Hokkaido Mathematical Journal Vol. 35 (2006) p. 119-138

Rigidity of the canonical isometric imbedding of the quaternion projective plane $P^2(H)$

Yoshio Agaoka and Eiji Kaneda

(Received April 12, 2004)

Abstract. In this paper, we investigate isometric immersions of $P^2(\mathbf{H})$ into \mathbf{R}^{14} and prove that the canonical isometric imbedding \mathbf{f}_0 of $P^2(\mathbf{H})$ into \mathbf{R}^{14} , which is defined in Kobayashi [11], is rigid in the following strongest sense: Any isometric immersion \mathbf{f}_1 of a connected open set $U (\subset P^2(\mathbf{H}))$ into \mathbf{R}^{14} coincides with \mathbf{f}_0 up to a euclidean transformation of \mathbf{R}^{14} , i.e., there is a euclidean transformation a of \mathbf{R}^{14} satisfying $\mathbf{f}_1 = a\mathbf{f}_0$ on U.

Key words: Curvature invariant, isometric immersion, quaternion projective plane, rigidity, root space decomposition.

1. Introduction

In our previous paper [8], we proved the rigidity of the canonical isometric imbedding of the Cayley projective plane $P^2(\mathbf{Cay})$. The purpose of this paper is to investigate a similar problem for (local) isometric immersions of the quaternion projective plane $P^2(\mathbf{H})$. As we have proved in [7], any open set of the quaternion projective plane $P^2(\mathbf{H})$ cannot be isometrically immersed into \mathbf{R}^{13} . On the other hand, there is an isometric immersion \mathbf{f}_0 of $P^2(\mathbf{H})$ into the euclidean space \mathbf{R}^{14} , which is called the canonical isometric imbedding of $P^2(\mathbf{H})$ (see Kobayashi [11]). Therefore, it follows that \mathbf{R}^{14} is the least dimensional euclidean space into which $P^2(\mathbf{H})$ can be (locally) isometrically immersed.

In the present paper, we will show that the canonical isometric imbedding f_0 is rigid in the following strongest sense:

Theorem 1 Let \mathbf{f}_0 be the canonical isometric imbedding of $P^2(\mathbf{H})$ into the euclidean space \mathbf{R}^{14} . Then, for any isometric immersion \mathbf{f}_1 defined on a connected open set U of $P^2(\mathbf{H})$ into \mathbf{R}^{14} , there exists a euclidean transformation \mathbf{a} of \mathbf{R}^{14} satisfying $\mathbf{f}_1 = \mathbf{a}\mathbf{f}_0$ on U.

The proof of this theorem will be given by solving the Gauss equation

²⁰⁰⁰ Mathematics Subject Classification: 17B20, 53B25, 53C24, 53C35.

associated with the isometric imbeddings (immersions) of $P^2(\mathbf{H})$ into \mathbf{R}^{14} in the same line of [8] (see Theorem 7). We use the same notations and terminology as those of the previous papers [6], [7] and [8].

2. The quaternion projective plane $P^2(H)$

In this section we review the structure of the quaternion projective plane $P^2(\mathbf{H})$ and prepare several formulas concerning the bracket operation.

As is well-known, $P^2(\mathbf{H})$ can be represented by $P^2(\mathbf{H}) = G/K$, where G = Sp(3) and $K = Sp(2) \times Sp(1)$. Let \mathfrak{g} (resp. \mathfrak{k}) be the Lie algebra of G (resp. K) and let $\mathfrak{g} = \mathfrak{k} + \mathfrak{m}$ be the canonical decomposition of \mathfrak{g} associated with the symmetric pair (G, K). We denote by (,) the inner product of \mathfrak{g} given by the (-1)-multiple of the Killing form of \mathfrak{g} . As usual, we can identify \mathfrak{m} with the tangent space $T_o(G/K)$ at the origin $o = \{K\}$. We assume that the G-invariant Riemannian metric g of G/K satisfies

$$g_o(X,Y) = (X,Y), \quad X,Y \in \mathfrak{m}.$$

Then, it is well-known that at the origin o the Riemannian curvature tensor R of type (1,3) is given by

$$R_o(X,Y)Z = -[[X,Y],Z], \qquad \forall X, Y, Z \in \mathfrak{m}.$$

We now take a maximal abelian subspace \mathfrak{a} of \mathfrak{m} and fix it in the following discussions. We note that since $\operatorname{rank}(P^2(\mathbf{H})) = 1$, we have dim $\mathfrak{a} = 1$.

For each element $\lambda \in \mathfrak{a}$ we define two subspaces $\mathfrak{k}(\lambda) \ (\subset \mathfrak{k})$ and $\mathfrak{m}(\lambda) \ (\subset \mathfrak{m})$ by

$$\begin{aligned} \mathfrak{k}(\lambda) &= \Big\{ X \in \mathfrak{k} \ \Big| \ \big[H, \big[H, X \big] \big] = -(\lambda, H)^2 X, \quad \forall H \in \mathfrak{a} \Big\}, \\ \mathfrak{m}(\lambda) &= \Big\{ Y \in \mathfrak{m} \ \Big| \ \big[H, \big[H, Y \big] \big] = -(\lambda, H)^2 Y, \quad \forall H \in \mathfrak{a} \Big\}. \end{aligned}$$

Let Σ be the set of all non-zero restricted roots. (An element $\lambda \in \mathfrak{a}$ is called a *restricted root* if $\mathfrak{m}(\lambda) \neq 0$.) As is known, there is a restricted root μ such that $\Sigma = \{\pm \mu, \pm 2\mu\}$. We take and fix such a restricted root μ . For each integer *i* we set $\mathfrak{k}_i = \mathfrak{k}(|i|\mu), \mathfrak{m}_i = \mathfrak{m}(|i|\mu) \ (|i| \leq 2), \ \mathfrak{k}_i = \mathfrak{m}_i = 0 \ (|i| > 2)$. Then, we have $\mathfrak{m}_0 = \mathfrak{a} = \mathbf{R}\mu$ and

$$\begin{split} \mathbf{\hat{t}} &= \mathbf{\hat{t}}_0 + \mathbf{\hat{t}}_1 + \mathbf{\hat{t}}_2 \quad (orthogonal \ direct \ sum), \\ \mathbf{m} &= \mathbf{m}_0 + \mathbf{m}_1 + \mathbf{m}_2 \quad (orthogonal \ direct \ sum). \end{split}$$

The dimensions of the factors are given by $\dim \mathfrak{k}_0 = 6$, $\dim \mathfrak{k}_1 = \dim \mathfrak{m}_1 = 4$ and $\dim \mathfrak{k}_2 = \dim \mathfrak{m}_2 = 3$ (precisely, see [7]).

We now show several formulas concerning the bracket operation of \mathfrak{g} . By the definition of the subspaces \mathfrak{k}_i and \mathfrak{m}_i we easily have

$$\begin{bmatrix} \mathfrak{k}_i, \mathfrak{k}_j \end{bmatrix} \subset \mathfrak{k}_{i+j} + \mathfrak{k}_{i-j}, \quad \begin{bmatrix} \mathfrak{m}_i, \mathfrak{m}_j \end{bmatrix} \subset \mathfrak{k}_{i+j} + \mathfrak{k}_{i-j}, \quad \begin{bmatrix} \mathfrak{k}_i, \mathfrak{m}_j \end{bmatrix} \subset \mathfrak{m}_{i+j} + \mathfrak{m}_{i-j}.$$
(2.1)

Moreover, we have

Proposition 2 Let $Y_0, Y'_0 \in \mathfrak{a} + \mathfrak{m}_2, Y_1, Y'_1 \in \mathfrak{m}_1$. Then:

where δ_{ij} denotes the Kronecker delta.

Proof. We first prove (2.2). Assume that i = j and $Y_i \neq 0$. Set $Y''_i = Y'_i - (Y'_i, Y_i)/(Y_i, Y_i) \cdot Y_i$. Then, we know that $(Y_i, Y''_i) = 0$ and that $Y''_i \in \mathfrak{a} + \mathfrak{m}_2$ if i = 0 and $Y''_i \in \mathfrak{m}_1$ if i = 1. Hence, by Proposition 10 of [7], we have $[Y_i, [Y_i, Y''_i]] = -4(\mu, \mu)(Y_i, Y_i)Y''_i$. Therefore, we can easily obtain (2.2) in the case i = j. In the case $i \neq j$, (2.2) directly follows from Proposition 10 of [7].

We next prove (2.3). Since $i \neq j$, it follows that $(Y_i, Y_j) = (Y'_i, Y_j) = 0$. Hence, by (2.2) we have $[Y_i + Y'_i, [Y_i + Y'_i, Y_j]] = -(\mu, \mu)(Y_i + Y'_i, Y_i + Y'_i)Y_j$. This, together with $[Y_i, [Y_i, Y_j]] = -(\mu, \mu)(Y_i, Y_i)Y_j$ and $[Y'_i, [Y'_i, Y_j]] = -(\mu, \mu)(Y'_i, Y'_i)Y_j$, proves (2.3).

