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Rationality of certain cuspidal unipotent representations
in crystalline cohomology groups
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Abstract. We complete the determination of the local Schur indices of each unipotent
representation of the group G(Fq) of Fg-rational points of a simple algebraic group G
defined over a finite field Fy.
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Introduction

Let [F, be a finite field with ¢ elements of characteristic p. Let G be
a connected, reductive linear algebraic group, defined over F,, with
Frobenius map F, and let G be the (finite) group of fixed points of G
by F. Then the problem of determining of the local Schur indices of the
(complex) irreducible unipotent representations p of GF can be reduced
to the case where G is a simple algebraic group of adjoint type and p is
cuspidal ([DL, Propositon 7.10], [Ge II, Remark 2.6], [Lu II, p. 28], [Ge I,
Propositions 5.5, 5.6]).

Suppose that G is a simple algebraic group of adjoint type and that p is
cuspidal unipotent representation of G'. Then, in almost all cases, the local
Schur indices of p are determined by Lusztig [Lu V] and Geck [Ge I, II],
more or less by a general method. However there are two remaining cases for
which the above general method cannot be applied. They are the following:
(i) the characters E;[+£] in the group G¥ = E;(q), where ¢ is an even

power of p such that p =4 (mod 4);

(ii) the characters Eg[++/—1] for GI' = Eg(q) with p = 5.
(see [Ge II]; as to te notations of characters of G, we follow those in [Ca,
p. 483, p. 488].)

The first case was dealt with by Geck [Ge III], by investigating cer-
tain generalized Gelfand-Graev representations. For this, he has to assume
that p is large enough so that the result of Lusztig [Lu IV] on generalized
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Gelfand-Graev representations can be applied (note that it relies on the
general theory of Lie algebra, which requires that p is not too small). Also
it involves some explicit computations by using computer.

The idea for treating the second case was explained briefly in [Ge II]
and was discussed in Ph. D. thesis of Hezard [He]. It also use the generalized
Gelfand-Graev representations of Fg(q). Since p = 5, the general theory of
Lie algebra cannot be applied, and very delicate and precise computations
are required.

In this paper, we with to propose a method of using crystalline coho-
mology groups in order to treat the above two cases. By realizing the above
cuspidal unipotent representations p on crystalline cohomology groups, it is
possible to determine the p-local Schur index mgq,(p) of p. For any prime
¢ # p, the {-local Schur index mq,(p) of p can be determined by making
use of the realization of p on the f-adic cohomology groups due to Lusztig
[Lu V]. Thus the Schur index mq, (p) of p with respect to Q is determined by
the Hasse principle. In particular, the argument works without restriction
on p.

The method of making use of crystalline cohomology seems to be com-
paratively general since, by modifying our method, one can prove the fol-
lowing:

Theorem A Let G be a simple algebraic group, defined over F,, with
Fy-rank r. Let p by any cuspidal unipotent representation of G with char-
acter x, and let A(p,Qp) be the simple direct summand of the group algebra
Qp[GF] associated with p. Let Qu(x,) = Qp(xp(90), g0 € GF). Then the
Hasse invariant of the simple algebra A(p, Qp) (central over Qp(x,)) can be
given by —(r/2)[Qp(x,) : Qpl-

Our result, with combining Lusztig’s realization in the /-adic cohomol-
ogy, can be interpreted in terms of motives over finite fields (see Milne

[Mi I1]).
Let p be a cuspidal unipotent representation of G¥' (G simple). Let
w be a Weyl group element with minimal length n = ¢(w) such that

(RY(w), p)ar # 0, where R'(w) is the Deligne-Lusztig virtual represen-
tation of G¥' associated with w ([DL]). Let \g"%/? be the eigenvalue of
Frobenius on H™(X (w), Q) associated with p ([Lu II]; [DM, Théoreme 2.3,
p. 48]), Here X (w) is the Hansen-Demazure-Deligne-Lusztig compactifica-

tion of the Deligne-Lusztig variety X (w) associated with w ([DL, (9.10)]),
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Qy is an algebraic closure of the f-adic field Q; (¢ # p), & is the minimal
natural number such that F? acts trivially on the Weyl group of G, and
A is a certain root of unity (cf. [DM]). Let X be a simple motive with
Weil ¢’-number ¢"%/2 (
p. 415]). Then

uniquely determined up to isomorphisms; see [Mi II,

“Theorem B” Assume that Tate conjecture over finite fields holds (see
[Mi II]). Then in the Brauer group of Q(x,), the class of the simple direct
summand A(p, Q) of Q[GF] associated with p and the class of the endomor-
phism ring End(X) of X are the same.

