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Blowup for systems of semilinear wave equations
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Abstract. We consider semilinear systems of wave equations with multiple propagation

speeds and find out the critical order of the nonlinearity which characterizes large time

behavior of small amplitude solutions to the system by establishing blowup results. We

also evaluate the lifespan of the solution in terms of the size of the initial data from above

and below. We underline that not only the order of the nonlinearity but also the way of

coupling among unknowns in it has a major effect on the lifespan.
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1. Introduction

We are concerned with the Cauchy problem for systems of semilinear
wave equations of the form

(∂2
t − c2i ∆)ui = Fi(u), (x, t) ∈ Rn × [0, ∞), (1.1)

ui(x, 0) = εϕi(x), ∂tui(x, 0) = εψi(x), x ∈ Rn, (1.2)

where i = 1, . . . , m, ci > 0, u = (u1, . . . , um) is a Rm-valued unknown
function of (x, t), and ε > 0 is a small parameter. A typical example of Fi

is

Fi(u) =
∑

1≤j<k≤m

Ajk
i |uj |pijk |uk|α−pijk , (1.3)

where Ajk
i ∈ R, α ≥ 2 and 1 ≤ pijk ≤ α − 1. We study small data global

existence and blowup for (1.1) especially in two space dimensions n = 2.
Here, we say that small data global existence holds for (1.1) if for any ϕi,
ψi ∈ C∞0 (Rn) (1 ≤ i ≤ m) there exists a constant ε0 > 0 such that the
Cauchy problem (1.1)–(1.2) admits a global solution for any ε ∈ (0, ε0].
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Moreover, we say that small data blowup occurs for (1.1) if small data
global existence does not hold for (1.1).

Before we proceed to our problem, we briefly recall some known results.
For details, see an expository article [15]. We begin with a single equation

(∂2
t −∆)u = |u|p, (x, t) ∈ Rn×[0, ∞), (1.4)

where n ≥ 2 and p > 1. Let p0(n) be the positive root of the quadratic
equation

p

(
n− 1

2
p− n+ 1

2

)
= 1.

Note that p0(2) = (3 +
√

17)/2, p0(3) = 1 +
√

2, p0(4) = 2. Then, for
any n ≥ 2, it is known that small data global existence holds for (1.4) if
p > p0(n), while small data blowup occurs if 1 < p < p0(n). This result
was first proved by John [10] for n = 3, and the general case n ≥ 2 was
conjectured by Strauss [20]. Glassey [8, 9] verified the conjecture for n = 2.
For the critical case p = p0(n), Schaeffer [18] proved small data blowup
when n = 2, 3 (see also [24, 25, 21]). For n ≥ 4, small data blowup was
proved by Sideris [19] when 1 < p < p0(n), and recently by Yordanov and
Zhang [23] when p = p0(n). While, for n ≥ 4 and p > p0(n), small data
global existence has been studied by many authors, and was finally proved
by Georgiev, Lindblad and Sogge [7] (see also [26, 6, 22, 2] and references
cited therein).

Next, we consider a weakly coupled system
{

(∂2
t − c21∆)u1 = |u2|p, (x, t) ∈ Rn × [0, ∞),

(∂2
t − c22∆)u2 = |u1|q, (x, t) ∈ Rn × [0, ∞),

(1.5)

where n = 2, 3 and 1 < p ≤ q. The system (1.5) was first studied by Del
Santo, Georgiev and Mitidieri [3] for the case c1 = c2, and they found a
critical curve Γ(p, q) = 0 such that small data global existence holds for
(1.5) if Γ(p, q) < 0, while small data blowup occurs if Γ(p, q) > 0 (see also
[5, 4, 1, 12]). The case c1 6= c2 was studied by the authors [13] for n = 3
and [15] for n = 2, 3, and it was shown that the critical curve Γ(p, q) = 0
does not change even if c1 6= c2. Especially, for the case q = p, it is proved
that small data global existence holds for (1.5) if p > p0(n), while small
data blowup occurs if 1 < p ≤ p0(n) for n = 2, 3 even if c1 6= c2 (for the
general case q 6= p, see [13] and [15, Section 3]).
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Finally, we consider a strongly coupled system
{

(∂2
t − c21∆)u1 = |u1|p1 |u2|q1 , (x, t) ∈ Rn × [0, ∞),

(∂2
t − c22∆)u2 = |u1|p2 |u2|q2 , (x, t) ∈ Rn × [0, ∞),

(1.6)

where n = 2, 3, pi, qi ≥ 1 for i = 1, 2. For simplicity, we assume α :=
p1 + q1 = p2 + q2. This is a special case of (1.1) with (1.3). In three space
dimensions n = 3, it is proved that small data global existence holds for
(1.6) if c1 6= c2 and α ≥ 2 (see Kubo and Tsugawa [16] for α > 2, and
the authors [14] for α ≥ 2). On the other hand, in two space dimensions
n = 2, it is proved that small data global existence holds for (1.6) if c1 6= c2
and α > 3 (see Kubo and Kubota [11] for a special case p1 = q2 = 1 and
q1 = p2 = α − 1, and the authors [15, Theorem 4.1] for general case). It is
remarkable that 2 < p0(3) < 3 < p0(2) and that for the case c1 = c2 small
data blowup occurs for (1.6) if n = 2, 3 and α ≤ p0(n). The last fact follows
immediately from the result for the single equation (1.4). This means that
the interaction through the nonlinearity in (1.6) has much stronger effect
on the behavior of the solution than that in (1.5). In this sense we call (1.6)
a strongly coupled system, while (1.5) a weakly coupled system.

