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On solutions of x′′ = tαλ−2x1+α

where α > 0 and λ = 0, −1
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Abstract. Here we investigate asymptotic behavior of positive solutions of an initial

value problem of the second order nonlinear differential equation written in the title. This

is done from obtaining analytical expressions of the solution valid in the neighborhoods

of both end points of its domain.

Key words: asymptotic behavior, an initial value problem, a two dimensional autonomous
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1. Introduction

In this paper, we shall discuss asymptotic behavior of a solution of an
initial value problem

x′′ = tαλ−2x1+α (′= d/dt) (E)

x(T ) = A, x′(T ) = B (I)

where t and x are positive variables, α, T , and A are positive constants,
and B is a real constant. We shall consider the cases λ = 0 and λ = −1
here.

The differential equation (E) has a form similar to that of the Thomas-
Fermi differential equation in atomic physics and is expected to enter into
mathematical physics (cf. [1]). Moreover (E) is an equation of motion in the
potential field, so Euler’s equation of a variational problem and an equation
which positive radial solutions of an elliptic partial differential equation
satisfy. That is, (E) is related to various another fields and worth solving.

Actually there are many papers in which (E) is considered (cf. [5], [6],
[13], [16], and references of [4]). Taking [7] and [17] from references of [4]
for example, these treat the solutions continuable to ∞. On the other hand
in [5], [6], [13], and [16], the initial value problem (E) and (I) is treated.
In [5] and [6], the case T = 0 and αλ > 1 is considered and in [13] and [16],
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the cases λ > 0 and λ < −1 are respectively.
The method which we shall use in this paper is almost the same as

in [5], [6], [13], and [16]. In these papers we first transform (E) into a first
order rational differential equation, using a transformation

y = ψ(t)−αxα, z = ty′

where

ψ(t) = {λ(λ+1)}1/αt−λ

is a particular solution of (E). However this is no use in our cases λ = 0
and λ = −1 and another transformation will be adopted.

We shall discuss the case λ = 0 in Sections 2 through 5, and the case
λ = −1 in Section 6.

2. The main conclusions of the case λ = 0

In this section we suppose λ = 0. Then (E) becomes

x′′ = t−2x1+α. (E0)

If x = x(t) denotes a solution of (E0) satisfying an initial condition (I) and
(ω−, ω+) the domain of x(t), then we get the following:

Theorem 2.1 There exists a number B1 such that if B = B1, then we
have

0 < ω− <∞, ω+ = ∞,

x(t) ∼ 1
(α log t)1/α

{
1 +

∑

m+n>0

xmn

(
log log t

log t

)m (
1

log t

)n
}

(2.1)

as t→∞, and

x(t) =
{

2(α+ 2)ω2−
α2

}1/α

(t− ω−)−2/α

×
{

1 +
∑

m>0

(t− ω−)mqm(log(t− ω−))

}

in the case 4/α ∈ N (2.2)
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x(t) =
{

2(α+ 2)ω2−
α2

}1/α

(t− ω−)−2/α

×
{

1 +
∑

m+n>0

xmn(t− ω−)m(t− ω−)(2+4/α)n

}

in the case 4/α /∈ N (2.3)

in the neighborhood of t = ω−. Here xmn are constants and qm are polyno-
mials with degrees not greater than [mα/2(α + 2)], [ ] denoting Gaussian
symbol.

Now, notice that f(t) ∼ g(t) as t→∞ means

lim
t→∞

f(t)
g(t)

= 1.

Moreover we conclude the following:

Theorem 2.2 There exists a number B2 (> B1) such that if B = B2,
then we get

ω− = 0, 0 < ω+ <∞,

x(t) = Γt

(
1 +

∞∑

n=1

xnt
αn

)
(2.4)

in the neighborhood of t = 0, and

x(t) =
{

2(α+ 2)ω2
+

α2

}1/α

(ω+ − t)−2/α

×
{

1 +
∑

m>0

(ω+ − t)mqm(log(ω+ − t))

}

in the case 4/α ∈ N (2.5)

x(t) =
{

2(α+ 2)ω2
+

α2

}1/α

(ω+ − t)−2/α

×
{

1 +
∑

m+n>0

xmn(ω+ − t)m(ω+ − t)(2+4/α)n

}

in the case 4/α /∈ N (2.6)

in the neighborhood of t = ω+. Here Γ and xn are constants.
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If B 6= B1, B2, then we obtain the following:

Theorem 2.3
(i) If B < B1, then we get

x(t) = Γ(ω+−t)
{

1 +
∑

m+n>0

xmn(ω+ − t)m(ω+ − t)αn

}
(2.7)

in the neighborhood of t = ω+, and (2.2) or (2.3) in the neighborhood of
t = ω−.

