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A new constructive version of Baire’s theorem

Douglas Bridges, Hajime Ishihara and Luminiţa V̂ıţă
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Abstract. A new constructive version of Baire’s theorem is given and then applied to

two problems in functional analysis. The second of these applications provides a new

proof that compactly generated Banach spaces are finite dimensional.
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1. Introduction

Baire’s (category) theorem states that the intersection of a sequence
of dense open subsets of a complete metric space is dense in that space.
The standard classical proof of this theorem passes over unchanged to the
constructive setting (that is, the one in which classical logic is replaced
by intuitionistic logic). However, various classically equivalent versions of
Baire’s theorem do not pass over unscathed; for a discussion of this, see
Chapter 2 of [5]. In this note we present one alternative constructive version
of Baire’s theorem in the context of a Banach space, and then use this result,
first to produce a new constructive version of the open mapping theorem
(see [3, 4, 7, 13]); secondly to give conditions that ensure the existence of
a certain type of projection in a Hilbert space; and finally to give a new proof
that compactly generated Banach spaces are finite-dimensional (cf. [8]).

Our proofs, like all proofs that use only intuitionistic logic [18] (and
an appropriate set-theoretic foundation such as that presented in [1]), em-
body algorithms for the computation/construction of the objects whose
existence is asserted in the proposition being proved. These algorithms can
be extracted and implemented (see [9, 10, 15]). Moreover, the constructive
proof of the proposition is actually a proof that the embodied algorithm is
correct—that is, meets its specifications.

What little background material in constructive analysis is needed for
this paper can be gleaned from Chapters 2, 3, and 7 of [2]. However, one
or two important differences between the constructive and the classical
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approaches are worth highlighting here. First, we observe that the clas-
sical least-upper-bound principle cannot be proved constructively. If S is
a nonempty1 subset of R that is bounded above, then in order to construct
the least upper bound of S it is necessary and sufficient that for all real
numbers a, b with a < b, either b is an upper bound of S or else there exists
x ∈ S with x > a. (Note that here, as always in the constructive setting,
“either . . . or” means that we can decide which of the alternatives holds.)
In turn, we cannot guarantee that the distance

ρ(x, S) = inf{ρ(x, s) : s ∈ S}
from a point of R to an arbitrary nonempty set S can be computed. If it
can for all x ∈ R, then S is said to be located. In accordance with our
comments on the least-upper-bound principle, in order to prove that S is
located, for each x ∈ X we must compute an associated number d, show
that ρ(x, s) ≥ d for each s ∈ S, and, given ε > 0, construct s ∈ S such that
ρ(x, s) < d + ε.

For any subset S of X we define the metric complement to be

X−S = {x ∈ X : ∃δ > 0 ∀s ∈ S (ρ(x, s) ≥ δ)}.
We write −S, rather than X − S, for this metric complement when no
confusion is likely.

Normally we denote the open and closed balls with center x and radius r

in a metric space X by B(x, r) and B(x, r), respectively; but sometimes the
need for clarity dictates that we use the notations BX(x, r) and BX(x, r)
instead.

We begin with our new version of Baire’s theorem.

Theorem 1 Let X be a Banach space, and C a closed, convex, balanced
and located subset of X such that X =

⋃∞
n=1 nC and ρ(0,−C) exists. Then

C◦ is nonempty.

Proof. For each positive integer n let

Un = (X−nC)∪{x ∈ X : C◦ is nonempty}.
1When we refer to a set S as “nonempty” we mean that it is inhabited, in the sense

that there exists—we can construct—an element of S. This is constructively stronger

than the impossibility of S being empty.
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Then Un is open in X. To prove that Un is also dense in X, consider y ∈ X

and ε > 0. Note that ρ(y, nC) exists and equals nρ
(
(1/n)y, C

)
. Either

ρ(y, nC) > 0 or ρ(y, nC) < ε. In the first case, y ∈ X − nC. In the second,
choose z ∈ nC such that ‖y − z‖ < ε. Noting that

ρ(0,−2nC) = 2nρ(0,−C)

exists, we have either ρ(0,−2nC) < 2ε or ρ(0,−2nC) > ε. In the former
case, choose z′ ∈ −2nC such that ‖z′‖ < 2ε. For each w ∈ nC we have
−w ∈ nC (since C is balanced), so

z−w ∈ nC +nC = 2nC,

by the convexity of C. Hence

‖(z−z′)−w‖ = ‖z′−(z−w)‖ ≥ ρ(z′, 2nC) > 0.