We finally prove (2.4). We note that $[Y_1, \mathfrak{a} + \mathfrak{m}_2] = \mathfrak{k}_1$ holds for any $Y_1 \in \mathfrak{m}_1 \ (\neq 0)$. In fact, it is easy to see $[Y_1, \mathfrak{a} + \mathfrak{m}_2] \subset \mathfrak{k}_1$ (see (2.1)). Moreover, the map $\mathfrak{a} + \mathfrak{m}_2 \ni Y'_0 \longmapsto [Y_1, Y'_0] \in \mathfrak{k}_1$ is bijective, because $[Y_1, Y'_0] \neq 0$ if $Y'_0 \in \mathfrak{a} + \mathfrak{m}_2 \ (Y'_0 \neq 0)$ (recall that $\operatorname{rank}(P^2(H)) = 1$) and because $\dim(\mathfrak{a} + \mathfrak{m}_2) = \dim \mathfrak{k}_1$. Let $X_1 \in \mathfrak{k}_1$. Then, by $[Y_1, \mathfrak{a} + \mathfrak{m}_2] = \mathfrak{k}_1$ we can take an element $Y'_0 \in \mathfrak{a} + \mathfrak{m}_2$ such that $[Y_1, Y'_0] = X_1$. Now, applying ad Y_1 to the equality $[Y_1, [Y_1, Y'_0]] = -(\mu, \mu)(Y_1, Y_1)Y'_0$ (see (2.2)), we have $[Y_1, [Y_1, X_1]] = -(\mu, \mu)(Y_1, Y_1)X_1$, proving (2.4) for the case i = 1. Similarly, we can prove (2.4) for the case i = 0. Let $Y_0, Y'_0 \in \mathfrak{a} + \mathfrak{m}_2$. Define a linear mapping $L(Y_0, Y'_0)$ of \mathfrak{m}_1 to \mathfrak{m} by

$$L(Y_0, Y'_0)Y_1 = [Y_0, [Y'_0, Y_1]], \qquad Y_1 \in \mathfrak{m}_1$$

Then, we have

Proposition 3 Let $Y_0, Y'_0 \in \mathfrak{a} + \mathfrak{m}_2$. Then: (1) $L(Y_0, Y'_0)\mathfrak{m}_1 \subset \mathfrak{m}_1$. The transpose of $L(Y_0, Y'_0)$ with respect to (,) is given by $L(Y'_0, Y_0)$, i.e., ${}^tL(Y_0, Y'_0) = L(Y'_0, Y_0)$. (2) Let $\mathbf{1}_{\mathfrak{m}_1}$ be the identity map of \mathfrak{m}_1 . Then:

 $(2a)^{n} L(Y_0, Y'_0) + L(Y'_0, Y_0) = -2(\mu, \mu)(Y_0, Y'_0) \mathbf{1}_{\mathfrak{m}_1};$

 $(2b) \quad L(Y_0,Y_0')\cdot L(Y_0',Y_0) = (\mu,\mu)^2(Y_0,Y_0)(Y_0',Y_0')\,\mathbf{1}_{\mathfrak{m}_1}.$

Proof. The assertion (1) is clear from (2.1) and the $\operatorname{ad} \mathfrak{g}$ -invariance of (,). Let $Y_1 \in \mathfrak{m}_1$. Since $[Y_0, Y_1] \in \mathfrak{k}_1$, we have $[Y'_0, [Y'_0, Y_0, Y_1]] = -(\mu, \mu)(Y'_0, Y'_0)[Y_0, Y_1]$ (see (2.4)). Hence, by applying $\operatorname{ad} Y_0$ to this equality, we easily have (2b). The equality (2a) directly follows from (2.3). \Box

Here, we recall the notion of pseudo-abelian subspace of \mathfrak{m} . Let Q be a subspace of \mathfrak{m} . Q is called *pseudo-abelian* if it satisfies $[Q, Q] \subset \mathfrak{k}_0$ (see [6]).

Proposition 4 (1) Any subspace Q of \mathfrak{m}_2 is pseudo-abelian. (2) Let Q be a pseudo-abelian subspace satisfying $Q \not\subset \mathfrak{m}_2$. Then, dim $Q \leq 2$.

Accordingly, the inequality dim $Q \leq 3$ holds for any pseudo-abelian subspace Q, and the equality holds when and only when $Q = \mathfrak{m}_2$.

Proof. Since $[\mathfrak{m}_2, \mathfrak{m}_2] \subset \mathfrak{k}_0$ (see (2.1)), it follows that any subspace of \mathfrak{m}_2 is pseudo-abelian. On the contrary, we already proved in Lemma 5.4 of [6] that for a pseudo-abelian subspace Q with $Q \not\subset \mathfrak{m}_2$ it holds dim $Q \leq 1 + n(\mu)$, where $n(\mu)$ means the local pseudo-nullity of the restricted root μ . (For the definition of the local pseudo-nullity, see §3 of [6].) In the case $G/K = P^2(\mathbf{H})$, we have $n(\mu) = 1$ (see Theorem 3.2 and Table 3 of [6]). Hence, we have dim $Q \leq 2$.

For later use, we obtain the normal form of a 2-dimensional pseudoabelian subspace Q with $Q \not\subset \mathfrak{m}_2$.

Proposition 5 Let ξ_1 and η_1 be elements of \mathfrak{m}_1 satisfying $(\xi_1, \xi_1) = 2(\mu, \mu)$, $\eta_1 \neq 0$ and $(\xi_1, \eta_1) = 0$. Then, the 2-dimensional subspace $Q \ (\subset \mathfrak{m})$ defined by

Rigidity of the canonical isometric imbedding of $P^2(\mathbf{H})$

$$Q = \mathbf{R}(\mu + \xi_1) + \mathbf{R}\left(\eta_1 + \frac{1}{4(\mu, \mu)^2} \left[\mu, \left[\xi_1, \eta_1\right]\right]\right)$$
(2.5)

is pseudo-abelian and $Q \not\subset \mathfrak{m}_2$.

Conversely, if Q is a pseudo-abelian subspace of \mathfrak{m} with $Q \not\subset \mathfrak{m}_2$ and dim Q = 2, then Q can be written in the form (2.5) by utilizing suitable elements ξ_1 and $\eta_1 \in \mathfrak{m}_1$ satisfying $(\xi_1, \xi_1) = 2(\mu, \mu)$, $\eta_1 \neq 0$ and $(\xi_1, \eta_1) = 0$.

Proof. Let ξ_1 and η_1 be elements of \mathfrak{m}_1 satisfying $(\xi_1, \xi_1) = 2(\mu, \mu), \eta_1 \neq 0$ and $(\xi_1, \eta_1) = 0$. Then, the subspace Q defined by (2.5) satisfies $Q \not\subset \mathfrak{m}_2$ and dim Q = 2. Set $\eta_2 = (1/4(\mu, \mu)^2) [\mu, [\xi_1, \eta_1]]$. Then, it is easily verified that $\eta_2 \in \mathfrak{m}_2$. We now show that Q is pseudo-abelian. By (2.3) and $(\xi_1, \eta_1) = 0$, we have $[\xi_1, [\eta_1, \mu]] = -[\eta_1, [\xi_1, \mu]]$. Hence, by the Jacobi identity we have

$$[\mu, [\xi_1, \eta_1]] = [[\mu, \xi_1], \eta_1] + [\xi_1, [\mu, \eta_1]] = -2[\xi_1, [\eta_1, \mu]].$$

Consequently, we have $\eta_2 = -(1/2(\mu,\mu)^2)[\xi_1, [\eta_1,\mu]]$. Note that $[\eta_1,\mu] \in \mathfrak{k}_1$. Then, by the formula (2.4) and the assumption $(\xi_1,\xi_1) = 2(\mu,\mu)$ we have

$$[\xi_1, \eta_2] = -\frac{1}{2(\mu, \mu)^2} [\xi_1, [\xi_1, [\eta_1, \mu]]] = \frac{(\xi_1, \xi_1)}{2(\mu, \mu)} [\eta_1, \mu] = -[\mu, \eta_1].$$

Moreover, since $[\mu, \eta_2] + [\xi_1, \eta_1] \in \mathfrak{k}$ and since

$$[\mu, [\mu, \eta_2] + [\xi_1, \eta_1]] = -4(\mu, \mu)^2 \eta_2 + [\mu, [\xi_1, \eta_1]] = 0,$$

it follows that $[\mu, \eta_2] + [\xi_1, \eta_1] \in \mathfrak{k}_0$. (Note that an element $X \in \mathfrak{k}$ belongs to \mathfrak{k}_0 if and only if $[\mu, X] = 0$.) By these relations we have

$$[\mu + \xi_1, \eta_1 + \eta_2] = [\mu, \eta_1] + [\xi_1, \eta_2] + [\mu, \eta_2] + [\xi_1, \eta_1]$$

= 0 + [\mu, \eta_2] + [\xi_1, \eta_1] \eta \varepsilon_0.

Since $Q = \mathbf{R}(\mu + \xi_1) + \mathbf{R}(\eta_1 + \eta_2)$, this implies that Q is a pseudo-abelian subspace.

We next prove the converse. Let Q be a pseudo-abelian subspace with $Q \not\subset \mathfrak{m}_2$ and dim Q = 2. Then, viewing the proof of Lemma 5.4 of [6], we know that $Q \cap \mathfrak{m}_2 = 0$ and dim $(Q \cap (\mathfrak{m}_1 + \mathfrak{m}_2)) \leq n(\mu) = 1$. Consequently, we have $Q \not\subset \mathfrak{m}_1 + \mathfrak{m}_2$, because dim Q = 2. Therefore, there is a basis $\{\xi, \eta\}$ of Q written in the form $\xi = \mu + \xi_1 + \xi_2$, $\eta = \eta_1 + \eta_2$, where $\xi_1, \eta_1 \in \mathfrak{m}_1$, $\xi_2, \eta_2 \in \mathfrak{m}_2$. Here, we note that $\eta_1 \neq 0$, because $Q \cap \mathfrak{m}_2 = 0$. Subtracting a constant multiple of η from ξ if necessary, we may assume that $(\xi_1, \eta_1) = 0$.