(ii) If B1 < B < B2, then we get (2.2) or (2.3) in the neighborhood of
t = ω−, and (2.5) or (2.6) in the neighborhood of t = ω+.

(iii) If B > B2, then we get

x(t) = Γ(t−ω−)

{
1 +

∑

m+n>0

xmn(t− ω−)m(t− ω−)αn

}
(2.8)

in the neighborhood of t = ω−, and (2.5) or (2.6) in the neighborhood of
t = ω+.

(iv) In (i), (ii), and (iii), we have

0 < ω− < ω+ <∞.

For proving these theorems, we transform (E0). For this we put

y = xα, z = ty′ (2.9)

in (E0) and get a first order rational differential equation

dz

dy
=

(α− 1)z2 + αyz + α2y3

αyz
. (2.10)

Using a parameter s, we rewrite this as a two dimensional autonomous
system

dy

ds
= αyz

dz

ds
= (α− 1)z2 + αyz + α2y3.

(2.11)

If α 6= 1, then (0, 0) is the only singular point of (2.11) and if α = 1, then
every point of the z axis is the singular point. Notice that we always get
y > 0 from x > 0 and an orbit of (2.11) is a solution of (2.10).
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The proof will be carried out in Section 5, since it is necessary to obtain
lemmas of Sections 3 and 4.

3. The investigation of (2.10) in the neighborhood of y = 0

First, let us consider (2.10) in the neighborhood of y = 0. For this, we
put

w = y−2z

and get

dw

dy
=
α2 + αw − (α+ 1)yw2

αy2w
. (3.1)

If y = 0, then the numerator of the righthand side of (3.1) vanishes if and
only if

w = −α.
Let γ be an accumulation point of a solution w = w(y) of (3.1) as

y → 0. Then we conclude the following:

Lemma 3.1 γ is the limit and γ = −α, ±∞. If γ = −α, then we get the
solution of (3.1) represented as

w = −α+
N−1∑

n=1

any
n+O(yN ) as y → 0 (3.2)

where N is a positive integer and an are constants.

Proof. There exists a sequence {yn} (yn > 0) such that yn → 0 and
w(yn) → γ as n → ∞. If γ 6= −α, ±∞, then dw/dy does not vanish
at y = yn from (3.1) and hence we get the inverse function y = y(w) such
that if wn = w(yn), then wn → γ and y(wn) → 0 as n → ∞. Therefore
from Painlevé’s theorem (cf. Theorem 3.2.1 of [2]), y = y(w) is a solution of

dy

dw
=

αy2w

α2 + αw − (α+ 1)yw2

satisfying an initial condition y(γ) = 0. However from the uniqueness of
the solution, such a solution is only y ≡ 0. Namely we get a contradiction
yn = 0. Hence γ = −α, ±∞ and γ is the limit.
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If γ = −α, then we put θ = w + α and get from (3.1)

y2 dθ

dy
= − 1

α
θ+(α+1)y+ · · · (3.3)

where · · · denotes terms whose degrees are greater than the previous terms.
Therefore from Hukuhara’s theorem stated in p.66 of [3], there exists a so-
lution of (3.3) uniquely such that

θ → 0 as y → 0

and this is represented as

θ =
N−1∑

n=1

any
n+O(yN ) as y → 0 (3.4)

where
∑N−1

n=1 any
n is a partial sum of the formal solution of (3.3). More-

over (3.4) implies (3.2). ¤

From (3.2) we get a solution of (2.10) represented as

z = −αy2

{
1 +

N−1∑

n=1

bny
n +O(yN )

}
as y → 0 (3.5)

where bn = −an/α. Since existence of (3.4) is unique, so is that of (3.2)
and (3.5). Thus we denote (3.5) as z = z1(y).

Lemma 3.2 From z = z1(y), we get a solution of (E0) represented as
(2.1) as t→∞.