Theorem A also holds for cuspidal unipotent representations of the
Suzuki and Ree groups 2Bs(q), 2G2(q), 2Fy(q) except for the unique rep-
resentation p of 2Fy(q), such that (R!(w), p)qr is even for all w ([Lu III,
p. 375]); for this representation, the formula in Theorem A does not hold;
p has the property that mq,(p) = 1 for £ # p and mg(p) = mq, (p) = 2 (see
[Ge I]).

Notation

p is a fixed prime number and k is an algebraic closure of the prime
field of characteristic p. ¢ = p? is a power of p and [F, is the subfield of k
with ¢ elements. By a variety, we mean a separated reduced scheme of finite
type over k and we identify it with the set of its k-rational points.

If p is an irreducible representation of a finite group H over an alge-
braically closed field C' of characteristic 0, then x, denotes its character
and for a field E of characteristic 0, E(p) = E(x,) = E(x,(h), h € H) and
mpg(p) or mp(x,) denotes the Schur index of p with respect to E.

¢ is any fixed prime number # p, and Qy is an algebraic closure of Q.
For a variety X, H*(X) (resp. H,(X)) is the i-th étale cohomology group
of X (resp. the i-th étale cohomology of X with compact supports) with
coefficients in Q.

Let n be a positive integer, and let A,, = Z/{"7Z. Let X, Y be varieties
and let f: X — Y be a proper morphism. Then there exists a spectral
sequence
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(Rim) (R fo)F = R (wf) F

where m: Y — Spec(k) is the structural morphism of Y (see [Mi I, The-
orem 3.2(c), p. 228]) (note that R.f. = R’f, since f is proper) and F is
any torsion (étale) sheaf of A,,-modules on X. Thus one of the edge homo-
morphisms of this spectral sequence gives A,-homomorphisms ([CE, p. 329,
Case B))

(%) H(Y, fuF) — HA(X,F) (i 20).

(Note that (Rim)(RVf)F = (Rim)fF = HI(Y, f.F) and Ri(rf).F =
Hi(X, F).

Let F’ be a torsion sheaf on Y of A,-modules, and let F' = f*F’. Then,
by composing the homomorphism Hi(Y, F’) — H(Y, f.f*F’) induced by
the natural morphism F’' — f,f*F’ with the homomorphism (x), we get
a A,-homomorphism HE(Y, F') — HL(X, f*F'). By letting F' = A,,, and by
using the canonical isomorphism f*A, =, A,, we get a A,,-homomorphism

(o) far Ho(Y,An) — Hy(X,Ap)  (120).

We note that if Z is a variety and ¢g: Y — Z is a proper morphism, then
we have

(o) (9f)n = fndn-

Assume that X, Y are proper over Spec(k). Then, by the functoriality
([Sti. p. 41]), we get a natural A,,-homomorphism H*(Y, F') — H' (X, f*F'),
which, as we can check, coincides with the above homomorphism
H(Y, F') — HI(Y, f.f*F') — H(X, [*F').

Returning to the general case with f: X — Y proper, let ,:
H{Y,Api1) — HYY,A,), ¢n: H(X,Api1) — HY(X,A,) be homomor-
phisms which are induced by the natural morphism A, — A,,. Then we
have ¢nf;. 1 = fan. Hence, by taking projective limits, we get
a Zg-homomorphism

lim fr: HU(Y,Z¢) = lim HA(Y, A) — H(X, Zy).

n n

By tensoring with Qg, we get Qg-linear maps

Hé(Y, QZ) — HtZ:(X’ QZ) (Z z 0)’
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hence we get Q-linear maps

f* H(Y) — H{(X) (i=0).

We note that, if g: Y — Z is proper, then
9f)* = fg"

Now let G be a connected, reductive linear algebraic group over k,
defined over [, with Frobenius map F'. Let Xg be the projective variety
of all Borel subgroups of G. Let F': Xg — Xg be the map defined by B —
F(B), which is the Frobenius map corresponding to the natural [F-rational
structure of Xg. G acts on X by the conjugations: B — gBg™', g € G,
B e Xg.