Y. Agaoka and E. Kaneda

Since

$$[\xi,\eta] = [\mu + \xi_2,\eta_1] + [\xi_1,\eta_2] + [\mu + \xi_2,\eta_2] + [\xi_1,\eta_1] \in \mathfrak{k}_0$$

and since $[\mu + \xi_2, \eta_1] + [\xi_1, \eta_2] \in \mathfrak{k}_1$, $[\mu + \xi_2, \eta_2] + [\xi_1, \eta_1] \in \mathfrak{k}_0 + \mathfrak{k}_2$ and $[\xi_2, \eta_2] \in \mathfrak{k}_0$, it follows that

$$[\mu + \xi_2, \eta_1] + [\xi_1, \eta_2] = 0, \tag{2.6}$$

$$\left[\mu,\eta_2\right] + \left[\xi_1,\eta_1\right] \in \mathfrak{k}_0. \tag{2.7}$$

Applying $\operatorname{ad} \mu$ to (2.7), we have $\eta_2 = (1/4(\mu, \mu)^2) [\mu, [\xi_1, \eta_1]]$. By this equality and the assumption $(\xi_1, \eta_1) = 0$, we can deduce $[\xi_1, \eta_2] = ((\xi_1, \xi_1)/2(\mu, \mu)) [\eta_1, \mu]$ (see the arguments stated above). Putting this into (2.6), we have

$$\left[\left(1-\frac{(\xi_1,\xi_1)}{2(\mu,\mu)}\right)\mu+\xi_2,\eta_1\right]=0$$

Since $\eta_1 \neq 0$ and rank $(P^2(\mathbf{H})) = 1$, we have $(1 - (\xi_1, \xi_1)/2(\mu, \mu))\mu + \xi_2 = 0$. This proves $(\xi_1, \xi_1) = 2(\mu, \mu)$ and $\xi_2 = 0$, completing the proof of the converse.

3. The Gauss equation

$$\left(\left[\left[X,Y\right],Z\right],W\right) = \left\langle \Psi(X,Z),\Psi(Y,W)\right\rangle - \left\langle \Psi(X,W),\Psi(Y,Z)\right\rangle,$$
(3.1)

where $X, Y, Z, W \in \mathfrak{m}$. We denote by $\mathcal{G}(P^2(H), N)$ the set of all solutions of (3.1), which is called the *Gaussian variety* associated with N.

As in the case of $P^2(Cay)$ (Theorem 11 of [8]), we can prove the following

Theorem 6 Let N be a euclidean vector space with dim N = 6. Let $\Psi \in S^2 \mathfrak{m}^* \otimes N$ be a solution of the Gauss equation (3.1), i.e., $\Psi \in \mathcal{G}(P^2(H), N)$. Then:

- (1) There are linearly independent vectors \mathbf{A} and $\mathbf{B} \in \mathbf{N}$ satisfying (i) $(\mathbf{A}, \mathbf{A}) = \langle \mathbf{B}, \mathbf{B} \rangle = A(u, u)$ and $(\mathbf{A}, \mathbf{B}) = 2(u, u)$:
 - (i) $\langle \mathbf{A}, \mathbf{A} \rangle = \langle \mathbf{B}, \mathbf{B} \rangle = 4(\mu, \mu) \text{ and } \langle \mathbf{A}, \mathbf{B} \rangle = 2(\mu, \mu);$

- $\begin{array}{ll} (\mathrm{ii}) \quad \boldsymbol{\Psi}(Y_0,Y_0') = (Y_0,Y_0')\mathbf{A}, \quad \forall Y_0,\,Y_0' \in \mathfrak{a} + \mathfrak{m}_2;\\ (\mathrm{iii}) \quad \boldsymbol{\Psi}(Y_1,Y_1') = (Y_1,Y_1')\mathbf{B}, \quad \forall Y_1,\,Y_1' \in \mathfrak{m}_1;\\ (\mathrm{iv}) \quad \left\langle \mathbf{A}, \boldsymbol{\Psi}(\mu,\mathfrak{m}_1) \right\rangle = \left\langle \mathbf{B}, \boldsymbol{\Psi}(\mu,\mathfrak{m}_1) \right\rangle = 0. \end{array}$

(2)
$$\Psi(Y_1, Y_2) = -\frac{1}{(\mu, \mu)^2} \Psi(\mu, L(\mu, Y_2)Y_1), \quad \forall Y_1 \in \mathfrak{m}_1, \ \forall Y_2 \in \mathfrak{m}_2.$$

(3) $\langle \Psi(\mu, Y_1), \Psi(\mu, Y'_1) \rangle = (\mu, \mu)^2 (Y_1, Y'_1), \quad \forall Y_1, Y'_1 \in \mathfrak{m}_1.$

Let $O(\mathbf{N})$ be the orthogonal transformation group of \mathbf{N} . We define an action of $O(\mathbf{N})$ on $S^2 \mathfrak{m}^* \otimes \mathbf{N}$ by

 $(h\Psi)(X,Y) = h(\Psi(X,Y)),$

where $\Psi \in S^2 \mathfrak{m}^* \otimes N$, $h \in O(N)$. It is easily seen that $\mathcal{G}(P^2(H), N)$ is invariant under this action, i.e., $h\mathcal{G}(P^2(\boldsymbol{H}), \boldsymbol{N}) = \mathcal{G}(P^2(\boldsymbol{H}), \boldsymbol{N})$ for any $h \in O(\mathbf{N})$. We say that the Gaussian variety $\mathcal{G}(P^2(\mathbf{H}), \mathbf{N})$ is EOS if $\mathcal{G}(P^2(\mathbf{H}), \mathbf{N}) \neq \emptyset$ and if $\mathcal{G}(P^2(\mathbf{H}), \mathbf{N})$ is consisting of essentially one solution, i.e., for any solutions Ψ and $\Psi' \in \mathcal{G}(P^2(H), N)$, there is an element $h \in O(\mathbf{N})$ satisfying $\Psi' = h\Psi$ (see [8]).

By Theorem 6 we can show

Theorem 7 Let N be a euclidean vector space with dim N = 6. Then, $\mathcal{G}(P^2(\boldsymbol{H}),\boldsymbol{N})$ is EOS.

Proof. The proof of this theorem is quite similar to that of Theorem 10 in [8].

First we note that $\mathcal{G}(P^2(\mathbf{H}), \mathbf{N}) \neq \emptyset$, because the second fundamental form of the canonical isometric imbedding f_0 at the origin $o \in P^2(H)$ satisfies (3.1).

Let $\{E_i \ (1 \leq i \leq 4)\}$ be an orthonormal basis of \mathfrak{m}_1 . (Note that dim $\mathfrak{m}_1 = 4$.) Let $\Psi \in \mathcal{G}(P^2(H), N)$ and let \mathbf{A}, \mathbf{B} be the vectors of N stated in Theorem 6. We define vectors $\{\mathbf{F}_i \ (1 \le i \le 6)\}$ of N by setting $\mathbf{F}_i =$ $\Psi(\mu, E_i)/(\mu, \mu)$ (1 $\leq i \leq 4$), $\mathbf{F}_5 = (\mathbf{A} + \mathbf{B})/2\sqrt{3} |\mu|$ and $\mathbf{F}_6 = (\mathbf{A} - \mathbf{B})/2|\mu|$. By Theorem 6 we can show that $\{\mathbf{F}_i \ (1 \leq i \leq 6)\}$ forms an orthonormal basis of **N**. Now let Ψ' be another element of $\mathcal{G}(P^2(H), N)$. Let \mathbf{A}' and \mathbf{B}' be the vectors stated in Theorem 6 for $\mathbf{\Psi}'$. As in the case of $\mathbf{\Psi}$ we can also define an orthonormal basis $\{\mathbf{F}'_i \ (1 \leq i \leq 6)\}$ of **N**. Then, there is an element $h \in O(6)$ satisfying $\mathbf{F}'_i = h\mathbf{F}_i$ $(1 \le i \le 6)$. Here, we note that $\mathbf{A}' = h\mathbf{A}, \ \mathbf{B}' = h\mathbf{B} \text{ and } \Psi'(\mu, E_i) = h\Psi(\mu, E_i) \ (1 \leq i \leq 4).$ Set $\Phi =$

 $\Psi' - h\Psi \in S^2 \mathfrak{m}^* \otimes N$. Then, by Theorem 6 (1) we have

$$\mathbf{\Phi}(\mathfrak{a}+\mathfrak{m}_2,\mathfrak{a}+\mathfrak{m}_2)=\mathbf{\Phi}(\mathfrak{m}_1,\mathfrak{m}_1)=\mathbf{\Phi}(\mathfrak{a},\mathfrak{m}_1)=0.$$

By Theorem 6 (2) and by the fact $L(\mu, \mathfrak{m}_2)\mathfrak{m}_1 \subset \mathfrak{m}_1$ we have

$$\mathbf{\Phi}(\mathfrak{m}_2,\mathfrak{m}_1) \subset \mathbf{\Phi}(\mu,L(\mu,\mathfrak{m}_2)\mathfrak{m}_1) \subset \mathbf{\Phi}(\mathfrak{a},\mathfrak{m}_1) = 0,$$

which proves $\Phi(\mathfrak{m}_2,\mathfrak{m}_1) = 0$. Therefore, we have $\Phi = 0$, i.e., $\Psi' = h\Psi$, completing the proof of Theorem 7.

By Theorem 7 we know that $P^2(\mathbf{H})$ is formally rigid in codimension 6 in the sense of Agaoka-Kaneda [8]. Therefore, Theorem 1 can be obtained by Theorem 7 and the rigidity theorem (Theorem 5 of [8]).

Before proceeding to the proof of Theorem 6, we make several preparations.

Let N be a euclidean vector space. In what follows we assume dim N = 6. Let $S^2 \mathfrak{m}^* \otimes N$ be the space of N-valued symmetric bilinear forms on \mathfrak{m} . Let $\Psi \in S^2 \mathfrak{m}^* \otimes N$ and $Y \in \mathfrak{m}$. We define a linear map Ψ_Y of \mathfrak{m} to N by

$$\Psi_Y \colon \mathfrak{m} \ni Y' \longmapsto \Psi(Y,Y') \in \mathbf{N},$$

and denote by $\operatorname{Ker}(\Psi_Y)$ the kernel of Ψ_Y . We call an element $Y \in \mathfrak{m}$ singular (resp. non-singular) with respect to Ψ if $\Psi_Y(\mathfrak{m}) \neq N$ (resp. $\Psi_Y(\mathfrak{m}) = N$).