Proof. Applying (2.9) to z = z1(y), we have

ty′ = −αy2(1+o(1))

and

y =
1 + o(1)
α log t

(3.6)

as y → 0. Hence y → 0 is equivalent to t → ∞. Moreover from (2.9) and
z = z1(y) we get

y′

y2

{
1 +

N−1∑
n=1

bnyn +O(yN )
} = −α

t
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and integrating both sides,

1
y

{
1 + c1y log y +

N−1∑

n=2

cny
n +O(yN )

}
= α log t+D

where cn (n = 1, 2, . . . , N − 1) and D are constants. Therefore we have

y =
1

α log t

(
1 + c1y log y +

N−1∑

n=2

cny
n

)
(1+o(1)) as t→∞.

Substituting (3.6) into this, we obtain

y =
1

α log t

{
1 + c1

1
α log t

log
1

α log t
+

N−1∑

n=2

cn

(
1

α log t

)n
}

(1+o(1))

and (2.1), since x = y1/α from (2.9). ¤

If γ = ±∞, then we put w = 1/θ and get

θ → 0 as y → 0,

y2 dθ

dy
= −θ2 +

α+ 1
α

yθ − αθ3.

Moreover putting u = y−1θ, we have

y
du

dy
=

1
α
u−u2−αyu3. (3.7)

Let δ be an accumulation point of a solution u = u(y) of (3.7) as y → 0.
Then we obtain the following:

Lemma 3.3 Suppose γ = ±∞. Then δ is the limit and δ = 0, 1/α.
If δ = 0, then from u(y) we get a solution of (2.10) represented in the
neighborhood of y = 0 as

z = C−1y1−1/α

{
1 +

∑

m+n>0

ãmny
m+n/α

}
(3.8)

and if δ = 1/α, then

z = αy

(
1 +

∞∑

n=1

ãny
n

)
. (3.9)

Here C, ãmn, and ãn are constants.
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Proof. If δ 6= 0, 1/α, ±∞, then from (3.7) we get a contradiction y ≡ 0,
since the righthand side of (3.7) does not vanish. Thus δ = 0, 1/α, ±∞ and
δ is the limit.

If δ = 0, then since

u = y−1θ =
1
yw

=
y

z
,

the same transformation as in Section 5 of [6] is used. Therefore applying
the discussion done there to (3.7) we get

u =
∑

m+n>0

amny
m(Cy1/α)n

and (3.8) from this. Here a01 = 1, am0 = 0, and amn are constants.
Moreover if δ = 1/α, then we put v = u− 1/α and get

v → 0 as y → 0 (3.10)

y
dv

dy
= − 1

α
v − v2 − αy

(
v +

1
α

)3

. (3.11)

This is a Briot-Bouquet differential equation and since −1/α < 0 it fol-
lows from Lemma 2.5 of [12] that there exists a solution v = v(y) of (3.11)
uniquely such that (3.10) holds. Moreover v(y) is holomorphic in the neigh-
borhood of y = 0 and hence we denote this as

v =
∞∑

n=1

any
n.

Returning the variables, we get (3.9).
Finally if δ = ±∞, then we put u = 1/v and have

v → 0 as y → 0 (3.12)

dv

dy
=
α2y + αv − v2

αyv
. (3.13)

On the other hand, we get

y−1v = w → ±∞ as y → 0

since γ = ±∞. Hence from (3.13) we have

dv

dy
=
α2yv−1 + α− v

αy
, namely

dv

dy
=

1 + o(1)
y

as y → 0.
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Integrating both sides from y to y∗ (y < y∗), we get

v∗−v =
(

log
y∗
y

)
(1+o(1)) as y → 0 and y∗ → 0

where v = v∗ if y = y∗. If y∗ is fixed and y → 0, then we obtain a contra-
diction

v∗ = ∞.

Therefore δ 6= ±∞, which completes the proof. ¤

Here, notice that from (3.8) we get

z → 0 if α > 1, z → C−1 6= 0 if α = 1, z → ±∞ if 0 < α < 1,

as y → 0.

