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Rationality of certain cuspidal unipotent representations

in crystalline cohomology groups
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Abstract. We complete the determination of the local Schur indices of each unipotent

representation of the group G(Fq) of Fq-rational points of a simple algebraic group G

defined over a finite field Fq .
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Introduction

Let Fq be a finite field with q elements of characteristic p. Let G be
a connected, reductive linear algebraic group, defined over Fq, with
Frobenius map F , and let GF be the (finite) group of fixed points of G
by F . Then the problem of determining of the local Schur indices of the
(complex) irreducible unipotent representations ρ of GF can be reduced
to the case where G is a simple algebraic group of adjoint type and ρ is
cuspidal ([DL, Propositon 7.10], [Ge II, Remark 2.6], [Lu II, p. 28], [Ge I,
Propositions 5.5, 5.6]).

Suppose that G is a simple algebraic group of adjoint type and that ρ is
cuspidal unipotent representation of GF . Then, in almost all cases, the local
Schur indices of ρ are determined by Lusztig [Lu V] and Geck [Ge I, II],
more or less by a general method. However there are two remaining cases for
which the above general method cannot be applied. They are the following:
(i) the characters E7[±ξ] in the group GF = E7(q), where q is an even

power of p such that p ≡ 4 (mod 4);
(ii) the characters E8[±

√−1 ] for GF = E8(q) with p = 5.
(see [Ge II]; as to te notations of characters of GF , we follow those in [Ca,
p. 483, p. 488].)

The first case was dealt with by Geck [Ge III], by investigating cer-
tain generalized Gelfand-Graev representations. For this, he has to assume
that p is large enough so that the result of Lusztig [Lu IV] on generalized
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Gelfand-Graev representations can be applied (note that it relies on the
general theory of Lie algebra, which requires that p is not too small). Also
it involves some explicit computations by using computer.

The idea for treating the second case was explained briefly in [Ge II]
and was discussed in Ph. D. thesis of Hezard [He]. It also use the generalized
Gelfand-Graev representations of E8(q). Since p = 5, the general theory of
Lie algebra cannot be applied, and very delicate and precise computations
are required.

In this paper, we with to propose a method of using crystalline coho-
mology groups in order to treat the above two cases. By realizing the above
cuspidal unipotent representations ρ on crystalline cohomology groups, it is
possible to determine the p-local Schur index mQp(ρ) of ρ. For any prime
` 6= p, the `-local Schur index mQp(ρ) of ρ can be determined by making
use of the realization of ρ on the `-adic cohomology groups due to Lusztig
[Lu V]. Thus the Schur indexmQp(ρ) of ρ with respect to Q is determined by
the Hasse principle. In particular, the argument works without restriction
on p.

The method of making use of crystalline cohomology seems to be com-
paratively general since, by modifying our method, one can prove the fol-
lowing:

Theorem A Let G be a simple algebraic group, defined over Fq, with
Fq-rank r. Let ρ by any cuspidal unipotent representation of GF with char-
acter χρ and let A(ρ,Qp) be the simple direct summand of the group algebra
Qp[GF ] associated with ρ. Let Qp(χρ) = Qp(χρ(g0), g0 ∈ GF ). Then the
Hasse invariant of the simple algebra A(ρ,Qp) (central over Qp(χρ)) can be
given by −(r/2)[Qp(χρ) : Qp].

Our result, with combining Lusztig’s realization in the `-adic cohomol-
ogy, can be interpreted in terms of motives over finite fields (see Milne
[Mi II]).

Let ρ be a cuspidal unipotent representation of GF (G simple). Let
w be a Weyl group element with minimal length n = `(w) such that
(R1(w), ρ)GF 6= 0, where R1(w) is the Deligne-Lusztig virtual represen-
tation of GF associated with w ([DL]). Let λqnδ/2 be the eigenvalue of
Frobenius on Hn(X(w),Q`) associated with ρ ([Lu II]; [DM, Théoremè 2.3,
p. 48]), Here X(w) is the Hansen-Demazure-Deligne-Lusztig compactifica-
tion of the Deligne-Lusztig variety X(w) associated with w ([DL, (9.10)]),
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Q` is an algebraic closure of the `-adic field Q` (` 6= p), δ is the minimal
natural number such that F δ acts trivially on the Weyl group of G, and
λ is a certain root of unity (cf. [DM]). Let X be a simple motive with
Weil qδ-number qnδ/2 (uniquely determined up to isomorphisms; see [Mi II,
p. 415]). Then

“Theorem B” Assume that Tate conjecture over finite fields holds (see
[Mi II ]). Then in the Brauer group of Q(χρ), the class of the simple direct
summand A(ρ,Q) of Q[GF ] associated with ρ and the class of the endomor-
phism ring End(X) of X are the same.

Theorem A also holds for cuspidal unipotent representations of the
Suzuki and Ree groups 2B2(q), 2G2(q), 2F4(q) except for the unique rep-
resentation ρ of 2F4(q), such that (R1(w), ρ)GF is even for all w ([Lu III,
p. 375]); for this representation, the formula in Theorem A does not hold;
ρ has the property that mQ`

(ρ) = 1 for ` 6= p and mR(ρ) = mQp(ρ) = 2 (see
[Ge I]).