Let $\Psi \in \mathcal{G}(P^2(H), N)$ and let $Y \in \mathfrak{m} \ (Y \neq 0)$. Take an element $k \in K$ such that $\operatorname{Ad}(k)\mu \in \mathbf{R}Y$. Then, as shown in the proof of Proposition 5 of [7], the subspace $Q_Y = \operatorname{Ad}(k)^{-1} \operatorname{Ker}(\Psi_Y)$ is a pseudo-abelian subspace of \mathfrak{m} .

Proposition 8 Let $\Psi \in \mathcal{G}(P^2(H), N)$ and let $Y \in \mathfrak{m} \ (Y \neq 0)$. Then: (1) dim $\operatorname{Ker}(\Psi_Y) = 2$ or 3. Moreover, Y is non-singular (resp. singular) with respect to Ψ if and only if dim $\operatorname{Ker}(\Psi_Y) = 2$ (resp. dim $\operatorname{Ker}(\Psi_Y) = 3$). (2) Let $k \in K$ satisfy $\operatorname{Ad}(k)\mu \in \mathbb{R}Y$. Then, $\operatorname{Ker}(\Psi_Y) \subset \operatorname{Ad}(k)\mathfrak{m}_2$. Consequently, Y is non-singular (resp. singular) with respect to Ψ if and only if $\operatorname{Ker}(\Psi_Y) \subsetneq \operatorname{Ad}(k)\mathfrak{m}_2$ (resp. $\operatorname{Ker}(\Psi_Y) = \operatorname{Ad}(k)\mathfrak{m}_2$).

Remark 1 Recall that in the case of the Cayley projective plane $P^2(Cay)$ the inclusion $\operatorname{Ker}(\Psi_Y) \subset \operatorname{Ad}(k)\mathfrak{m}_2$ in Proposition 8 (2) can be proved by a simple discussion. There, the inclusion automatically follows from the fact that any high-dimensional pseudo-abelian subspace must be contained

in \mathfrak{m}_2 (see Propositions 8 and 12 of [8]). In contrast, it is not a simple task to show the inclusion $\operatorname{Ker}(\Psi_Y) \subset \operatorname{Ad}(k)\mathfrak{m}_2$ in our case $P^2(H)$. We will prove this inclusion by making use of the normal form of the pseudo-abelian subspaces not contained in \mathfrak{m}_2 (see Proposition 5).

Proof of Proposition 8. Let $Y \in \mathfrak{m}$ $(Y \neq 0)$. Set $Q_Y = \operatorname{Ad}(k)^{-1} \operatorname{Ker}(\Psi_Y)$, where $k \in K$ is an element satisfying $\operatorname{Ad}(k)\mu \in \mathbb{R}Y$. Since Q_Y is pseudoabelian, it follows that $\dim Q_Y \leq 3$ (see Proposition 4). Hence, $\dim \operatorname{Ker}(\Psi_Y) \leq 3$. On the other hand, since $\dim \mathbb{N} = 6$ and $\dim \mathfrak{m} = 8$, it follows that $\dim \operatorname{Ker}(\Psi_Y) \geq 2$. Therefore, Y is non-singular (resp. singular) with respect to Ψ if and only if $\dim \operatorname{Ker}(\Psi_Y) = 2$ (resp. $\dim \operatorname{Ker}(\Psi_Y) = 3$). This proves (1).

To show the first statement of (2) it suffices to prove $Q_Y \subset \mathfrak{m}_2$. Now, let us suppose the contrary, i.e., $Q_Y \not\subset \mathfrak{m}_2$. Then, we have dim $Q_Y = 2$ (see (1) and Proposition 4 (2)). Hence, there is a basis $\{\xi, \eta\}$ of Q_Y written in the form $\xi = \mu + \xi_1$, $\eta = \eta_1 + (1/4(\mu, \mu)^2) [\mu, [\xi_1, \eta_1]]$, where ξ_1 and η_1 are elements of \mathfrak{m}_1 satisfying $(\xi_1, \xi_1) = 2(\mu, \mu)$, $\eta_1 \neq 0$, $(\xi_1, \eta_1) = 0$ (see Proposition 5). Let $\{\zeta_1^1, \zeta_1^2\}$ be a basis of the orthogonal complement of $\mathbf{R}\xi_1 + \mathbf{R}\eta_1$ in \mathfrak{m}_1 . Set $\zeta^i = \zeta_1^i + (1/4(\mu, \mu)^2) [\mu, [\xi_1, \zeta_1^i]]$ (i = 1, 2). Since $[\mu, [\xi_1, \zeta_1^i]] \in \mathfrak{m}_2$ (i = 1, 2), we know that the vectors ζ^1 and ζ^2 are linearly independent. More strongly, they are linearly independent modulo Q_Y , i.e., $Q_Y \cap (\mathbf{R}\zeta^1 + \mathbf{R}\zeta^2) = 0$. Moreover, by Proposition 5 we know that the subspace $Q^i = \mathbf{R}\xi + \mathbf{R}\zeta^i$ (i = 1, 2) is also pseudo-abelian, because $(\xi_1, \zeta_1^i) = 0$. Consequently, we have $[[\xi, \zeta_i^i], \mu] = 0$ (i = 1, 2).

Set $X = \operatorname{Ad}(k)\xi$, $Z^{i} = \operatorname{Ad}(k)\zeta^{i}$ (i=1, 2). Then, we have $X \in \operatorname{Ker}(\Psi_{Y})$ $(X \neq 0)$, $\operatorname{Ker}(\Psi_{Y}) \cap (\mathbb{R}Z^{1} + \mathbb{R}Z^{2}) = 0$ and $[[X, Z^{i}], Y] = 0$ (i = 1, 2). By the Gauss equation (3.1) we have

$$0 = \left(\left[\left[X, Z^{i} \right], Y \right], W \right)$$

= $\left\langle \Psi(X, Y), \Psi(Z^{i}, W) \right\rangle - \left\langle \Psi(X, W), \Psi(Z^{i}, Y) \right\rangle, \quad (i = 1, 2),$

where W is an arbitrary element of \mathfrak{m} . Since $\Psi_Y(X) = 0$, we obtain by this equality $\langle \Psi_X(W), \Psi(Z^i, Y) \rangle = 0$, i.e., $\langle \Psi_X(\mathfrak{m}), \Psi(Z^i, Y) \rangle = 0$ (i = 1, 2). We note that the vectors $\Psi(Z^1, Y)$ and $\Psi(Z^2, Y)$ are linearly independent, because $\operatorname{Ker}(\Psi_Y) \cap (\mathbb{R}Z^1 + \mathbb{R}Z^2) = 0$. Hence, we have dim $\Psi_X(\mathfrak{m}) \leq$ dim $\mathbb{N} - 2 = 4$, implying dim $\operatorname{Ker}(\Psi_X) \geq 4$. This contradicts the assertion (1). Thus, we have $Q_Y \subset \mathfrak{m}_2$, proving the first statement of (2). The last statement of (2) is now clear. As a corollary of Proposition 8 we obtain

Proposition 9 Let $\Psi \in \mathcal{G}(P^2(H), N)$. Then: (1) Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ $(Y_0 \neq 0)$. Then, $\operatorname{Ker}(\Psi_{Y_0}) \subset \{\xi \in \mathfrak{a} + \mathfrak{m}_2 | (\xi, Y_0) = 0\}$. *If* Y_0 *is singular with respect to* Ψ *, then* $\operatorname{Ker}(\Psi_{Y_0}) = \{\xi \in \mathfrak{a} + \mathfrak{m}_2 | (\xi, Y_0) = 0\}$.

(2) Let $Y_1 \in \mathfrak{m}_1 \ (Y_1 \neq 0)$. Then, $\operatorname{Ker}(\Psi_{Y_1}) \subset \{\eta \in \mathfrak{m}_1 \mid (\eta, Y_1) = 0\}$. If Y_1 is singular with respect to Ψ , then $\operatorname{Ker}(\Psi_{Y_1}) = \{\eta \in \mathfrak{m}_1 \mid (\eta, Y_1) = 0\}$.

Proof. Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ $(Y_0 \neq 0)$. Then, we can take an element $k_0 \in K$ such that $\operatorname{Ad}(k_0)\mu \in \mathbb{R}Y_0$ and $\operatorname{Ad}(k_0)(\mathfrak{m}_2) = \{\xi \in \mathfrak{a} + \mathfrak{m}_2 \mid (\xi, Y_0) = 0\}$ (see Proposition 7 of [7]). This proves (1). Similarly, for $Y_1 \in \mathfrak{m}_1$ $(Y_1 \neq 0)$, we can easily show (2).

Let $\Psi \in S^2 \mathfrak{m}^* \otimes N$. We call a subspace U of \mathfrak{m} singular with respect to Ψ if each element of U is singular with respect to Ψ .

Proposition 10 Let $\Psi \in \mathcal{G}(P^2(H), N)$. Assume that $Y \in \mathfrak{m} \ (Y \neq 0)$ is non-singular with respect to Ψ . Then, there is a non-zero vector $\mathbf{E} \in \mathbf{N}$ such that

$$\mathbf{N} = \mathbf{R}\mathbf{E} + \Psi_{\xi}(\mathfrak{m}) \qquad (orthogonal \ direct \ sum) \tag{3.2}$$

holds for any $\xi \in \text{Ker}(\Psi_Y)$ ($\xi \neq 0$). Consequently, $\text{Ker}(\Psi_Y)$ is a singular subspace with respect to Ψ .