Moreover let z = z2(y) denote a solution of (2.10) represented as (3.9)
in the neighborhood of y = 0, since the existence of (3.9) is unique from
the uniqueness of the solution v = v(y) of (3.11). Next, use a transforma-
tion (2.9) as in the proof of Lemma 3.3 to (3.8) and (3.9). Then we conclude
the following:

Lemma 3.4 From (3.8) we have a solution of (E0) represented as (2.7) if
z < 0, and (2.8) if z > 0.

Proof. If z < 0, then from (2.9) we get y′ < 0 and t tends to the right end
point of the domain of the solution as y → +0. Noticing this, it suffices
to follow the discussion of Section 5 of [6] again. If z > 0, then the same
discussion follows. ¤

Lemma 3.5 We have a solution of (E0) represented as (2.4) from (3.9).

Proof. From (2.9) and (3.9) we get

ty′ = αy

(
1 +

∞∑

n=1

ãny
n

)

and solving this differential equation

y = (Γt)α

{
1 +

∞∑

n=1

b̃n(Γt)αn

}

where b̃n are constants. Hence from (2.9) we have (2.4). ¤
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4. The investigation of (2.10) in the neighborhood of y = ∞
If we define (y, z) from a solution x = x(t) of (E0) through (2.9), then

z is a solution of (2.10) and (y, z), (2.11). Let (ω−, ω+) be a domain of x(t).
Then we conclude the following:

Lemma 4.1 As t → ω±, (y, z) does not converge to a finite nonsingular
point.

This is Lemma 2 of [13] or Lemma 3.3 of [16] and so we omit the proof.

Lemma 4.2 An arbitrary solution z = z(y) of (2.10) exists for y∗ < y <

∞ where y∗ is a nonnegative constant. If y∗ 6= 0, then z(y) is bounded as
y → y∗. Moreover z(y) → ±∞ as y →∞.

Proof. Suppose that there exists a sequence {yn} such that yn → c where
y∗ ≤ c <∞ and z(yn) → ±∞ as n→∞. Then if we put z = 1/ζ in (2.10),
we get

dζ

dy
= −(α− 1 + αyζ + α2y3ζ2)ζ

αy
(4.1)

and a contradiction ζ = 1/z(y) ≡ 0 from Painleve’s theorem and the unique-
ness of the solution (cf. Proof of Lemma 3.3). Hence z(y) is defined for y∗ <
y <∞. Moreover if y∗ 6= 0, then z(y) is bounded as y → y∗.

Next, suppose that there exists a sequence {yn} such that yn →∞ and
{z(yn)} is bounded as n→∞. Then if we put y = 1/η in (2.10), we have

dz

dη
= −(α− 1)η3z2 + αη2z + α2

αη4z
(4.2)

and a contradiction η ≡ 0, using Painleve’s theorem and the uniqueness of
the solution again. Hence z(y) → ±∞ as y →∞. ¤

Now for considering (2.10) in the neighborhood of y = ∞, we put

z = 1/ζ (4.3)

in (4.2) and obtain

η4 dζ

dη
=
α− 1
α

η3ζ+η2ζ2+αζ3.
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Moreover we put

θ = η−3/2ζ, ξ = η1/2 (4.4)

and get

ξ
dθ

dξ
= −α+ 2

α
θ+2ξθ2+2αθ3. (4.5)

If ξ = 0, then the righthand side of (4.5) vanishes if and only if

θ = 0, ±ρ
where

ρ =
1
α

√
α+ 2

2
.

Let γ be an accumulation point of a solution θ = θ(ξ) of (4.5) as ξ → 0.
Then we get the following:

Lemma 4.3 γ is the limit and γ = ±ρ.
Proof. If γ 6= 0, ±ρ, ±∞, then using Painleve’s theorem and the unique-
ness of the solution we have ξ ≡ 0 from (4.5). This implies a contradiction
y ≡ 0. Hence we obtain γ = 0, ±ρ, ±∞ and so γ is the limit.