Notation

p is a fixed prime number and k is an algebraic closure of the prime
field of characteristic p. q = pa′ is a power of p and Fq is the subfield of k
with q elements. By a variety, we mean a separated reduced scheme of finite
type over k and we identify it with the set of its k-rational points.

If ρ is an irreducible representation of a finite group H over an alge-
braically closed field C of characteristic 0, then χρ denotes its character
and for a field E of characteristic 0, E(ρ) = E(χρ) = E(χρ(h), h ∈ H) and
mE(ρ) or mE(χρ) denotes the Schur index of ρ with respect to E.

` is any fixed prime number 6= p, and Q` is an algebraic closure of Q`.
For a variety X, H i(X) (resp. H i

c(X)) is the i-th étale cohomology group
of X (resp. the i-th étale cohomology of X with compact supports) with
coefficients in Q`.

1.

Let n be a positive integer, and let Λn = Z/`nZ. Let X, Y be varieties
and let f : X → Y be a proper morphism. Then there exists a spectral
sequence
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(Ri
cπ∗)(R

jf∗)F =⇒ Ri+j
c (πf)∗F

where π : Y → Spec(k) is the structural morphism of Y (see [Mi I, The-
orem 3.2(c), p. 228]) (note that Ri

cf∗ = Rjf∗ since f is proper) and F is
any torsion (étale) sheaf of Λn-modules on X. Thus one of the edge homo-
morphisms of this spectral sequence gives Λn-homomorphisms ([CE, p. 329,
Case B])

(∗) H i
c(Y, f∗F ) −→ H i

c(X,F ) (i = 0).

(Note that (Ri
cπ∗)(R0f∗)F = (Ri

cπ∗)f∗F = H i
c(Y, f∗F ) and Ri

c(πf)∗F =
H i

c(X,F ).)
Let F ′ be a torsion sheaf on Y of Λn-modules, and let F = f∗F ′. Then,

by composing the homomorphism H i
c(Y, F

′) → H i
c(Y, f∗f∗F ′) induced by

the natural morphism F ′ → f∗f∗F ′ with the homomorphism (∗), we get
a Λn-homomorphism H i

c(Y, F
′)→ H i

c(X, f
∗F ′). By letting F ′ = Λn, and by

using the canonical isomorphism f∗Λn
∼→ Λn, we get a Λn-homomorphism

(∗∗) f∗n : H i
c(Y,Λn) −→ H i

c(X,Λn) (i = 0).

We note that if Z is a variety and g : Y → Z is a proper morphism, then
we have

(∗∗∗) (gf)∗n = f∗ng
∗
n.

Assume that X, Y are proper over Spec(k). Then, by the functoriality
([Sri. p. 41]), we get a natural Λn-homomorphismH i(Y,F ′)→H i(X,f∗F ′),
which, as we can check, coincides with the above homomorphism
H i(Y, F ′)→ H i(Y, f∗f∗F ′)→ H i(X, f∗F ′).

Returning to the general case with f : X → Y proper, let ψn :
H i

c(Y,Λn+1) → H i
c(Y,Λn), φn : H i

c(X,Λn+1) → H i
c(X,Λn) be homomor-

phisms which are induced by the natural morphism Λn+1 → Λn. Then we
have φnf

∗
n+1 = f∗nψn. Hence, by taking projective limits, we get

a Z`-homomorphism

lim←−
n

f∗n : H i
c(Y,Z`) = lim←−

n

H i
c(Y,Λn) −→ H i

c(X,Z`).

By tensoring with Q`, we get Q`-linear maps

H i
c(Y,Q`) −→ H i

c(X,Q`) (i = 0),
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hence we get Q`-linear maps

f∗ : H i
c(Y ) −→ H i

c(X) (i = 0).

We note that, if g : Y → Z is proper, then

(gf)∗ = f∗g∗.

Now let G be a connected, reductive linear algebraic group over k,
defined over Fq, with Frobenius map F . Let XG be the projective variety
of all Borel subgroups of G. Let F : XG → XG be the map defined by B →
F (B), which is the Frobenius map corresponding to the natural Fq-rational
structure of XG. G acts on XG by the conjugations: B → gBg−1, g ∈ G,
B ∈ XG.

For the sake of later use, let me allow to explain this action of G on XG.
Let k[G] be the k-algebra of regular functions on G. Then G acts on it by
(h · g)(x) = h(xg−1), g ∈ G, h ∈ k[G], x ∈ G. Then there is a finite-
dimensional, G-stable subspace V of k[G] and a line L through 0 (⊂ V )
such that B∗ = {g ∈ G | g(L) = L}, where B∗ is a previously fixed F -stable
Borel subgroup of G. Let P(V ) be the projective space associated with V

and let [L] be the class of L in P(V ). Note that V and L can be chosen so
that they are defined over Fq. The homogeneous space G/B∗ is defined to
be the orbit G · [L] in P(V ). Since G/B∗ is projective, it is complete, hence
G/B∗ = G · [L] is closed in P(V ). Let ρ : G→ GL(V ) be the representation
which is determined by the G-module V . Then, for each g ∈ G, ρ(g) is
an automorphism of the affine space V , which hence induces a k-algebra
automorphism θ(g) of k[V ]. With respect to a basis of the Fq-structure V0

of V , k[V ] can be viewed naturally as a polynomial ring k[T0, . . . , Td] over k
(d+1 = dimFq(V0)). Then, for g ∈ G, θ(g) is a homogeneous automorphism
of k[T0, . . . , Td] of degree 0, so that it induces a ring automorphism θ(g) of
k[G/B∗] = k[G · [L]]. Then it is well known that, for g ∈ G, the automor-
phism θ(g) induces an automorphism of G/B∗, which coincides with the
mapping hB∗ → ghB∗, hB∗ ∈ G/B∗. Since XG is isomorphic to G/B∗

naturally, the adjoint action of g ∈ G on XG is induced by a k-algebra
automorphism of a k-algebra A such that XG = Proj(A).