Thus z − z′ ∈ −nC. Since also

‖y−(z−z′)‖ ≤ ‖y−z‖+‖z′‖ < 3ε,

we see that ρ(y, Un) < 3ε. Finally, in the case ρ(0,−2nC) > ε, we have
B(0, ε) ⊂ 2nC = 2nC; whence (2nC)◦, and therefore C◦, is nonempty. In
this case, Un = X. This completes the proof that Un is dense in X.

Since X is complete, it follows from the standard version of Baire’s
theorem that

⋂∞
n=1 Un is dense in X and therefore, in particular, contains

a point ξ. Choose n such that ξ ∈ nC. Since also ξ ∈ Un, we must have
ξ ∈ {x ∈ X : C◦ is nonempty}. Hence C◦ is indeed nonempty. ¤

2. An open mapping theorem

Certain classical Banach spaces may not carry a well-defined norm in
the constructive setting. To get round this, Johns [14] introduced a notion
that we call a quasinorm on a linear space X: a family (‖ · ‖i)i∈I of
seminorms on X such that for each x ∈ X the set {‖x‖i : i ∈ I} is bounded
in R. An element x of X is then said to be normable if

‖x‖ = sup{‖x‖i : i ∈ I}
exists. Given a quasinormed space (X, (‖ · ‖i)i∈I), we define topological and
uniform notions in natural ways. For details, we refer to [2] (Chapter 7,
Section 5).
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For example, on the space B(H) of bounded linear operators on a Hilbert
space H the natural quasinorm is defined by taking I to be the (closed) unit
ball B(0, 1) of H and

‖T‖x = ‖Tx‖ (‖x‖ ≤ 1, T ∈ B(H)).

An element of B(H) is normable relative to this quasinorm if and only if
its operator norm, in the usual sense, exists. Moreover, B(H) is complete
relative to its quasinorm, and so any quasinorm-closed subset of B(H) is
quasinorm-complete.

In order to obtain a version of the open mapping theorem from Theo-
rem 1, we extend Lemma 4.4 of [7], and improve its proof, to cover mappings
defined on a quasinormed space; see also Lemma 3 of [11].

Lemma 2 Let (X, (‖·‖i)i∈I) be a complete quasinormed space, Y a normed
space, and u : X → Y a bounded linear mapping of X onto a dense subspace
of Y such that u(BX(0, r)) is located in Y . Let r be a positive number, and
y an element of BY (0, r). Then there exists x ∈ BX(0, 2) such that if
y 6= u(x), then ρ

(
y′, u(BX(0, 1))

)
> 0 for some y′ ∈ Bu(X)(0, r).

Proof. Let y ∈ Y and ‖y‖ < r. Define an increasing binary sequence
(λn)∞n=0 and a sequence (xn)∞n=0 of elements of BX(0, 2) such that for each
n ≥ 1,
B if λn = 0, then

ρ

(
2n−1y −

n−1∑

i=1

2n−1−iu(xi), u(BX(0, 1))

)
< r/2

and
∥∥∥∥2ny−

n∑

i=1

2n−iu(xi)
∥∥∥∥ < r;

B if λn = 1− λn−1, then

ρ

(
2n−1y −

n−1∑

i=1

2n−1−iu(xi), u(BX(0, 1))

)
> 0

and xi = 0 for all i ≥ n.
If ρ

(
y, u(BX(0, 1))

)
> 0, then, since Bu(X)(0, r) is dense in BY (0, r), we

can find y′ ∈ Bu(X)(0, r) such that ρ
(
y′, u(BX(0, 1))