Proof. Take an element $k \in K$ such that $\operatorname{Ad}(k)\mu \in \mathbb{R}Y$. Then, since Y is non-singular, we have $\operatorname{Ker}(\Psi_Y) \subsetneq \operatorname{Ad}(k)\mathfrak{m}_2$. Take a non-zero element satisfying $Y' \in \operatorname{Ad}(k)\mathfrak{m}_2$ and $Y' \notin \operatorname{Ker}(\Psi_Y)$ and set $\mathbf{E} = \Psi(Y, Y') \ (\neq 0)$. Let $\xi \in \operatorname{Ker}(\Psi_Y)$ ($\xi \neq 0$). Then, by the Gauss equation (3.1) we have

$$\left(\left[\left[\xi,Y'\right],Y\right],W\right) = \left\langle \Psi(\xi,Y),\Psi(Y',W)\right\rangle - \left\langle \Psi(\xi,W),\Psi(Y',Y)\right\rangle,$$

where W is an arbitrary element of \mathfrak{m} . Here, we note that $[[\xi, Y'], Y] = 0$, because $[[\xi, Y'], Y] \in \operatorname{Ad}(k)[[\mathfrak{m}_2, \mathfrak{m}_2], \mu] = 0$. Since $\Psi(\xi, Y) = 0$, we obtain by the above equality $\langle \mathbf{E}, \Psi(\xi, W) \rangle = 0$. This shows $\langle \mathbf{E}, \Psi_{\xi}(\mathfrak{m}) \rangle = 0$ and hence $\Psi_{\xi}(\mathfrak{m}) \neq N$. Consequently, ξ is singular with respect to Ψ . Since dim $\operatorname{Ker}(\Psi_{\xi}) = 3$ (see Proposition 8), we have dim $\Psi_{\xi}(\mathfrak{m}) = 5$, which proves the decomposition (3.2).

4. Proof of Theorem 6

In this section, with the preparations in the previous sections, we will prove Theorem 6. We first show

Proposition 11 Let $\Psi \in \mathcal{G}(P^2(H), N)$. Then, there are singular subspaces $U \ (\subset \mathfrak{a} + \mathfrak{m}_2)$ and $V \ (\subset \mathfrak{m}_1)$ with respect to Ψ satisfying dim $U \ge 2$ and dim $V \ge 2$.

Proof. If $\mathfrak{a} + \mathfrak{m}_2$ contains no non-singular element with respect to Ψ , then set $U = \mathfrak{a} + \mathfrak{m}_2$. On the contrary, if there is a non-singular element $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$, then set $U = \operatorname{Ker}(\Psi_{Y_0})$. In this case we know that dim U = 2, $U \subset \mathfrak{a} + \mathfrak{m}_2$ and that U is a singular subspace with respect to Ψ (see Proposition 8, Proposition 9 and Proposition 10).

Similarly, we can show that there is a singular subspace V of \mathfrak{m}_1 with respect to Ψ satisfying the desired properties.

Proposition 12 Let $\Psi \in \mathcal{G}(P^2(H), N)$. Let $U (\subset \mathfrak{a} + \mathfrak{m}_2)$ and $V (\subset \mathfrak{m}_1)$ be singular subspaces with respect to Ψ satisfying dim $U \ge 2$ and dim $V \ge 2$. Then, there are vectors $\mathbf{A}, \mathbf{B} \in \mathbf{N}$ such that: (1) $\langle \mathbf{A}, \mathbf{A} \rangle = \langle \mathbf{B}, \mathbf{B} \rangle = 4(\mu, \mu).$ (2) Let $\xi \in U$ and $\eta \in V$. Then: (2a) $\Psi(\xi, Y_0) = (\xi, Y_0)\mathbf{A},$ $\forall Y_0 \in \mathfrak{a} + \mathfrak{m}_2;$ (2b) $\Psi(\eta, Y_1) = (\eta, Y_1)\mathbf{B}, \quad \forall Y_1 \in \mathfrak{m}_1.$ (3) Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ and $Y_1 \in \mathfrak{m}_1$. Then: (3a) $\langle \mathbf{A}, \Psi_{Y_0}(\mathfrak{m}_1) \rangle = \langle \mathbf{B}, \Psi_{Y_0}(\mathfrak{m}_1) \rangle = 0;$ (3b) $\langle \mathbf{A}, \Psi_{Y_1}(\mathfrak{a} + \mathfrak{m}_2) \rangle = \langle \mathbf{B}, \Psi_{Y_1}(\mathfrak{a} + \mathfrak{m}_2) \rangle = 0.$ (4) Let $\xi \in U$ ($\xi \neq 0$) and $\eta \in V$ ($\eta \neq 0$). Then: (4a) $\Psi_{\mathcal{E}}(\mathfrak{m}) = \mathbf{R}\mathbf{A} + \Psi_{\mathcal{E}}(\mathfrak{m}_1)$ (orthogonal direct sum); (4b) $\Psi_{\eta}(\mathfrak{m}) = \mathbf{RB} + \Psi_{\eta}(\mathfrak{a} + \mathfrak{m}_2)$ (orthogonal direct sum). (5) Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ and $Y_1 \in \mathfrak{m}_1$. Then: (5a) $\langle \Psi(Y_0, Y_0), \mathbf{A} \rangle = 4(\mu, \mu)(Y_0, Y_0);$ (5b) $\langle \Psi(Y_1, Y_1), \mathbf{B} \rangle = 4(\mu, \mu)(Y_1, Y_1).$ (6) Let $\xi \in U$, $\eta \in V$, $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ and $Y_1 \in \mathfrak{m}_1$. Assume that $(\xi, Y_0) =$ $(\eta, Y_1) = 0.$ Then: (6a) $\langle \Psi(Y_0, Y_0), \Psi_{\xi}(\mathfrak{m}_1) \rangle = 0;$ (6b) $\langle \Psi(Y_1, Y_1), \Psi_n(\mathfrak{a} + \mathfrak{m}_2) \rangle = 0.$

Proof. The assertions (1), (2) and (3) can be proved in the same manner as in the proof of Proposition 16 of [8]. Hence, we omit their proofs.

Y. Agaoka and E. Kaneda

Let $\xi \in U$ ($\xi \neq 0$). By (2*a*) we easily get $\Psi_{\xi}(\mathfrak{a} + \mathfrak{m}_2) = \mathbf{R}\mathbf{A}$ and hence $\Psi_{\xi}(\mathfrak{m}) = \mathbf{R}\mathbf{A} + \Psi_{\xi}(\mathfrak{m}_1)$. Since $\langle \mathbf{A}, \Psi_{\xi}(\mathfrak{m}_1) \rangle = 0$ (see (3*a*)), we have the decomposition (4*a*). Similarly, we can show (4*b*).

The assertions (5*a*) and (6*a*) are proved as follows: Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$. Take $\xi \in U$ ($\xi \neq 0$) such that (ξ, Y_0) = 0. Then, we have $[[Y_0, \xi], Y_0] = 4(\mu, \mu)(Y_0, Y_0)\xi$ (see (2.2)) and $\Psi(\xi, Y_0) = 0$ (see (2*a*)). By the Gauss equation (3.1) we have

$$([[Y_0,\xi],Y_0],\xi) = \langle \Psi(Y_0,Y_0),\Psi(\xi,\xi)\rangle - \langle \Psi(Y_0,\xi),\Psi(\xi,Y_0)\rangle, ([[Y_0,\xi],Y_0],Y_1') = \langle \Psi(Y_0,Y_0),\Psi(\xi,Y_1')\rangle - \langle \Psi(Y_0,Y_1'),\Psi(\xi,Y_0)\rangle,$$

where Y'_1 is an arbitrary element of \mathfrak{m}_1 . By these equalities we have $\langle \Psi(Y_0, Y_0), \mathbf{A} \rangle = 4(\mu, \mu)(Y_0, Y_0)$ and $\langle \Psi(Y_0, Y_0), \Psi(\xi, Y'_1) \rangle = 0$. Therefore, we obtain (5*a*) and (6*a*). The assertions (5*b*) and (6*b*) can be proved in a similar way.

Remark 2 As seen in the proof of Proposition 11, singular subspaces U and V may not be uniquely determined. However, the vectors **A** and **B** in Proposition 8 do not depend on the choice of singular subspaces U and V, which will be clarified at the last part of this section (see Lemma 20).

In the following argument, we take and fix an element $\Psi \in \mathcal{G}(P^2(H), N)$. We denote by U and V singular subspaces with respect to Ψ satisfying U $(\subset \mathfrak{a} + \mathfrak{m}_2), V \ (\subset \mathfrak{m}_1), \dim U \ge 2$ and $\dim V \ge 2$. We also denote by \mathbf{A}, \mathbf{B} the vectors of N obtained by applying Proposition 12 to the pair of singular subspaces U and V.

Lemma 13 (1) Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$. Then:

$$\begin{split} & \left\langle \Psi_{Y_0}(Y_1), \Psi_{Y_0}(Y_1') \right\rangle \\ &= \left\langle \Psi(Y_0, Y_0), \Psi(Y_1, Y_1') \right\rangle - (\mu, \mu)(Y_0, Y_0)(Y_1, Y_1'), \quad \forall Y_1, \, Y_1' \in \mathfrak{m}_1 \end{split}$$

(2) Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ and $\xi \in U$ satisfy $(\xi, Y_0) = 0$. Then:

$$\langle \Psi_{Y_0}(Y_1), \Psi_{\xi}(Y'_1) \rangle = (L(Y_0, \xi)Y_1, Y'_1), \quad \forall Y_1, Y'_1 \in \mathfrak{m}_1.$$

Proof. Putting $X = Y_0$, $Y = Y_1$, $Z = Y_0$, $W = Y'_1$ into (3.1), we have

$$([[Y_0, Y_1], Y_0], Y_1') = \langle \Psi(Y_0, Y_0), \Psi(Y_1, Y_1') \rangle - \langle \Psi(Y_0, Y_1'), \Psi(Y_1, Y_0) \rangle.$$

Since $[Y_0, [Y_0, Y_1]] = -(\mu, \mu)(Y_0, Y_0)Y_1$ (see (2.2)), we easily get (1).