For the sake of later use, let me allow to explain this action of G on Xg.
Let k[G] be the k-algebra of regular functions on G. Then G acts on it by
(h-g)(x) = h(zg™'), g € G, h € k[G], x € G. Then there is a finite-
dimensional, G-stable subspace V of k|G| and a line L through 0 (C V)
such that B* = {g € G|g(L) = L}, where B* is a previously fixed F-stable
Borel subgroup of G. Let P(V') be the projective space associated with V'
and let [L] be the class of L in P(V). Note that V' and L can be chosen so
that they are defined over F,. The homogeneous space G/B* is defined to
be the orbit G- [L] in P(V'). Since G/B* is projective, it is complete, hence
G/B* = G- [L] is closed in P(V'). Let p: G — GL(V') be the representation
which is determined by the G-module V. Then, for each g € G, p(g) is
an automorphism of the affine space V', which hence induces a k-algebra
automorphism 6(g) of k[V]. With respect to a basis of the Fy-structure Vj
of V, k[V] can be viewed naturally as a polynomial ring k[Ty, ..., T,] over k
(d+1 = dimp,(Vp)). Then, for g € G, §(g) is a homogeneous automorphism
of k[Tv, ..., Ty4] of degree 0, so that it induces a ring automorphism 6(g) of
k|G/B*| = k|G - [L]]. Then it is well known that, for g € G, the automor-
phism 6(g) induces an automorphism of G//B*, which coincides with the
mapping hB* — ghB*, hB* € G/B*. Since X¢ is isomorphic to G/B*
naturally, the adjoint action of ¢ € G on Xg is induced by a k-algebra
automorphism of a k-algebra A such that X = Proj(A4).

Now, we let G act on X x X diagonally. Then Wi = G\(X¢g x X¢)
has a natural group structure, which is called the Weyl group of G ([DL, 1.2],
[Lu I, (1.2)]). For w € Wg, let X(w) = {B € X¢|(B,F(B)) € w}. Then
X (w) is a locally closed smooth subvariety of X, purely of dimension ¢(w),
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where /() is the length function on Wg ([DL, 1.4]). For go € G¥', X (w)
is go-stable, so, for each i = 0, we have an automorphism gj of H:(X (w)).
We consider H:(X(w)) as GF-modules by (g5')*, go € GF. For i = 0,
H!(X(w)) is a Q¢[GF]-module with Q-structure H:(X (w), Qy).

Let 6 be the minimal positive integer such that F? acts trivially on Wg.
Then, for w € Wg, X(w) is F’-stable. Let w € Wg. Then the mor-
phism F°: X (w) — X (w) is finite, hence proper, so, for i > 0, F? induces
a Q-linear map (F%)*: H (X (w)) — H (X (w)).

Let M be a simple Q/[G]-module. Then we say that M has depth ¢
if there is an F-stable subset I of the set S of simple reflections in Wg
with |Ip| = r — t, where Ip is the set of orbits of F' on I and r is the
semisimple F,-rank of G, such that, for an F-stable parabolic subgroup Py
of G corresponding to I, with unipotent radical Uy, M Ul contains a non-
zero cuspidal L¥-module, where L = P;/U; and M U is the subspace of M
consisting of elements of M fixed by UL (see [Lu I, §4]).

Let M be any (finitely generated) Q/[G*]-module For an integer ¢t > 0,
let M® be the subspace of M defined as the sum of all simple
Q[G*]-submodules of M of depth ¢t. Then we have M = @ M®. M©) is

t=0
the cuspidal part of M. -

Now assume that G is a simple algebraic group of type (E7). Let
$1,...,87 be the simple reflections in Wg. Put ¢ = s1---s7 and f =
(s1,...,57). Let Xy = X(c). Then Xy is a smooth affine irreducible sub-
variety of dimension 7 ([Lu I, (2.8), (4.8)]). We have H(X;)® = 0 for
i #7and HI(X;)© = Hg(Xf)N @ HZ(Xf)fﬁ, where Hg(Xf)ﬁ
(resp. HZ(Xf)_\/_—q?) is the subspace of H(Xy) on which F* acts by mul-

tiplication by y/—q7 (resp. —y/—q") ([Lu I, (6.1), (7.1), (7.3), (7.4)(c)]).
They afford two non-isomorphic cuspidal unipotent representations of G¥
over Q; (see [Lu III, pp. 364-5], Cater [Ca, pp. 482-3]). And they are all
the cuspidal unipotent representations of GF'.

Let p be a (complex) cuspidal unipotent representation of G¥'. Then
Qx,) = Q(v/—q") (cf. [Ge I, p. 21]). Since x, is not real, we have
mg.. (p) =1. Let 7: C™ Qy be an isomorphism. Then, since (H!(X7),p")gr
=1and H(X ) is defined over Qg, by a property of the Schur index, we
have mq,(p) = 1. Since ¢ is any prime number # p, by Hasse’s sum formula,
we must have mgq, (p) = 1 (hence mg(p) = 1) if the number of the places of
Q(xp) lying above p is equal to one, and this is the case unless ¢ is an even



Rationality of unipotent representations 553

power of p such that p =1 (mod 4).

To treat the remaining case we use crystalline cohomology. To do so
we need some analysis of Lusztig’s results in [Lu I].

