Rigidity of the canonical isometric imbedding of the quaternion projective plane $P^{2}(H)$

Yoshio Agaoka and Eiji Kaneda
(Received April 12, 2004)

Abstract

In this paper, we investigate isometric immersions of $P^{2}(\boldsymbol{H})$ into \boldsymbol{R}^{14} and prove that the canonical isometric imbedding \boldsymbol{f}_{0} of $P^{2}(\boldsymbol{H})$ into \boldsymbol{R}^{14}, which is defined in Kobayashi [11], is rigid in the following strongest sense: Any isometric immersion \boldsymbol{f}_{1} of a connected open set $U\left(\subset P^{2}(\boldsymbol{H})\right)$ into \boldsymbol{R}^{14} coincides with \boldsymbol{f}_{0} up to a euclidean transformation of \boldsymbol{R}^{14}, i.e., there is a euclidean transformation a of \boldsymbol{R}^{14} satisfying $\boldsymbol{f}_{1}=$ $a \boldsymbol{f}_{0}$ on U.

Key words: Curvature invariant, isometric immersion, quaternion projective plane, rigidity, root space decomposition.

1. Introduction

In our previous paper [8], we proved the rigidity of the canonical isometric imbedding of the Cayley projective plane $P^{2}(\boldsymbol{C a y})$. The purpose of this paper is to investigate a similar problem for (local) isometric immersions of the quaternion projective plane $P^{2}(\boldsymbol{H})$. As we have proved in [7], any open set of the quaternion projective plane $P^{2}(\boldsymbol{H})$ cannot be isometrically immersed into \boldsymbol{R}^{13}. On the other hand, there is an isometric immersion \boldsymbol{f}_{0} of $P^{2}(\boldsymbol{H})$ into the euclidean space \boldsymbol{R}^{14}, which is called the canonical isometric imbedding of $P^{2}(\boldsymbol{H})$ (see Kobayashi [11]). Therefore, it follows that \boldsymbol{R}^{14} is the least dimensional euclidean space into which $P^{2}(\boldsymbol{H})$ can be (locally) isometrically immersed.

In the present paper, we will show that the canonical isometric imbedding \boldsymbol{f}_{0} is rigid in the following strongest sense:

Theorem 1 Let \boldsymbol{f}_{0} be the canonical isometric imbedding of $P^{2}(\boldsymbol{H})$ into the euclidean space \boldsymbol{R}^{14}. Then, for any isometric immersion \boldsymbol{f}_{1} defined on a connected open set U of $P^{2}(\boldsymbol{H})$ into \boldsymbol{R}^{14}, there exists a euclidean transformation a of \boldsymbol{R}^{14} satisfying $\boldsymbol{f}_{1}=a \boldsymbol{f}_{0}$ on U.

The proof of this theorem will be given by solving the Gauss equation

[^0]associated with the isometric imbeddings (immersions) of $P^{2}(\boldsymbol{H})$ into \boldsymbol{R}^{14} in the same line of [8] (see Theorem 7). We use the same notations and terminology as those of the previous papers [6], [7] and [8].

2. The quaternion projective plane $P^{2}(H)$

In this section we review the structure of the quaternion projective plane $P^{2}(\boldsymbol{H})$ and prepare several formulas concerning the bracket operation.

As is well-known, $P^{2}(\boldsymbol{H})$ can be represented by $P^{2}(\boldsymbol{H})=G / K$, where $G=S p(3)$ and $K=S p(2) \times S p(1)$. Let \mathfrak{g} (resp. \mathfrak{k}) be the Lie algebra of G (resp. K) and let $\mathfrak{g}=\mathfrak{k}+\mathfrak{m}$ be the canonical decomposition of \mathfrak{g} associated with the symmetric pair (G, K). We denote by (,) the inner product of \mathfrak{g} given by the (-1)-multiple of the Killing form of \mathfrak{g}. As usual, we can identify \mathfrak{m} with the tangent space $T_{o}(G / K)$ at the origin $o=\{K\}$. We assume that the G-invariant Riemannian metric g of G / K satisfies

$$
g_{o}(X, Y)=(X, Y), \quad X, Y \in \mathfrak{m} .
$$

Then, it is well-known that at the origin o the Riemannian curvature tensor R of type $(1,3)$ is given by

$$
R_{o}(X, Y) Z=-[[X, Y], Z], \quad \forall X, Y, Z \in \mathfrak{m} .
$$

We now take a maximal abelian subspace \mathfrak{a} of \mathfrak{m} and fix it in the following discussions. We note that $\operatorname{since} \operatorname{rank}\left(P^{2}(\boldsymbol{H})\right)=1$, we have $\operatorname{dim} \mathfrak{a}=1$.

For each element $\lambda \in \mathfrak{a}$ we define two subspaces $\mathfrak{k}(\lambda)(\subset \mathfrak{k})$ and $\mathfrak{m}(\lambda)$ $(\subset \mathfrak{m})$ by

$$
\begin{aligned}
& \mathfrak{k}(\lambda)=\left\{X \in \mathfrak{k} \mid[H,[H, X]]=-(\lambda, H)^{2} X, \quad \forall H \in \mathfrak{a}\right\}, \\
& \mathfrak{m}(\lambda)=\left\{Y \in \mathfrak{m} \mid[H,[H, Y]]=-(\lambda, H)^{2} Y, \quad \forall H \in \mathfrak{a}\right\} .
\end{aligned}
$$

Let Σ be the set of all non-zero restricted roots. (An element $\lambda \in \mathfrak{a}$ is called a restricted root if $\mathfrak{m}(\lambda) \neq 0$.) As is known, there is a restricted root μ such that $\Sigma=\{ \pm \mu, \pm 2 \mu\}$. We take and fix such a restricted root μ. For each integer i we set $\mathfrak{k}_{i}=\mathfrak{k}(|i| \mu), \mathfrak{m}_{i}=\mathfrak{m}(|i| \mu)(|i| \leq 2), \mathfrak{k}_{i}=\mathfrak{m}_{i}=0(|i|>2)$. Then, we have $\mathfrak{m}_{0}=\mathfrak{a}=\boldsymbol{R} \mu$ and

$$
\begin{aligned}
\mathfrak{k} & =\mathfrak{k}_{0}+\mathfrak{k}_{1}+\mathfrak{k}_{2} \quad \text { (orthogonal direct sum), } \\
\mathfrak{m} & =\mathfrak{m}_{0}+\mathfrak{m}_{1}+\mathfrak{m}_{2} \quad \text { (orthogonal direct sum). }
\end{aligned}
$$

The dimensions of the factors are given by $\operatorname{dim} \mathfrak{k}_{0}=6, \operatorname{dim} \mathfrak{k}_{1}=\operatorname{dim} \mathfrak{m}_{1}=4$ and $\operatorname{dim} \mathfrak{k}_{2}=\operatorname{dim} \mathfrak{m}_{2}=3$ (precisely, see [7]).

We now show several formulas concerning the bracket operation of \mathfrak{g}. By the definition of the subspaces \mathfrak{k}_{i} and \mathfrak{m}_{i} we easily have

$$
\begin{equation*}
\left[\mathfrak{k}_{i}, \mathfrak{k}_{j}\right] \subset \mathfrak{k}_{i+j}+\mathfrak{k}_{i-j}, \quad\left[\mathfrak{m}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{k}_{i+j}+\mathfrak{k}_{i-j}, \quad\left[\mathfrak{k}_{i}, \mathfrak{m}_{j}\right] \subset \mathfrak{m}_{i+j}+\mathfrak{m}_{i-j} \tag{2.1}
\end{equation*}
$$

Moreover, we have
Proposition 2 Let $Y_{0}, Y_{0}^{\prime} \in \mathfrak{a}+\mathfrak{m}_{2}, Y_{1}, Y_{1}^{\prime} \in \mathfrak{m}_{1}$. Then:

$$
\begin{array}{ll}
{\left[Y_{i},\left[Y_{i}, Y_{j}^{\prime}\right]\right]=-\left(1+3 \delta_{i j}\right)(\mu, \mu)\left\{\left(Y_{i}, Y_{i}\right) Y_{j}^{\prime}-\left(Y_{i}, Y_{j}^{\prime}\right) Y_{i}\right\}} \\
& (i, j=0,1), \\
{\left[Y_{i},\left[Y_{i}^{\prime}, Y_{j}\right]\right]+\left[Y_{i}^{\prime},\left[Y_{i}, Y_{j}\right]\right]=-2(\mu, \mu)\left(Y_{i}, Y_{i}^{\prime}\right) Y_{j}, \quad} & (i, j=0,1, i \neq j) \tag{2.3}
\end{array}
$$

where $\delta_{i j}$ denotes the Kronecker delta.
Proof. We first prove (2.2). Assume that $i=j$ and $Y_{i} \neq 0$. Set $Y_{i}^{\prime \prime}=Y_{i}^{\prime}-$ $\left(Y_{i}^{\prime}, Y_{i}\right) /\left(Y_{i}, Y_{i}\right) \cdot Y_{i}$. Then, we know that $\left(Y_{i}, Y_{i}^{\prime \prime}\right)=0$ and that $Y_{i}^{\prime \prime} \in \mathfrak{a}+\mathfrak{m}_{2}$ if $i=0$ and $Y_{i}^{\prime \prime} \in \mathfrak{m}_{1}$ if $i=1$. Hence, by Proposition 10 of [7], we have $\left[Y_{i},\left[Y_{i}, Y_{i}^{\prime \prime}\right]\right]=-4(\mu, \mu)\left(Y_{i}, Y_{i}\right) Y_{i}^{\prime \prime}$. Therefore, we can easily obtain (2.2) in the case $i=j$. In the case $i \neq j$, (2.2) directly follows from Proposition 10 of [7].

We next prove (2.3). Since $i \neq j$, it follows that $\left(Y_{i}, Y_{j}\right)=\left(Y_{i}^{\prime}, Y_{j}\right)=0$. Hence, by (2.2) we have $\left[Y_{i}+Y_{i}^{\prime},\left[Y_{i}+Y_{i}^{\prime}, Y_{j}\right]\right]=-(\mu, \mu)\left(Y_{i}+Y_{i}^{\prime}, Y_{i}+Y_{i}^{\prime}\right) Y_{j}$. This, together with $\left[Y_{i},\left[Y_{i}, Y_{j}\right]\right]=-(\mu, \mu)\left(Y_{i}, Y_{i}\right) Y_{j}$ and $\left[Y_{i}^{\prime},\left[Y_{i}^{\prime}, Y_{j}\right]\right]=$ $-(\mu, \mu)\left(Y_{i}^{\prime}, Y_{i}^{\prime}\right) Y_{j}$, proves (2.3).

We finally prove (2.4). We note that $\left[Y_{1}, \mathfrak{a}+\mathfrak{m}_{2}\right]=\mathfrak{k}_{1}$ holds for any $Y_{1} \in \mathfrak{m}_{1}(\neq 0)$. In fact, it is easy to see $\left[Y_{1}, \mathfrak{a}+\mathfrak{m}_{2}\right] \subset \mathfrak{k}_{1}$ (see (2.1)). Moreover, the map $\mathfrak{a}+\mathfrak{m}_{2} \ni Y_{0}^{\prime} \longmapsto\left[Y_{1}, Y_{0}^{\prime}\right] \in \mathfrak{k}_{1}$ is bijective, because $\left[Y_{1}, Y_{0}^{\prime}\right] \neq 0$ if $Y_{0}^{\prime} \in \mathfrak{a}+\mathfrak{m}_{2}\left(Y_{0}^{\prime} \neq 0\right)$ (recall that $\operatorname{rank}\left(P^{2}(\boldsymbol{H})\right)=1$) and because $\operatorname{dim}\left(\mathfrak{a}+\mathfrak{m}_{2}\right)=\operatorname{dim} \mathfrak{k}_{1}$. Let $X_{1} \in \mathfrak{k}_{1}$. Then, by $\left[Y_{1}, \mathfrak{a}+\mathfrak{m}_{2}\right]=\mathfrak{k}_{1}$ we can take an element $Y_{0}^{\prime} \in \mathfrak{a}+\mathfrak{m}_{2}$ such that $\left[Y_{1}, Y_{0}^{\prime}\right]=X_{1}$. Now, applying ad Y_{1} to the equality $\left[Y_{1},\left[Y_{1}, Y_{0}^{\prime}\right]\right]=-(\mu, \mu)\left(Y_{1}, Y_{1}\right) Y_{0}^{\prime}$ (see (2.2)), we have $\left[Y_{1},\left[Y_{1}, X_{1}\right]\right]=-(\mu, \mu)\left(Y_{1}, Y_{1}\right) X_{1}$, proving (2.4) for the case $i=1$. Similarly, we can prove (2.4) for the case $i=0$.