Similarly, putting $X = \xi$, $Y = Y_1$, $Z = Y_0$ and $W = Y'_1$ into (3.1), we have

$$\begin{pmatrix} \left[\left[\xi, Y_1 \right], Y_0 \right], Y_1' \end{pmatrix} = \left\langle \Psi(\xi, Y_0), \Psi(Y_1, Y_1') \right\rangle - \left\langle \Psi(\xi, Y_1'), \Psi(Y_1, Y_0) \right\rangle \\ = \left\langle \mathbf{A}, \Psi(Y_1, Y_1') \right\rangle (\xi, Y_0) - \left\langle \Psi_{\xi}(Y_1'), \Psi_{Y_0}(Y_1) \right\rangle.$$

Since $(\xi, Y_0) = 0$, we have

$$\langle \Psi_{\xi}(Y_1'), \Psi_{Y_0}(Y_1) \rangle = -([[\xi, Y_1], Y_0], Y_1') = (L(Y_0, \xi)Y_1, Y_1'),$$

(2).

proving (2).

Let $\xi \in U$ ($\xi \neq 0$). Since dim $\operatorname{Ker}(\Psi_{\xi}) = 3$ (see Proposition 8) and since dim $\mathfrak{m} = 8$, we have dim $\Psi_{\xi}(\mathfrak{m}) = 5$. Let us denote by E_{ξ} the one dimensional orthogonal complement of $\Psi_{\xi}(\mathfrak{m})$ in N.

Proposition 14 Set $C = \langle \mathbf{A}, \mathbf{B} \rangle - (\mu, \mu)$. Then: (1) Let $\xi \in U$. Then:

$$\langle \Psi_{\xi}(Y_1), \Psi_{\xi}(\eta) \rangle = C(\xi, \xi)(Y_1, \eta), \quad \forall Y_1 \in \mathfrak{m}_1, \ \forall \eta \in V.$$
(4.1)

(2) The inequality 0 < C ≤ 3(μ, μ) holds. The vectors A and B are linearly independent if C ≠ 3(μ, μ) and A = B if C = 3(μ, μ).
(3) Let ξ ∈ U (ξ ≠ 0). Then, Ψ_{Y0}(𝔅n1) ⊂ E_ξ + Ψ_ξ(𝔅n1), ∀Y₀ ∈ 𝔅 + 𝔅n2.

(4) If $C \neq 3(\mu, \mu)$, then:

$$\Psi_{Y_0}(\mathfrak{m}_1) = \Psi_{\xi}(\mathfrak{m}_1), \qquad \forall Y_0 \in \mathfrak{a} + \mathfrak{m}_2 \ (Y_0 \neq 0), \ \forall \xi \in U \ (\xi \neq 0);$$

$$(4.2)$$

$$\Psi(Y_0, Y_0) \in \mathbf{RA} + \mathbf{RB}, \qquad \forall Y_0 \in \mathfrak{a} + \mathfrak{m}_2; \tag{4.3}$$

$$\Psi(Y_1, Y_1) \in \mathbf{RA} + \mathbf{RB}, \qquad \forall Y_1 \in \mathfrak{m}_1.$$
(4.4)

Proof. Put $Y_0 = \xi$ and $Y'_1 = \eta$ into Lemma 13 (1). Then, since $\Psi(\xi, \xi) = (\xi, \xi) \mathbf{A}$ and $\Psi(Y_1, \eta) = (Y_1, \eta) \mathbf{B}$, we get (4.1).

In view of Proposition 12 (1), we easily have $\langle \mathbf{A}, \mathbf{B} \rangle \leq 4(\mu, \mu)$ and hence $C \leq 3(\mu, \mu)$. Further, by putting $Y_1 = \eta \ (\neq 0)$ into (4.1) we know C > 0, because $\Psi_{\xi}(\eta) \neq 0$ (see Proposition 9). This shows $\langle \mathbf{A}, \mathbf{B} \rangle > (\mu, \mu)$. Therefore, **A** and **B** are linearly independent if $\langle \mathbf{A}, \mathbf{B} \rangle \neq 4(\mu, \mu)$, i.e., $C \neq 3(\mu, \mu)$. It is easy to see that if $C = 3(\mu, \mu)$, i.e., $\langle \mathbf{A}, \mathbf{B} \rangle = 4(\mu, \mu)$, then $\mathbf{A} = \mathbf{B}$.

We next prove (3). Let $\xi \in U$ ($\xi \neq 0$). By Proposition 12 (4*a*) we know that the orthogonal complement of **RA** in **N** is given by $E_{\xi} + \Psi_{\xi}(\mathfrak{m}_1)$. Hence, by Proposition 12 (3*a*), we have $\Psi_{Y_0}(\mathfrak{m}_1) \subset E_{\xi} + \Psi_{\xi}(\mathfrak{m}_1)$ for any $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$.

Finally, we prove (4). Since $C \neq 3(\mu, \mu)$, the subspace $\mathbf{RA} + \mathbf{RB}$ forms a 2-dimensional subspace of \mathbf{N} . Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ $(Y_0 \neq 0)$. Then, by Proposition 12 (3*a*) we know that $\Psi_{Y_0}(\mathfrak{m}_1)$ coincides with the orthogonal complement of $\mathbf{RA} + \mathbf{RB}$ in \mathbf{N} . (Recall that dim $\Psi_{Y_0}(\mathfrak{m}_1) = 4$ and dim $\mathbf{N} =$ 6.) Let $\xi \in U$ ($\xi \neq 0$). Since $\Psi_{\xi}(\mathfrak{m}_1)$ is also an orthogonal complement of $\mathbf{RA} + \mathbf{RB}$, it follows that $\Psi_{\xi}(\mathfrak{m}_1) = \Psi_{Y_0}(\mathfrak{m}_1)$. If we take $\xi \in U$ ($\xi \neq 0$) satisfying (ξ, Y_0) = 0, then by Proposition 12 (6*a*) we obtain $\Psi(Y_0, Y_0) \in$ $\mathbf{RA} + \mathbf{RB}$. Similarly, we can prove $\Psi(Y_1, Y_1) \in \mathbf{RA} + \mathbf{RB}$ for any $Y_1 \in \mathfrak{m}_1$, completing the proof of (4).

Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ and $\xi \in U$ $(\xi \neq 0)$. Define a linear mapping $\Theta_{Y_0,\xi}$: $\mathfrak{m}_1 \longrightarrow N$ by

$$\Theta_{Y_0,\xi}(Y_1) = \Psi_{Y_0}(Y_1) + \frac{1}{C(\xi,\xi)} \Psi_{\xi}(L(\xi,Y_0)Y_1), \quad Y_1 \in \mathfrak{m}_1.$$
(4.5)

Then, we have

Proposition 15 Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$, $\xi \in U$ ($\xi \neq 0$) and $Y_1 \in \mathfrak{m}_1$. Assume that $(\xi, Y_0) = 0$ and $L(\xi, Y_0)Y_1 \in V$. Then:

(1) $\Theta_{Y_0,\xi}(Y_1) \in E_{\xi}$. More strongly, if $C \neq 3(\mu,\mu)$, then $\Theta_{Y_0,\xi}(Y_1) = 0$. (2) $|\Theta_{Y_0,\xi}(Y_1)|^2 = \langle \Psi(Y_0,Y_0), \Psi(Y_1,Y_1) \rangle - (\mu,\mu) \{1+(\mu,\mu)/C\}(Y_0,Y_0)(Y_1,Y_1).$

Proof. By Proposition 14 (3) we know that $\Theta_{Y_0,\xi}(Y_1) \in E_{\xi} + \Psi_{\xi}(\mathfrak{m}_1)$. Here, we note that $\langle E_{\xi}, \Psi_{\xi}(\mathfrak{m}_1) \rangle = 0$, because E_{ξ} is orthogonal to $\Psi_{\xi}(\mathfrak{m})$. Let $Y'_1 \in \mathfrak{m}_1$. Then, by Lemma 13 (2), Proposition 14 (1) and Proposition 3 (2) we have

$$\begin{split} \left\langle \Theta_{Y_0,\xi}(Y_1), \Psi_{\xi}(Y_1') \right\rangle \\ &= \left\langle \Psi_{Y_0}(Y_1), \Psi_{\xi}(Y_1') \right\rangle + \frac{1}{C(\xi,\xi)} \left\langle \Psi_{\xi}(L(\xi,Y_0)Y_1), \Psi_{\xi}(Y_1') \right\rangle \\ &= (L(Y_0,\xi)Y_1, Y_1') + (L(\xi,Y_0)Y_1, Y_1') \\ &= 0, \end{split}$$

proving $\langle \Theta_{Y_0,\xi}(Y_1), \Psi_{\xi}(\mathfrak{m}_1) \rangle = 0$. This implies that $\Theta_{Y_0,\xi}(Y_1) \in E_{\xi}$. In the case where $C \neq 3(\mu, \mu)$, we have $\Theta_{Y_0,\xi}(Y_1) \in \Psi_{Y_0}(\mathfrak{m}_1) + \Psi_{\xi}(\mathfrak{m}_1) = \Psi_{\xi}(\mathfrak{m}_1)$ (see (4.2)), which proves $\Theta_{Y_0,\xi}(Y_1) = 0$.

Next, we show (2). By Lemma 13 and by the equality $\langle \Theta_{Y_0,\xi}(Y_1), \Psi_{\xi}(\mathfrak{m}_1) \rangle$

= 0, we have

$$\begin{split} \left\langle \Theta_{Y_{0},\xi}(Y_{1}), \Theta_{Y_{0},\xi}(Y_{1}) \right\rangle \\ &= \left\langle \Theta_{Y_{0},\xi}(Y_{1}), \Psi_{Y_{0}}(Y_{1}) \right\rangle \\ &= \left\langle \Psi_{Y_{0}}(Y_{1}), \Psi_{Y_{0}}(Y_{1}) \right\rangle + \frac{1}{C(\xi,\xi)} \left\langle \Psi_{\xi}(L(\xi,Y_{0})Y_{1}), \Psi_{Y_{0}}(Y_{1}) \right\rangle \\ &= \left\langle \Psi(Y_{0},Y_{0}), \Psi(Y_{1},Y_{1}) \right\rangle - (\mu,\mu)(Y_{0},Y_{0})(Y_{1},Y_{1}) \\ &+ \frac{1}{C(\xi,\xi)} \left(L(\xi,Y_{0})Y_{1}, L(Y_{0},\xi)Y \right). \end{split}$$

On the other hand, by Proposition 3 we have

$$(L(\xi, Y_0)Y_1, L(Y_0, \xi)Y_1) = (L(\xi, Y_0)L(\xi, Y_0)Y_1, Y_1) = -(L(Y_0, \xi)L(\xi, Y_0)Y_1, Y_1) = -(\mu, \mu)^2(\xi, \xi)(Y_0, Y_0)(Y_1, Y_1).$$

Therefore, we get the assertion (2).