Let X, = {(Bo,Bi,...,By) € X3|(Bi—1,B;) € s;Ue for 1 < i <
7, and F(By) = Br}. Then X} is a smooth projective variety and Xy can
be identified with the open dense subvariety {(Bo, B1,...,Br) € X; | By #
By # .-+ # Br} of X; (by Bruhat lemma) ([DL, 9.10]). Let F: X8 —
Xg: (B(], Bl, ey B7) — (F(Bo), F(Bl), ey F(B7)) Then Xf is F-stable
and G acts on it diagonally. The inclusion X foXpis P -GF-equivariant.
Then this inclusion map induces an isomorphism H:(X;)© =, H};(X})(O)
(1 20) ([Lu I, (4.3.1)]).

Lemma 1 ([Lul, §4]) We have H'(X}) = H"(X})©.

In fact, let me allow to use the notations of [Lu I, §4] freely.
The exact sequence (4.2.3) of [Lu I, §4] for a = 7 and i = 7 can be read:

RN Hg(Xf)(t) _a® Hg(Xj'c)(t) 89 HE(DG)(t) — e

We see from the table on page 146 of [Lu I] that the absolute value of each
eigenvalue of F* on H/(Xy) other than £,/—¢7 is an integral power of q.
On the other hand, we know from Deligne’s theorem on the eigenvalues of
Frobenius [De] that the absolute value of any eigenvalue of F* on H 7(X})

is ¢7/2. Since the actions of F' and GF commute, we see that oY) = 0 for
t=1.

Next we show that 3®) = 0 for all ¢ > 0, which would imply the desired
assertion.

Assume that ¢ = 2. Then, by the statement on page 122, lines 7-8, of
[Lu 1], we see that H”(Dg)®) is isomorphic as G¥-modules to a quotient of
@ H! (X}(I )). Moreover, by a standard argument from linear algebra by
116
using the exact sequences in lines 5, 6 on page 122 in [Lu I], that the set of
eigenvalues of F* on H”(Dg)®) is contained in the set of eigenvalues of F*
on P HZ(Xf(I)) By (4.2.1) of [Lu I, p. 119], by the Kiinneth formula,

17]=6
and by the table on page 146 of [Lu I, p. 119], we see that the absolute
value of each eigenvalue of F* on & HZ(Xf(I)), hence on H'(Dg)®, is

[=6

an integral power of g. Thus ®) = 0 for t > 2. by the formula on page 121,
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line 13, of [Lu I], we see that H"(Dg)") = 0. And, by the formula on page
120, line 15, of [Lu I], we have H7(Dg)(® = 0. Thus 3® = 0 for all ¢t > 0.

2.

Let W(IF,) be the ring of Witt vectors of F, and let K be its quotient
field. Let o be the Frobenius automorphism of W (IF,) (induced by the au-
tomorphism z — 2P of F,); we also denote by o its extension to K. For
a proper smooth scheme X over Fy, let H'(Xo/W (F,)) be the i-th crys-
talline cohomology group of X over W (FF,) (see Berthelot [Ber, p. 525]; also
see Illusite (111, 1.2, p. 44]), and let H (Xo) = H (Xo/W (F,)) @wm,) K.

Let n be a positive integer, and let W,, = W(F,)/p"W (F,) (W1 =F,).
Let g: Xo — Y be a morphism of proper smooth schemes X, Yy over [y,
and suppose that the diagram

Xo J Yo
! !
Sy = Spec(W,,) _h, Sh

commutes. Here, Xy — S, is the composition: Xy — Spec(F,) =
Spec(W1) — Sy, (Y, — Sy is defined similarly) and h is a PD morphism
(see [Ber, p. 30] or [BO, p. 3.1]). Then we have a morphism of topoi:

Yeris = (g:;ris?gcris*): (XO/Sn)cris — (Yb/Sn)cris

(see [Ber, Théoreme 2.2.3, p. 197] or [BO, p. 5.3, p. 5.16]). Here (Xo/Sn)eris
is the topos of sheaves on the site Cris(Xo/S,) (see [Ber, p. 180] or [BO,
p- 5.3]) ((Yo/Sn)eris is defined similarly). Let Ox, /s, (resp. Oy, ,s,) be the
“structural sheaf” of Xy over S,, (resp. Yy over S,,) ([Ber, p. 183] or [BO, p.
5.4]; also cf. [Ill, p. 44]). Then, by the functoriality (or by the spectral se-
quence in [BO, p. 5.16]), there is a natural map H'(Cris(Yy/Sn), Oy, /s,) —
H*(Cris(Xo/Sn), 94is0x,/s,) for each i, where H*(Cris(Yo/Sn),Oyy/s,)
is the i-th cohomology group of the site Cris(Yp/S,) with coeffi-
cients in Oy, /g, ([Ber, p. 180, p. 184]) (Hi(Cris(Xo/Sn),g;"riSOXO/S") is
defined similarly). By composing this map with the natural map
H'(Cris(Xo0/Sn), 95sO0v0/5,) — H'(Cris(Xo/Sn), Ox,/s,) induced by the
natural morphism g% Oy, /s, — Ox,/s, (see [Ber, (2.2.4), p. 199]), we get
a map
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gn: H'(Cris(Yo/Sn), Oyyys,) — H'(Cris(Xo/Sn), Ox,/s,.)-
If

/

Yo _9 Zo

! !

s —" g
is another commutative diagram, where Zjy is a proper smooth variety
over F, and A’ is a PD morphism, we have

(9'9)n = (7))

(cf. [Ber, Proposition 2.2.6, p. 200]).