If γ = 0, then from Lemma 2.5 of [12] we obtain θ ≡ 0, since
−(α + 2)/α < 0 and θ divides the righthand side of (4.5). Returning the
variables, this implies a contradiction z ≡ ∞. If γ = ±∞, then putting
θ = 1/u in (4.5) we get

u→ 0 as ξ → 0
dξ

du
=

αξu

(α+ 2)u2 − 2αξu− 2α2

which implies a contradiction ξ ≡ 0 again. Therefore we conclude γ = ±ρ.
¤

Lemma 4.4 If γ = ρ, then from θ = θ(ξ) we get a solution z = z(y)
of (2.10) represented as

z−1 = ξ3

[
γ +

∑

m+n>0

umnξ
m

{
ξ2+4/α(b log ξ + C)

}n

]
(4.6)
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in the neighborhood of ξ = 0. Here umn, b, and C are constants and b = 0
unless 4/α is a positive integer. Moreover from z = z(y) we get a solution
x = x(t) of (E0) represented as (2.5) or (2.6) in the neighborhood of t = ω+.
Here ω+ is a constant with t < ω+ <∞.

Proof. Put u = θ − ρ. Then we have

ξ
du

dξ
=
α+ 2
α2

ξ+
(

2 +
4
α

)
u+· · · . (4.7)

This has the form similar to (15) of [6] and hence it suffices to follow the
discussion of Section 3 of [6]. ¤

Similarly we conclude the following:

Lemma 4.5 If γ = −ρ, then from θ = θ(ξ) we obtain a solution z = z(y)
of (2.10) represented as (4.6) in the neighborhhood of ξ = 0. Furthermore
from z = z(y) we obtain a solution x = x(t) of (E0) represented as (2.2)
or (2.3) in the neighborhood of t = ω−. Here ω− is a constant with 0 <

ω− <∞.

Proof. If we put u = θ + ρ, then we get (4.7) and it suffices to follow the
same discussion. ¤

Finally, notice that a solution (y, z) of (2.11) satisfies

dy

ds
= 0,

dz

ds
= α2y3 > 0

on the y axis. Moreover, notice that from Lemmas 3.1 and 3.3 solutions

The case α > 1 The case α = 1 The case 0 < α < 1

Fig. 1.
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of (2.10) continuable to y = 0 are z = z1(y), z = z2(y), and in addition (3.8)
in the case α > 1 which are continuable to y = ∞ from Lemma 4.2. Then
the phase portrait of (2.11) is denoted as Figure 1.

5. Proof of theorems

Let x = x(t) be a solution of (E0) satisfying an initial condition (I)
given in Section 1. Then from x = x(t) and (2.9) we get a function y of t
and a solution z = z(y) of (2.10) satisfying an initial condition

z(y0) = z0 (5.1)

where

y0 = Aα, z0 = αTAα−1B. (5.2)

Indeed we have

z = ty′ = αtx(t)α−1x′(t)

from (2.9). Moreover z = z(y) is an orbit of a solution (y, z) = (y(s), z(s))
of (2.11) passing a point (y0, z0). Conversely from z = z(y) or (y, z) =
(y(s), z(s)) we get a solution x = x(t) of an initial value problem (E0)
and (I).

Now, fix T and A in (I) arbitrarily. Then y0 is fixed and z0 is an
increasing function of B. Therefore as B moves the locus of (y0, z0) is a line
parallel to the z axis. Let ` denote such a line.

Proof of Theorem 2.1. Take (y0, z0) to be an intersection of ` and z =
z1(y), and suppose that if B = B1, then (5.2) is satisfied. Then if B = B1,
z = z1(y) is the solution of (E0) satisfying (5.1). Moreover it follows from
Lemma 3.2 that we get a solution x = x(t) of (E0) and (I) represented
as (2.1) as t → ∞. Here, recall that (ω−, ω+) denotes the domain of x(t).
Then as t → ω− we have y (= x(t)α) → ∞ from Lemma 4.1 and Figure 1,
and if γ is the accumulation point of θ obtained from z = z1(y) and (4.4),
then Lemma 4.3 implies γ = −ρ since z1(y) < 0. Hence from Lemma 4.5,
x(t) just obtained is defined for (ω−,∞) where 0 < ω− <∞ and represented
as (2.2) or (2.3) in the neighborhood of t = ω−. This completes the proof.

¤

Proof of Theorem 2.2. Now, take (y0, z0) to be an intersection of ` and
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z = z2(y), and let B2 denote B satisfying (5.2). Then using Lemmas 3.5
and 4.4 instead of Lemmas 3.2 and 4.5 respectively, it suffices to follow the
same discussion as of the proof of Theorem 2.1. ¤

Proof of Theorem 2.3. If B < B1, then (y0, z0) lies below the orbit z =
z1(y) and the orbit z = z(y) passing (y0, z0) does. If follows from (2.9),
Lemma 4.1, and Figure 1 that y is the function of t satisfying

y → 0 as t→ ω+, y →∞ as t→ ω−.

