f〉Es ,

C+- cod(f) = dimR Es
/(
〈f〉Es +

〈
df

ds

〉

R

)
,

K- cod(f) = dimR Es
/(
〈f〉Es +

〈
df

ds

〉

Es

)
.

Then we have the following well-known classification (cf. [9]).

Lemma 5.1 Let f : (R, 0) −→ (R, 0) be a function germ with K- cod(f) <
∞. Then f is C-equivalent to the map germ s`+1 for some ` ∈ N.

By a direct calculation, we have

C- cod(s`+1) = `+ 1, C+- cod(s`+1) = `.

Thus we can easily determine C (respectively, C+)-versal deformations of
the above germs by using the usual method:

C-versal deformation: s`+1 +
∑̀

i=0

ui+1s
i,

C+-versal deformation: s`+1 +
`−1∑

i=0

ui+1s
i.

The following theorem is useful and important for our purpose (cf. [7]).

Theorem 5.2 Let F̃ and F̃ ′ : (R × Rn × R, 0) −→ (R, 0) be function
germs such that F̃ and F̃ ′ are C+ (respectively, C)-versal deformations of
f = F |R×0 and f ′ = F ′|R×0. Then F̃ and F̃ ′ are P -C+-equivalent (respec-
tively, P -C-equivalent) if and only if f and f ′ are C-equivalent.

Let function germ F̃ (s, x, y) be a C+-versal deformation of f = F |R×0.
By Lemma 5.1 and Theorem 5.2, F̃ (s, x, y) is P -C+-equivalent to one of
germs in the following list:
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A` (1 ≤ ` ≤ n+ 1): s` +
`−1∑

i=1

xis
i +

n∑

j=`

xj − y,

Ãn+2: sn+2 +
n∑

i=1

xis
i − y.
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[ 2 ] Bruce J.W., Isotopies of generic plane curves. Glasgow Math. J. 24 (1983), 195–206.

[ 3 ] Carathéodry C., Calculus of Variations and Partial Differential Equations of First

Order, Part I. Partial Differential Equations of the First Order, Holden-Day, San

Francisco-London-Amsterdam, 1965.

[ 4 ] Clairaut A.C., Solution de plusieurs problems. Histore de l’Academie Royale de

Sciences, Paris (1734), 196–215.

[ 5 ] Courant R., Differential and integral calculus, Vol. II, Wiley Classics Library, 1936.

[ 6 ] Courant R. and Hilbert D., Methods of Mathematical Physics II, Wiley, New York,

1962.

[ 7 ] Damon J., The unfolding and determinacy theorems for subgroups of A and K.

Memoirs AMS. 50 (1984).

[ 8 ] Davydov A.A., Ishikawa G., Izumiya S. and Sun W.-Z., Generic singularities of

implicit systems of first order differential equations on the plane. preprint. Archive:

math.DS/0302134, (2003).

[ 9 ] Gibson C.G., Singular Points of Smooth Mappings, Pitman, London, 1979.

[10] Hayakawa A., Ishikawa G., Izumiya S. and Yamaguchi K., Classification of generic

integral diagram and first order ordinary differential equations. Int. J. Math. 5

(1994), 447–489.

[11] Izumiya S., The theory of Legendrian unfoldings and first-order differential equa-

tions. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 517–532.

[12] Izumiya S., Completely integrable holonomic systems of first order differential equa-

tions. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 567–586.

[13] Izumiya S. and Kurokawa Y., Holonomic systems of Clairaut type. Diff. Geometry

and App. 5 (1995), 219–235.

[14] Lychagin V.V., Local classification of non-linear first order partial differential equa-

tions. Russian Math. Surveys 30 (1975), 105–175.

[15] Martinet J., Singularities of Smooth Functions and Maps, London Math. Soc.,

Lecture Note Series 58 (1982).
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[17] Ojeda-Castañeda J. and López-Olazagasti E., Ray trajectories and caustic:

Clairaut’s equation. Microwave and Optical Technology Letters 3, No. 10, (1990),

375–378.

[18] Takahashi M., Bifurcations of ordinary differential equations of Clairaut type. J.

Diff. Equations 190 (2003), 579–599.

[19] Takahashi M., Differential equations of Clairaut type. PhD thesis, Hokkaidou Uni-

versity (2004).

[20] Takahashi M., Holonomic systems of general Clairaut type. Hokkaido Math. J. 34

(2005), 247–263.

[21] Zakalyukin V.M., Reconstructions of fronts and caustics depending on a parameter

and versality of mappings. J. Soviet Math. 27 (1983), 2713–2735.

Department of Mathematics

Hokkaido University

Sapporo 060-0810, Japan

E-mail: takahashi@math.sci.hokudai.ac.jp