We also have natural maps p,: H'(Cris(Xo/Snt1), Oxy/s,,,) —
HZ(CI'IS(X()/SR), OXO/Sn)7 dn Hi(CI“iS(YQ/Sn+1), OYO/Sn+1) —
H*(Cris(Yo/Sn), Oy, /s, ), and we have p,g; | = g5,qn- Therefore, by taking
projective limits, we get a map

g =limgy: H'(Yo/W(F,)) — H'(Xo/W(Fy))  (i20).
n
We have (¢'g)* = g*¢"*.

Let X be a projective smooth scheme over F,. Let Fy,s: Xg — Xo be
the absolute Frobenius endomorphism of Xy: F, is the identity map on the
underlying space of X( and, for each section h in the structural sheaf Ox,
of Xy, we have Fyps(h) = hP. Then we have a commutative diagram

Fabs
X() abs XO

! !

Sp —— Sh,
where h,, is the PD morphism induced by o: W,, — W,,. Then we have
a o-linear endomorphism (Faps)* of HY(Xo/W (F,)) for each i. Hence we
get a o-linear endomorphism ¢ = (Fyps)* ® o of Hérys(Xo) for each . This
makes each (Hgys(Xo0),¢) an isocrystal over K, i.e. a finite-dimensional
vector space over K with o-linear bijection.

Let Xy be as above. Recall that ¢ = p“/. Then Fy = (Fabs)“/ is the
Frobenius endomorphism of Xo; if X = Xo Xp, k, then F' = F X 1 is
the Frobenius endomorphism of X which corresponds to the F,-rational
structure Xp on X.
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Let X = Proj(A4), Y = Proj(B) be two projective varieties defined
over F,, and let g and h be automorphisms of X and Y respectively, defined
over Fy; Assume that g (resp. h) is the restriction to X (resp. Y) of an
automorphism of an ambient projective space, with the standard [F-rational
structure, defined over F,. Then we see that g x h is the automorphism of
X X X which is induced by a k-algebra automorphism of A ®;, B.

Now let the assumptions and the notations be as in §1. Recall that
X} is an F-stable closed subvariety of X&. Suppose that X; = Proj(A).
Then, for each gy € G¥', the automorphism go: XJ; — X]'c is induced by
a k-algebra automorphism 6(gg) of A which is homogeneous of degree 0.
Let

Ag={zr € A|F(x) = x2%}.

Then X}, = Proj(Ap) is the Fg-rational structure on X determined by
F: X7 — X;. Let go € GF. Then, since (gy): A — A is a ring automor-
phism, for x € Ay, we have

F(0(g0)(x)) = 0(g0) (F(x)) = 8(g0)(2?) = 6(go) (x)“,

s0 0(go)(x) € Ap. So 6(go) induces a ring automorphism of Ag, hence in-
duces an endomorphism go of X} 5. Thus we get an endomorphism (go)* of
H"(Xm/W(IF'q)) for i > 0. It is clear that (hogo)* = (go0)*(ho)* (ho € GF).
Thus each Hi(Xm/W(Fq)) is a GF-module by the actions (g;')*,
go € GF.

Let go € G¥. Then the graph of gy: X},o — XJ’C70 defines a cycle in
X} s, X} of codimension 7 (n = 1), hence, by the Kiinneth formula
and the Poincare duality theorem for crystalline cohomology, its class in
H14((Xf,0 X3, X},O)/SmO(X'f,OXsnX;YO)/Sn% hence in HclfyS(X]}’O xF, X1 0)
determines a linear endomorphism of Hclrys(X},o) for each 4, which is just
(90)* @1 (cf. Kleimann [Kl, 3, pp. 11-2] and Berthelot [Ber, Chap. VII, §3,
Lemma 3.1.4, p. 575]). Similar statements also hold for étale cohomology
(cf. [Mi I, Chap. VI, §12, Lemma 12.1]). Thus by Theorem 2 of Katz
and Messing [KM], we see that, for each ¢, the characteristic polynomial of
(90)*®1on HY (X 7.0) coincides with the characteristic polynomial of (go)*

on H Z(Xf) (they have coefficients in Z). In particular, we have

Tr((g0)* @1, Hipys(X70)) = Tr((90)*, H' (X)) (i 2 0). (1)
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(This argument was inspired by Lusztig [Lu I, p. 121, line 24].) We also
see that, by Theorem 1 of [KM], the eigenvalues of (FO) ®1 on Hcryb(X},o)

coinside the eigenvalue of F* on H 7(X]'c).