Now, we let G act on XG ×XG diagonally. Then WG = G\(XG ×XG)
has a natural group structure, which is called the Weyl group ofG ([DL, 1.2],
[Lu I, (1.2)]). For w ∈ WG, let X(w) = {B ∈ XG | (B,F (B)) ∈ w}. Then
X(w) is a locally closed smooth subvariety of XG, purely of dimension `(w),
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where `( ) is the length function on WG ([DL, 1.4]). For g0 ∈ GF , X(w)
is g0-stable, so, for each i = 0, we have an automorphism g∗0 of H i

c(X(w)).
We consider H i

c(X(w)) as GF -modules by (g−1
0 )∗, g0 ∈ GF . For i = 0,

H i
c(X(w)) is a Q`[GF ]-module with Q`-structure H i

c(X(w),Q`).
Let δ be the minimal positive integer such that F δ acts trivially on WG.

Then, for w ∈ WG, X(w) is F δ-stable. Let w ∈ WG. Then the mor-
phism F δ : X(w) → X(w) is finite, hence proper, so, for i = 0, F δ induces
a Q`-linear map (F δ)∗ : H i

c(X(w))→ H i
c(X(w)).

Let M be a simple Q`[GF ]-module. Then we say that M has depth t

if there is an F -stable subset I of the set S of simple reflections in WG

with |IF | = r − t, where IF is the set of orbits of F on I and r is the
semisimple Fq-rank of G, such that, for an F -stable parabolic subgroup PI

of G corresponding to I, with unipotent radical UI , MUF
I contains a non-

zero cuspidal LF -module, where L = PI/UI and MUF
I is the subspace of M

consisting of elements of M fixed by UF
I (see [Lu I, §4]).

Let M be any (finitely generated) Q`[GF ]-module For an integer t = 0,
let M (t) be the subspace of M defined as the sum of all simple
Q`[GF ]-submodules of M of depth t. Then we have M =

⊕
t=0

M (t). M (0) is

the cuspidal part of M .
Now assume that G is a simple algebraic group of type (E7). Let

s1, . . . , s7 be the simple reflections in WG. Put c = s1 · · · s7 and f =
(s1, . . . , s7). Let Xf = X(c). Then Xf is a smooth affine irreducible sub-
variety of dimension 7 ([Lu I, (2.8), (4.8)]). We have H i

c(Xf )(0) = 0 for
i 6= 7 and H7

c (Xf )(0) = H7
c (Xf )√−q7 ⊕H7

c (Xf )−
√
−q7 , where H7

c (Xf )√−q7

(resp. H7
c (Xf )−

√
−q7) is the subspace of H7

c (Xf ) on which F ∗ acts by mul-

tiplication by
√
−q7 (resp. −

√
−q7 ) ([Lu I, (6.1), (7.1), (7.3), (7.4)(c)]).

They afford two non-isomorphic cuspidal unipotent representations of GF

over Q` (see [Lu III, pp. 364–5], Cater [Ca, pp. 482–3]). And they are all
the cuspidal unipotent representations of GF .

Let ρ be a (complex) cuspidal unipotent representation of GF . Then
Q(χρ) = Q(

√
−q7 ) (cf. [Ge I, p. 21]). Since χρ is not real, we have

mQ∞(ρ)= 1. Let τ : C∼→Q` be an isomorphism. Then, since (H7
c (Xf ), ρτ )GF

= 1 and H7
c (Xf ) is defined over Q`, by a property of the Schur index, we

have mQ`
(ρ) = 1. Since ` is any prime number 6= p, by Hasse’s sum formula,

we must have mQp(ρ) = 1 (hence mQ(ρ) = 1) if the number of the places of
Q(χρ) lying above p is equal to one, and this is the case unless q is an even
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power of p such that p ≡ 1 (mod 4).
To treat the remaining case we use crystalline cohomology. To do so

we need some analysis of Lusztig’s results in [Lu I].
Let X ·

f = {(B0, B1, . . . , B7) ∈ X8
G | (Bi−1, Bi) ∈ si ∪ e for 1 5 i 5

7, and F (B0) = B7}. Then X ·
f is a smooth projective variety and Xf can

be identified with the open dense subvariety {(B0, B1, . . . , B7) ∈ X ·
f |B0 6=

B1 6= · · · 6= B7} of X ·
f (by Bruhat lemma) ([DL, 9.10]). Let F : X8

G →
X8

G : (B0, B1, . . . , B7) → (F (B0), F (B1), . . . , F (B7)). Then X ·
f is F -stable

and GF acts on it diagonally. The inclusion Xf ↪→ X ·
f is F -GF -equivariant.