)
> 0; to complete the
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proof, we can then take x to be any element of BX(0, 2) such that y 6= Tx.
So we may assume that ρ

(
y, u(BX(0, 1))

)
< r/2. We then choose x1 ∈

BX(0, 2) such that
∥∥y − (1/2)x1

∥∥ < r/2, so that ‖2y − x1‖ < r, and we set
λ1 = 0. Now suppose that we have found λn−1 and xn−1 with the applicable
properties. If λn−1 = 1, we set λn = 1 and xn = 0. If λn−1 = 0, we consider
the two cases,

ρ

(
2n−1y −

n−1∑

i=1

2n−1−iu(xi), u(BX(0, 1))

)
> 0

and

ρ

(
2n−1y −

n−1∑

i=1

2n−1−iu(xi), u(BX(0, 1))

)
<

r

2
.

In the first case we set λi = 1 and xi = 0 for all i ≥ n. In the second case
we choose xn ∈ BX(0, 2) such that

∥∥∥∥2n−1y−
n−1∑

i=1

2n−1−iu(xi)−u
(1

2
xn

)∥∥∥∥ <
r

2

and set λn = 0. Then
∥∥∥∥2ny−

n∑

i=1

2n−iu(xi)
∥∥∥∥ < r.

This completes the induction.
Since X is complete, the series

∑∞
i=1 2−ixi converges to a sum x ∈

BX(0, 2). Suppose that y 6= u(x). Then there exists N such that
∥∥∥∥y−

N∑

i=1

2−iu(xi)
∥∥∥∥ > 2−Nr

and therefore
∥∥∥∥2Ny−

N∑

i=1

2N−iu(xi)
∥∥∥∥ > r.

We must therefore have λN = 1; so there exists n 6 N such that λn =
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1− λn−1. Setting

z = 2n−1y−
n−1∑

1i=1

2n−1−iu(xi),

we then have ρ(z, BX(0, 1)) > 0 (as λn = 1) and ‖z‖ < r (as λn−1 = 0).
Since Bu(X)(0, r) is dense in BY (0, r), we can find y′ ∈ Bu(X)(0, r) such that
‖y′ − z‖ < ρ

(
z, u(BX(0, 1))

)
and ρ

(
y′, u(BX(0, 1))

)
> 0. ¤

We now have a new constructive version of the open mapping theorem,
which should be compared with those found in [7, 3, 4] and in Chapter 2
of [5]. This new version is not constructively equivalent to those other
versions, and will enable us to prove the locatedness of certain subspaces
associated with a closed linear subset of B(H) when H is a Hilbert space
(Theorem 5 below).

Theorem 3 Let (X, (‖ · ‖i)i∈I) be a complete quasinormed space, Y

a Banach space, and u : X → Y a bounded linear mapping of X onto Y

such that u(BX(0, 1)) is located and ρ
(
0,−u(BX(0, 1))

)
exists. Then u is

an open mapping.

Proof. Since

Y =
⋃∞

n=1
nu(BX(0, 1))

we can apply Theorem 1 to show that there exist y ∈ Y and r > 0 such
that

BY (y, r) ⊂ u(BX(0, 1)).

A standard argument ([16], proof of Theorem 1.8.4) now shows that

BY (0, r) ⊂ u(BX(0, 1)). (1)

Consider any y ∈ Y with ‖y‖ < r. Choose x ∈ BX(0, 2) as in the con-
clusion of Lemma 2. If y 6= u(x), then there exists y′ ∈ BY (0, r) such
that ρ

(
y′, u(BX(0, 1))

)
> 0, which contradicts (1); hence y = u(x). Thus

BY (0, r) ⊂ u(BX(0, 2)), from which it follows that u is an open mapping.
¤

Let H be a Hilbert space, B(H) the space of all bounded operators
on H, and B1(H) the unit ball of B(H). Given a subset A of B(H), we
denote its unit ball A ∩ B1(H) by A1.
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As well as the uniform topology—the one associated with the family
(‖ · ‖x)‖x‖≤1 of quasinorms introduced earlier—there are at least two other
important topologies on B(H):
• the strong-operator topology, which is the weakest with respect to

which the mapping T Ã Tx is continuous for each x ∈ H;
• the weak-operator topology, which is the weakest with respect to

which the mapping T Ã 〈Tx, y〉 is continuous for all x, y ∈ H.
Note that B1(H) is totally bounded with respect to the weak-operator topol-
ogy; but that, in contrast to the classical situation, when H is infinite-
dimensional, it cannot be proved constructively that B1(H) is weak-operator
complete [6].