Our main goal in this paper is in essence to show that small data blowup
occurs for (1.6) when n = 2 and 2 ≤ α ≤ 3 even if c1 6= c2. Recall that when
n = 3 small data global existence holds for (1.6) for any α ≥ 2 if c1 6= c2.
The difference between the cases n = 2 and n = 3 comes from the fact that
Huygens’ principle does not hold in two space dimensions unlike in three
space dimensions.

To state our main result precisely, we give the assumptions on the non-
linearity Fi and initial data. We assume that Fi ∈ C(Rm) and there exist
constants A > 0 and α > 1 such that

Fi(λ) ≥ A (min{|λj | : 1 ≤ j ≤ m})α , λ = (λ1, . . . , λm) ∈ Rm

(1.7)
for all 1 ≤ i ≤ m. Note that the example (1.3) satisfies (1.7) if

min{Ajk
i : 1 ≤ j < k ≤ m} ≥ 0, max{Ajk

i : 1 ≤ j < k ≤ m} > 0.

Indeed, taking (ji, ki) such that Ajiki
i = max{Ajk

i : 1 ≤ j < k ≤ m}, we
have

Fi(λ) ≥ Ajiki
i |λji |pijiki |λki

|α−pijiki ≥ Ajiki
i (min{|λl| : 1 ≤ l ≤ m})α
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for λ ∈ Rm, so (1.7) is satisfied with A = min{Ajiki
i : 1 ≤ i ≤ m}.

We consider initial conditions of the form

ui(x, 0) = 0, ∂tui(x, 0) = εψi(x), x ∈ R2 (1.8)

for 1 ≤ i ≤ m, and assume that for all 1 ≤ i ≤ m, ψi ∈ C(R2) satisfies

ψi(x) ≥ 0 for x ∈ R2, ψi(0) > 0. (1.9)

Then, the Cauchy problem (1.1) and (1.8) can be written in the integral
form

ui = εJci [ψi]+Lci [Fi(u)], (x, t) ∈ R2×[0, ∞), (1.10)

where i = 1, . . . , m, and

Jc[g](x, t) =
t

2π

∫

|ξ|<1

g(x+ ctξ)√
1− |ξ|2 dξ,

Lc[f ](x, t) =
∫ t

0

t− s

2π

∫

|ξ|<1

f(x+ c(t− s)ξ, s)√
1− |ξ|2 dξ ds.

Our main result in this paper is as follows.

Theorem 1.1 Let n = 2, m ∈ N, 0 < ε ≤ 1, ci > 0, Fi ∈ C(Rm), ψi ∈
C(R2) for 1 ≤ i ≤ m. Assume that ψi satisfies (1.9) for all 1 ≤ i ≤ m, and
that there exist constants A > 0 and 1 < α ≤ 3 such that (1.7) holds for all
λ ∈ Rm and 1 ≤ i ≤ m. Then the solution of (1.10) blows up in a finite
time T ∗(ε). Moreover, there exists a positive constant C∗ independent of ε
such that

T ∗(ε) ≤
{

exp(C∗ε−2) if α = 3,
C∗ε−(α−1)/(3−α) if 1 < α < 3.

(1.11)

For completeness, we study the lower bound of the lifespan T ∗(ε). To do
so, we consider the following integral equations associated with (1.1)–(1.2):

ui = εKci [ϕi, ψi]+Lci [Fi(u)], (x, t) ∈ R2×[0, T ), (1.12)

where i = 1, . . . , m, T > 0 and

Kc[ϕ, ψ](x, t) = Jc[ψ](x, t) + ∂tJc[ϕ](x, t)

with Jc[g] and Lc[f ] defined in (1.10). If ϕi ∈ C1
0 (R2), ψi ∈ C0(R2), then

|||(ϕ, ψ)||| ≡ sup
x∈R2

{〈x〉ν |ϕ(x)|+ 〈x〉ν+1(|∇ϕ(x)|+ |ψ(x)|)} (1.13)
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is finite for any ν > 1. Therefore, as is well-known, there is a positive
constant C = C(c) such that

|Kc[ϕ, ψ](x, t)| ≤ C(c) |||(ϕ, ψ)|||〈t+ |x|〉−1/2〈ct− |x|〉−1/2 (1.14)

holds for all (x, t) ∈ R2× [0, ∞) (for the proof, see e.g. [17]). Here we have
fixed ν > 1 and denoted 〈x〉 =

√
1 + |x|2. Bearing this in mind, we define

‖u‖ci = sup
(x, t)∈R2×[0, T )

〈t+ |x|〉1/2〈cit− |x|〉1/2|u(x, t)|, (1.15)

so that

‖Kci [ϕi, ψi]‖ci ≤ C(ci)|||(ϕ, ψ)|||. (1.16)

Then we have the following.