Then this inclusion map induces an isomorphism H i
c(Xf )(0) ∼→ H i

c(X
·
f )(0)

(i = 0) ([Lu I, (4.3.1)]).

Lemma 1 ([Lu I, §4]) We have H7(X ·
f ) = H7(X ·

f )(0).

In fact, let me allow to use the notations of [Lu I, §4] freely.
The exact sequence (4.2.3) of [Lu I, §4] for a = 7 and i = 7 can be read:

· · · −→ H7
c (Xf )(t) α(t)−−−−→ H7

c (X ·
f )(t)

β(t)

−−−−→ H8
c (D6)(t) −→ · · · .

We see from the table on page 146 of [Lu I] that the absolute value of each
eigenvalue of F ∗ on H7

c (Xf ) other than ±
√
−q7 is an integral power of q.

On the other hand, we know from Deligne’s theorem on the eigenvalues of
Frobenius [De] that the absolute value of any eigenvalue of F ∗ on H7(X ·

f )
is q7/2. Since the actions of F and GF commute, we see that α(t) = 0 for
t = 1.

Next we show that β(t) = 0 for all t = 0, which would imply the desired
assertion.

Assume that t = 2. Then, by the statement on page 122, lines 7–8, of
[Lu I], we see that H7(D6)(t) is isomorphic as GF -modules to a quotient of⊕
|I|56

H7
c (X ·

f (I)). Moreover, by a standard argument from linear algebra by

using the exact sequences in lines 5, 6 on page 122 in [Lu I], that the set of
eigenvalues of F ∗ on H7(D6)(t) is contained in the set of eigenvalues of F ∗

on
⊕
|I|56

H7
c (X ·

f (I)). By (4.2.1) of [Lu I, p. 119], by the Künneth formula,

and by the table on page 146 of [Lu I, p. 119], we see that the absolute
value of each eigenvalue of F ∗ on

⊕
|I|56

H7
c (X ·

f (I)), hence on H7(D6)(t), is

an integral power of q. Thus β(t) = 0 for t = 2. by the formula on page 121,
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line 13, of [Lu I], we see that H7(D6)(1) = 0. And, by the formula on page
120, line 15, of [Lu I], we have H7(D6)(0) = 0. Thus β(t) = 0 for all t = 0.

2.

Let W (Fq) be the ring of Witt vectors of Fq and let K be its quotient
field. Let σ be the Frobenius automorphism of W (Fq) (induced by the au-
tomorphism x → xp of Fq); we also denote by σ its extension to K. For
a proper smooth scheme X0 over Fq, let H i(X0/W (Fq)) be the i-th crys-
talline cohomology group of X0 over W (Fq) (see Berthelot [Ber, p. 525]; also
see Illusite [Ill, 1.2, p. 44]), and let H i

crys(X0) = H i(X0/W (Fq))⊗W (Fq) K.
Let n be a positive integer, and let Wn = W (Fq)/pnW (Fq) (W1 = Fq).

Let g : X0 → Y0 be a morphism of proper smooth schemes X0, Y0 over Fq,
and suppose that the diagram

X0
g−−−−−−−−−−−−−−→ Y0

↓ ↓
Sn = Spec(Wn) h−−−→ Sn

commutes. Here, X0 → Sn is the composition: X0 → Spec(Fq) =
Spec(W1) → Sn (Yn → Sn is defined similarly) and h is a PD morphism
(see [Ber, p. 30] or [BO, p. 3.1]). Then we have a morphism of topoi:

gcris = (g∗cris, gcris∗) : (X0/Sn)cris −→ (Y0/Sn)cris

(see [Ber, Théorème 2.2.3, p. 197] or [BO, p. 5.3, p. 5.16]). Here (X0/Sn)cris
is the topos of sheaves on the site Cris(X0/Sn) (see [Ber, p. 180] or [BO,
p. 5.3]) ((Y0/Sn)cris is defined similarly). Let OX0/Sn

(resp. OY0/Sn
) be the

“structural sheaf” of X0 over Sn (resp. Y0 over Sn) ([Ber, p. 183] or [BO, p.
5.4]; also cf. [Ill, p. 44]). Then, by the functoriality (or by the spectral se-
quence in [BO, p. 5.16]), there is a natural map H i(Cris(Y0/Sn), OY0/Sn

)→
H i(Cris(X0/Sn), g∗crisOX0/Sn

) for each i, where H i(Cris(Y0/Sn), OY0/Sn
)

is the i-th cohomology group of the site Cris(Y0/Sn) with coeffi-
cients in OY0/Sn

([Ber, p. 180, p. 184]) (H i(Cris(X0/Sn), g∗crisOX0/Sn
) is

defined similarly). By composing this map with the natural map
H i(Cris(X0/Sn), g∗crisOY0/Sn

) → H i(Cris(X0/Sn), OX0/Sn
) induced by the

natural morphism g∗crisOY0/Sn
→ OX0/Sn

(see [Ber, (2.2.4), p. 199]), we get
a map
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g∗n : H i(Cris(Y0/Sn), OY0/Sn
) −→ H i(Cris(X0/Sn), OX0/Sn

).