Let $Y_{0}, Y_{0}^{\prime} \in \mathfrak{a}+\mathfrak{m}_{2}$. Define a linear mapping $L\left(Y_{0}, Y_{0}^{\prime}\right)$ of \mathfrak{m}_{1} to \mathfrak{m} by

$$
L\left(Y_{0}, Y_{0}^{\prime}\right) Y_{1}=\left[Y_{0},\left[Y_{0}^{\prime}, Y_{1}\right]\right], \quad Y_{1} \in \mathfrak{m}_{1}
$$

Then, we have
Proposition 3 Let $Y_{0}, Y_{0}^{\prime} \in \mathfrak{a}+\mathfrak{m}_{2}$. Then:
(1) $L\left(Y_{0}, Y_{0}^{\prime}\right) \mathfrak{m}_{1} \subset \mathfrak{m}_{1}$. The transpose of $L\left(Y_{0}, Y_{0}^{\prime}\right)$ with respect to (,) is given by $L\left(Y_{0}^{\prime}, Y_{0}\right)$, i.e., ${ }^{t} L\left(Y_{0}, Y_{0}^{\prime}\right)=L\left(Y_{0}^{\prime}, Y_{0}\right)$.
(2) Let $\mathbf{1}_{\mathfrak{m}_{1}}$ be the identity map of \mathfrak{m}_{1}. Then:
(2a) $L\left(Y_{0}, Y_{0}^{\prime}\right)+L\left(Y_{0}^{\prime}, Y_{0}\right)=-2(\mu, \mu)\left(Y_{0}, Y_{0}^{\prime}\right) \mathbf{1}_{\mathfrak{m}_{1}} ;$
(2b) $L\left(Y_{0}, Y_{0}^{\prime}\right) \cdot L\left(Y_{0}^{\prime}, Y_{0}\right)=(\mu, \mu)^{2}\left(Y_{0}, Y_{0}\right)\left(Y_{0}^{\prime}, Y_{0}^{\prime}\right) \mathbf{1}_{\mathfrak{m}_{1}}$.
Proof. The assertion (1) is clear from (2.1) and the ad \mathfrak{g}-invariance of $($,$) Let Y_{1} \in \mathfrak{m}_{1}$. Since $\left[Y_{0}, Y_{1}\right] \in \mathfrak{k}_{1}$, we have $\left[Y_{0}^{\prime},\left[Y_{0}^{\prime},\left[Y_{0}, Y_{1}\right]\right]\right]=$ $-(\mu, \mu)\left(Y_{0}^{\prime}, Y_{0}^{\prime}\right)\left[Y_{0}, Y_{1}\right]$ (see (2.4)). Hence, by applying ad Y_{0} to this equality, we easily have $(2 b)$. The equality $(2 a)$ directly follows from (2.3).

Here, we recall the notion of pseudo-abelian subspace of \mathfrak{m}. Let Q be a subspace of $\mathfrak{m} . Q$ is called pseudo-abelian if it satisfies $[Q, Q] \subset \mathfrak{k}_{0}$ (see [6]).
Proposition 4 (1) Any subspace Q of \mathfrak{m}_{2} is pseudo-abelian.
(2) Let Q be a pseudo-abelian subspace satisfying $Q \not \subset \mathfrak{m}_{2}$. Then, $\operatorname{dim} Q \leq$ 2.

Accordingly, the inequality $\operatorname{dim} Q \leq 3$ holds for any pseudo-abelian subspace Q, and the equality holds when and only when $Q=\mathfrak{m}_{2}$.

Proof. Since $\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right] \subset \mathfrak{k}_{0}$ (see (2.1)), it follows that any subspace of \mathfrak{m}_{2} is pseudo-abelian. On the contrary, we already proved in Lemma 5.4 of [6] that for a pseudo-abelian subspace Q with $Q \not \subset \mathfrak{m}_{2}$ it holds $\operatorname{dim} Q \leq 1+$ $n(\mu)$, where $n(\mu)$ means the local pseudo-nullity of the restricted root μ. (For the definition of the local pseudo-nullity, see $\S 3$ of [6].) In the case $G / K=P^{2}(\boldsymbol{H})$, we have $n(\mu)=1$ (see Theorem 3.2 and Table 3 of [6]). Hence, we have $\operatorname{dim} Q \leq 2$.

For later use, we obtain the normal form of a 2-dimensional pseudoabelian subspace Q with $Q \not \subset \mathfrak{m}_{2}$.

Proposition 5 Let ξ_{1} and η_{1} be elements of \mathfrak{m}_{1} satisfying $\left(\xi_{1}, \xi_{1}\right)=2(\mu, \mu)$, $\eta_{1} \neq 0$ and $\left(\xi_{1}, \eta_{1}\right)=0$. Then, the 2-dimensional subspace $Q(\subset \mathfrak{m})$ defined by

$$
\begin{equation*}
Q=\boldsymbol{R}\left(\mu+\xi_{1}\right)+\boldsymbol{R}\left(\eta_{1}+\frac{1}{4(\mu, \mu)^{2}}\left[\mu,\left[\xi_{1}, \eta_{1}\right]\right]\right) \tag{2.5}
\end{equation*}
$$

is pseudo-abelian and $Q \not \subset \mathfrak{m}_{2}$.
Conversely, if Q is a pseudo-abelian subspace of \mathfrak{m} with $Q \not \subset \mathfrak{m}_{2}$ and $\operatorname{dim} Q=2$, then Q can be written in the form (2.5) by utilizing suitable elements ξ_{1} and $\eta_{1} \in \mathfrak{m}_{1}$ satisfying $\left(\xi_{1}, \xi_{1}\right)=2(\mu, \mu), \eta_{1} \neq 0$ and $\left(\xi_{1}, \eta_{1}\right)=0$.

Proof. Let ξ_{1} and η_{1} be elements of \mathfrak{m}_{1} satisfying $\left(\xi_{1}, \xi_{1}\right)=2(\mu, \mu), \eta_{1} \neq 0$ and $\left(\xi_{1}, \eta_{1}\right)=0$. Then, the subspace Q defined by (2.5) satisfies $Q \not \subset \mathfrak{m}_{2}$ and $\operatorname{dim} Q=2$. Set $\eta_{2}=\left(1 / 4(\mu, \mu)^{2}\right)\left[\mu,\left[\xi_{1}, \eta_{1}\right]\right]$. Then, it is easily verified that $\eta_{2} \in \mathfrak{m}_{2}$. We now show that Q is pseudo-abelian. By (2.3) and $\left(\xi_{1}, \eta_{1}\right)=0$, we have $\left[\xi_{1},\left[\eta_{1}, \mu\right]\right]=-\left[\eta_{1},\left[\xi_{1}, \mu\right]\right]$. Hence, by the Jacobi identity we have

$$
\left[\mu,\left[\xi_{1}, \eta_{1}\right]\right]=\left[\left[\mu, \xi_{1}\right], \eta_{1}\right]+\left[\xi_{1},\left[\mu, \eta_{1}\right]\right]=-2\left[\xi_{1},\left[\eta_{1}, \mu\right]\right] .
$$

Consequently, we have $\eta_{2}=-\left(1 / 2(\mu, \mu)^{2}\right)\left[\xi_{1},\left[\eta_{1}, \mu\right]\right]$. Note that $\left[\eta_{1}, \mu\right] \in$ \mathfrak{k}_{1}. Then, by the formula (2.4) and the assumption $\left(\xi_{1}, \xi_{1}\right)=2(\mu, \mu)$ we have

$$
\left[\xi_{1}, \eta_{2}\right]=-\frac{1}{2(\mu, \mu)^{2}}\left[\xi_{1},\left[\xi_{1},\left[\eta_{1}, \mu\right]\right]\right]=\frac{\left(\xi_{1}, \xi_{1}\right)}{2(\mu, \mu)}\left[\eta_{1}, \mu\right]=-\left[\mu, \eta_{1}\right] .
$$

Moreover, since $\left[\mu, \eta_{2}\right]+\left[\xi_{1}, \eta_{1}\right] \in \mathfrak{k}$ and since

$$
\left[\mu,\left[\mu, \eta_{2}\right]+\left[\xi_{1}, \eta_{1}\right]\right]=-4(\mu, \mu)^{2} \eta_{2}+\left[\mu,\left[\xi_{1}, \eta_{1}\right]\right]=0
$$

it follows that $\left[\mu, \eta_{2}\right]+\left[\xi_{1}, \eta_{1}\right] \in \mathfrak{k}_{0}$. (Note that an element $X \in \mathfrak{k}$ belongs to \mathfrak{k}_{0} if and only if $[\mu, X]=0$.) By these relations we have

$$
\begin{aligned}
{\left[\mu+\xi_{1}, \eta_{1}+\eta_{2}\right] } & =\left[\mu, \eta_{1}\right]+\left[\xi_{1}, \eta_{2}\right]+\left[\mu, \eta_{2}\right]+\left[\xi_{1}, \eta_{1}\right] \\
& =0+\left[\mu, \eta_{2}\right]+\left[\xi_{1}, \eta_{1}\right] \in \mathfrak{k}_{0} .
\end{aligned}
$$

Since $Q=\boldsymbol{R}\left(\mu+\xi_{1}\right)+\boldsymbol{R}\left(\eta_{1}+\eta_{2}\right)$, this implies that Q is a pseudo-abelian subspace.

We next prove the converse. Let Q be a pseudo-abelian subspace with $Q \not \subset \mathfrak{m}_{2}$ and $\operatorname{dim} Q=2$. Then, viewing the proof of Lemma 5.4 of [6], we know that $Q \cap \mathfrak{m}_{2}=0$ and $\operatorname{dim}\left(Q \cap\left(\mathfrak{m}_{1}+\mathfrak{m}_{2}\right)\right) \leq n(\mu)=1$. Consequently, we have $Q \not \subset \mathfrak{m}_{1}+\mathfrak{m}_{2}$, because $\operatorname{dim} Q=2$. Therefore, there is a basis $\{\xi, \eta\}$ of Q written in the form $\xi=\mu+\xi_{1}+\xi_{2}, \eta=\eta_{1}+\eta_{2}$, where $\xi_{1}, \eta_{1} \in \mathfrak{m}_{1}$, $\xi_{2}, \eta_{2} \in \mathfrak{m}_{2}$. Here, we note that $\eta_{1} \neq 0$, because $Q \cap \mathfrak{m}_{2}=0$. Subtracting a constant multiple of η from ξ if necessary, we may assume that $\left(\xi_{1}, \eta_{1}\right)=0$.