Theorem 1.2 Let c1, . . . , cm be different from each other and let 2 ≤ α ≤
3 in (1.3). Assume that ϕi ∈ C1

0 (R2) and ψi ∈ C0(R2). Then there is a
positive constant ε0 = ε0(cj , pijk, ϕi, ψi) such that for 0 < ε ≤ ε0 there
exists a unique solution (u1, . . . , um) ∈ (C(R2× [0, T ∗(ε)))m to (1.12) with
(1.3) satisfying

max
1≤i≤m

‖ui‖ci ≤ 2C0 ε |||(ϕ, ψ)|||, C0 = max
1≤i≤m

C(ci). (1.17)

Moreover, there exists a positive constant C independent of ε such that

T ∗(ε) ≥ Cε−(α−1)/(3−α) (1.18)

for 2 ≤ α < 3, and

T ∗(ε) ≥
{

exp(Cε−2) if 1 < pijk < 2 for all 1 ≤ i, j, k ≤ m,

exp(Cε−1) otherwise
(1.19)

for α = 3.

We see from Theorems 1.1 and 1.2 that the estimate given by (1.11) is
sharp with respect to the order of ε except for the case where α = 3 and
either pijk = 1 or pijk = 2 for some 1 ≤ i, j, k ≤ m. The following result
tells us that the case is actually exceptional and it is impossible to unify
the lower bound of the lifespan in the case α = 3. To be specific, we assume
that Fk ∈ C(Rm) is nonnegative for all 1 ≤ k ≤ m and that there exist
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A > 0 and a pair (i, j) such that ci < cj and

Fi(λ) ≥ A|λi|2|λj |, λ = (λ1, . . . , λm) ∈ Rm. (1.20)

Then we have the following.

Theorem 1.3 Let n = 2, m ∈ N, 0 < ε ≤ 1, ci > 0, ψi ∈ C(R2) and let
Fi ∈ C(Rm) be nonnegative for 1 ≤ i ≤ m. Assume that ψi satisfies (1.9)
for all 1 ≤ i ≤ m, and there exist A > 0 and a pair (i, j) such that ci < cj
and (1.20) holds for all λ ∈ Rm. Then the solution of (1.10) blows up in a
finite time T ∗(ε). Moreover, there exists a positive constant C∗ independent
of ε such that

T ∗(ε) ≤ exp(C∗ε−1). (1.21)

This paper is organized as follows. In Section 2 we prove Theorem 1.1.
As stated above, the proof of the theorem is based on the fact that Huy-
gens’ principle does not hold in two space dimensions unlike in three space
dimensions. For estimating Jc and Lc from below, we use formulas (2.2)
and (2.3) which are characteristic of two space dimensions (see Lemma 2.1
and Remark 2.1 below). In Section 3 we prove Theorem 1.3. Our starting
point is (3.3) which involves the small parameter ε, unlike (2.7). Neverthe-
less we are able to establish (3.6) that is independent of ε by modifying the
argument in Section 2 carefully. In Section 4 we show Theorem 1.2. Such
a local existence result together with the lower bounds of the lifespan will
be obtained by the standard contraction mapping argument in combination
with weighted L∞–L∞ estimtes introduced in Lemma 4.2 below. Especially,
to establish (1.19) for the exceptional case, we need a refined estimate (4.5).

2. Proof of Theorem 1.1

For c > 0 and y > 0, we put

Σ(c; y) = {(λ, s) ∈ [0, ∞)2 : λ ≤ c(s− y)},
Σ̃(c; y) = {(x, t) ∈ R2 × [0, ∞) : (|x|, t) ∈ Σ(c; y)},

and for (r, t) ∈ Σ(c; 1), we put

E(c; r, t) = {(λ, s) : 0 ≤ λ ≤ c(t−s)−r, 0 ≤ cs ≤ ct−r}. (2.1)
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Lemma 2.1 Let c > 0, and put r = |x| for x ∈ R2. If G(x) ≥ g(|x|) ≥ 0
for x ∈ R2, then

Jc[G](x, t) ≥ 1
c
√

2(ct+ r)(ct− r)

∫ ct−r

0
λg(λ) dλ (2.2)

holds for any (x, t) ∈ Σ̃(c; 1). Moreover, if F (x, t) ≥ f(|x|, t) ≥ 0 for
(x, t) ∈ R2 × [0, ∞), then

Lc[F ](x, t) ≥ 1
c
√

2(ct+ r)(ct− r)

∫∫

E(c;r, t)
λf(λ, s) dλ ds (2.3)

holds for any (x, t) ∈ Σ̃(c; 1).

Proof. Let g̃(x) = g(|x|) for x ∈ R2. Then, it is well-known that

Jc[g̃](x, t) =
2
cπ

∫ ct

0

ρ√
(ct)2 − ρ2

(∫ r+ρ

|r−ρ|

λg(λ)√
h(λ, ρ, r)

dλ

)
dρ

holds for (x, t) ∈ R2 × [0, ∞), where we put

h(λ, ρ, r) = {(r + ρ)2 − λ2}{λ2 − (r − ρ)2}.
Since h(λ, ρ, r) = h(ρ, λ, r) and g(λ) ≥ 0, we have for r < ct

Jc[G](x, t) ≥ 2
cπ

∫ ct−r

0

(∫ r+λ

|r−λ|

ρλg(λ)√
(ct)2 − ρ2

√
h(ρ, λ, r)

dρ

)
dλ

≥ 2
cπ

∫ ct−r

0

λg(λ)√
(ct)2 − (r − λ)2

(∫ r+λ

|r−λ|

ρ√
h(ρ, λ, r)

dρ

)
dλ

=
1
c

∫ ct−r

0

λg(λ)√
(ct)2 − (r − λ)2

dλ.

Here, for the last equality, we used the fact that
∫ b

a

ρ√
(b2 − ρ2)(ρ2 − a2)

dρ =
π

2
, 0 ≤ a < b.