If

Y0
g′−−−−−→ Z0

↓ ↓
Sn

h′−−−−−→ Sn

is another commutative diagram, where Z0 is a proper smooth variety
over Fq and h′ is a PD morphism, we have

(g′g)∗n = (g∗n)(g′∗n )

(cf. [Ber, Proposition 2.2.6, p. 200]).
We also have natural maps pn : H i(Cris(X0/Sn+1), OX0/Sn+1

) →
H i(Cris(X0/Sn), OX0/Sn

), qn : H i(Cris(Y0/Sn+1), OY0/Sn+1
) →

H i(Cris(Y0/Sn), OY0/Sn
), and we have png

∗
n+1 = g∗nqn. Therefore, by taking

projective limits, we get a map

g∗ := lim←−
n

g∗n : H i(Y0/W (Fq)) −→ H i(X0/W (Fq)) (i = 0).

We have (g′g)∗ = g∗g′∗.
Let X0 be a projective smooth scheme over Fq. Let Fabs : X0 → X0 be

the absolute Frobenius endomorphism ofX0: Fabs is the identity map on the
underlying space of X0 and, for each section h in the structural sheaf OX0

of X0, we have Fabs(h) = hp. Then we have a commutative diagram

X0
Fabs−−−−−→ X0

↓ ↓
Sn −−−−−→

hn

Sn,

where hn is the PD morphism induced by σ : Wn → Wn. Then we have
a σ-linear endomorphism (Fabs)∗ of H i(X0/W (Fq)) for each i. Hence we
get a σ-linear endomorphism φ = (Fabs)∗ ⊗ σ of H i

crys(X0) for each i. This
makes each (H i

crys(X0), φ) an isocrystal over K, i.e. a finite-dimensional
vector space over K with σ-linear bijection.

Let X0 be as above. Recall that q = pa′ . Then F0 = (Fabs)a′ is the
Frobenius endomorphism of X0; if X = X0 ×Fq k, then F = F0 × 1 is
the Frobenius endomorphism of X which corresponds to the Fq-rational
structure X0 on X.
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Let X = Proj(A), Y = Proj(B) be two projective varieties defined
over Fq, and let g and h be automorphisms of X and Y respectively, defined
over Fq; Assume that g (resp. h) is the restriction to X (resp. Y ) of an
automorphism of an ambient projective space, with the standard Fq-rational
structure, defined over Fq. Then we see that g × h is the automorphism of
X ×X which is induced by a k-algebra automorphism of A⊗k B.

Now let the assumptions and the notations be as in §1. Recall that
X ·

f is an F -stable closed subvariety of X8
G. Suppose that X ·

f = Proj(A).
Then, for each g0 ∈ GF , the automorphism g0 : X ·

f → X ·
f is induced by

a k-algebra automorphism θ(g0) of A which is homogeneous of degree 0.
Let

A0 = {x ∈ A |F (x) = xq}.
Then X ·

f,0 = Proj(A0) is the Fq-rational structure on X ·
f determined by

F : X ·
f → X ·

f . Let g0 ∈ GF . Then, since θ(g0) : A → A is a ring automor-
phism, for x ∈ A0, we have

F (θ(g0)(x)) = θ(g0)(F (x)) = θ(g0)(xq) = θ(g0)(x)q,

so θ(g0)(x) ∈ A0. So θ(g0) induces a ring automorphism of A0, hence in-
duces an endomorphism g0 of X ·

f,0. Thus we get an endomorphism (g0)∗ of
H i(X ·

f,0/W (Fq)) for i = 0. It is clear that (h0g0)∗ = (g0)∗(h0)∗ (h0 ∈ GF ).
Thus each H i(X ·

f,0/W (Fq)) is a GF -module by the actions (g−1
0 )∗,

g0 ∈ GF .
Let g0 ∈ GF . Then the graph of g0 : X ·

f,0 → X ·
f,0 defines a cycle in

X ·
f,0 ×Sn X

·
f,0 of codimension 7 (n = 1), hence, by the Künneth formula

and the Poincarè duality theorem for crystalline cohomology, its class in
H14((X ·

f,0 ×Sn X
·
f,0)/Sn, O(X·

f,0×SnX·
f,0)/Sn

), hence in H14
crys(X

·
f,0 ×Fq X

·
f,0)

determines a linear endomorphism of H1
crys(X

·
f,0) for each i, which is just

(g0)∗⊗ 1 (cf. Kleimann [Kl, 3, pp. 11–2] and Berthelot [Ber, Chap. VII, §3,
Lemma 3.1.4, p. 575]). Similar statements also hold for étale cohomology
(cf. [Mi I, Chap. VI, §12, Lemma 12.1]). Thus by Theorem 2 of Katz
and Messing [KM], we see that, for each i, the characteristic polynomial of
(g0)∗⊗1 on H i

crys(X
·
f,0) coincides with the characteristic polynomial of (g0)∗

on H i(X ·
f ) (they have coefficients in Z). In particular, we have

Tr((g0)∗⊗1,H i
crys(X

·
f,0)) = Tr((g0)∗,H i(X ·

f )) (i = 0). (1)
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(This argument was inspired by Lusztig [Lu I, p. 121, line 24].) We also
see that, by Theorem 1 of [KM], the eigenvalues of (F0)∗⊗ 1 on H7

crys(X
·
f,0)

coinside the eigenvalue of F ∗ on H7(X ·
f ).