Since

$$
[\xi, \eta]=\left[\mu+\xi_{2}, \eta_{1}\right]+\left[\xi_{1}, \eta_{2}\right]+\left[\mu+\xi_{2}, \eta_{2}\right]+\left[\xi_{1}, \eta_{1}\right] \in \mathfrak{k}_{0}
$$

and since $\left[\mu+\xi_{2}, \eta_{1}\right]+\left[\xi_{1}, \eta_{2}\right] \in \mathfrak{k}_{1},\left[\mu+\xi_{2}, \eta_{2}\right]+\left[\xi_{1}, \eta_{1}\right] \in \mathfrak{k}_{0}+\mathfrak{k}_{2}$ and $\left[\xi_{2}, \eta_{2}\right] \in \mathfrak{k}_{0}$, it follows that

$$
\begin{align*}
{\left[\mu+\xi_{2}, \eta_{1}\right]+\left[\xi_{1}, \eta_{2}\right] } & =0 \tag{2.6}\\
{\left[\mu, \eta_{2}\right]+\left[\xi_{1}, \eta_{1}\right] } & \in \mathfrak{k}_{0} . \tag{2.7}
\end{align*}
$$

Applying ad μ to (2.7), we have $\eta_{2}=\left(1 / 4(\mu, \mu)^{2}\right)\left[\mu,\left[\xi_{1}, \eta_{1}\right]\right]$. By this equality and the assumption $\left(\xi_{1}, \eta_{1}\right)=0$, we can deduce $\left[\xi_{1}, \eta_{2}\right]=$ $\left(\left(\xi_{1}, \xi_{1}\right) / 2(\mu, \mu)\right)\left[\eta_{1}, \mu\right]$ (see the arguments stated above). Putting this into (2.6), we have

$$
\left[\left(1-\frac{\left(\xi_{1}, \xi_{1}\right)}{2(\mu, \mu)}\right) \mu+\xi_{2}, \eta_{1}\right]=0 .
$$

Since $\eta_{1} \neq 0$ and $\operatorname{rank}\left(P^{2}(\boldsymbol{H})\right)=1$, we have $\left(1-\left(\xi_{1}, \xi_{1}\right) / 2(\mu, \mu)\right) \mu+$ $\xi_{2}=0$. This proves $\left(\xi_{1}, \xi_{1}\right)=2(\mu, \mu)$ and $\xi_{2}=0$, completing the proof of the converse.

3. The Gauss equation

Let \boldsymbol{N} be a euclidean vector space, i.e., \boldsymbol{N} is a vector space over \boldsymbol{R} endowed with an inner product \langle,$\rangle . Let S^{2} \mathfrak{m}^{*} \otimes \boldsymbol{N}$ be the space of \boldsymbol{N}-valued symmetric bilinear forms on \mathfrak{m}. We call the following equation on $\Psi \in$ $S^{2} \mathfrak{m}^{*} \otimes \boldsymbol{N}$ the Gauss equation associated with \boldsymbol{N} :

$$
\begin{equation*}
([[X, Y], Z], W)=\langle\boldsymbol{\Psi}(X, Z), \boldsymbol{\Psi}(Y, W)\rangle-\langle\boldsymbol{\Psi}(X, W), \boldsymbol{\Psi}(Y, Z)\rangle \tag{3.1}
\end{equation*}
$$

where $X, Y, Z, W \in \mathfrak{m}$. We denote by $\mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$ the set of all solutions of (3.1), which is called the Gaussian variety associated with \boldsymbol{N}.

As in the case of $P^{2}(\boldsymbol{C a y})$ (Theorem 11 of [8]), we can prove the following

Theorem 6 Let \boldsymbol{N} be a euclidean vector space with $\operatorname{dim} \boldsymbol{N}=6$. Let $\boldsymbol{\Psi} \in$ $S^{2} \mathfrak{m}^{*} \otimes \boldsymbol{N}$ be a solution of the Gauss equation (3.1), i.e., $\boldsymbol{\Psi} \in \mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$. Then:
(1) There are linearly independent vectors \mathbf{A} and $\mathbf{B} \in \boldsymbol{N}$ satisfying

$$
\text { (i) }\langle\mathbf{A}, \mathbf{A}\rangle=\langle\mathbf{B}, \mathbf{B}\rangle=4(\mu, \mu) \text { and }\langle\mathbf{A}, \mathbf{B}\rangle=2(\mu, \mu) \text {; }
$$

(ii) $\boldsymbol{\Psi}\left(Y_{0}, Y_{0}^{\prime}\right)=\left(Y_{0}, Y_{0}^{\prime}\right) \mathbf{A}, \quad \forall Y_{0}, Y_{0}^{\prime} \in \mathfrak{a}+\mathfrak{m}_{2}$;
(iii) $\boldsymbol{\Psi}\left(Y_{1}, Y_{1}^{\prime}\right)=\left(Y_{1}, Y_{1}^{\prime}\right) \mathbf{B}, \quad \forall Y_{1}, Y_{1}^{\prime} \in \mathfrak{m}_{1}$;
(iv) $\left\langle\mathbf{A}, \boldsymbol{\Psi}\left(\mu, \mathfrak{m}_{1}\right)\right\rangle=\left\langle\mathbf{B}, \boldsymbol{\Psi}\left(\mu, \mathfrak{m}_{1}\right)\right\rangle=0$.
(2) $\boldsymbol{\Psi}\left(Y_{1}, Y_{2}\right)=-\frac{1}{(\mu, \mu)^{2}} \boldsymbol{\Psi}\left(\mu, L\left(\mu, Y_{2}\right) Y_{1}\right), \quad \forall Y_{1} \in \mathfrak{m}_{1}, \forall Y_{2} \in \mathfrak{m}_{2}$.
(3)
$\left\langle\boldsymbol{\Psi}\left(\mu, Y_{1}\right), \boldsymbol{\Psi}\left(\mu, Y_{1}^{\prime}\right)\right\rangle=(\mu, \mu)^{2}\left(Y_{1}, Y_{1}^{\prime}\right), \quad \forall Y_{1}, Y_{1}^{\prime} \in \mathfrak{m}_{1}$
Let $O(\boldsymbol{N})$ be the orthogonal transformation group of \boldsymbol{N}. We define an action of $O(\boldsymbol{N})$ on $S^{2} \mathfrak{m}^{*} \otimes \boldsymbol{N}$ by

$$
(h \boldsymbol{\Psi})(X, Y)=h(\boldsymbol{\Psi}(X, Y))
$$

where $\boldsymbol{\Psi} \in S^{2} \mathfrak{m}^{*} \otimes \boldsymbol{N}, h \in O(\boldsymbol{N})$. It is easily seen that $\mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$ is invariant under this action, i.e., $h \mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)=\mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$ for any $h \in O(\boldsymbol{N})$. We say that the Gaussian variety $\mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$ is $E O S$ if $\mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right) \neq \emptyset$ and if $\mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$ is consisting of essentially one solution, i.e., for any solutions $\boldsymbol{\Psi}$ and $\boldsymbol{\Psi}^{\prime} \in \mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$, there is an element $h \in O(\boldsymbol{N})$ satisfying $\boldsymbol{\Psi}^{\prime}=h \boldsymbol{\Psi}$ (see [8]).

By Theorem 6 we can show
Theorem 7 Let \boldsymbol{N} be a euclidean vector space with $\operatorname{dim} \boldsymbol{N}=6$. Then, $\mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$ is EOS.

Proof. The proof of this theorem is quite similar to that of Theorem 10 in [8].

First we note that $\mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right) \neq \emptyset$, because the second fundamental form of the canonical isometric imbedding \boldsymbol{f}_{0} at the origin $o \in P^{2}(\boldsymbol{H})$ satisfies (3.1).

Let $\left\{E_{i}(1 \leq i \leq 4)\right\}$ be an orthonormal basis of \mathfrak{m}_{1}. (Note that $\operatorname{dim} \mathfrak{m}_{1}=4$.) Let $\boldsymbol{\Psi} \in \mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$ and let \mathbf{A}, \mathbf{B} be the vectors of \boldsymbol{N} stated in Theorem 6. We define vectors $\left\{\mathbf{F}_{i}(1 \leq i \leq 6)\right\}$ of \boldsymbol{N} by setting $\mathbf{F}_{i}=$ $\boldsymbol{\Psi}\left(\mu, E_{i}\right) /(\mu, \mu)(1 \leq i \leq 4), \mathbf{F}_{5}=(\mathbf{A}+\mathbf{B}) / 2 \sqrt{3}|\mu|$ and $\mathbf{F}_{6}=(\mathbf{A}-\mathbf{B}) / 2|\mu|$. By Theorem 6 we can show that $\left\{\mathbf{F}_{i}(1 \leq i \leq 6)\right\}$ forms an orthonormal basis of \boldsymbol{N}. Now let $\boldsymbol{\Psi}^{\prime}$ be another element of $\mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$. Let \mathbf{A}^{\prime} and \mathbf{B}^{\prime} be the vectors stated in Theorem 6 for $\boldsymbol{\Psi}^{\prime}$. As in the case of $\boldsymbol{\Psi}$ we can also define an orthonormal basis $\left\{\mathbf{F}_{i}^{\prime}(1 \leq i \leq 6)\right\}$ of \boldsymbol{N}. Then, there is an element $h \in O(6)$ satisfying $\mathbf{F}_{i}^{\prime}=h \mathbf{F}_{i}(1 \leq i \leq 6)$. Here, we note that $\mathbf{A}^{\prime}=h \mathbf{A}, \mathbf{B}^{\prime}=h \mathbf{B}$ and $\boldsymbol{\Psi}^{\prime}\left(\mu, E_{i}\right)=h \boldsymbol{\Psi}\left(\mu, E_{i}\right)(1 \leq i \leq 4)$. Set $\boldsymbol{\Phi}=$
$\boldsymbol{\Psi}^{\prime}-h \boldsymbol{\Psi} \in S^{2} \mathfrak{m}^{*} \otimes \boldsymbol{N}$. Then, by Theorem 6 (1) we have

$$
\boldsymbol{\Phi}\left(\mathfrak{a}+\mathfrak{m}_{2}, \mathfrak{a}+\mathfrak{m}_{2}\right)=\boldsymbol{\Phi}\left(\mathfrak{m}_{1}, \mathfrak{m}_{1}\right)=\boldsymbol{\Phi}\left(\mathfrak{a}, \mathfrak{m}_{1}\right)=0 .
$$

By Theorem $6(2)$ and by the fact $L\left(\mu, \mathfrak{m}_{2}\right) \mathfrak{m}_{1} \subset \mathfrak{m}_{1}$ we have

$$
\boldsymbol{\Phi}\left(\mathfrak{m}_{2}, \mathfrak{m}_{1}\right) \subset \boldsymbol{\Phi}\left(\mu, L\left(\mu, \mathfrak{m}_{2}\right) \mathfrak{m}_{1}\right) \subset \boldsymbol{\Phi}\left(\mathfrak{a}, \mathfrak{m}_{1}\right)=0
$$

which proves $\boldsymbol{\Phi}\left(\mathfrak{m}_{2}, \mathfrak{m}_{1}\right)=0$. Therefore, we have $\boldsymbol{\Phi}=0$, i.e., $\boldsymbol{\Psi}^{\prime}=h \boldsymbol{\Psi}$, completing the proof of Theorem 7 .

By Theorem 7 we know that $P^{2}(\boldsymbol{H})$ is formally rigid in codimension 6 in the sense of Agaoka-Kaneda [8]. Therefore, Theorem 1 can be obtained by Theorem 7 and the rigidity theorem (Theorem 5 of [8]).

Before proceeding to the proof of Theorem 6, we make several preparations.

Let \boldsymbol{N} be a euclidean vector space. In what follows we assume $\operatorname{dim} \boldsymbol{N}=$ 6. Let $S^{2} \mathfrak{m}^{*} \otimes \boldsymbol{N}$ be the space of \boldsymbol{N}-valued symmetric bilinear forms on \mathfrak{m}. Let $\boldsymbol{\Psi} \in S^{2} \mathfrak{m}^{*} \otimes \boldsymbol{N}$ and $Y \in \mathfrak{m}$. We define a linear map $\boldsymbol{\Psi}_{Y}$ of \mathfrak{m} to \boldsymbol{N} by

$$
\boldsymbol{\Psi}_{Y}: \mathfrak{m} \ni Y^{\prime} \longmapsto \boldsymbol{\Psi}\left(Y, Y^{\prime}\right) \in \boldsymbol{N}
$$

and denote by $\operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)$ the kernel of $\boldsymbol{\Psi}_{Y}$. We call an element $Y \in \mathfrak{m}$ singular (resp. non-singular) with respect to $\boldsymbol{\Psi}$ if $\boldsymbol{\Psi}_{Y}(\mathfrak{m}) \neq \boldsymbol{N}$ (resp. $\boldsymbol{\Psi}_{Y}(\mathfrak{m})=$ $N)$.