Since (ct)2 − (r − λ)2 = (ct − r + λ)(ct + r − λ) ≤ 2(ct − r)(ct + r) for
0 ≤ λ ≤ ct− r, we obtain (2.2). Finally, (2.3) follows from (2.2). ¤
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Remark 2.1 Let n = 2, 3. If F (x, t) ≥ f(|x|, t) ≥ 0 for (x, t) ∈ Rn ×
[0, ∞), then

Lc[F ](x, t) ≥ 1
2cr(n−1)/2

∫∫

D(c;r, t)
λ(n−1)/2f(λ, s) dλ ds (2.4)

holds for any (x, t) ∈ Rn × [0, ∞), where

D(c; r, t) = {(λ, s) : 0 ≤ s ≤ t, |r − c(t− s)| ≤ λ ≤ r + c(t− s)}.
The formula (2.4) has been used for proving small data blowup for the
single equation (1.4) and the weakly coupled system (1.5) in a unified way
for both n = 2 and 3 (see, e.g., [21, 12, 15]). Moreover, in three space
dimensions, the equality holds in (2.4) if F (x, t) = f(|x|, t) for (x, t) ∈
R3 × [0, ∞). Therefore, there is no formula corresponding to (2.3) in three
space dimensions.

Lemma 2.2 Let a, c > 0 and µ, ν ≥ 0. Then there exists a positive
constant C depending only on a, c, µ, ν such that

∫∫

E(a;r, t)∩Σ(c;1)

λν

(s+ λ)µ
f

(
cs− λ

c

)
dλ ds (2.5)

≥ C

∫ (at−r)/a

1

(
1− aη

at− r

)ν+1 f(η)
ηµ−ν−1

dη

holds for any non-negative function f on [1, ∞) and (r, t) ∈ Σ(a; 1).

Proof. Let (r, t) ∈ Σ(a; 1). We denote the left-hand side of (2.5) by I(r, t),
and change the variables by ξ = as+ λ, η = (cs− λ)/c. Then we have

I(r, t) ≥ C

∫ (at−r)/a

1

(∫ at−r

aη

(ξ − aη)ν

ξµ
dξ

)
f(η) dη.

Thus, (2.5) follows from Lemma 2.3 below. ¤

Lemma 2.3 Let µ ≥ 0 and ν ≥ 0. Then there exists a constant C =
C(µ, ν) > 0 such that

∫ b

a

(ρ− a)ν

ρµ
dρ ≥ C

aµ−ν−1

(
1− a

b

)ν+1

for 0 < a < b.
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Proof. We distinguish two cases 2a ≤ b and b < 2a. When 2a ≤ b, we have
∫ b

a

(ρ− a)ν

ρµ
dρ ≥

∫ 2a

a

(ρ− a)ν

ρµ
dρ ≥ 1

(2a)µ

∫ 2a

a
(ρ− a)ν dρ

=
aν+1

(ν + 1)(2a)µ
≥ 1

(ν + 1)2µaµ−ν−1

(
1− a

b

)ν+1
.

While, if a < b < 2a, we have
∫ b

a

(ρ− a)ν

ρµ
dρ ≥ 1

bµ

∫ b

a
(ρ− a)ν dρ =

(b− a)ν+1

(ν + 1)bµ

=
bν+1

(ν + 1)bµ
(
1− a

b

)ν+1
≥ 1

(ν + 1)2µaµ−ν−1

(
1− a

b

)ν+1
.

This completes the proof. ¤

The following lemma has been often used for proving small data blowup
for semilinear wave equations (see, e.g., [24, 21, 12, 14, 15]).

Lemma 2.4 Let C1, C2 > 0, α, β ≥ 0, b ≥ 0, p > 1, κ ≤ 1 and 0 < ε ≤ 1.
Suppose that f(y) satisfies

f(y) ≥ C1ε
α, f(y) ≥ C2ε

β

∫ y

1

(
1− η

y

)b f(η)p

ηκ
dη, y ≥ 1.

Then, f(y) blows up in a finite time T ∗(ε). Moreover, there exists a constant
C∗ = C∗(C1, C2, b, p, κ) > 0 such that

T ∗(ε) ≤
{

exp(C∗ε−{(p−1)α+β}) if κ = 1,
C∗ε−{(p−1)α+β}/(1−κ) if κ < 1.

For the proof, see [14, Lemma 6.3] and [15, Lemma 2.3].
We are now in position to give the proof of Theorem 1.1. In what

follows, we put r = |x| for x ∈ R2, and

〈f〉c(y) = inf{
√

(ct+ |x|)(ct− |x|) |f(x, t)| : (x, t) ∈ Σ̃(c; y)}.
Proof of Theorem 1.1. For the solution (u1, . . . , um) of the system (1.10),
we put

U(y) = min{〈ui〉ci(y) : 1 ≤ i ≤ m}.
First, we show that there exists C1 > 0 such that

U(y) ≥ C1ε, y ≥ 1. (2.6)
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Since ψi ∈ C(R2) satisfies (1.9), there exist δi > 0 and φi ∈ C([0, ∞)) such
that ψi(x) ≥ φi(|x|) ≥ 0 for x ∈ R2 and φi(r) > 0 for 0 ≤ r ≤ δi. By (2.2)
in Lemma 2.1, we have