With these preparations we begin with the proof Theorem 6. First, we consider the case dim V = 2.

Lemma 16 Assume that dim V = 2. Then, $C \neq 3(\mu, \mu)$. Accordingly, the vectors **A** and **B** \in **N** are linearly independent.

Proof. Take non-zero elements ξ , $\xi' \in U$ satisfying $(\xi, \xi') = 0$. Then, by Proposition 3 (2) it follows that $L(\xi, \xi') = -L(\xi', \xi)$ and $L(\xi, \xi')$ gives an isomorphism of \mathfrak{m}_1 onto itself. Let $Y_1 \in L(\xi, \xi')V$. Then, by Proposition 3 (2b) we have $L(\xi, \xi')Y_1 \in V$. Hence, by Proposition 15 (1) we have $\Theta_{\xi',\xi}(Y_1) \in \mathbf{E}_{\xi}$. Since dim $L(\xi, \xi')V = \dim V = 2$ and dim $\mathbf{E}_{\xi} = 1$, it is possible to take a non-zero element $Y_1 \in L(\xi, \xi')V$ satisfying $\Theta_{\xi',\xi}(Y_1) = 0$. Therefore, by Proposition 15 (2) and Proposition 12 (2a) we have

$$0 = |\Theta_{\xi',\xi}(Y_1)|^2 = [\langle \Psi(Y_1, Y_1), \mathbf{A} \rangle - (\mu, \mu) \{1 + (\mu, \mu)/C\}(Y_1, Y_1)](\xi', \xi').$$

Since $(\xi', \xi') \neq 0$, we have

$$\langle \Psi(Y_1, Y_1), \mathbf{A} \rangle = (\mu, \mu) \{ 1 + (\mu, \mu) / C \} (Y_1, Y_1).$$
 (4.6)

Now, we suppose the case $C = 3(\mu, \mu)$. Then, by (4.6) we have $\langle \Psi(Y_1, Y_1), \mathbf{A} \rangle = \frac{4}{3}(\mu, \mu)(Y_1, Y_1)$. On the other hand, by Proposition 12 (5b)

we have $\langle \Psi(Y_1, Y_1), \mathbf{A} \rangle = 4(\mu, \mu)(Y_1, Y_1)$, because $\mathbf{A} = \mathbf{B}$ in case $C = 3(\mu, \mu)$ (see Proposition 14 (2)). Hence, we have $(Y_1, Y_1) = 0$, which contradicts the assumption $Y_1 \neq 0$. Therefore, we have $C \neq 3(\mu, \mu)$ and hence \mathbf{A} and \mathbf{B} are linearly independent. \Box

Lemma 17 Assume that dim V = 2. Then, V can be extended to a 3-dimensional singular subspace contained in \mathfrak{m}_1 , i.e., there is a singular subspace $\widehat{V} (\subset \mathfrak{m}_1)$ such that $V \subset \widehat{V}$ and dim $\widehat{V} = 3$.

Proof. Let $\mathbf{F} \in \mathbf{RA} + \mathbf{RB}$ be a unit vector which is orthogonal to \mathbf{B} . Then, for any $\eta \in V$ we have $\langle \mathbf{F}, \Psi_{\eta}(\mathfrak{m}) \rangle = 0$, because $\langle \mathbf{F}, \Psi_{\eta}(\mathfrak{m}) \rangle = \langle \mathbf{F}, \mathbf{RB} + \Psi_{\eta}(\mathfrak{a} + \mathfrak{m}_2) \rangle = 0$ (see Proposition 12 (4b) and (3b)).

Now, define a symmetric bilinear form χ on \mathfrak{m}_1 by setting

 $\chi(Y_1, Y_1') = \left\langle \Psi(Y_1, Y_1'), \mathbf{F} \right\rangle, \qquad Y_1, \, Y_1' \in \mathfrak{m}_1.$

Since $\Psi(Y_1, Y'_1) \in \mathbf{RB} + \mathbf{RF}$ (see Proposition 14 (4)) and $\langle \Psi(Y_1, Y'_1), \mathbf{B} \rangle = \langle \mathbf{B}, \mathbf{B} \rangle (Y_1, Y'_1)$ for $Y_1, Y'_1 \in \mathfrak{m}_1$ (see Proposition 12 (5)), we have

$$\Psi(Y_1, Y_1') = (Y_1, Y_1') \mathbf{B} + \chi(Y_1, Y_1') \mathbf{F}, \qquad Y_1, Y_1' \in \mathfrak{m}_1.$$
(4.7)

Let V^{\perp} be the orthogonal complement of V in \mathfrak{m}_1 . Then, we have dim $V^{\perp} = 2$. (Recall that dim $\mathfrak{m}_1 = 4$ and dim V = 2.) Let $\{Y_1, Y'_1\}$ be an orthonormal basis of V^{\perp} . Then, putting $X = Z = Y_1$ and $Y = W = Y'_1$ into the Gauss equation (3.1), we have

$$([[Y_1, Y'_1], Y_1], Y'_1) = \langle \mathbf{B}, \mathbf{B} \rangle (Y_1, Y_1) (Y'_1, Y'_1) + \chi(Y_1, Y_1) \chi(Y'_1, Y'_1) - \chi(Y_1, Y'_1) \chi(Y'_1, Y_1).$$

Since $([[Y_1, Y'_1], Y_1], Y'_1) = \langle \mathbf{B}, \mathbf{B} \rangle (Y_1, Y_1) (Y'_1, Y'_1)$ (see (2.2)), we have

$$\chi(Y_1, Y_1)\chi(Y_1', Y_1') - \chi(Y_1, Y_1')\chi(Y_1', Y_1) = 0.$$

This implies that χ is degenerate on V^{\perp} . Therefore, there is a non-zero vector $\zeta \in V^{\perp}$ such that $\chi(\zeta, V^{\perp}) = 0$, i.e., $\langle \mathbf{F}, \Psi_{\zeta}(V^{\perp}) \rangle = 0$.

Let us show that the subspace $\widehat{V} = \mathbf{R}\zeta + V \ (\subset \mathfrak{m}_1)$ is singular with respect to Ψ . Note that $\langle \mathbf{F}, \Psi_{\zeta}(\mathfrak{a} + \mathfrak{m}_2) \rangle = 0$ (see Proposition 12 (3b)). Then, since $\mathfrak{m} = \mathfrak{a} + \mathfrak{m}_2 + V + V^{\perp}$ and $\Psi_{\zeta}(V) \subset \mathbf{RB}$, it follows that

$$\begin{split} \left\langle \mathbf{F}, \mathbf{\Psi}_{\zeta}(\mathfrak{m}) \right\rangle &= \left\langle \mathbf{F}, \mathbf{\Psi}_{\zeta}(\mathfrak{a} + \mathfrak{m}_2) + \mathbf{\Psi}_{\zeta}(V) + \mathbf{\Psi}_{\zeta}(V^{\perp}) \right\rangle \\ &\subset 0 + \left\langle \mathbf{F}, \mathbf{RB} \right\rangle + 0 = 0. \end{split}$$

Hence, we have $\langle \mathbf{F}, \Psi_{a\zeta+\eta}(\mathfrak{m}) \rangle = 0$ for any $a \in \mathbf{R}$ and $\eta \in V$. Consequently, $\Psi_{a\zeta+\eta}(\mathfrak{m}) \neq \mathbf{N}$, which implies that $a\zeta+\eta \in \widehat{V}$ is singular with respect to Ψ .

Now, we assume that $\dim V = 2$ and denote by \widehat{V} be the singular subspace stated in the above lemma. Let $\widehat{\mathbf{A}}$ and $\widehat{\mathbf{B}}$ be the vectors obtained by applying Proposition 12 to the pair of singular subspaces U and \widehat{V} . Then, by Proposition 12 (2) we can easily see that $\widehat{\mathbf{A}} = \mathbf{A}$ and $\widehat{\mathbf{B}} = \mathbf{B}$. Therefore, we know that all the statements in Proposition 12 and hence the arguments developed after Proposition 12 are also true if we simply replace V by \widehat{V} . Accordingly, without loss of generality we can assume that dim $V \geq 3$.

Lemma 18 $\langle \Psi(Y_0, Y_0), \mathbf{B} \rangle = (\mu, \mu) \{1 + (\mu, \mu)/C\}(Y_0, Y_0), \quad \forall Y_0 \in \mathfrak{a} + \mathfrak{m}_2.$

Proof. As in the proof of Lemma 16, we can prove that $C \neq 3(\mu, \mu)$. Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ $(Y_0 \neq 0)$. Take $\xi \in U$ $(\xi \neq 0)$ such that $(\xi, Y_0) = 0$, which is possible because dim $U \geq 2$. Then, by Proposition 3 (2) it follows that $L(\xi, Y_0) = -L(Y_0, \xi)$ and that the map $L(\xi, Y_0)$ gives an isomorphism of \mathfrak{m}_1 onto itself. Now, take $\eta \in V$ $(\eta \neq 0)$ such that $L(\xi, Y_0)\eta \in V$. This is also possible because dim $L(\xi, Y_0)V = \dim V \geq 3$ and dim $(V \cap L(\xi, Y_0)V) \geq 2$. (Note that dim $\mathfrak{m}_1 = 4$.) Then, by Proposition 15 and Proposition 12 (2b) we have

$$0 = |\Theta_{Y_0,\xi}(\eta)|^2 = [\langle \Psi(Y_0, Y_0), \mathbf{B} \rangle - (\mu, \mu) \{1 + (\mu, \mu)/C\}(Y_0, Y_0)](\eta, \eta).$$

Since $(\eta, \eta) \neq 0$, we get the lemma.