Let $\boldsymbol{\Psi} \in \mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$ and let $Y \in \mathfrak{m}(Y \neq 0)$. Take an element $k \in K$ such that $\operatorname{Ad}(k) \mu \in \boldsymbol{R} Y$. Then, as shown in the proof of Proposition 5 of [7], the subspace $Q_{Y}=\operatorname{Ad}(k)^{-1} \operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)$ is a pseudo-abelian subspace of \mathfrak{m}.

Proposition 8 Let $\boldsymbol{\Psi} \in \mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$ and let $Y \in \mathfrak{m}(Y \neq 0)$. Then:
(1) $\operatorname{dim} \operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)=2$ or 3. Moreover, Y is non-singular (resp. singular) with respect to $\boldsymbol{\Psi}$ if and only if $\operatorname{dim} \operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)=2\left(\right.$ resp. $\left.\operatorname{dim} \operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)=3\right)$. (2) Let $k \in K$ satisfy $\operatorname{Ad}(k) \mu \in \boldsymbol{R} Y$. Then, $\boldsymbol{\operatorname { K e r }}\left(\boldsymbol{\Psi}_{Y}\right) \subset \operatorname{Ad}(k) \mathfrak{m}_{2}$. Consequently, Y is non-singular (resp. singular) with respect to $\boldsymbol{\Psi}$ if and only if $\boldsymbol{\operatorname { K e r }}\left(\boldsymbol{\Psi}_{Y}\right) \subsetneq \operatorname{Ad}(k) \mathfrak{m}_{2}\left(\right.$ resp. $\left.\operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)=\operatorname{Ad}(k) \mathfrak{m}_{2}\right)$.

Remark 1 Recall that in the case of the Cayley projective plane $P^{2}(\boldsymbol{C a y})$ the inclusion $\operatorname{Ker}\left(\Psi_{Y}\right) \subset \operatorname{Ad}(k) \mathfrak{m}_{2}$ in Proposition 8 (2) can be proved by a simple discussion. There, the inclusion automatically follows from the fact that any high-dimensional pseudo-abelian subspace must be contained
in \mathfrak{m}_{2} (see Propositions 8 and 12 of [8]). In contrast, it is not a simple task to show the inclusion $\operatorname{Ker}\left(\Psi_{Y}\right) \subset \operatorname{Ad}(k) \mathfrak{m}_{2}$ in our case $P^{2}(\boldsymbol{H})$. We will prove this inclusion by making use of the normal form of the pseudo-abelian subspaces not contained in \mathfrak{m}_{2} (see Proposition 5).

Proof of Proposition 8. Let $Y \in \mathfrak{m}(Y \neq 0)$. Set $Q_{Y}=\operatorname{Ad}(k)^{-1} \operatorname{Ker}\left(\Psi_{Y}\right)$, where $k \in K$ is an element satisfying $\operatorname{Ad}(k) \mu \in \boldsymbol{R} Y$. Since Q_{Y} is pseudoabelian, it follows that $\operatorname{dim} Q_{Y} \leq 3$ (see Proposition 4). Hence, $\operatorname{dim} \operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right) \leq 3$. On the other hand, since $\operatorname{dim} \boldsymbol{N}=6$ and $\operatorname{dim} \mathfrak{m}=8$, it follows that $\operatorname{dim} \operatorname{Ker}\left(\Psi_{Y}\right) \geq 2$. Therefore, Y is non-singular (resp. singular) with respect to $\boldsymbol{\Psi}$ if and only if $\operatorname{dim} \operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)=2$ (resp. $\left.\operatorname{dim} \operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)=3\right)$. This proves (1).

To show the first statement of (2) it suffices to prove $Q_{Y} \subset \mathfrak{m}_{2}$. Now, let us suppose the contrary, i.e., $Q_{Y} \not \subset \mathfrak{m}_{2}$. Then, we have $\operatorname{dim} Q_{Y}=2$ (see (1) and Proposition $4(2))$. Hence, there is a basis $\{\xi, \eta\}$ of Q_{Y} written in the form $\xi=\mu+\xi_{1}, \eta=\eta_{1}+\left(1 / 4(\mu, \mu)^{2}\right)\left[\mu,\left[\xi_{1}, \eta_{1}\right]\right]$, where ξ_{1} and η_{1} are elements of \mathfrak{m}_{1} satisfying $\left(\xi_{1}, \xi_{1}\right)=2(\mu, \mu), \eta_{1} \neq 0,\left(\xi_{1}, \eta_{1}\right)=0$ (see Proposition 5). Let $\left\{\zeta_{1}^{1}, \zeta_{1}^{2}\right\}$ be a basis of the orthogonal complement of $\boldsymbol{R} \xi_{1}+\boldsymbol{R} \eta_{1}$ in \mathfrak{m}_{1}. Set $\zeta^{i}=\zeta_{1}^{i}+\left(1 / 4(\mu, \mu)^{2}\right)\left[\mu,\left[\xi_{1}, \zeta_{1}^{i}\right]\right](i=1,2)$. Since $\left[\mu,\left[\xi_{1}, \zeta_{1}^{i}\right]\right] \in \mathfrak{m}_{2}(i=1,2)$, we know that the vectors ζ^{1} and ζ^{2} are linearly independent. More strongly, they are linearly independent modulo Q_{Y}, i.e., $Q_{Y} \cap\left(\boldsymbol{R} \zeta^{1}+\boldsymbol{R} \zeta^{2}\right)=0$. Moreover, by Proposition 5 we know that the subspace $Q^{i}=\boldsymbol{R} \xi+\boldsymbol{R} \zeta^{i}(i=1,2)$ is also pseudo-abelian, because $\left(\xi_{1}, \zeta_{1}^{i}\right)=0$. Consequently, we have $\left[\left[\xi, \zeta^{i}\right], \mu\right]=0(i=1,2)$.

Set $X=\operatorname{Ad}(k) \xi, Z^{i}=\operatorname{Ad}(k) \zeta^{i}(i=1,2)$. Then, we have $X \in \operatorname{Ker}\left(\Psi_{Y}\right)$ $(X \neq 0), \boldsymbol{K e r}\left(\Psi_{Y}\right) \cap\left(\boldsymbol{R} Z^{1}+\boldsymbol{R} Z^{2}\right)=0$ and $\left[\left[X, Z^{i}\right], Y\right]=0(i=1,2)$. By the Gauss equation (3.1) we have

$$
\begin{aligned}
0 & =\left(\left[\left[X, Z^{i}\right], Y\right], W\right) \\
& =\left\langle\boldsymbol{\Psi}(X, Y), \boldsymbol{\Psi}\left(Z^{i}, W\right)\right\rangle-\left\langle\boldsymbol{\Psi}(X, W), \boldsymbol{\Psi}\left(Z^{i}, Y\right)\right\rangle, \quad(i=1,2),
\end{aligned}
$$

where W is an arbitrary element of \mathfrak{m}. Since $\boldsymbol{\Psi}_{Y}(X)=0$, we obtain by this equality $\left\langle\boldsymbol{\Psi}_{X}(W), \boldsymbol{\Psi}\left(Z^{i}, Y\right)\right\rangle=0$, i.e., $\left\langle\boldsymbol{\Psi}_{X}(\mathfrak{m}), \boldsymbol{\Psi}\left(Z^{i}, Y\right)\right\rangle=0(i=1,2)$. We note that the vectors $\boldsymbol{\Psi}\left(Z^{1}, Y\right)$ and $\boldsymbol{\Psi}\left(Z^{2}, Y\right)$ are linearly independent, because $\operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right) \cap\left(\boldsymbol{R} Z^{1}+\boldsymbol{R} Z^{2}\right)=0$. Hence, we have $\operatorname{dim} \boldsymbol{\Psi}_{X}(\mathfrak{m}) \leq$ $\operatorname{dim} \boldsymbol{N}-2=4$, implying $\operatorname{dim} \operatorname{Ker}\left(\boldsymbol{\Psi}_{X}\right) \geq 4$. This contradicts the assertion (1). Thus, we have $Q_{Y} \subset \mathfrak{m}_{2}$, proving the first statement of (2). The last statement of (2) is now clear.

As a corollary of Proposition 8 we obtain
Proposition 9 Let $\boldsymbol{\Psi} \in \mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$. Then:
(1) Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}\left(Y_{0} \neq 0\right)$. Then, $\operatorname{Ker}\left(\Psi_{Y_{0}}\right) \subset\left\{\xi \in \mathfrak{a}+\mathfrak{m}_{2} \mid\left(\xi, Y_{0}\right)=\right.$ $0\}$. If Y_{0} is singular with respect to $\boldsymbol{\Psi}$, then $\operatorname{Ker}\left(\boldsymbol{\Psi}_{Y_{0}}\right)=\left\{\xi \in \mathfrak{a}+\mathfrak{m}_{2} \mid\right.$ $\left.\left(\xi, Y_{0}\right)=0\right\}$.
(2) Let $Y_{1} \in \mathfrak{m}_{1}\left(Y_{1} \neq 0\right)$. Then, $\operatorname{Ker}\left(\boldsymbol{\Psi}_{Y_{1}}\right) \subset\left\{\eta \in \mathfrak{m}_{1} \mid\left(\eta, Y_{1}\right)=0\right\}$. If Y_{1} is singular with respect to $\boldsymbol{\Psi}$, then $\operatorname{Ker}\left(\mathbf{\Psi}_{Y_{1}}\right)=\left\{\eta \in \mathfrak{m}_{1} \mid\left(\eta, Y_{1}\right)=0\right\}$.

Proof. Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}\left(Y_{0} \neq 0\right)$. Then, we can take an element $k_{0} \in K$ such that $\operatorname{Ad}\left(k_{0}\right) \mu \in \boldsymbol{R} Y_{0}$ and $\operatorname{Ad}\left(k_{0}\right)\left(\mathfrak{m}_{2}\right)=\left\{\xi \in \mathfrak{a}+\mathfrak{m}_{2} \mid\left(\xi, Y_{0}\right)=0\right\}$ (see Proposition 7 of [7]). This proves (1). Similarly, for $Y_{1} \in \mathfrak{m}_{1}\left(Y_{1} \neq 0\right)$, we can easily show (2).

Let $\boldsymbol{\Psi} \in S^{2} \mathfrak{m}^{*} \otimes \boldsymbol{N}$. We call a subspace U of \mathfrak{m} singular with respect to $\boldsymbol{\Psi}$ if each element of U is singular with respect to $\boldsymbol{\Psi}$.

Proposition 10 Let $\boldsymbol{\Psi} \in \mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$. Assume that $Y \in \mathfrak{m}(Y \neq 0)$ is non-singular with respect to $\mathbf{\Psi}$. Then, there is a non-zero vector $\mathbf{E} \in \boldsymbol{N}$ such that

$$
\begin{equation*}
\boldsymbol{N}=\boldsymbol{R} \mathbf{E}+\mathbf{\Psi}_{\xi}(\mathfrak{m}) \quad \text { (orthogonal direct sum) } \tag{3.2}
\end{equation*}
$$

holds for any $\xi \in \operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)(\xi \neq 0)$. Consequently, $\operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)$ is a singular subspace with respect to $\mathbf{\Psi}$.