√
(cit+ |x|)(cit− |x|)Jci [ψi](x, t)≥C

∫ cit−r

0
λφi(λ) dλ

≥C
∫ ci

0
λφi(λ) dλ

for all (x, t) ∈ Σ̃(ci; 1). Thus, for any 1 ≤ i ≤ m, we have

〈ui〉ci(y) ≥ ε〈Jci [ψi]〉ci(y) ≥ Cε, y ≥ 1,

which implies (2.6).
Next, we show that there exists C2 > 0 such that

U(y) ≥ C2

∫ y

1

(
1− η

y

)2 U(η)α

ηα−2
dη, y ≥ 1. (2.7)

We put c∗ = min{ci : 1 ≤ i ≤ m}. From the definition of 〈uj〉cj (y), for any
1 ≤ j ≤ m and (x, t) ∈ Σ̃(c∗; 1), we see that

√
(cjt+ |x|)(cjt− |x|) |uj(x, t)| ≥ 〈uj〉cj

(
cjt− r

cj

)

≥ 〈uj〉cj

(
c∗t− r

c∗

)
.

Thus, by (1.7), for any 1 ≤ i ≤ m and (x, t) ∈ Σ̃(c∗; 1), we have

Fi(u(x, t))≥A (min{|uj(x, t)| : 1 ≤ j ≤ m})α

≥ A

(c∗t+ r)α

[
U

(
c∗t− r

c∗

)]α

,

where c∗ = max{ci : 1 ≤ i ≤ m}. By Lemmas 2.1 and 2.2, for any 1 ≤ i ≤ m

and (x, t) ∈ Σ̃(ci; 1), we have
√

(cit+ |x|)(cit− |x|)Lci [Fi(u)](x, t)

≥ C

∫∫

E(ci;r, t)∩Σ(c∗;1)

λ

(s+ λ)α

[
U

(
c∗s− λ

c∗

)]α

dλ ds

≥ C

∫ (cit−r)/ci

1

(
1− ciη

cit− r

)2 U(η)α

ηα−2
dη.
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Since the function

y 7→
∫ y

1

(
1− η

y

)2 U(η)α

ηα−2
dη

is non-decreasing, for any 1 ≤ i ≤ m, we have

〈ui〉ci(y) ≥ 〈Lci [Fi(u)]〉ci(y) ≥ C

∫ y

1

(
1− η

y

)2 U(η)α

ηα−2
dη, y ≥ 1,

which implies (2.7).
Finally, since we assume 1 < α ≤ 3, applying Lemma 2.4 to (2.6) and

(2.7), we see that U(y) blows up in a finite time T ∗(ε) and that T ∗(ε)
satisfies the estimate (1.11). This completes the proof. ¤

3. Proof of Theorem 1.3

Throughout this section, we fix a pair (i, j) in such a way that ci <
cj and Fi(u) ≥ A|ui|2|uj | holds according to (1.20). For the solution
(u1, . . . , um) of the system (1.10), we put

U(y) = 〈ui〉ci(y).

Fisrt of all, seeing the proof of (2.6), we find that it is also valid under
the assumptions of Theorem 1.3. In particular, we have

〈ui〉ci(y) ≥ Cε, 〈uj〉cj (y) ≥ Cε, y ≥ 1. (3.1)

Hence there exists C1 > 0 such that

U(y) ≥ C1ε, y ≥ 1. (3.2)

Next, we show that there exists C2 > 0 such that

U(y) ≥ C2ε

∫ y

1

(
log

y

η
− 1 +

η

y

)
U(η)2

η
dη, y ≥ 1. (3.3)

Since ci < cj , we see from (3.1) that for any (x, t) ∈ Σ̃(ci; 1),

|uj(x, t)| ≥ Cε√
(cjt+ |x|)(cjt− |x|)

≥ Cε

t+ |x| .
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Thus, by (1.20), for any (x, t) ∈ Σ̃(ci; 1), we have

Fi(u(x, t)) ≥ A

(cit+ |x|)(cit− |x|)
[
U

(
cit− r

ci

)]2

× Cε

t+ |x| .

Using Lemma 2.1 and changing the variables by ξ = cis+λ, η = (cis−λ)/ci,
for any (x, t) ∈ Σ̃(ci; 1), we have

√
(cit+ |x|)(cit− |x|)Lci [Fi(u)](x, t)

≥ Cε

∫ (cit−r)/ci

1

(∫ cit−r

ciη

ξ − ciη

ξ2
dξ

)
U(η)2

η
dη

= Cε

∫ (cit−r)/ci

1

(
log

cit− r

ciη
− 1 +

ciη

cit− r

)
U(η)2

η
dη.

Since the function

y 7→
∫ y

1

(
log

y

η
− 1 +

η

y

)
U(η)2

η
dη

is non-decreasing, we obtain (3.3).
If we set ϕ(z) = ε−1U(ez/ε) in (3.2), (3.3), then for z ≥ 0 we have

ϕ(z) ≥ C1, (3.4)

ϕ(z) ≥ C2ε

∫ z

0
K

(
z − ζ

ε

)
ϕ(ζ)2 dζ, (3.5)

where

K(z) = z − 1 + e−z.

In addition, introducing a function K̃(z) as

K̃(z) =
1
2e

min{z, z2},

we get K(z) ≥ K̃(z) for z ≥ 0. Note that K̃(λz) ≥ λK̃(z) holds for λ ≥ 1,
z ≥ 0. Therefore, if 0 < ε ≤ 1, z ≥ 1, 1 ≤ ζ ≤ z, then we find

εK

(
z − ζ

ε

)
≥ εK̃

(
z − ζ

ε

)
≥ K̃

(
1− ζ

z

)
=

1
2e

(
1− ζ

z

)2

.