Lemma 19 $C = (\mu, \mu), i.e., \langle \mathbf{A}, \mathbf{B} \rangle = 2(\mu, \mu).$

Proof. Take $\xi \in U$ ($\xi \neq 0$). Then, by Lemma 18 and $\Psi(\xi,\xi) = (\xi,\xi)\mathbf{A}$ (see Proposition 12 (2*a*)), we have $\langle \mathbf{A}, \mathbf{B} \rangle = (\mu, \mu)\{1 + (\mu, \mu)/C\}$. Since $C = \langle \mathbf{A}, \mathbf{B} \rangle - (\mu, \mu)$, we easily have $C^2 = (\mu, \mu)^2$. Moreover, since C > 0(see Proposition 14 (2)), it follows that $C = (\mu, \mu)$, i.e., $\langle \mathbf{A}, \mathbf{B} \rangle = 2(\mu, \mu)$.

Now, we show

Lemma 20 (1) $\Psi(Y_0, Y'_0) = (Y_0, Y'_0)\mathbf{A}, \quad \forall Y_0, Y'_0 \in \mathfrak{a} + \mathfrak{m}_2.$ (2) $\Psi(Y_1, Y'_1) = (Y_1, Y'_1)\mathbf{B}, \quad \forall Y_1, Y'_1 \in \mathfrak{m}_1.$

Proof. On account of an elementary fact concerning symmetric bilinear

forms, we have only to show $\Psi(Y_0, Y_0) = (Y_0, Y_0)\mathbf{A}$ and $\Psi(Y_1, Y_1) = (Y_1, Y_1)\mathbf{B}$ for any $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ and $Y_1 \in \mathfrak{m}_1$.

Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$. Then, by Lemma 18 and Lemma 19 we have $\langle \Psi(Y_0, Y_0), \mathbf{B} \rangle = \langle \mathbf{A}, \mathbf{B} \rangle (Y_0, Y_0)$. Moreover, by Proposition 12 (1) and (5*a*) we have $\langle \Psi(Y_0, Y_0), \mathbf{A} \rangle = \langle \mathbf{A}, \mathbf{A} \rangle (Y_0, Y_0)$. Since $\Psi(Y_0, Y_0) \in \mathbf{RA} + \mathbf{RB}$ (see (4.3)), it follows that $\Psi(Y_0, Y_0) = (Y_0, Y_0)\mathbf{A}$, which proves (1).

We next prove (2). Let $Y_1 \in \mathfrak{m}_1 (Y_1 \neq 0)$. Take elements $\xi \in U$ ($\xi \neq 0$) and $\eta \in V$ ($\eta \neq 0$) such that (η, Y_1) = 0. Set $Y_0 = [Y_1, [\xi, \eta]]$. Then, it is easy to see that $[\xi, \eta] \in \mathfrak{k}_1$ and $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ (see (2.1)). Further, we have $(\xi, Y_0) = 0$ and $L(\xi, Y_0)Y_1 \in V$, because

$$\begin{aligned} (\xi, Y_0) &= \left(\xi, \left[Y_1, \left[\xi, \eta\right]\right]\right) = -\left(\left[\xi, \left[\xi, \eta\right]\right], Y_1\right) \\ &= (\mu, \mu)(\xi, \xi)(\eta, Y_1) = 0, \\ L(\xi, Y_0)Y_1 &= \left[\xi, \left[\left[Y_1, \left[\xi, \eta\right]\right], Y_1\right]\right] = (\mu, \mu)(Y_1, Y_1)\left[\xi, \left[\xi, \eta\right]\right] \\ &= -(\mu, \mu)^2(\xi, \xi)(Y_1, Y_1)\eta \in V \end{aligned}$$

(see (2.2) and (2.4)). Thus, by Proposition 15 (2), Lemma 19 and $\Psi(Y_0, Y_0) = (Y_0, Y_0) \mathbf{A}$ (see (1)), we have

$$0 = |\Theta_{Y_0,\xi}(Y_1)|^2 = \left[\left\langle \mathbf{A}, \Psi(Y_1, Y_1) \right\rangle - 2(\mu, \mu)(Y_1, Y_1) \right](Y_0, Y_0).$$

Here, we note that $Y_0 \neq 0$, because $L(\xi, Y_0)Y_1 \neq 0$. Hence, by the above equality and Lemma 19, we have $\langle \Psi(Y_1, Y_1), \mathbf{A} \rangle = \langle \mathbf{B}, \mathbf{A} \rangle (Y_1, Y_1)$. On the other hand, by Proposition 12 (1) and (5b) we have $\langle \Psi(Y_1, Y_1), \mathbf{B} \rangle =$ $\langle \mathbf{B}, \mathbf{B} \rangle (Y_1, Y_1)$. Consequently, it follows that $\Psi(Y_1, Y_1) = (Y_1, Y_1)\mathbf{B}$, because $\Psi(Y_1, Y_1) \in \mathbf{RA} + \mathbf{RB}$ (see (4.4)). This proves (2).

We are now in a final position of the proof of Theorem 6. Let $Y_0 \in \mathfrak{a} + \mathfrak{m}_2$ $(Y_0 \neq 0)$. Then, by Lemma 20 (1) we have $\operatorname{Ker}(\Psi_{Y_0}) \supset \{Y'_0 \in \mathfrak{a} + \mathfrak{m}_2 | (Y_0, Y'_0) = 0\}$. This shows dim $\operatorname{Ker}(\Psi_{Y_0}) \geq 3$ and hence Y_0 is singular with respect to Ψ (see Proposition 9 (1)). Accordingly, $\mathfrak{a} + \mathfrak{m}_2$ is a singular subspace. Similarly, by Lemma 20 (2) we can show that \mathfrak{m}_1 is also a singular subspace.

Now, let us put into Proposition 12 $U = \mathfrak{a} + \mathfrak{m}_2$ and $V = \mathfrak{m}_1$. Then, by Lemma 20 we know that the vectors **A** and **B** are not altered by this change of singular subspaces. Therefore, all the statements in Proposition 12 and the arguments developed after Proposition 12 are also true under our setting $U = \mathfrak{a} + \mathfrak{m}_2$ and $V = \mathfrak{m}_1$. Consequently, by Proposition 12 (1), (2), (3) and Lemma 19 we get the assertion (1) of Theorem 6. We also obtain by Proposition 14 and $C = (\mu, \mu)$ (see Lemma 19) the assertion (3) of Theorem 6.

Finally, we prove the assertion (2) of Theorem 6. Let $Y_2 \in \mathfrak{m}_2$ and $Y_1 \in \mathfrak{m}_1$. Then, since $C \neq 3(\mu, \mu)$ and $(\mu, Y_2) = 0$, we have

$$\Theta_{Y_2,\mu}(Y_1) = \Psi_{Y_2}(Y_1) + \frac{1}{(\mu,\mu)^2} \Psi_{\mu}(L(\mu,Y_2)Y_1) = 0$$

(see Proposition 15). Here we note that the conditions $\mu \in U$ and $L(\mu, Y_2)Y_1 \in V$ in Proposition 15 have no significance, because $U = \mathfrak{a} + \mathfrak{m}_2$ and $V = \mathfrak{m}_1$. Accordingly, we obtain the assertion (2). This completes the proof of Theorem 6.

References

- Agaoka Y., Isometric immersions of SO(5), J. Math. Kyoto Univ., 24 (1984), 713–724.
- [2] Agaoka Y. and Kaneda E., On local isometric immersions of Riemannian symmetric spaces, Tôhoku Math. J., 36 (1984), 107–140.
- [3] Agaoka Y. and Kaneda E., An estimate on the codimension of local isometric imbeddings of compact Lie groups, Hiroshima Math. J., 24 (1994), 77–110.
- [4] Agaoka Y. and Kaneda E., Local isometric imbeddings of symplectic groups, Geometriae Dedicata, 71 (1998), 75–82.
- [5] Agaoka Y. and Kaneda E., Strongly orthogonal subsets in root systems, Hokkaido Math. J., **31** (2002), 107–136.
- [6] Agaoka Y. and Kaneda E., A lower bound for the curvature invariant p(G/K) associated with a Riemannian symmetric space G/K, Hokkaido Math. J., 33 (2004), 153–184.
- [7] Agaoka Y. and Kaneda E., Local isometric imbeddings of P²(H) and P²(Cay), Hokkaido Math. J. 33 (2004), 399–412.
- [8] Agaoka Y. and Kaneda E., Rigidity of the canonical isometric imbedding of the Cayley projective plane P²(Cay), Hokkaido Math. J. 34 (2005), 331–353.
- [9] Agaoka Y. and Kaneda E., Local isometric imbeddings of Grassmann manifolds, in preparation.
- [10] Helgason S., Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
- [11] Kobayashi S., Isometric imbeddings of compact symmetric spaces, Tôhoku Math. J. 20 (1968), 21–25.
- [12] Kobayashi S. and Nomizu K., Foundations of Differential Geometry II, Interscience Publishers, New York, 1969.

Y. Agaoka
Faculty of Integrated Arts and Sciences
Hiroshima University
1-7-1 Kagamiyama, Higashi-Hiroshima City
Hiroshima, 739-8521, Japan
E-mail: agaoka@mis.hiroshima-u.ac.jp

E. Kaneda Faculty of Foreign Studies Osaka University of Foreign Studies 8-1-1 Aomadani-Higashi, Minoo City Osaka, 562-8558, Japan E-mail: kaneda@osaka-gaidai.ac.jp