Proof. Take an element $k \in K$ such that $\operatorname{Ad}(k) \mu \in \boldsymbol{R} Y$. Then, since Y is non-singular, we have $\operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right) \subsetneq \operatorname{Ad}(k) \mathfrak{m}_{2}$. Take a non-zero element satisfying $Y^{\prime} \in \operatorname{Ad}(k) \mathfrak{m}_{2}$ and $Y^{\prime} \notin \operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)$ and set $\mathbf{E}=\boldsymbol{\Psi}\left(Y, Y^{\prime}\right)(\neq 0)$. Let $\xi \in \operatorname{Ker}\left(\boldsymbol{\Psi}_{Y}\right)(\xi \neq 0)$. Then, by the Gauss equation (3.1) we have

$$
\left(\left[\left[\xi, Y^{\prime}\right], Y\right], W\right)=\left\langle\boldsymbol{\Psi}(\xi, Y), \mathbf{\Psi}\left(Y^{\prime}, W\right)\right\rangle-\left\langle\mathbf{\Psi}(\xi, W), \mathbf{\Psi}\left(Y^{\prime}, Y\right)\right\rangle
$$

where W is an arbitrary element of \mathfrak{m}. Here, we note that $\left[\left[\xi, Y^{\prime}\right], Y\right]=0$, because $\left[\left[\xi, Y^{\prime}\right], Y\right] \in \operatorname{Ad}(k)\left[\left[\mathfrak{m}_{2}, \mathfrak{m}_{2}\right], \mu\right]=0$. Since $\boldsymbol{\Psi}(\xi, Y)=0$, we obtain by the above equality $\langle\mathbf{E}, \mathbf{\Psi}(\xi, W)\rangle=0$. This shows $\left\langle\mathbf{E}, \mathbf{\Psi}_{\xi}(\mathfrak{m})\right\rangle=0$ and hence $\boldsymbol{\Psi}_{\xi}(\mathfrak{m}) \neq \boldsymbol{N}$. Consequently, ξ is singular with respect to $\boldsymbol{\Psi}$. Since $\operatorname{dim} \operatorname{Ker}\left(\boldsymbol{\Psi}_{\xi}\right)=3$ (see Proposition 8), we have $\operatorname{dim} \boldsymbol{\Psi}_{\xi}(\mathfrak{m})=5$, which proves the decomposition (3.2).

4. Proof of Theorem 6

In this section, with the preparations in the previous sections, we will prove Theorem 6. We first show

Proposition 11 Let $\boldsymbol{\Psi} \in \mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$. Then, there are singular subspaces $U\left(\subset \mathfrak{a}+\mathfrak{m}_{2}\right)$ and $V\left(\subset \mathfrak{m}_{1}\right)$ with respect to $\boldsymbol{\Psi}$ satisfying $\operatorname{dim} U \geq 2$ and $\operatorname{dim} V \geq 2$.

Proof. If $\mathfrak{a}+\mathfrak{m}_{2}$ contains no non-singular element with respect to $\boldsymbol{\Psi}$, then set $U=\mathfrak{a}+\mathfrak{m}_{2}$. On the contrary, if there is a non-singular element $Y_{0} \in \mathfrak{a}+$ \mathfrak{m}_{2}, then set $U=\operatorname{Ker}\left(\Psi_{Y_{0}}\right)$. In this case we know that $\operatorname{dim} U=2, U \subset \mathfrak{a}+$ \mathfrak{m}_{2} and that U is a singular subspace with respect to $\boldsymbol{\Psi}$ (see Proposition 8, Proposition 9 and Proposition 10).

Similarly, we can show that there is a singular subspace V of \mathfrak{m}_{1} with respect to $\boldsymbol{\Psi}$ satisfying the desired properties.

Proposition 12 Let $\boldsymbol{\Psi} \in \mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$. Let $U\left(\subset \mathfrak{a}+\mathfrak{m}_{2}\right)$ and $V\left(\subset \mathfrak{m}_{1}\right)$ be singular subspaces with respect to $\boldsymbol{\Psi}$ satisfying $\operatorname{dim} U \geq 2$ and $\operatorname{dim} V \geq 2$. Then, there are vectors $\mathbf{A}, \mathbf{B} \in \mathbf{N}$ such that:
(1) $\langle\mathbf{A}, \mathbf{A}\rangle=\langle\mathbf{B}, \mathbf{B}\rangle=4(\mu, \mu)$.
(2) Let $\xi \in U$ and $\eta \in V$. Then:
(2a) $\boldsymbol{\Psi}\left(\xi, Y_{0}\right)=\left(\xi, Y_{0}\right) \mathbf{A}, \quad \forall Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2} ;$
(2b) $\boldsymbol{\Psi}\left(\eta, Y_{1}\right)=\left(\eta, Y_{1}\right) \mathbf{B}, \quad \forall Y_{1} \in \mathfrak{m}_{1}$.
(3) Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$ and $Y_{1} \in \mathfrak{m}_{1}$. Then:
(3a) $\left\langle\mathbf{A}, \boldsymbol{\Psi}_{Y_{0}}\left(\mathfrak{m}_{1}\right)\right\rangle=\left\langle\mathbf{B}, \boldsymbol{\Psi}_{Y_{0}}\left(\mathfrak{m}_{1}\right)\right\rangle=0 ;$
(3b) $\left\langle\mathbf{A}, \boldsymbol{\Psi}_{Y_{1}}\left(\mathfrak{a}+\mathfrak{m}_{2}\right)\right\rangle=\left\langle\mathbf{B}, \boldsymbol{\Psi}_{Y_{1}}\left(\mathfrak{a}+\mathfrak{m}_{2}\right)\right\rangle=0$.
(4) Let $\xi \in U(\xi \neq 0)$ and $\eta \in V(\eta \neq 0)$. Then:
(4a) $\quad \boldsymbol{\Psi}_{\xi}(\mathfrak{m})=\boldsymbol{R} \mathbf{A}+\boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right) \quad$ (orthogonal direct sum);
(4b) $\quad \boldsymbol{\Psi}_{\eta}(\mathfrak{m})=\boldsymbol{R} \mathbf{B}+\mathbf{\Psi}_{\eta}\left(\mathfrak{a}+\mathfrak{m}_{2}\right) \quad$ (orthogonal direct sum).
(5) Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$ and $Y_{1} \in \mathfrak{m}_{1}$. Then:
$(5 a) \quad\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \mathbf{A}\right\rangle=4(\mu, \mu)\left(Y_{0}, Y_{0}\right) ;$
(5b) $\left\langle\boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right), \mathbf{B}\right\rangle=4(\mu, \mu)\left(Y_{1}, Y_{1}\right)$.
(6) Let $\xi \in U, \eta \in V, Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$ and $Y_{1} \in \mathfrak{m}_{1}$. Assume that $\left(\xi, Y_{0}\right)=$ $\left(\eta, Y_{1}\right)=0$. Then:
(6a) $\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)\right\rangle=0 ;$
(6b) $\left\langle\boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right), \boldsymbol{\Psi}_{\eta}\left(\mathfrak{a}+\mathfrak{m}_{2}\right)\right\rangle=0$.
Proof. The assertions (1), (2) and (3) can be proved in the same manner as in the proof of Proposition 16 of [8]. Hence, we omit their proofs.

Let $\xi \in U(\xi \neq 0)$. By $(2 a)$ we easily get $\boldsymbol{\Psi}_{\xi}\left(\mathfrak{a}+\mathfrak{m}_{2}\right)=\boldsymbol{R A}$ and hence $\boldsymbol{\Psi}_{\xi}(\mathfrak{m})=\boldsymbol{R} \mathbf{A}+\boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)$. Since $\left\langle\mathbf{A}, \boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)\right\rangle=0$ (see $(3 a)$), we have the decomposition (4a). Similarly, we can show (4b).

The assertions $(5 a)$ and $(6 a)$ are proved as follows: Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$. Take $\xi \in U(\xi \neq 0)$ such that $\left(\xi, Y_{0}\right)=0$. Then, we have $\left[\left[Y_{0}, \xi\right], Y_{0}\right]=$ $4(\mu, \mu)\left(Y_{0}, Y_{0}\right) \xi$ (see (2.2)) and $\boldsymbol{\Psi}\left(\xi, Y_{0}\right)=0$ (see $(2 a)$). By the Gauss equation (3.1) we have

$$
\begin{aligned}
\left(\left[\left[Y_{0}, \xi\right], Y_{0}\right], \xi\right) & =\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \boldsymbol{\Psi}(\xi, \xi)\right\rangle-\left\langle\boldsymbol{\Psi}\left(Y_{0}, \xi\right), \boldsymbol{\Psi}\left(\xi, Y_{0}\right)\right\rangle \\
\left(\left[\left[Y_{0}, \xi\right], Y_{0}\right], Y_{1}^{\prime}\right) & =\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \boldsymbol{\Psi}\left(\xi, Y_{1}^{\prime}\right)\right\rangle-\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{1}^{\prime}\right), \boldsymbol{\Psi}\left(\xi, Y_{0}\right)\right\rangle
\end{aligned}
$$

where Y_{1}^{\prime} is an arbitrary element of \mathfrak{m}_{1}. By these equalities we have $\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \mathbf{A}\right\rangle=4(\mu, \mu)\left(Y_{0}, Y_{0}\right)$ and $\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \boldsymbol{\Psi}\left(\xi, Y_{1}^{\prime}\right)\right\rangle=0$. Therefore, we obtain (5a) and (6a). The assertions (5b) and (6b) can be proved in a similar way.

Remark 2 As seen in the proof of Proposition 11, singular subspaces U and V may not be uniquely determined. However, the vectors \mathbf{A} and \mathbf{B} in Proposition 8 do not depend on the choice of singular subspaces U and V, which will be clarified at the last part of this section (see Lemma 20).

In the following argument, we take and fix an element $\boldsymbol{\Psi} \in \mathcal{G}\left(P^{2}(\boldsymbol{H}), \boldsymbol{N}\right)$. We denote by U and V singular subspaces with respect to $\boldsymbol{\Psi}$ satisfying U $\left(\subset \mathfrak{a}+\mathfrak{m}_{2}\right), V\left(\subset \mathfrak{m}_{1}\right), \operatorname{dim} U \geq 2$ and $\operatorname{dim} V \geq 2$. We also denote by \mathbf{A}, \mathbf{B} the vectors of \boldsymbol{N} obtained by applying Proposition 12 to the pair of singular subspaces U and V.

Lemma 13 (1) Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$. Then:

$$
\begin{aligned}
& \left\langle\boldsymbol{\Psi}_{Y_{0}}\left(Y_{1}\right), \boldsymbol{\Psi}_{Y_{0}}\left(Y_{1}^{\prime}\right)\right\rangle \\
& =\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \boldsymbol{\Psi}\left(Y_{1}, Y_{1}^{\prime}\right)\right\rangle-(\mu, \mu)\left(Y_{0}, Y_{0}\right)\left(Y_{1}, Y_{1}^{\prime}\right), \quad \forall Y_{1}, Y_{1}^{\prime} \in \mathfrak{m}_{1} .
\end{aligned}
$$

(2) Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$ and $\xi \in U$ satisfy $\left(\xi, Y_{0}\right)=0$. Then:

$$
\left\langle\boldsymbol{\Psi}_{Y_{0}}\left(Y_{1}\right), \boldsymbol{\Psi}_{\xi}\left(Y_{1}^{\prime}\right)\right\rangle=\left(L\left(Y_{0}, \xi\right) Y_{1}, Y_{1}^{\prime}\right), \quad \forall Y_{1}, Y_{1}^{\prime} \in \mathfrak{m}_{1}
$$

Proof. Putting $X=Y_{0}, Y=Y_{1}, Z=Y_{0}, W=Y_{1}^{\prime}$ into (3.1), we have

$$
\left(\left[\left[Y_{0}, Y_{1}\right], Y_{0}\right], Y_{1}^{\prime}\right)=\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \boldsymbol{\Psi}\left(Y_{1}, Y_{1}^{\prime}\right)\right\rangle-\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{1}^{\prime}\right), \boldsymbol{\Psi}\left(Y_{1}, Y_{0}\right)\right\rangle
$$

Since $\left[Y_{0},\left[Y_{0}, Y_{1}\right]\right]=-(\mu, \mu)\left(Y_{0}, Y_{0}\right) Y_{1}($ see $(2.2))$, we easily get (1).