Therefore Lemmas 3.4 and 4.5 imply (i).
If B1 < B < B2, then (y0, z0) and z = z(y) passing (y0, z0) lie between

z = z1(y) and z = z2(y). Therefore we get y → ±∞ as t→ ω± respectively
from Lemma 4.1 and Figure 1. Hence we conclude from Lemmas 4.4 and 4.5
that x(t) is represented as (2.5) or (2.6) in the neighborhood of t = ω+

and (2.2) or (2.3), t = ω−. Here 0 < ω− < ω+ <∞. This proves(ii).
Finally if B > B2, then the same discussion as of (i) implies (iii). Now

the proof is complete. ¤

6. On the case λ = −1

Now let us consider (E) in the case λ = −1. That is, we treat

x′′ = t−α−2x1+α (E−1)

under the initial condition (I). Let x = x(t) be a solution of an initial value
problem (E−1) and (I), and (ω−, ω+) a domain of x(t) also here. Asymptotic
behavior of x(t) is as follows:

Theorem 6.1 There exists a number B1 such that if B = B1, then we get

ω− = 0, 0 < ω+ <∞,

x(t)∼ t

(α log(1/t))1/α

{
1+

∑

m+n>0

xmn

(
log log(1/t)

log(1/t)

)m(
1

log(1/t)

)n
}

(6.1)

as t→ +0, and (2.5) or (2.6) in the neighborhood of t = ω+.

Theorem 6.2 There exists a number B2 (< B1) such that if B = B2,
then we get

0 < ω− <∞, ω+ = ∞,
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x(t) = Γ

(
1 +

∞∑

n=1

xnt
−αn

)
(6.2)

in the neighborhood of t = ∞, and (2.2) or (2.3) in the neighborhood of
t = ω−. Here Γ is a constant.

In the case B 6= B1, B2, we conclude the following:

Theorem 6.3
(i) If B > B1, then the conclusion of (iii) of Theorem 2.3 follows.
(ii) If B2 < B < B1, then the conclusion of (ii) of Theorem 2.3 follows.
(iii) If B < B2, then the conclusion of (i) of Theorem 2.3 follows.

Proof of these theorems and the proof of Theorems 2.1, 2.2, and 2.3 are
almost the same. So we state only the outline of the proof.

Outline of the proof. First we use a transformation

x = ty1/α (namely y = t−αxα), z = ty′ (6.3)

and transform (E−1) into a first order rational differential equation

dz

dy
=

(α− 1)z2 − αyz + α2y3

αyz
. (6.4)

Moreover using a parameter s we rewrite this as a two dimensional au-
tonomous system

dy

ds
= αyz

dz

ds
= (α− 1)z2 − αyz + α2y3.

(6.5)

The singular points of (6.5) are the same as of (2.11), namely (0, 0) in the
case α 6= 1 and all points of the z axis in the case α = 1.

Next we consider (6.4) in the neighborhood of y = 0. For this we put

w = y−2z

in (6.4) and get

y2dw

dy
=
α2 − αw − (α+ 1)yw2

αw
. (6.6)

The numerator of the righthand side vanishes in the case y = 0, if and only
if w = α. Let γ be an accumulation point of a solution w = w(y) of (6.6)
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as y → 0. Then applying the proof of Lemma 3.1 to our case, we conclude
that γ is the limit and equal to α, ±∞.

If γ = α, then we put

θ = w−α
and get

θ → 0 as y → 0 (6.7)

y2 dθ

dy
= −(α+ 1)y − 1

α
θ + · · · . (6.8)

If follows from Hukuhara’s theorem used for (3.3) that there exists uniquely
a solution of (6.8) satisfying (6.7) and this is represented as

θ =
N−1∑

n=1

any
n+O(yN ) as y → 0 (6.9)

where
∑N−1

n=1 any
n is a partial sum of the formal solution of (6.8). Returning

the variables, we get a solution of (6.4) represented as

z = αy2

{
1 +

N−1∑

n=1

bny
n +O(yN )

}
as y → 0 (6.10)

where bn = an/α. Since the existence of (6.9) is unique, so is that of (6.10).
Thus we denote (6.10) as z = z1(y). Applying the discussion done in the
proof of Lemma 3.2 to z1(y), we have (6.1).