Lemma 2 Let g9 € GF. Then Fusgo = goFaps on the scheme Xf,o-

Thus ¢((90)* ® 1) = ((90)* ® 1) on Hiy (X} ) (i 2 0) (recall that ¢ =
(Fambs)>'< ®U)'

In fact, on the underlying space of X .07 Fps is the identity. For z € Ay,
we have 6(go)(Fabs(2)) = 0(g0)(2”) = 0(g0)(2)P = Fabs(0(g0)(x)). The last
assertion is clear.

Assume that ¢ is an even power of p such that p =1 (mod 4). Then we

have \/—¢7 € Q,. The eigenvalues of (Fy)*®1 = ¢% (¢ = p®) on Hcrys(Xj7o)
are j:\/q Let My (resp. M_) be the generalized H eigenspace
(resp. —+/—q-eigenspace) of Hcrys(X},o)- Then, since the action of G
and (Fp)* ® 1 on ngys(Xf,O) commute, we see that M, and M_ are GF'-
submodules of Hcrys(X o). Hence, by (1), we see that they are absolutely

irreducible Gf'-modules over K and ngys(Xfo) = My & M_; moreover we
see that the actions of (Fy)* ® 1 on M, and M_ are semisimple.
By Lemma 2, we see that ¢(M,) is a GF-module. For g € GF', we

have
Tr((go)*®1, ¢(M.)) = o(Tr((90)*®1, M) = Tr((g0)*®1, My)

since Qp(x,) = Qp(v/—¢7) = Qp (p is the representation afforded by M. )
(Geck [Ge I, §5]). So ¢(My) is isomorphic to M, as GF-modules. Since
M and M_ are not isomorphic, we must have ¢p(M,) = M. Similarly, we
must have ¢(M_) = M_. Therefore (M, ¢) and (M_, ¢) are semisimple
isocrystals over K (cf. Milne [Mi II, Proposition 2.10, p. 417]).

Let M be My or M_, and let

U: K[GF] — Endg (M)

be the corresponding representation of K[GF]. Since U is absolutely
irreducible, we have U(K[GF]) = Endg(M) = My(K), where My(K)
is the K-algebra of all d x d-matrices over K with d = dimg M. Let
B = U(Q,[GF]). Then there is a division algebra D, central over Q, =
Qp(v/—q"), such that B = M, (D), where if m denotes the index of D,
then d = nm (cf. Curtis and Reiner [CR, p. 468]). We note that m =
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mgq, (U). We have B ®q, K ~ Mg(K) ~ Endg (M) ([loc. cit.]).
Let

End(M, ¢) = {h € Endg (M) | ph = he}.

This is a Qp-form of the centralizer Zgyq, (1) (7ar) of Tar = ¢ in Endg (M)
(see Kottwitz [Ko, p. 410]; also see Milne [Mi II, p. 417]). By Lemma 2,
we see that B is contained in End(M, ¢). But,, as B ®g, K = Endg (M),
we must have B = End(M, ¢). Therefore, as (M, ¢) is semisimple, there
is a simple subisocrystal (X, ¢) of (M, ¢) such that End(X,¢) = D. By
Lemma 11.3 of [Ko| (also see [Mi II, Proposition 2.14]), we see that the
Hasse invariant of D is 1/2. Therefore mq, (U) = 2.

We note that GF' = E+(q) has just two isomorphism classes of cuspidal
unipotent representations.

The following theorem is due to Geck [Ge III] except for (ii) where
he had to assume that p is large enough. Our argument can remove this
assumption.

Theorem 1 (cf. Geck [Ge III]) Let G be a simple algebraic group of type
(E7), defined over IFy, with Frobenius map F. Let p be a (complex) cuspidal
unipotent representation of G¥ with character Xp- Then the value field
Q(x,) of xp is Q(\/—¢"). (1) If p =2, or q is an odd power of p, or q is an
even power of p such that p = 3 (mod 4), then mg(p) = 1. (ii) Assume that
q is an even power of p such that p =1 (mod 4), Then we have mq_ (p) =
mq,(p) = 1 for any prime number £ # p and mq,(p) = 2. Thus mg(p) = 2.

By Propositions 5.5, 5.6 of [Ge I], we see that a unipotent representa-
tions of Eg(q) with character E;[¢], 1, E7[—¢], 1, Eq[{],e or E7[—£], e has
the same rationality.