Similarly, putting $X=\xi, Y=Y_{1}, Z=Y_{0}$ and $W=Y_{1}^{\prime}$ into (3.1), we have

$$
\begin{aligned}
\left(\left[\left[\xi, Y_{1}\right], Y_{0}\right], Y_{1}^{\prime}\right) & =\left\langle\boldsymbol{\Psi}\left(\xi, Y_{0}\right), \mathbf{\Psi}\left(Y_{1}, Y_{1}^{\prime}\right)\right\rangle-\left\langle\mathbf{\Psi}\left(\xi, Y_{1}^{\prime}\right), \mathbf{\Psi}\left(Y_{1}, Y_{0}\right)\right\rangle \\
& =\left\langle\mathbf{A}, \mathbf{\Psi}\left(Y_{1}, Y_{1}^{\prime}\right)\right\rangle\left(\xi, Y_{0}\right)-\left\langle\mathbf{\Psi}_{\xi}\left(Y_{1}^{\prime}\right), \mathbf{\Psi}_{Y_{0}}\left(Y_{1}\right)\right\rangle
\end{aligned}
$$

Since $\left(\xi, Y_{0}\right)=0$, we have

$$
\left\langle\mathbf{\Psi}_{\xi}\left(Y_{1}^{\prime}\right), \mathbf{\Psi}_{Y_{0}}\left(Y_{1}\right)\right\rangle=-\left(\left[\left[\xi, Y_{1}\right], Y_{0}\right], Y_{1}^{\prime}\right)=\left(L\left(Y_{0}, \xi\right) Y_{1}, Y_{1}^{\prime}\right),
$$

proving (2).
Let $\xi \in U(\xi \neq 0)$. Since $\operatorname{dim} \operatorname{Ker}\left(\boldsymbol{\Psi}_{\xi}\right)=3$ (see Proposition 8) and since $\operatorname{dim} \mathfrak{m}=8$, we have $\operatorname{dim} \boldsymbol{\Psi}_{\xi}(\mathfrak{m})=5$. Let us denote by \boldsymbol{E}_{ξ} the one dimensional orthogonal complement of $\boldsymbol{\Psi}_{\xi}(\mathfrak{m})$ in \boldsymbol{N}.

Proposition 14 Set $C=\langle\mathbf{A}, \mathbf{B}\rangle-(\mu, \mu)$. Then:
(1) Let $\xi \in U$. Then:

$$
\begin{equation*}
\left\langle\mathbf{\Psi}_{\xi}\left(Y_{1}\right), \mathbf{\Psi}_{\xi}(\eta)\right\rangle=C(\xi, \xi)\left(Y_{1}, \eta\right), \quad \forall Y_{1} \in \mathfrak{m}_{1}, \forall \eta \in V \tag{4.1}
\end{equation*}
$$

(2) The inequality $0<C \leq 3(\mu, \mu)$ holds. The vectors \mathbf{A} and \mathbf{B} are linearly independent if $C \neq 3(\mu, \mu)$ and $\mathbf{A}=\mathbf{B}$ if $C=3(\mu, \mu)$.
(3) Let $\xi \in U(\xi \neq 0)$. Then, $\mathbf{\Psi}_{Y_{0}}\left(\mathfrak{m}_{1}\right) \subset \boldsymbol{E}_{\xi}+\mathbf{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right), \quad \forall Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$.
(4) If $C \neq 3(\mu, \mu)$, then:

$$
\begin{array}{ll}
\boldsymbol{\Psi}_{Y_{0}}\left(\mathfrak{m}_{1}\right)=\boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right), & \forall Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}\left(Y_{0} \neq 0\right), \forall \xi \in U(\xi \neq 0) ; \\
\mathbf{\Psi}\left(Y_{0}, Y_{0}\right) \in \boldsymbol{R} \mathbf{A}+\boldsymbol{R B}, & \forall Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2} ; \\
\boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right) \in \boldsymbol{R} \mathbf{A}+\boldsymbol{R B}, & \forall Y_{1} \in \mathfrak{m}_{1} . \tag{4.4}
\end{array}
$$

Proof. Put $Y_{0}=\xi$ and $Y_{1}^{\prime}=\eta$ into Lemma 13 (1). Then, since $\boldsymbol{\Psi}(\xi, \xi)=$ $(\xi, \xi) \mathbf{A}$ and $\boldsymbol{\Psi}\left(Y_{1}, \eta\right)=\left(Y_{1}, \eta\right) \mathbf{B}$, we get (4.1).

In view of Proposition 12 (1), we easily have $\langle\mathbf{A}, \mathbf{B}\rangle \leq 4(\mu, \mu)$ and hence $C \leq 3(\mu, \mu)$. Further, by putting $Y_{1}=\eta(\neq 0)$ into (4.1) we know $C>0$, because $\mathbf{\Psi}_{\xi}(\eta) \neq 0$ (see Proposition 9). This shows $\langle\mathbf{A}, \mathbf{B}\rangle>(\mu, \mu)$. Therefore, \mathbf{A} and \mathbf{B} are linearly independent if $\langle\mathbf{A}, \mathbf{B}\rangle \neq 4(\mu, \mu)$, i.e., $C \neq$ $3(\mu, \mu)$. It is easy to see that if $C=3(\mu, \mu)$, i.e., $\langle\mathbf{A}, \mathbf{B}\rangle=4(\mu, \mu)$, then $\mathbf{A}=\mathbf{B}$.

We next prove (3). Let $\xi \in U(\xi \neq 0)$. By Proposition $12(4 a)$ we know that the orthogonal complement of $\boldsymbol{R A}$ in \boldsymbol{N} is given by $\boldsymbol{E}_{\xi}+\boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)$.

Hence, by Proposition $12(3 a)$, we have $\boldsymbol{\Psi}_{Y_{0}}\left(\mathfrak{m}_{1}\right) \subset \boldsymbol{E}_{\xi}+\boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)$ for any $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$.

Finally, we prove (4). Since $C \neq 3(\mu, \mu)$, the subspace $\boldsymbol{R} \mathbf{A}+\boldsymbol{R B}$ forms a 2-dimensional subspace of \boldsymbol{N}. Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}\left(Y_{0} \neq 0\right)$. Then, by Proposition 12 (3a) we know that $\boldsymbol{\Psi}_{Y_{0}}\left(\mathfrak{m}_{1}\right)$ coincides with the orthogonal complement of $\boldsymbol{R A}+\boldsymbol{R B}$ in \boldsymbol{N}. (Recall that $\operatorname{dim} \boldsymbol{\Psi}_{Y_{0}}\left(\mathfrak{m}_{1}\right)=4$ and $\operatorname{dim} \boldsymbol{N}=$ 6.) Let $\xi \in U(\xi \neq 0)$. Since $\boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)$ is also an orthogonal complement of $\boldsymbol{R} \mathbf{A}+\boldsymbol{R B}$, it follows that $\boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)=\boldsymbol{\Psi}_{Y_{0}}\left(\mathfrak{m}_{1}\right)$. If we take $\xi \in U(\xi \neq 0)$ satisfying $\left(\xi, Y_{0}\right)=0$, then by Proposition $12(6 a)$ we obtain $\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right) \in$ $\boldsymbol{R} \mathbf{A}+\boldsymbol{R} \mathbf{B}$. Similarly, we can prove $\boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right) \in \boldsymbol{R} \mathbf{A}+\boldsymbol{R} \mathbf{B}$ for any $Y_{1} \in \mathfrak{m}_{1}$, completing the proof of (4).

Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$ and $\xi \in U(\xi \neq 0)$. Define a linear mapping $\boldsymbol{\Theta}_{Y_{0}, \xi}$: $\mathfrak{m}_{1} \longrightarrow \boldsymbol{N}$ by

$$
\begin{equation*}
\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right)=\boldsymbol{\Psi}_{Y_{0}}\left(Y_{1}\right)+\frac{1}{C(\xi, \xi)} \boldsymbol{\Psi}_{\xi}\left(L\left(\xi, Y_{0}\right) Y_{1}\right), \quad Y_{1} \in \mathfrak{m}_{1} \tag{4.5}
\end{equation*}
$$

Then, we have
Proposition 15 Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}, \xi \in U(\xi \neq 0)$ and $Y_{1} \in \mathfrak{m}_{1}$. Assume that $\left(\xi, Y_{0}\right)=0$ and $L\left(\xi, Y_{0}\right) Y_{1} \in V$. Then:
(1) $\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right) \in \boldsymbol{E}_{\xi}$. More strongly, if $C \neq 3(\mu, \mu)$, then $\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right)=0$.
(2) $\left|\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right)\right|^{2}=\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right)\right\rangle-(\mu, \mu)\{1+(\mu, \mu) / C\}\left(Y_{0}, Y_{0}\right)\left(Y_{1}, Y_{1}\right)$.

Proof. By Proposition 14 (3) we know that $\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right) \in \boldsymbol{E}_{\xi}+\boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)$. Here, we note that $\left\langle\boldsymbol{E}_{\xi}, \boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)\right\rangle=0$, because \boldsymbol{E}_{ξ} is orthogonal to $\boldsymbol{\Psi}_{\xi}(\mathfrak{m})$. Let $Y_{1}^{\prime} \in \mathfrak{m}_{1}$. Then, by Lemma 13 (2), Proposition 14 (1) and Proposition 3 (2) we have

$$
\begin{aligned}
& \left\langle\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right), \boldsymbol{\Psi}_{\xi}\left(Y_{1}^{\prime}\right)\right\rangle \\
& \quad=\left\langle\boldsymbol{\Psi}_{Y_{0}}\left(Y_{1}\right), \boldsymbol{\Psi}_{\xi}\left(Y_{1}^{\prime}\right)\right\rangle+\frac{1}{C(\xi, \xi)}\left\langle\boldsymbol{\Psi}_{\xi}\left(L\left(\xi, Y_{0}\right) Y_{1}\right), \boldsymbol{\Psi}_{\xi}\left(Y_{1}^{\prime}\right)\right\rangle \\
& \quad=\left(L\left(Y_{0}, \xi\right) Y_{1}, Y_{1}^{\prime}\right)+\left(L\left(\xi, Y_{0}\right) Y_{1}, Y_{1}^{\prime}\right) \\
& \quad=0,
\end{aligned}
$$

proving $\left\langle\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right), \boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)\right\rangle=0$. This implies that $\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right) \in \boldsymbol{E}_{\xi}$. In the case where $C \neq 3(\mu, \mu)$, we have $\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right) \in \boldsymbol{\Psi}_{Y_{0}}\left(\mathfrak{m}_{1}\right)+\boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)=\boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)$ (see (4.2)), which proves $\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right)=0$.

Next, we show (2). By Lemma 13 and by the equality $\left\langle\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right), \boldsymbol{\Psi}_{\xi}\left(\mathfrak{m}_{1}\right)\right\rangle$
$=0$, we have

$$
\begin{aligned}
& \left\langle\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right), \boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right)\right\rangle \\
& \quad=\left\langle\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right), \boldsymbol{\Psi}_{Y_{0}}\left(Y_{1}\right)\right\rangle \\
& \quad=\left\langle\boldsymbol{\Psi}_{Y_{0}}\left(Y_{1}\right), \boldsymbol{\Psi}_{Y_{0}}\left(Y_{1}\right)\right\rangle+\frac{1}{C(\xi, \xi)}\left\langle\boldsymbol{\Psi}_{\xi}\left(L\left(\xi, Y_{0}\right) Y_{1}\right), \boldsymbol{\Psi}_{Y_{0}}\left(Y_{1}\right)\right\rangle \\
& \quad=\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right)\right\rangle-(\mu, \mu)\left(Y_{0}, Y_{0}\right)\left(Y_{1}, Y_{1}\right) \\
& \quad+\frac{1}{C(\xi, \xi)}\left(L\left(\xi, Y_{0}\right) Y_{1}, L\left(Y_{0}, \xi\right) Y\right)
\end{aligned}
$$

On the other hand, by Proposition 3 we have

$$
\begin{aligned}
\left(L\left(\xi, Y_{0}\right) Y_{1}, L\left(Y_{0}, \xi\right) Y_{1}\right) & =\left(L\left(\xi, Y_{0}\right) L\left(\xi, Y_{0}\right) Y_{1}, Y_{1}\right) \\
& =-\left(L\left(Y_{0}, \xi\right) L\left(\xi, Y_{0}\right) Y_{1}, Y_{1}\right) \\
& =-(\mu, \mu)^{2}(\xi, \xi)\left(Y_{0}, Y_{0}\right)\left(Y_{1}, Y_{1}\right)
\end{aligned}
$$

Therefore, we get the assertion (2).
With these preparations we begin with the proof Theorem 6. First, we consider the case $\operatorname{dim} V=2$.