Moreover if γ = ±∞, then we put

w =
1
θ

and obtain

θ → 0 as y → 0 (6.11)

y2 dθ

dy
=
α+ 1
α

yθ + θ2 − αθ3. (6.12)

Furthermore if θ = yu, then we get

y
du

dy
=

1
α
u+u2−αyu3. (6.13)
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The righthand side of (6.13) vanishes in the case y = 0 if and only if u =
0, −1/α.

So if δ denotes an accumulation point of a solution of (6.13) as y → 0,
then applying the proof of Lemma 3.3 we first conclude that δ is the limit
and equal to 0, −1/α, ±∞. Moreover if δ = 0, then from a solution of (6.13)
tending to 0 as y → 0 we get (3.8). If δ = −1/α, then we put v = u+ 1/α
and have

v → 0 as y → 0 (6.14)

y
dv

dy
= − 1

α
v + v2 − αy

(
v − 1

α

)3

. (6.15)

Applying the discussion done for (3.11) here, we get the unique solution
of (6.4) represented as

z = −αy
(

1 +
∞∑

n=1

ãny
n

)
(6.16)

in the neighborhood of y = 0 where ãn are constants. Let z = z2(y) denote
this. If δ = ±∞, then we put u = 1/v and get

v → 0 as y → 0

dv

dy
=
α2y − αv − v2

αyv
.

Here we apply the discussion done for (3.12) and (3.13) and conclude a con-
tradiction. Hence we have δ 6= ±∞ and δ = 0, −1/α.

Notice here that Lemma 3.4 holds for (E−1), namely from (3.8) we get
a solution of (E−1) represented as (2.7) if z < 0, and (2.8) if z > 0. Moreover
from (6.16) (namely z2(y)) we have (6.2). This can be shown as in the proof
of Lemma 3.5.

Now, let us consider (6.4) in the neighborhood of y = ∞. Then we put
z = 1/ζ and obtain

η4 dζ

dη
=

(α− 1)η3ζ − αη2ζ2 + α2ζ3

α
.

Moreover we put

θ = η−3/2ζ, ξ = η1/2
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and get

ξ
dθ

dξ
= −α+ 2

α
θ−2ξθ2+2αθ3. (6.17)

In the case ξ = 0, the righthand side of (6.17) vanishes if and only if

θ = 0, ±ρ
(
ρ =

1
α

√
α+ 2

2

)
.

Here, let γ be an accumulation point of a solution θ = θ(ξ) of (6.17). Then
discussing as in the proof of Lemma 4.3, we conclude that γ is the limit and
equal to ±ρ. Next, follow the discussion of the proof of Lemmas 4.4 and 4.5.
Then from θ(ξ) we get a solution of (6.4) with the representation (4.6).
Moreover from (4.6) we have a solution of (E−1) represented as (2.5) or (2.6)
if γ = ρ, and (2.2) or (2.3) if γ = −ρ.

From the above discussion, solutions of (6.4) continuable to y = 0 are
z = z1(y), z = z2(y), and in addition (3.8) if α > 1. Moreover those
continuable to y = ∞ are (2.2) or (2.3) and (2.5) or (2.6). Therefore noticing
that Lemma 4.2 is valid for (E−1) we obtain the phase portrait of (6.5) in
Figure 2.

The case α > 1 The case α = 1 The case 0 < α < 1

Fig. 2.

Finally, let us take the initial condition (I) into account. Then from
a solution x = x(t) of the initial value problem (E−1) and (I) and from (6.3)
we get a solution z = z(y) of (6.4) satisfying an initial condition

z(y0) = z0
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where

y0 = T−αAα, z0 = αy0

(
TB

A
− 1

)
.

Fix T and A arbitrarily also here. Then z0 is an increasing function of B
and the locus of (y0, z0) is a line parallel to the z axis. Moreover, notice
that Lemma 4.1 is valid for (E−1). Then the discussion of Section 5 can be
applied here. This finishes the proof of Theorems 6.1, 6.2, and 6.3. ¤
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