Remark Let (X 7.0 o) be the motive over F, corresponding to X o (see
Milne [Mi II]), and let Z be the simple submotlve of h(X}) such that

[rz] = [v/—q"] (cf. [Mi II, Proposition 2.6]). Then we see from Theorem
2.16 of [Mi II] that the distribution of the Hasse invariants of the division
algebra End(Z) coincides with the results of Theorem 1.

3.

Let G be a simple algebraic group, defined over F,, with Frobenius
map F. Let § be the minimal natural number such that F? acts trivially
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on Wq.
Let s = (s1,...,8,) be a sequence of simple reflections in W, and let

Xy = X(s1,..,8,) = {(Bo, B1,...,Bpn) € X2 | (Bi_1,B;) € 5
for 1 <i<mnand F(By) = B,}.

Then X is a locally closed subvariety of X ZH on which G*" acts diagonally.
We can prove that, for each i, each irreducible component of the GF-module
HY(X,) is unipotent (We use [Lu II, p. 25-6] and [DL, Theorem 6.2]).

Let p be a unipotent representation of G¥'. Then we have (R!(w), p)r #
0 for some w € Wg. We note that R (w) = Y (=1)'HLY(X (w)). Let w =
$1- - 8p, be areduced expression for w (n = Z(w)z). Then X (w) is isomorphic
to X with s = (s1,...,8,). Therefore there is an integer 7 such that
(HI(X,), p)ar # 0. |

Let s = (s1,...,sn) be a minimal sequence such that (H:(Xs), p)gr # 0
for some i. Then we see that ¢(s1---s,) = n and Xz ™ X(w) with w =
s1 -+ 8y (cf. [Lu II, pp. 25-6]). In the following, we fix one of such s.

We have (H!(Xy),p)qr = 0 for i # n (Haastert [Ha, Korollar 4.4 (1)]).
Therefore w is an element of Wg with minimal length such that
(RYw),p)er # 0. If p is cuspidal, then (R'(w),p)qr = (—1)", where
r is the Fg-rank of G (Lusztig [Lu V]).

Let

X =X(s1, . 50) = {(Bo, Brr... B) € X5 | (Bi1, Bi) € 5 Ue
for 1 <i<mnand F(By)= B,}.

Then X, is a smooth closed subvariety of X" ([DL, 9.10]) and X is
an open dense subvariety of X;. By the minimality of s, we see that the
inclusion X < X; induces an isomorphism as G*-modules from p-isotropic
part H?(X,), of H*(X;) onto the p-isotropic part H"(Xj), of H™(Xj)
([Lu II, p. 26]).
b goF™
Let X* = X;. Let m be any multiple of §, and let N{"(go) = ’ be ‘
(g0 € GT'). Then we have (Digne and Michel [DM, pp. 60-61]):

2n

N'(g0) = Y (=1)" Tr((go F™)", H'(X))
1=0



560 J. Ohmori

N

n

(=1) T ((F2)*™ (go)*, HY (X))

=0
2n
i mi 7 . m/é
= S0 ST (H(X), ) are X (90)- 2)
1=0 p'eU

(Note that one can prove that any irreducible component of H*(X") is unipo-
tent (cf. [Lu II, p. 26].).) Here U is the set of isomorphism classes of the
unipotent representations of Gf' and, for p/ € U, wy is a root if unity
such that w,¢"/? is the eigenvalue of (F°)* on H'(X") associated with p’
([Lu I1]).

Suppose that p is cuspidal. Then X is irreducible (Lusztig [Lu II,
pp. 26-27]). Let W(F,) be the ring of Witt vectors over F s, let K be
its quotient field and let K be an algebraic closure of K. Let X be the

F s-rational structure on X' determined by the Frobenius Fo: X — X.

Let Fy: X; — X;, be the Frobenius endomorphism of X (Fy = (Fabs)“/é7
qg= p“/). Then, by Theorem 2 of [KM], we have
Tr((goF5")", Herys(X0)) = Tr((9oF™)*, HY(X))  (i20).  (3)

crys

Let a be an eigenvalue of (Fy)*®1 on H!

crys

(Xp)©x K and let HY,  (X)a
be the generalized a-eigensubspace of Hg. (Xg) ®x K. Hiy(Xg)a is
a K[G*)-submodule of H},(Xy) @k K. In views of (2), (3), together with
Grothendieck’s trace formula for the étale cohomology, we see, by using
the linearly independence of the irreducible characters of GF' and the lin-

early independence of the functions m/d — wpﬂ}/ % that if p/ is contained in
H (X()a, then « is of the form wp,qits/?'

Crys

yAssume that G is of type (Eg) and that p is a cuspidal unipotent repre-
sentation of G such that x, = Eg[i] or Eg[—i]. Then Q(x,) = Q(i) ([Ge I,
§5]) and n = f(w) = 10 ([Lu V]). Therefore, by Hasse’s sum formula, we
get mq,(p) =1if p=2or p=3 (mod 4).