Lemma 2 Let g0 ∈ GF . Then Fabsg0 = g0Fabs on the scheme X ·
f,0.

Thus φ((g0)∗ ⊗ 1) = ((g0)∗ ⊗ 1)φ on H i
crys(X

·
f,0) (i = 0) (recall that φ =

(Fabs)∗ ⊗ σ).

In fact, on the underlying space of X ·
f,0, Fabs is the identity. For x ∈ A0,

we have θ(g0)(Fabs(x)) = θ(g0)(xp) = θ(g0)(x)p = Fabs(θ(g0)(x)). The last
assertion is clear.

Assume that q is an even power of p such that p ≡ 1 (mod 4). Then we
have

√
−q7 ∈ Qp. The eigenvalues of (F0)∗⊗1 = φa′ (q = pa′) onH7

crys(X
·
f,0)

are ±
√
−q7. Let M+ (resp. M−) be the generalized

√
−q7-eigenspace

(resp. −
√
−q7-eigenspace) of H7

crys(X
·
f,0). Then, since the action of GF

and (F0)∗ ⊗ 1 on H7
crys(X

·
f,0) commute, we see that M+ and M− are GF -

submodules of H7
crys(X

·
f,0). Hence, by (1), we see that they are absolutely

irreducible GF -modules over K and H7
crys(X

·
f,0) = M+ ⊕M−; moreover we

see that the actions of (F0)∗ ⊗ 1 on M+ and M− are semisimple.
By Lemma 2, we see that φ(M+) is a GF -module. For g0 ∈ GF , we

have

Tr((g0)∗⊗1, φ(M+)) = σ(Tr((g0)∗⊗1,M+)) = Tr((g0)∗⊗1,M+)

since Qp(χρ) = Qp(
√
−q7 ) = Qp (ρ is the representation afforded by M+)

(Geck [Ge I, §5]). So φ(M+) is isomorphic to M+ as GF -modules. Since
M+ and M− are not isomorphic, we must have φ(M+) = M+. Similarly, we
must have φ(M−) = M−. Therefore (M+, φ) and (M−, φ) are semisimple
isocrystals over K (cf. Milne [Mi II, Proposition 2.10, p. 417]).

Let M be M+ or M−, and let

U : K[GF ] −→ EndK(M)

be the corresponding representation of K[GF ]. Since U is absolutely
irreducible, we have U(K[GF ]) = EndK(M) ∼= Md(K), where Md(K)
is the K-algebra of all d × d-matrices over K with d = dimK M . Let
B = U(Qp[GF ]). Then there is a division algebra D, central over Qp =
Qp(

√
−q7 ), such that B ∼= Mn(D), where if m denotes the index of D,

then d = nm (cf. Curtis and Reiner [CR, p. 468]). We note that m =
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mQp(U). We have B ⊗Qp K 'Md(K) ' EndK(M) ([loc. cit.]).
Let

End(M,φ) = {h ∈ EndK(M) |φh = hφ}.
This is a Qp-form of the centralizer ZEndK(M)(πM ) of πM = φa′ in EndK(M)
(see Kottwitz [Ko, p. 410]; also see Milne [Mi II, p. 417]). By Lemma 2,
we see that B is contained in End(M,φ). But,, as B ⊗Qp K = EndK(M),
we must have B = End(M,φ). Therefore, as (M,φ) is semisimple, there
is a simple subisocrystal (X,φ) of (M,φ) such that End(X,φ) ∼= D. By
Lemma 11.3 of [Ko] (also see [Mi II, Proposition 2.14]), we see that the
Hasse invariant of D is 1/2. Therefore mQp(U) = 2.

We note that GF = E7(q) has just two isomorphism classes of cuspidal
unipotent representations.

The following theorem is due to Geck [Ge III] except for (ii) where
he had to assume that p is large enough. Our argument can remove this
assumption.

Theorem 1 (cf. Geck [Ge III]) Let G be a simple algebraic group of type
(E7), defined over Fq, with Frobenius map F . Let ρ be a (complex ) cuspidal
unipotent representation of GF with character χρ. Then the value field
Q(χρ) of χρ is Q(

√
−q7 ). (i) If p = 2, or q is an odd power of p, or q is an

even power of p such that p ≡ 3 (mod 4), then mQ(ρ) = 1. (ii) Assume that
q is an even power of p such that p ≡ 1 (mod 4), Then we have mQ∞(ρ) =
mQ`

(ρ) = 1 for any prime number ` 6= p and mQp(ρ) = 2. Thus mQ(ρ) = 2.

By Propositions 5.5, 5.6 of [Ge I], we see that a unipotent representa-
tions of E8(q) with character E7[ξ], 1, E7[−ξ], 1, E7[ξ], ε or E7[−ξ], ε has
the same rationality.

Remark Let h(X ·
f,0) be the motive over Fq corresponding to X ·

f,0 (see
Milne [Mi II]), and let Z be the simple submotive of h(X ·

f,0) such that
[πZ ] = [

√
−q7 ] (cf. [Mi II, Proposition 2.6]). Then we see from Theorem

2.16 of [Mi II] that the distribution of the Hasse invariants of the division
algebra End(Z) coincides with the results of Theorem 1.

3.