Hence, (3.5) implies

ϕ(z) ≥ C3

∫ z

1

(
1− ζ

z

)2

ϕ(ζ)2 dζ (3.6)
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for z ≥ 1, where we put C3 = C2/(2e). Now, applying Lemma 2.4 to (3.4)
and (3.6), we see that ϕ(z) blows up in a finite time, so that T ∗(ε) satisfies
the estimate (1.21). This completes the proof. ¤

4. Proof of Theorem 1.2

To evaluate the operator Lc[f ], we shall make use of basic estimates
given in Lemma 4.2 below. It is a generalization of [15, Propositions 2.3
and 2.4] with n = 2. First we prepare the following elementary inequalities.

Lemma 4.1 Let κ ∈ R, ` ≥ 0 and (r, t) ∈ [0, ∞)2. Then there exists a
constant C = C(κ, `) > 0 such that

∫ [t−r]+

0
〈ρ〉−(1/2)−κ(t− r − ρ)−1/2[log(1 + 〈ρ〉)]` dρ (4.1)

≤ C[log(1 + 〈r − t〉)]`〈r − t〉[(1/2)−κ]+

〈r − t〉1/2
.

Here for A ≥ 1 we have denoted

A[a]+ = Aa if a > 0 ; A[a]+ = 1 if a < 0 ; A[0]+ = 1 + logA.

Moreover, if κ > 0 or t ≥ 2r, then there exists a constant C = C(κ, `) > 0
such that

∫ r+t

|r−t|
〈ρ〉−(1/2)−κ(ρ+ r − t)−1/2[log(1 + 〈ρ〉)]` dρ (4.2)

≤ C[log(1 + 〈r − t〉)]`
〈r − t〉κ .

Proof. When κ > 0, the above estimates follow from [15, Lemmas 2.5 and
2.10], hence we assume κ ≤ 0. Let 0 < δ < 1/2.

First we show (4.1). The left-hand side of (4.1) is estimated by

〈r − t〉−κ+δ

∫ [t−r]+

0
〈ρ〉−(1/2)−δ(t− r − ρ)−1/2[log(1 + 〈ρ〉)]` dρ.

Now we can apply (4.1) with κ replaced by δ > 0 to get the needed estimate.
Similarly, we see that the left-hand side of (4.2) is estimated by

C〈r + t〉−κ+δ〈r − t〉−δ[log(1 + 〈r − t〉)]`,
which implies (4.2) by the assumption t≥ 2r. This completes the proof. ¤
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Lemma 4.2 Let a, c, µ, κ > 0. For f ∈ C(R2 × [0, T )) we put

‖f‖L∞(µ, κ, a) = sup
(x, t)∈R2×[0, T )

〈t+ |x|〉µ〈at− |x|〉κ|f(x, t)|.

If 0 < κ < 1 and µ + κ < 3, then there is a positive constant C =
C(c, a, µ, κ) such that

wc(x, t)|Lc[f ](x, t)| ≤ C〈t+ |x|〉3−µ−κ ‖f‖L∞(µ, κ, a) (4.3)

for (x, t) ∈ R2 × [0, T ), where we set

wc(x, t) = 〈t+ |x|〉1/2〈ct− |x|〉1/2.

Moreover, if 0 < κ < 1 and µ+ κ = 3, then we have

wc(x, t)|Lc[f ](x, t)| ≤ C log(1 + 〈ct− |x|〉) ‖f‖L∞(µ, κ, a) (4.4)

for (x, t) ∈ R2 × [0, T ). While, if κ = 1 and µ = 2, then we have

wc(x, t)|Lc[f ](x, t)| ≤ C(log(1 + 〈ct− |x|〉)2 ‖f‖L∞(µ, κ, a) (4.5)

for (x, t) ∈ R2 × [0, T ).

Proof. Since Lc[f ](x, t) = L1[fc](x, ct) with fc(x, t) = c−2f(x, t/c), it
suffices to show the estimates for c = 1. It follows that

|L1[f ](x, t)| ≤ (I1 + I2)‖f‖L∞(µ, κ, a), (4.6)

where we put

I1=
∫∫

D(1;r, t)

〈λ+ s〉−µ+1〈λ− as〉−κ

√
(λ− s+ t+ r)(λ+ s+ r − t)

dλ ds,

I2=
∫∫

E(1;r, t)

〈λ+ s〉−µ+1〈λ− as〉−κ

√
(λ− s+ t+ r)(t− r − λ− s)

dλ ds,

whereD(1; r, t), E(1; r, t) are defined by (2.4), (2.1), respectively. Changing
the variables by α = λ+ s, β = λ− s, we have

I1=
1
2

∫ t+r

|t−r|

〈α〉−µ+1

√
α+ r − t

dα

∫ α

r−t

〈1−a
2 α+ 1+a

2 β〉−κ

√
β + t+ r

dβ, (4.7)

I2=
1
2

∫ [t−r]+

0

〈α〉−µ+1

√
t− r − α

dα

∫ α

−α

〈1−a
2 α+ 1+a

2 β〉−κ

√
β + t+ r

dβ, (4.8)

where we put [a]+ = max(a, 0).
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First we show (4.3) for 0 < κ < 1 and µ+ κ < 3. In this case, we may
assume µ < 2, because when µ ≥ 2, we can find µ′, κ′ such that µ′ < 2,
0 < κ′ < 1 and µ′ + κ′ = µ+ κ < 3. In fact, if we put

µ′ = µ− µ− κ− 1
2

, κ′ = κ+
µ− κ− 1

2
,

then they satisfy the needed conditions, since µ ≥ 2 > κ + 1 and 2 < µ +
κ < 3. In what follows, we denote r = |x|.