Assume that p =1 (mod 4). Then we have Q,(x,) = Qp(i) = Qp, and
we see that, by taking M = HCIIP},S(XJ}’O)p, (M, ¢) is an isocrystal over K.
Thus, by considering the representation

R: K[GF] — Endg (M),

the argument goes as §2 (note that we see that (M, ¢) is a semisimple
isocrystal). Thus we have mq,(p) = 1, hence mg(p) = 1.
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In the following theorem, the case where p = 5 was discussed in [Ge II]
and [He] in an individual way, as explained in Introduction. Out method
gives a uniform and conceptual proof in the case p =1 (mod 4).

Theorem 2 (cf. Geck [Ge I, IT] and Hezard [He|) The cuspidal unipotent
characters Eg|+i] of Eg(q) have the Schur index 1 over Q.

The same argument can be applied to any unipotent cuspidal represen-
tation p with Q,(x,) = Q, for any G. Therefore it remains the case where
G is of type (Es) and p is such that x, = Es[¢’] (1 < j < 4), p =4 (mod 5).
But, in this case, we can argue as follows.

Let x = x, = Es[¢’], and let x’ be the algebraically conjugate char-
acter of x over Qp, i.e. X' = Fs[¢%]. Since the character of the K[GT]-
module H[ ((X() takes values in Z. we must have (H3,(Xg), 0 )gr =
(Hays(Xg),p)gr = 1, where p' is a representation of G* with charac-
ter x’. Therefore, by the property of the Schur index, we have mg(p) =
mg(p') = 1, so that, by a threorem of Schur, we see that p@p’ is a represen-
tation of G which is realizable in K. Hence there is a unique submodule M
of Hf (X)) with character x + x’. We must have ¢(M) = M, since ¢(M)

is a GF-submodule of H (X)) with character o(x + x’) = x + x’. Thus

(M, ¢) is an isocrystal over K.
Let us consider the representation

R: K[GY] — Endg(M).

Let A(x,Q,) be the simple component of Q,[G¥] (C K[GT]) associated
with x. Then we see that R(Q,[GT]) = R(A(x,Q,)) (cf. T. Yamada [Ya,
Proposition 1.1, pp. 4-5]). Then since A(x,Q)) is a central simple algebra
over Qu(x) = Q,(¢) and R is a ring homomorphism, we see that B =
R(Q,[GT)) is a simple algebra, isomorphic to A(x,Q,). By Lemma 2 for X,
we must have B C End(M, ¢).

We have M @ K = M, ® M, where M, (resp. M) is the p-isotropic
part (resp. p/-isotropic part) of M@y K. Let my = ¢% = (Fp)*®1 (¢ = p*)
on M. The eigenvalues of (Fy)* ® 1 on M, C (M ®xk F)qun/g (resp. M, C
(M ®x F)ngqn/z) are of the form ¢7¢™/? (resp. ¢*¢"/?). Since the actions
of (Fp)*®1 and G¥" commute, by Schur’s lemma, we must have (Fp)*®1 =
¢Iq™? (resp. = (¥¢™?) on M, (resp. M,). Therefore the endomorphism
mar of M is semisimple, hence (M, ¢) is a semisimple isocrystal over K (see
Milne [Mi II, Proposition 2.10, p. 417]). Therefore End(M, ¢) is a Q,-form
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on the centralizer C = Zg(myr) of mar in B = Endg (M) ([Ko, p. 410]).
We have C @x K C Zpe w(mm) = My(K) ® My(K), where d = x(1) =
X'(1), and it is well known that B @x K ~ A(x,Qp) ®x K = My(K) ®
My(K). Therefore we must have B = End(M, ¢). Therefore, as B is simple
and (M, ¢) is semisimple, there is a simple subisocrystal (X, ¢) of (M, ¢)
such that B = End(M, ¢) ~ M(D) with D = End(X, ¢) for some positive
integer ¢. By Lemma 11.3 of [Ko], we see that the Hasse invariant of D can
be given by —(ord,(7x)/ordy(q))[Qp(7x) : Qp], where ord,, is the valuation
of @, and its extension to the field Qy[rx] and 7x = ¢ on X. But

Qplrx] = Qp(x) = Qp(¢) and ordy(rx) = a’'n/2, ord,(q) = @/, hence
V(A Q) = =5 (@00 : @l = —5Q(00 : Q] =0 (mod1)

(note that (—1)" = (—1)"). Thus mgq,(p) = 1 and mg(p) = 1.

Remark The last argument works in general case (G is simple, p is cus-
pidal, and ¢, p arbitrary). Therefore we can prove Theorem A in the intro-
duction.

“Theorem B” follows from this proof of Theorem A and Theorem 2.16
of Milne [Mi IIJ.
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