Let G be a simple algebraic group, defined over Fq, with Frobenius
map F . Let δ be the minimal natural number such that F δ acts trivially
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on WG.
Let s = (s1, . . . , sn) be a sequence of simple reflections in WG, and let

Xs = X(s1, . . . , sn) = {(B0, B1, . . . , Bn) ∈ Xn+1
G | (Bi−1, Bi) ∈ si

for 1 ≤ i ≤ n and F (B0) = Bn}.
Then Xs is a locally closed subvariety of Xn+1

G on which GF acts diagonally.
We can prove that, for each i, each irreducible component of the GF -module
H i

c(Xs) is unipotent (We use [Lu II, p. 25–6] and [DL, Theorem 6.2]).
Let ρ be a unipotent representation ofGF . Then we have (R1(w), ρ)GF 6=

0 for some w ∈ WG. We note that R1(w) =
∑
i
(−1)iH i

c(X(w)). Let w =

s1 · · · sn be a reduced expression for w (n = `(w)). Then X(w) is isomorphic
to Xs with s = (s1, . . . , sn). Therefore there is an integer i such that
(H i

s(Xs), ρ)GF 6= 0.
Let s = (s1, . . . , sn) be a minimal sequence such that (H i

c(Xs), ρ)GF 6= 0
for some i. Then we see that `(s1 · · · sn) = n and Xs

∼→ X(w) with w =
s1 · · · sn (cf. [Lu II, pp. 25–6]). In the following, we fix one of such s.

We have (H i
c(Xs), ρ)GF = 0 for i 6= n (Haastert [Ha, Korollar 4.4 (1)]).

Therefore w is an element of WG with minimal length such that
(R1(w), ρ)GF 6= 0. If ρ is cuspidal, then (R1(w), ρ)GF = (−1)r, where
r is the Fq-rank of G (Lusztig [Lu V]).

Let

Xs =X(s1, . . . , sn) = {(B0,B1, . . . ,Bn) ∈Xn+1
G | (Bi−1,Bi) ∈ si ∪ e

for 1≤ i≤ n and F (B0) =Bn}.
Then Xs is a smooth closed subvariety of Xn+1

G ([DL, 9.10]) and Xs is
an open dense subvariety of Xs. By the minimality of s, we see that the
inclusion Xs ↪→ Xs induces an isomorphism as GF -modules from ρ-isotropic
part Hn

c (Xs)ρ of Hn
c (Xs) onto the ρ-isotropic part Hn(Xs)ρ of Hn(Xs)

([Lu II, p. 26]).

Let X · = Xs. Let m be any multiple of δ, and let Nm
s (g0) =

∣∣∣∣
g0F

m

X ·

∣∣∣∣
(g0 ∈ GF ). Then we have (Digne and Michel [DM, pp. 60–61]):

Nm
s (g0) =

2n∑

i=0

(−1)i Tr((g0Fm)∗,H i(X ·))
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=
2n∑

i=0

(−1)i Tr((F δ)∗
m/δ

(g0)∗,H i(X ·))

=
2n∑

i=0

(−1)iqmi/2
∑

ρ′∈U

(H i(X ·), ρ′)GFω
m/δ
ρ′ χρ′(g0). (2)

(Note that one can prove that any irreducible component ofH i(X ·) is unipo-
tent (cf. [Lu II, p. 26].).) Here U is the set of isomorphism classes of the
unipotent representations of GF and, for ρ′ ∈ U , ωρ′ is a root if unity
such that ωρ′q

iδ/2 is the eigenvalue of (F δ)∗ on H i(X ·) associated with ρ′

([Lu II]).
Suppose that ρ is cuspidal. Then X · is irreducible (Lusztig [Lu II,

pp. 26–27]). Let W (Fqδ) be the ring of Witt vectors over Fqδ , let K be
its quotient field and let K be an algebraic closure of K. Let X ·

0 be the
Fqδ -rational structure on X · determined by the Frobenius F δ : X · → X ·.
Let F0 : X ·

0 → X ·
0 be the Frobenius endomorphism of X ·

0 (F0 = (Fabs)a′δ,
q = pa′). Then, by Theorem 2 of [KM], we have

Tr((g0Fm
0 )∗,H i

crys(X
·
0)) = Tr((g0Fm)∗,H i(X ·)) (i = 0). (3)

Let α be an eigenvalue of (F0)∗⊗1 onH i
crys(X

·
0)⊗KK and letH i

crys(X
·
0)α

be the generalized α-eigensubspace of H i
crys(X

·
0) ⊗K K. H i

crys(X
·
0)α is

a K[GF ]-submodule of H i
crys(X

·
0)⊗K K. In views of (2), (3), together with

Grothendieck’s trace formula for the étale cohomology, we see, by using
the linearly independence of the irreducible characters of GF and the lin-
early independence of the functions m/δ → ω

m/δ
ρ′ , that if ρ′ is contained in

H i
crys(X

·
0)α, then α is of the form ωρ′q

iδ/2.
Assume that G is of type (E8) and that ρ is a cuspidal unipotent repre-

sentation of GF such that χρ = E8[i] or E8[−i]. Then Q(χρ) = Q(i) ([Ge I,
§5]) and n = `(w) = 10 ([Lu V]). Therefore, by Hasse’s sum formula, we
get mQp(ρ) = 1 if p = 2 or p ≡ 3 (mod 4).