Now we divide the argument into three cases. First suppose 2r ≥ t ≥ 0
and t+ r ≥ 1. Since β + t+ r ≥ 2r if either β > −α and 0 < α < t− r or
β > r − t, we have β + t+ r ≥ C〈t+ r〉 in this case. Since κ < 1, we get

〈t+ r〉1/2(I1 + I2) (4.9)

≤ C

{∫ t+r

|t−r|

〈α〉−µ−κ+2

√
α+ r − t

dα+
∫ [t−r]+

0

〈α〉−µ−κ+2

√
t− r − α

dα

}
.

When µ+ κ > 5/2, by (4.2) and (4.1) with ` = 0, we obtain

I1 + I2 ≤ C〈t+ r〉−1/2〈r − t〉−(µ+κ−5/2). (4.10)

On the other hand, when µ+ κ ≤ 5/2, (4.9) yields

〈t+ r〉1/2(I1 + I2)

≤ C

{
〈t+ r〉(5/2)−µ−κ〈r − t〉−1/2

∫ t+r

|t−r|

1√
α+ r − t

dα

+〈r − t〉(5/2)−µ−κ

∫ [t−r]+

0

〈α〉−1/2

√
t− r − α

dα

}

≤ C〈t+ r〉3−µ−κ〈r − t〉−1/2. (4.11)

Next suppose 2r ≥ t ≥ 0 and t + r ≤ 1. Then the both β–integrals in
I1 and I2 are bounded. Therefore (4.9) is still valid. Hence (4.10) or (4.11)
also holds in this case.

It remains to consider the case where t ≥ 2r ≥ 0. We begin with
proving

∫ α

−α

〈1−a
2 α+ 1+a

2 β〉−κ

√
β + t+ r

dβ ≤ C〈t+ r〉−1/2〈t+ r〉[1−κ]+ (4.12)

for 0 ≤ α ≤ t + r. Denoting the left-hand side by I and setting 2d = (1 +
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a)(t+ r) + (a− 1)α, we get

I =
(

2
1 + a

)1/2 ∫ α

−aα

〈σ〉−κ

√
σ + d

dσ ≤
(

2
1 + a

)1/2 ∫ d/a

−d

〈σ〉−κ

√
σ + d

dσ,

since d ≥ aα for 0 ≤ α ≤ t + r. At this point, we apply the following
elementary inequlity: For κ, a, d > 0, there exists a positive constant C =
C(κ, a) such that

∫ d/a

−d
〈σ〉−κ(d+σ)−1/2 dσ ≤ C〈d〉−1/2〈d〉[1−κ]+ (4.13)

(for the proof, see e.g. [15, Lemma 2.6]). Since d ≥ min{1, a}(t + r) for
0 ≤ α ≤ t+ r in our case, the application of (4.13) gives (4.12).

Now it follows from (4.7), (4.12) with κ < 1 and (4.2) with ` = 0 that

I1 ≤ C〈t+ r〉−1/2〈t+ r〉1−κ〈r − t〉−µ+3/2,

since t ≥ 2r ≥ 0. Moreover, (4.8), (4.12) with κ < 1 and (4.1) with ` = 0
yield

I2 ≤ C〈t+ r〉−1/2〈t+ r〉1−κ〈r − t〉−µ+3/2,

since µ < 2. For t ≥ 2r ≥ 0, we see that these estimates imply (4.10).
Therefore we obtain (4.3) via (4.6).

Secondly we prove (4.4) for 0 < κ < 1 and µ+κ = 3. When 2r ≥ t ≥ 0,
proceeding as before, we obatin

I1 + I2 ≤ C〈t+ r〉−1/2〈r − t〉−1/2 log(1 + 〈r − t〉). (4.14)

since µ + κ = 3. Therefore we have only to consider the case where t ≥
2r ≥ 0. It follows from (4.7), (4.12) with κ < 1 and (4.2) with ` = 0 that

I1≤C〈t+ r〉−1/2〈t+ r〉1−κ〈r − t〉−µ+(3/2)

≤C〈t+ r〉−1/2〈r − t〉−1/2

since t ≥ 2r ≥ 0 and µ+ κ = 3. To evaluate I2 for t > r, we further split it
as follows:

J1 =
1
2

∫ (t−r)/2

0

〈α〉−µ+1

√
t− r − α

dα

∫ α

−α

〈1−a
2 α+ 1+a

2 β〉−κ

√
β + t+ r

dβ,

J2 =
1
2

∫ t−r

(t−r)/2

〈α〉−µ+1

√
t− r − α

dα

∫ α

−α

〈1−a
2 α+ 1+a

2 β〉−κ

√
β + t+ r

dβ.
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By (4.12) with κ < 1 we have