Projections on the closure of subspaces of the form Ax, with A a sub-
algebra of B(H), play an important part in the classical theory of operator
algebras. Constructively, it seems hard to find conditions that ensure the
locatedness of Ax, a condition that is necessary and sufficient for the exis-
tence of the associated projection. Spitters [17] (Proposition 9.8.4) shows
that when A is an abelian von Neumann algebra, then Ax is located for
all x in a dense subset of H. We use the foregoing open mapping theorem
to give conditions on a linear subset R of B(H), rather than a subalgebra,
and on the element x of H, that ensure the locatedness of Rx. First we
need

Proposition 4 Let H be a Hilbert space, and R a linear subset of B(H)
that has weak-operator totally bounded unit ball R1. Let x be an element
of H such that the linear mapping u : R Ã Rx of the quasinormed sub-
space R of B(H) onto Rx is open. Then Rx is located in H.

Proof. By Theorem 4 of [12], R1x is located in H; whence

Rnx = {Rx : R ∈ nR1}
is located in H for each positive integer n. Compute δ > 0 such that
BRx(0, δ) ⊂ u(BR(0, 1)). Given y ∈ H, choose a positive integer N such
that Nδ > 2‖y‖. Suppose that ‖y − Rx‖ < ρ(y,RNx) for some R ∈ R.
Then ρ(Rx,RNx) > 0, so N−1Rx /∈ u(BR(0, 1)) and therefore ‖N−1Rx‖ ≥
δ. Hence

‖y−Rx‖ ≥ ‖Rx‖−‖y‖ ≥ Nδ−‖y‖ > ‖y‖
and therefore ‖y − Rx‖ > ρ(y,RNx), a contradiction. We conclude that
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‖y − Rx‖ ≥ ρ(y,RNx) for all R ∈ R; whence ρ(y,Rx) exists and equals
ρ(y,RNx). ¤

Theorem 5 Let H be a Hilbert space, and R a closed linear subset of
the quasinormed space B(H) that has weak-operator totally bounded unit
ball R1. Let x be an element of H such that ρ(0,Rx−R1x) exists and Rx

is a closed subspace of H. Then Rx is located in H.

Proof. By Theorem 4 of [12], R1x is located in H. Applying Theorem 3
with Y = Rx, we see that R Ã Rx is an open mapping of R onto Rx. The
desired conclusion now follows from Proposition 4. ¤

3. Compactly generated Banach spaces

In this section we show how our new version of Baire’s theorem can
be used to give another proof of the theorem, originally proved in [8], that
compactly generated Banach spaces are finite dimensional.

Note that for a subset C of a normed space we define
• the logical complement,

¬C = {x ∈ X : x /∈ C},
• and the complement,

∼C = {x ∈ X : ∀y ∈ C (‖x−y‖ > 0)}.
If these two sets are provably equal, then Markov’s Principle (a to-

us-unacceptable form of unbounded search) holds: for each binary se-
quence (an)

¬∀n (an = 0) ⇒ ∃n (an = 1).

Our discussion hinges on some interesting geometrical properties of con-
vex subsets of a Banach space.

Proposition 6 If C is a convex generating set for a Banach space X,
then ∼C is dense in ¬C.

Proof. Let x ∈ −C, let ε > 0, and choose δ > 0 such that δ‖x‖ < ε. Then

x′ = (1+δ)x /∈ (1+δ)C.
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Let y ∈ C, and construct an increasing binary sequence (λn) such that

λn = 0 ⇒ ‖x′ − y‖ < 1/(n + 1)2

λn = 1 ⇒ x′ 6= y.