Assume that p ≡ 1 (mod 4). Then we have Qp(χρ) = Qp(i) = Qp, and
we see that, by taking M = H10

crys(X
·
f,0)ρ, (M,φ) is an isocrystal over K.

Thus, by considering the representation

R : K[GF ] −→ EndK(M),

the argument goes as §2 (note that we see that (M,φ) is a semisimple
isocrystal). Thus we have mQp(ρ) = 1, hence mQ(ρ) = 1.
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In the following theorem, the case where p = 5 was discussed in [Ge II]
and [He] in an individual way, as explained in Introduction. Out method
gives a uniform and conceptual proof in the case p ≡ 1 (mod 4).

Theorem 2 (cf. Geck [Ge I, II] and Hezard [He]) The cuspidal unipotent
characters E8[±i] of E8(q) have the Schur index 1 over Q.

The same argument can be applied to any unipotent cuspidal represen-
tation ρ with Qp(χρ) = Qp for any G. Therefore it remains the case where
G is of type (E8) and ρ is such that χρ = E8[ζj ] (1 ≤ j ≤ 4), p ≡ 4 (mod 5).
But, in this case, we can argue as follows.

Let χ = χρ = E8[ζj ], and let χ′ be the algebraically conjugate char-
acter of χ over Qp, i.e. χ′ = E8[ζ4j ]. Since the character of the K[GF ]-
module Hn

crys(X
·
0) takes values in Z. we must have (Hn

crys(X
·
0), ρ

′)GF =
(Hn

crys(X
·
0), ρ)GF = 1, where ρ′ is a representation of GF with charac-

ter χ′. Therefore, by the property of the Schur index, we have mK(ρ) =
mK(ρ′) = 1, so that, by a threorem of Schur, we see that ρ⊕ρ′ is a represen-
tation of GF which is realizable in K. Hence there is a unique submodule M
of Hn

crys(X
·
0) with character χ+ χ′. We must have φ(M) = M , since φ(M)

is a GF -submodule of Hn
crys(X

·
0) with character σ(χ + χ′) = χ + χ′. Thus

(M,φ) is an isocrystal over K.
Let us consider the representation

R : K[GF ] −→ EndK(M).

Let A(χ,Qp) be the simple component of Qp[GF ] (⊂ K[GF ]) associated
with χ. Then we see that R(Qp[GF ]) = R(A(χ,Qp)) (cf. T. Yamada [Ya,
Proposition 1.1, pp. 4–5]). Then since A(χ,Qp) is a central simple algebra
over Qp(χ) = Qp(ζ) and R is a ring homomorphism, we see that B =
R(Qp[GF ]) is a simple algebra, isomorphic to A(χ,Qp). By Lemma 2 forX ·

0,
we must have B ⊂ End(M,φ).

We have M ⊗K K = Mρ⊕Mρ′ , where Mρ (resp. Mρ′) is the ρ-isotropic
part (resp. ρ′-isotropic part) of M⊗KK. Let πM = φa′ = (F0)∗⊗1 (q = pa′)
on M . The eigenvalues of (F0)∗ ⊗ 1 on Mρ ⊂ (M ⊗K K)ζjqn/2 (resp. Mρ′ ⊂
(M ⊗K K)ζ4jqn/2) are of the form ζjqn/2 (resp. ζ4jqn/2). Since the actions
of (F0)∗⊗1 and GF commute, by Schur’s lemma, we must have (F0)∗⊗1 =
ζjqn/2 (resp. = ζ4jqn/2) on Mρ (resp. Mρ′). Therefore the endomorphism
πM of M is semisimple, hence (M,φ) is a semisimple isocrystal over K (see
Milne [Mi II, Proposition 2.10, p. 417]). Therefore End(M,φ) is a Qp-form
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on the centralizer C = ZE(πM ) of πM in E = EndK(M) ([Ko, p. 410]).
We have C ⊗K K ⊂ ZE⊗KK(πM ) ∼= Md(K) ⊕Md(K), where d = χ(1) =
χ′(1), and it is well known that B ⊗K K ' A(χ,Qp) ⊗K K = Md(K) ⊕
Md(K). Therefore we must have B = End(M,φ). Therefore, as B is simple
and (M,φ) is semisimple, there is a simple subisocrystal (X,φ) of (M,φ)
such that B = End(M,φ) ' Mt(D) with D = End(X,φ) for some positive
integer t. By Lemma 11.3 of [Ko], we see that the Hasse invariant of D can
be given by −(ordp(πX)/ ordp(q))[Qp(πX) : Qp], where ordp is the valuation
of Qp and its extension to the field Qp[πX ] and πX = φa′ on X. But
Qp[πX ] ∼= Qp(χ) ∼= Qp(ζ) and ordp(πX) = a′n/2, ordp(q) = a′, hence

inv(A(χ,Qp)) ≡ −n2 [Qp(χ) : Qp] ≡ −r2[Qp(χ) : Qp] ≡ 0 (mod 1)

(note that (−1)n = (−1)r). Thus mQp(ρ) = 1 and mQ(ρ) = 1.

Remark The last argument works in general case (G is simple, ρ is cus-
pidal, and q, p arbitrary). Therefore we can prove Theorem A in the intro-
duction.

“Theorem B” follows from this proof of Theorem A and Theorem 2.16
of Milne [Mi II].
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