Lemma 16 Assume that $\operatorname{dim} V=2$. Then, $C \neq 3(\mu, \mu)$. Accordingly, the vectors \mathbf{A} and $\mathbf{B} \in \boldsymbol{N}$ are linearly independent.

Proof. Take non-zero elements $\xi, \xi^{\prime} \in U$ satisfying $\left(\xi, \xi^{\prime}\right)=0$. Then, by Proposition $3(2)$ it follows that $L\left(\xi, \xi^{\prime}\right)=-L\left(\xi^{\prime}, \xi\right)$ and $L\left(\xi, \xi^{\prime}\right)$ gives an isomorphism of \mathfrak{m}_{1} onto itself. Let $Y_{1} \in L\left(\xi, \xi^{\prime}\right) V$. Then, by Proposition 3 (2b) we have $L\left(\xi, \xi^{\prime}\right) Y_{1} \in V$. Hence, by Proposition 15 (1) we have $\boldsymbol{\Theta}_{\xi^{\prime}, \xi}\left(Y_{1}\right) \in \boldsymbol{E}_{\xi}$. Since $\operatorname{dim} L\left(\xi, \xi^{\prime}\right) V=\operatorname{dim} V=2$ and $\operatorname{dim} \boldsymbol{E}_{\xi}=1$, it is possible to take a non-zero element $Y_{1} \in L\left(\xi, \xi^{\prime}\right) V$ satisfying $\boldsymbol{\Theta}_{\xi^{\prime}, \xi}\left(Y_{1}\right)=0$. Therefore, by Proposition 15 (2) and Proposition 12 (2a) we have

$$
\begin{aligned}
0 & =\left|\boldsymbol{\Theta}_{\xi^{\prime}, \xi}\left(Y_{1}\right)\right|^{2} \\
& =\left[\left\langle\mathbf{\Psi}\left(Y_{1}, Y_{1}\right), \mathbf{A}\right\rangle-(\mu, \mu)\{1+(\mu, \mu) / C\}\left(Y_{1}, Y_{1}\right)\right]\left(\xi^{\prime}, \xi^{\prime}\right)
\end{aligned}
$$

Since $\left(\xi^{\prime}, \xi^{\prime}\right) \neq 0$, we have

$$
\begin{equation*}
\left\langle\mathbf{\Psi}\left(Y_{1}, Y_{1}\right), \mathbf{A}\right\rangle=(\mu, \mu)\{1+(\mu, \mu) / C\}\left(Y_{1}, Y_{1}\right) \tag{4.6}
\end{equation*}
$$

Now, we suppose the case $C=3(\mu, \mu)$. Then, by (4.6) we have $\left\langle\boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right), \mathbf{A}\right\rangle=\frac{4}{3}(\mu, \mu)\left(Y_{1}, Y_{1}\right)$. On the other hand, by Proposition $12(5 b)$
we have $\left\langle\boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right), \mathbf{A}\right\rangle=4(\mu, \mu)\left(Y_{1}, Y_{1}\right)$, because $\mathbf{A}=\mathbf{B}$ in case $C=$ $3(\mu, \mu)$ (see Proposition $14(2))$. Hence, we have $\left(Y_{1}, Y_{1}\right)=0$, which contradicts the assumption $Y_{1} \neq 0$. Therefore, we have $C \neq 3(\mu, \mu)$ and hence \mathbf{A} and \mathbf{B} are linearly independent.

Lemma 17 Assume that $\operatorname{dim} V=2$. Then, V can be extended to a 3 -dimensional singular subspace contained in \mathfrak{m}_{1}, i.e., there is a singular subspace $\widehat{V}\left(\subset \mathfrak{m}_{1}\right)$ such that $V \subset \widehat{V}$ and $\operatorname{dim} \widehat{V}=3$.

Proof. Let $\mathbf{F} \in \boldsymbol{R} \mathbf{A}+\boldsymbol{R B}$ be a unit vector which is orthogonal to \mathbf{B}. Then, for any $\eta \in V$ we have $\left\langle\mathbf{F}, \boldsymbol{\Psi}_{\eta}(\mathfrak{m})\right\rangle=0$, because $\left\langle\mathbf{F}, \boldsymbol{\Psi}_{\eta}(\mathfrak{m})\right\rangle=$ $\left\langle\mathbf{F}, \boldsymbol{R B}+\boldsymbol{\Psi}_{\eta}\left(\mathfrak{a}+\mathfrak{m}_{2}\right)\right\rangle=0$ (see Proposition 12 (4b) and (3b)).

Now, define a symmetric bilinear form χ on \mathfrak{m}_{1} by setting

$$
\chi\left(Y_{1}, Y_{1}^{\prime}\right)=\left\langle\boldsymbol{\Psi}\left(Y_{1}, Y_{1}^{\prime}\right), \mathbf{F}\right\rangle, \quad Y_{1}, Y_{1}^{\prime} \in \mathfrak{m}_{1} .
$$

Since $\boldsymbol{\Psi}\left(Y_{1}, Y_{1}^{\prime}\right) \in \boldsymbol{R B}+\boldsymbol{R F}$ (see Proposition 14 (4)) and $\left\langle\boldsymbol{\Psi}\left(Y_{1}, Y_{1}^{\prime}\right), \mathbf{B}\right\rangle=$ $\langle\mathbf{B}, \mathbf{B}\rangle\left(Y_{1}, Y_{1}^{\prime}\right)$ for $Y_{1}, Y_{1}^{\prime} \in \mathfrak{m}_{1}$ (see Proposition 12 (5)), we have

$$
\begin{equation*}
\boldsymbol{\Psi}\left(Y_{1}, Y_{1}^{\prime}\right)=\left(Y_{1}, Y_{1}^{\prime}\right) \mathbf{B}+\chi\left(Y_{1}, Y_{1}^{\prime}\right) \mathbf{F}, \quad Y_{1}, Y_{1}^{\prime} \in \mathfrak{m}_{1} \tag{4.7}
\end{equation*}
$$

Let V^{\perp} be the orthogonal complement of V in \mathfrak{m}_{1}. Then, we have $\operatorname{dim} V^{\perp}=$ 2. (Recall that $\operatorname{dim} \mathfrak{m}_{1}=4$ and $\operatorname{dim} V=2$.) Let $\left\{Y_{1}, Y_{1}^{\prime}\right\}$ be an orthonormal basis of V^{\perp}. Then, putting $X=Z=Y_{1}$ and $Y=W=Y_{1}^{\prime}$ into the Gauss equation (3.1), we have

$$
\begin{aligned}
\left(\left[\left[Y_{1}, Y_{1}^{\prime}\right], Y_{1}\right], Y_{1}^{\prime}\right)= & \langle\mathbf{B}, \mathbf{B}\rangle\left(Y_{1}, Y_{1}\right)\left(Y_{1}^{\prime}, Y_{1}^{\prime}\right) \\
& +\chi\left(Y_{1}, Y_{1}\right) \chi\left(Y_{1}^{\prime}, Y_{1}^{\prime}\right)-\chi\left(Y_{1}, Y_{1}^{\prime}\right) \chi\left(Y_{1}^{\prime}, Y_{1}\right) .
\end{aligned}
$$

Since $\left(\left[\left[Y_{1}, Y_{1}^{\prime}\right], Y_{1}\right], Y_{1}^{\prime}\right)=\langle\mathbf{B}, \mathbf{B}\rangle\left(Y_{1}, Y_{1}\right)\left(Y_{1}^{\prime}, Y_{1}^{\prime}\right)($ see $(2.2))$, we have

$$
\chi\left(Y_{1}, Y_{1}\right) \chi\left(Y_{1}^{\prime}, Y_{1}^{\prime}\right)-\chi\left(Y_{1}, Y_{1}^{\prime}\right) \chi\left(Y_{1}^{\prime}, Y_{1}\right)=0 .
$$

This implies that χ is degenerate on V^{\perp}. Therefore, there is a non-zero vector $\zeta \in V^{\perp}$ such that $\chi\left(\zeta, V^{\perp}\right)=0$, i.e., $\left\langle\mathbf{F}, \boldsymbol{\Psi}_{\zeta}\left(V^{\perp}\right)\right\rangle=0$.

Let us show that the subspace $\widehat{V}=\boldsymbol{R} \zeta+V\left(\subset \mathfrak{m}_{1}\right)$ is singular with respect to $\boldsymbol{\Psi}$. Note that $\left\langle\mathbf{F}, \mathbf{\Psi}_{\zeta}\left(\mathfrak{a}+\mathfrak{m}_{2}\right)\right\rangle=0$ (see Proposition 12 (3b)). Then, since $\mathfrak{m}=\mathfrak{a}+\mathfrak{m}_{2}+V+V^{\perp}$ and $\boldsymbol{\Psi}_{\zeta}(V) \subset \boldsymbol{R} \mathbf{B}$, it follows that

$$
\begin{aligned}
\left\langle\mathbf{F}, \boldsymbol{\Psi}_{\zeta}(\mathfrak{m})\right\rangle & =\left\langle\mathbf{F}, \mathbf{\Psi}_{\zeta}\left(\mathfrak{a}+\mathfrak{m}_{2}\right)+\mathbf{\Psi}_{\zeta}(V)+\mathbf{\Psi}_{\zeta}\left(V^{\perp}\right)\right\rangle \\
& \subset 0+\langle\mathbf{F}, \boldsymbol{R} \mathbf{B}\rangle+0=0 .
\end{aligned}
$$

Hence, we have $\left\langle\mathbf{F}, \mathbf{\Psi}_{a \zeta+\eta}(\mathfrak{m})\right\rangle=0$ for any $a \in \boldsymbol{R}$ and $\eta \in V$. Consequently, $\boldsymbol{\Psi}_{a \zeta+\eta}(\mathfrak{m}) \neq \boldsymbol{N}$, which implies that $a \zeta+\eta \in \widehat{V}$ is singular with respect to $\boldsymbol{\Psi}$.