Define a sequence (zn) in X as follows: if λn = 0, set zn ≡ 0; if λn =
1− λn−1, set zk = n(x′ − y) for all k ≥ n. Then (zn) is a Cauchy sequence
and so converges to a limit z ∈ X. Choosing a positive integer N so that
z ∈ NδC, consider any integer n ≥ N . If λn = 1−λn−1, then z = n(x′−y);
whence

x′ = y+n−1z ∈ y+
Nδ

n
C ⊂ C+δC = (1+δ)C,

a contradiction. Hence λn = λn−1 for all n ≥ N . It follows that if λn = 0
for all n < N , then λn = 0 for all n, and therefore x′ = y ∈ C ⊂ (1 + δ)C.
This contradiction ensures that λn = 1 for some n < N ; whence x′ 6= y. So
x′ ∈ ∼C and ‖x′ − x‖ = δ‖x‖ < ε. ¤

Lemma 7 Let G be a compact generating set for a nontrivial Banach
space X. Then there exists a convex, balanced, compact generating set C

for X such that ρ(0,−C) exists.

Proof. We may assume that G contains 0 and is both balanced and convex.
Given x ∈ −G, choose r ≥ 0 and g ∈ G such that x = rg; if r ≥ 2,
then (2/r)x ∈ 2G − G and

∥∥(2/r)x
∥∥ = (2/r)‖x‖ ≤ ‖x‖. It follows that

ρ(0,−G) = ρ(0, 2G−G).
Since 2G is compact and the mapping x Ã ρ(x,G) is uniformly contin-

uous on X, there exists δ > 0 such that both the sets

C = {x ∈ 2G : ρ(x,G) ≤ δ},
B = {x ∈ 2G : ρ(x,G) ≥ δ}

are either compact or empty. Note that C is also convex and balanced.
Since X is nontrivial, we may assume that δ is so small that both C and B

are compact. We show that −C is dense in B. To this end, consider any
x ∈ B and any ε > 0. Choose t > 1 so that (t− 1)‖x‖ < ε/2, and suppose
that tx ∈ C. Then, since C is balanced, x ∈ C; whence x ∈ C ∩ B and
therefore ρ(x,G) = δ. But then for each g ∈ G we have

‖tx−g‖ = t‖x−t−1g‖ ≥ tρ(x,G) = tδ > δ,



116 D. Bridges, H. Ishihara and L. Vı̂ţă

which is absurd as tx ∈ C. We conclude that tx /∈ C. It follows from Propo-
sition 6 that there exists y ∈ ∼C such that ‖tx − y‖ < ε/2 and therefore
‖x− y‖ < ε. Applying Bishop’s Lemma ([2], page 92, Lemma (3.8)), we see
that y ∈ −C. This completes the proof that −C is dense in B.

Since the norm function is uniformly continuous on the compact set B,
it now follows that

ρ(0,−C) = inf{‖x‖ : x ∈ −C} = inf{‖x‖ : x ∈ B}
exists. ¤

Theorem 8 A compactly generated Banach space is finite-dimensional.

Proof. Let X be a compactly generated Banach space. We first suppose
that X contains a nonzero vector. By Lemma 7, X has a balanced, convex,
compact generating set C such that ρ(0,−C) exists. Applying Theorem 1,
we see that C◦ is nonempty; whence C contains a nontrivial ball. But every
ball in a normed space is located, so the ball in question is totally bounded,
and therefore X is finite-dimensional.

It remains to remove the restriction that X be nontrivial. To do this,
we work in the Banach space X ⊕F (where F is the groundfield of X) with
the norm

‖(x, λ)‖ = ‖x‖+ |λ|.
This space is generated by the complete, totally bounded, and therefore
compact set G ⊕ {1}; so, by the foregoing, X ⊕ F is finite-dimensional. It
follows that X, being isomorphic to the quotient space (X⊕F)/F, is finite-
dimensional. ¤

Theorem 8 is not without interesting applications. For example, an
immediate consequence of it is that if the range of a compact linear mapping
is finite-dimensional, then the mapping has finite rank.
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