J2≤C〈t+ r〉(1/2)−κ

∫ t−r

(t−r)/2

〈α〉−µ+1

√
t− r − α

dα

≤C〈t+ r〉(3/2)−κ−µ

∫ t−r

0

1√
t− r − α

dα

≤C〈t+ r〉−1,

since µ+ κ = 3. On the one hand, when 0 < α < (t− r)/2, we have
∫ α

−α

〈1−a
2 α+ 1+a

2 β〉−κ

√
β + t+ r

dβ ≤ C〈t+ r〉−1/2〈α〉[1−κ]+ ,

since β + t+ r ≥ (t+ r)/2 for β > −α > −(t+ r)/2. Thus we get

J1≤C〈t+ r〉−1/2

∫ t−r

0

〈α〉−1

√
t− r − α

dα

≤C〈t+ r〉−1/2〈r − t〉−1/2 log(1 + 〈r − t〉),
by (4.1) with ` = 0. Hence we find (4.14), so that (4.4) follows from (4.6).

Finally we prove (4.5) for κ = 1 and µ = 2. First suppose 2r ≥ t ≥ 0
and t+ r ≥ 1. Similarly to derive (4.9), we have

〈t+ r〉1/2(I1 + I2)≤C
{∫ t+r

|t−r|

〈α〉−1 log(1 + 〈α〉)√
α+ r − t

dα

+
∫ [t−r]+

0

〈α〉−1 log(1 + 〈α〉)√
t− r − α

dα

}
.

By (4.2) and (4.1) with ` = 1 we obtain

I1 + I2 ≤ C〈t+ r〉−1/2〈r − t〉−1/2(log(1 + 〈r − t〉))2. (4.15)

This estimate is valid also for the case where 2r ≥ t ≥ 0 and t + r ≤ 1, as
before.

On the other hand, when t ≥ 2r ≥ 0, it follows from (4.7), (4.8) with
µ = 2 and κ = 1, (4.12) and (4.2) with ` = 0 that

I1 + I2 ≤ C〈t+ r〉−1/2 log(1 + 〈t+ r〉)〈r − t〉−1/2 log(1 + 〈r − t〉),
hence (4.15) holds as well. In conclusion we obtain (4.5) via (4.6) and finish
the proof. ¤
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Proof of Theorem 1.2. First of all, we introduce the following type of
weighted L∞-space:

X = {u = (u1, . . . , um) ∈ C(R2 × [0, T ))m : ‖u‖ ≤ 2C0ε}, (4.16)

where C0 is the number from (1.17) and

‖u‖ ≡ max
1≤i≤m

‖ui‖ci = max
1≤i≤m

sup
(x, t)∈R2×[0, T )

wci(x, t)|ui(x, t)|.

Then we define a map

Φ[u] = (εKci [ϕi, ψi]+Lci [Fi(u)]; i = 1, . . . , m). (4.17)

Since ϕi ∈ C1
0 (R2), ψi ∈ C0(R2), we can take a positive number R such that

ϕi(x) = ψi(x) = 0 for |x| ≥ R. (4.18)

In addition, we may assume that Fi consists of only one term, that is

Fi(u) = |uj |p|uk|q, 1 ≤ i, j, k ≤ m, j 6= k,

where p, q ≥ 1 and 2 ≤ p+ q ≤ 3, since the general case can be handled in
a similar way. Because cj 6= ck for j 6= k, we have

|Fi(u)(x, t)| ≤ C‖u‖α{〈t+ |x|〉−(α+q)/2〈cjt− |x|〉−p/2

+〈t+ |x|〉−(α+p)/2〈ckt− |x|〉−q/2}
for all (x, t) ∈ R2 × [0, T ), where we put α = p+ q.

First suppose 2 ≤ α < 3, so that 0 < p/2, q/2 < 1. Then by (4.3) we
get

wci(x, t)|Lci [Fi(u)](x, t)| ≤ C‖u‖α〈T 〉3−α

for all (x, t) ∈ R2 × [0, T ), since |x| ≤ t+R by (4.18) and the finite speeds
of propagation. Combining this with (1.16), we obtain for T ≥ 1

‖Φ[u]‖ ≤ C0ε+ C1T
3−α‖u‖α, (4.19)

where C1 = C1(ci, p, q, R) is a positive constant. Similarly we see that
there is a positive constant C2 = C2(ci, p, q, R) such that

‖Φ[u]− Φ[v]‖ ≤ C2T
3−α(‖u‖α−1 + ‖v‖α−1)‖u− v‖. (4.20)

Now we take ε0 and T so that

2αC1(C0ε0)α−1T 3−α≤ 1, 2α+1C2(C0ε0)α−1T 3−α≤ 1, T ≥ 1. (4.21)
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Then we find from (4.19) and (4.20) that Φ[u] has a fixed point in X for
0 < ε ≤ ε0. This implies the desired conclusion.

Next suppose α = 3. Then we apply (4.4) if p > 1 and q > 1, or
(4.5) otherwise. Then we find the local existence and estimate (1.19), by
proceeding as before. This completes the proof. ¤

Remark 4.1 When α > 3, one can show a global existence result by
modifying a little bit the proof above. Namely, for sufficiently small ε, there
is a unique solution u ∈ (C(R2 × [0, ∞)))m to (1.12) with (1.3) satisfying

max
1≤i≤m

sup
(x, t)∈R2×[0,∞)

〈t+ |x|〉1/2〈cit− |x|〉ν |ui(x, t)| ≤ 2C0ε

with 0 < ν < 1/2 (for the detail, see [15, Theorem 4.1]).
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