Now, we assume that $\operatorname{dim} V=2$ and denote by \widehat{V} be the singular subspace stated in the above lemma. Let $\widehat{\mathbf{A}}$ and $\widehat{\mathbf{B}}$ be the vectors obtained by applying Proposition 12 to the pair of singular subspaces U and \widehat{V}. Then, by Proposition 12 (2) we can easily see that $\widehat{\mathbf{A}}=\mathbf{A}$ and $\widehat{\mathbf{B}}=\mathbf{B}$. Therefore, we know that all the statements in Proposition 12 and hence the arguments developed after Proposition 12 are also true if we simply replace V by \widehat{V}. Accordingly, without loss of generality we can assume that $\operatorname{dim} V \geq 3$.
Lemma $18\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \mathbf{B}\right\rangle=(\mu, \mu)\{1+(\mu, \mu) / C\}\left(Y_{0}, Y_{0}\right), \quad \forall Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$.
Proof. As in the proof of Lemma 16, we can prove that $C \neq 3(\mu, \mu)$. Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}\left(Y_{0} \neq 0\right)$. Take $\xi \in U(\xi \neq 0)$ such that $\left(\xi, Y_{0}\right)=0$, which is possible because $\operatorname{dim} U \geq 2$. Then, by Proposition 3 (2) it follows that $L\left(\xi, Y_{0}\right)=-L\left(Y_{0}, \xi\right)$ and that the map $L\left(\xi, Y_{0}\right)$ gives an isomorphism of \mathfrak{m}_{1} onto itself. Now, take $\eta \in V(\eta \neq 0)$ such that $L\left(\xi, Y_{0}\right) \eta \in V$. This is also possible because $\operatorname{dim} L\left(\xi, Y_{0}\right) V=\operatorname{dim} V \geq 3$ and $\operatorname{dim}\left(V \cap L\left(\xi, Y_{0}\right) V\right) \geq 2$. (Note that $\operatorname{dim} \mathfrak{m}_{1}=4$.) Then, by Proposition 15 and Proposition 12 (2b) we have

$$
\begin{aligned}
0 & =\left|\boldsymbol{\Theta}_{Y_{0}, \xi}(\eta)\right|^{2} \\
& =\left[\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \mathbf{B}\right\rangle-(\mu, \mu)\{1+(\mu, \mu) / C\}\left(Y_{0}, Y_{0}\right)\right](\eta, \eta) .
\end{aligned}
$$

Since $(\eta, \eta) \neq 0$, we get the lemma.
Lemma $19 C=(\mu, \mu)$, i.e., $\langle\mathbf{A}, \mathbf{B}\rangle=2(\mu, \mu)$.
Proof. Take $\xi \in U(\xi \neq 0)$. Then, by Lemma 18 and $\boldsymbol{\Psi}(\xi, \xi)=(\xi, \xi) \mathbf{A}$ (see Proposition $12(2 a)$), we have $\langle\mathbf{A}, \mathbf{B}\rangle=(\mu, \mu)\{1+(\mu, \mu) / C\}$. Since $C=\langle\mathbf{A}, \mathbf{B}\rangle-(\mu, \mu)$, we easily have $C^{2}=(\mu, \mu)^{2}$. Moreover, since $C>0$ (see Proposition $14(2)$), it follows that $C=(\mu, \mu)$, i.e., $\langle\mathbf{A}, \mathbf{B}\rangle=2(\mu, \mu)$.

Now, we show
Lemma 20 (1) $\boldsymbol{\Psi}\left(Y_{0}, Y_{0}^{\prime}\right)=\left(Y_{0}, Y_{0}^{\prime}\right) \mathbf{A}, \quad \forall Y_{0}, Y_{0}^{\prime} \in \mathfrak{a}+\mathfrak{m}_{2}$.
(2) $\boldsymbol{\Psi}\left(Y_{1}, Y_{1}^{\prime}\right)=\left(Y_{1}, Y_{1}^{\prime}\right) \mathbf{B}, \quad \forall Y_{1}, Y_{1}^{\prime} \in \mathfrak{m}_{1}$.

Proof. On account of an elementary fact concerning symmetric bilinear
forms, we have only to show $\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right)=\left(Y_{0}, Y_{0}\right) \mathbf{A}$ and $\boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right)=$ $\left(Y_{1}, Y_{1}\right) \mathbf{B}$ for any $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$ and $Y_{1} \in \mathfrak{m}_{1}$.

Let $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$. Then, by Lemma 18 and Lemma 19 we have $\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \mathbf{B}\right\rangle=\langle\mathbf{A}, \mathbf{B}\rangle\left(Y_{0}, Y_{0}\right)$. Moreover, by Proposition 12 (1) and (5a) we have $\left\langle\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right), \mathbf{A}\right\rangle=\langle\mathbf{A}, \mathbf{A}\rangle\left(Y_{0}, Y_{0}\right)$. Since $\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right) \in \boldsymbol{R} \mathbf{A}+\boldsymbol{R} \mathbf{B}$ (see (4.3)), it follows that $\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right)=\left(Y_{0}, Y_{0}\right) \mathbf{A}$, which proves (1).

We next prove (2). Let $Y_{1} \in \mathfrak{m}_{1}\left(Y_{1} \neq 0\right)$. Take elements $\xi \in U(\xi \neq 0)$ and $\eta \in V(\eta \neq 0)$ such that $\left(\eta, Y_{1}\right)=0$. Set $Y_{0}=\left[Y_{1},[\xi, \eta]\right]$. Then, it is easy to see that $[\xi, \eta] \in \mathfrak{k}_{1}$ and $Y_{0} \in \mathfrak{a}+\mathfrak{m}_{2}$ (see (2.1)). Further, we have $\left(\xi, Y_{0}\right)=0$ and $L\left(\xi, Y_{0}\right) Y_{1} \in V$, because

$$
\begin{aligned}
\left(\xi, Y_{0}\right) & =\left(\xi,\left[Y_{1},[\xi, \eta]\right]\right)=-\left([\xi,[\xi, \eta]], Y_{1}\right) \\
& =(\mu, \mu)(\xi, \xi)\left(\eta, Y_{1}\right)=0 \\
L\left(\xi, Y_{0}\right) Y_{1} & =\left[\xi,\left[\left[Y_{1},[\xi, \eta]\right], Y_{1}\right]\right]=(\mu, \mu)\left(Y_{1}, Y_{1}\right)[\xi,[\xi, \eta]] \\
& =-(\mu, \mu)^{2}(\xi, \xi)\left(Y_{1}, Y_{1}\right) \eta \in V
\end{aligned}
$$

(see (2.2) and (2.4)). Thus, by Proposition 15 (2), Lemma 19 and $\boldsymbol{\Psi}\left(Y_{0}, Y_{0}\right)=\left(Y_{0}, Y_{0}\right) \mathbf{A}$ (see (1)), we have

$$
0=\left|\boldsymbol{\Theta}_{Y_{0}, \xi}\left(Y_{1}\right)\right|^{2}=\left[\left\langle\mathbf{A}, \boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right)\right\rangle-2(\mu, \mu)\left(Y_{1}, Y_{1}\right)\right]\left(Y_{0}, Y_{0}\right)
$$

Here, we note that $Y_{0} \neq 0$, because $L\left(\xi, Y_{0}\right) Y_{1} \neq 0$. Hence, by the above equality and Lemma 19, we have $\left\langle\boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right), \mathbf{A}\right\rangle=\langle\mathbf{B}, \mathbf{A}\rangle\left(Y_{1}, Y_{1}\right)$. On the other hand, by Proposition 12 (1) and (5b) we have $\left\langle\boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right), \mathbf{B}\right\rangle=$ $\langle\mathbf{B}, \mathbf{B}\rangle\left(Y_{1}, Y_{1}\right)$. Consequently, it follows that $\boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right)=\left(Y_{1}, Y_{1}\right) \mathbf{B}$, because $\boldsymbol{\Psi}\left(Y_{1}, Y_{1}\right) \in \boldsymbol{R A}+\boldsymbol{R B}$ (see (4.4)). This proves (2).

We are now in a final position of the proof of Theorem 6. Let $Y_{0} \in$ $\mathfrak{a}+\mathfrak{m}_{2}\left(Y_{0} \neq 0\right)$. Then, by Lemma 20 (1) we have $\operatorname{Ker}\left(\boldsymbol{\Psi}_{Y_{0}}\right) \supset\left\{Y_{0}^{\prime} \in\right.$ $\left.\mathfrak{a}+\mathfrak{m}_{2} \mid\left(Y_{0}, Y_{0}^{\prime}\right)=0\right\}$. This shows $\operatorname{dim} \operatorname{Ker}\left(\boldsymbol{\Psi}_{Y_{0}}\right) \geq 3$ and hence Y_{0} is singular with respect to $\boldsymbol{\Psi}$ (see Proposition 9 (1)). Accordingly, $\mathfrak{a}+\mathfrak{m}_{2}$ is a singular subspace. Similarly, by Lemma 20 (2) we can show that \mathfrak{m}_{1} is also a singular subspace.

Now, let us put into Proposition $12 U=\mathfrak{a}+\mathfrak{m}_{2}$ and $V=\mathfrak{m}_{1}$. Then, by Lemma 20 we know that the vectors \mathbf{A} and \mathbf{B} are not altered by this change of singular subspaces. Therefore, all the statements in Proposition 12 and the arguments developed after Proposition 12 are also true under our setting $U=\mathfrak{a}+\mathfrak{m}_{2}$ and $V=\mathfrak{m}_{1}$. Consequently, by Proposition 12 (1), (2), (3) and Lemma 19 we get the assertion (1) of Theorem 6. We also
obtain by Proposition 14 and $C=(\mu, \mu)$ (see Lemma 19) the assertion (3) of Theorem 6.

Finally, we prove the assertion (2) of Theorem 6. Let $Y_{2} \in \mathfrak{m}_{2}$ and $Y_{1} \in \mathfrak{m}_{1}$. Then, since $C \neq 3(\mu, \mu)$ and $\left(\mu, Y_{2}\right)=0$, we have

$$
\boldsymbol{\Theta}_{Y_{2}, \mu}\left(Y_{1}\right)=\boldsymbol{\Psi}_{Y_{2}}\left(Y_{1}\right)+\frac{1}{(\mu, \mu)^{2}} \boldsymbol{\Psi}_{\mu}\left(L\left(\mu, Y_{2}\right) Y_{1}\right)=0
$$

(see Proposition 15). Here we note that the conditions $\mu \in U$ and $L\left(\mu, Y_{2}\right) Y_{1} \in V$ in Proposition 15 have no significance, because $U=\mathfrak{a}+\mathfrak{m}_{2}$ and $V=\mathfrak{m}_{1}$. Accordingly, we obtain the assertion (2). This completes the proof of Theorem 6.

References

[1] Agaoka Y., Isometric immersions of $S O(5)$, J. Math. Kyoto Univ., 24 (1984), 713-724.
[2] Agaoka Y. and Kaneda E., On local isometric immersions of Riemannian symmetric spaces, Tôhoku Math. J., 36 (1984), 107-140.
[3] Agaoka Y. and Kaneda E., An estimate on the codimension of local isometric imbeddings of compact Lie groups, Hiroshima Math. J., 24 (1994), 77-110.
[4] Agaoka Y. and Kaneda E., Local isometric imbeddings of symplectic groups, Geometriae Dedicata, 71 (1998), 75-82.
[5] Agaoka Y. and Kaneda E., Strongly orthogonal subsets in root systems, Hokkaido Math. J., 31 (2002), 107-136.
[6] Agaoka Y. and Kaneda E., A lower bound for the curvature invariant $p(G / K)$ associated with a Riemannian symmetric space G / K, Hokkaido Math. J., 33 (2004), 153-184.
[7] Agaoka Y. and Kaneda E., Local isometric imbeddings of $P^{2}(\boldsymbol{H})$ and $P^{2}(\boldsymbol{C a y})$, Hokkaido Math. J. 33 (2004), 399-412.
[8] Agaoka Y. and Kaneda E., Rigidity of the canonical isometric imbedding of the Cayley projective plane $P^{2}(\boldsymbol{C a y})$, Hokkaido Math. J. 34 (2005), 331-353.
[9] Agaoka Y. and Kaneda E., Local isometric imbeddings of Grassmann manifolds, in preparation.
[10] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[11] Kobayashi S., Isometric imbeddings of compact symmetric spaces, Tôhoku Math. J. 20 (1968), 21-25.
[12] Kobayashi S. and Nomizu K., Foundations of Differential Geometry II, Interscience Publishers, New York, 1969.
Y. Agaoka

Faculty of Integrated Arts and Sciences
Hiroshima University
1-7-1 Kagamiyama, Higashi-Hiroshima City
Hiroshima, 739-8521, Japan
E-mail: agaoka@mis.hiroshima-u.ac.jp
E. Kaneda

Faculty of Foreign Studies
Osaka University of Foreign Studies
8-1-1 Aomadani-Higashi, Minoo City
Osaka, 562-8558, Japan
E-mail: kaneda@osaka-gaidai.ac.jp

[^0]: 2000 Mathematics Subject Classification : 17B20, 53B25, 53C24, 53C35.

