Numerical ranges of composition operators on l^{2}

B.S. Komal and Shallu Sharma
(Received September 1, 2003; Revised September 27, 2004)

Abstract

In this paper we obtain numerical ranges of composition operators on l^{2}. Key words: numerical range, composition operator, orbit.

1. Preliminaries

Let \mathbb{N} be the set of all positive integers and $l^{2}=l^{2}(\mathbb{N})$ be the Hilbert space of all square summable sequences of complex numbers. Let T be a mapping of \mathbb{N} into itself. Then we can define a composition transformation C_{T} from $l^{2}(\mathbb{N})$ into the space of all complex valued sequences by $C_{T} f=f o T$ for every $f \in l^{2}(\mathbb{N})$. In the case C_{T} is bounded and the range of C_{T} is contained in $l^{2}(\mathbb{N})$, we call it a composition operator induced by T. It is shown in [9] that a composition trasformation $C_{T}: l^{2}(\mathbb{N}) \rightarrow l^{2}(\mathbb{N})$ is a bounded operator if and only if there exists a real number $M>0$ such that $\#\left(T^{-1}(\{n\})\right) \leq M$ for every $n \in N$, where $\#(E)$ denotes the cardinality of the set E. Thus it is evident that a composition transformation C_{T} is unbounded if and only if the sequence $\left\{\#\left(T^{-1}(\{n\})\right)\right\}_{n=1}^{\infty}$ is an unbounded sequence. From Theorem 3.1 of Singh and Komal [9], it follows that C_{T} is surjective if and only if T is injective.

The numerical range of a bounded linear operator $A: H \rightarrow H$ from Hilbert space H into itself is defined as $W(A)=\{\langle A x, x\rangle:\|x\|=1\}$, where $\langle.,$.$\rangle is the inner product of H$. The numerical radius of A is defined as $w(A)=\sup \{|\langle A x, x\rangle|:\|x\|=1\}$. These concepts and their generalisations have been studied extensively because of their connections and applications to many different branches of Mathematics (e.g. see chapter I of Horn and Johnson [12]).

Let $T: N \rightarrow N$ be a mapping. Two positive integers m and n are said to be in the same orbit of T if there exit two positive integers r and s such that $T^{r}(m)=T^{s}(n)$. Here and else where, T^{r} denotes the composition of T with itself r times. If $n \in N$, then $O_{T}(n)=\left\{m \in N: T^{r}(m)=T^{s}(n)\right.$ for

[^0]some $r, s \in N\}$ is called the orbit of n with respect to T.
A mapping $T: N \rightarrow N$ is said to be antiperiodic at n, if $T^{m}(n) \neq n$ for every $m \in N$. If T is antiperiodic at every $n \in N$, then we say that T is purely antiperiodic. For an example, the mapping $T: N \rightarrow N$ defined by
\[

T(n)=\left\{$$
\begin{array}{cc}
n+2, & \text { if } n \text { is even } \\
n, & \text { if } n \text { is odd }
\end{array}
$$\right.
\]

is antiperiodic at every even natural number but not antiperiodic at an odd natural number. If for a natural number n there exists $m \in N$ such that $T^{m}(n)=n$, then T is called periodic at n. If T is periodic at every $n \in N$, we say that T is purely periodic. The integer $m_{n}=\inf \left\{m: T^{m}(n)=n\right\}$ is called the period of T at n. The set $\left\{m_{n}: n \in N\right\}$ of periods of T is denoted by $P(T)$. For sake of convenience, we shall use $f_{0}(n)$ to denote the cardinality of the set $T^{-1}(\{n\})$. The smallest convex set containing the set $G \subset l^{2}(\mathbb{N})$ is called the convex hull of G and we shall denote it by $C_{o}(G)$. The spectrum of a bounded operator A on a Hilbert space H into itself is defined by $\sigma(A)=\{\lambda \in \mathbb{C}: A-\lambda I$ is not invertible $\}$. If $F \subset N$, then χ_{F} denotes the characteristics function of F. It is well known that $\left\{\chi_{\{n\}}: n \in N\right\}$ is an orthonormal basis for $l^{2}(\mathbb{N})$. The Banach algebra of all bounded linear operators from $l^{2}(\mathbb{N})$ into itself is denoted by $B\left(l^{2}(\mathbb{N})\right)$. For $E \subset N, l^{2}(E)=\left\{f \in l^{2}(\mathbb{N}): f(m)=0\right.$ for every $\left.m \notin E\right\}$. The symbol $C_{T} \mid l^{2}(E)$ denotes the restriction of C_{T} to $l^{2}(E)$.

The composition operators have been the subject matter of a systematic study over the past three decades (e.g. see monographs Cowen and Maccluer [2], Shapiro [11] and Singh and Manhas [13]). For more information concerning composition operators on $l^{2}(\mathbb{N})$ and numerical ranges of operators, we refer to Carlson [1], Singh and Komal ([9] and [10]), Gustafson and Rao [3], Halmos [4], Matache [7] and Stout [14]. In this paper we compute the numerical ranges of composition operators on $l^{2}(\mathbb{N})$. It is shown that numerical range of an unbounded composition operator is the entire complex plane.

2. Numerical ranges of surjective composition operators

In this section we obtain the numerical ranges of surjective composition operators.

Lemma 2.1 Let $T: N \rightarrow N$ be injective and antiperiodic at some $n \in$ N and let S be the restriction of T to $O_{T}(n)$. Then $W\left(C_{S}\right)=\{\lambda \in \mathbb{C}$: $|\lambda|<1\}$, where C_{S} is a composition operator on $l^{2}\left(O_{T}(n)\right)$ induced by S.

Proof. If S is invertible, then by Theorem 2.3 of Singh and Komal [9], C_{S} is normal and therefore $\overline{W\left(C_{S}\right)}=C_{o}\left(\sigma\left(C_{S}\right)\right)$ in view of theorm 1.4.5 of Gustafason and Rao [3]. Since $\sigma\left(C_{S}\right)=\{\lambda:|\lambda|=1\}$, it follows that $\overline{W\left(C_{S}\right)}=\{\lambda:|\lambda| \leq 1\}$. If $|\lambda|=1$ and $\lambda \in W\left(C_{S}\right)$, then $|\lambda|=\left|\left\langle C_{s} f, f\right\rangle\right| \leq$ $\left\|C_{S} f\right\|\|f\| \leq 1$ for some unit vector $f \in l^{2}\left(O_{T}(n)\right)$ implies that Schwartz inequality becomes an equality. Hence $C_{S} f$ and f are linearly dependent so that $C_{S} f=\mu f$ for some scalar μ. This contradicts the fact that C_{S} has no eigenvalue in the light of Lemma 2.1 of Komal and Pathania [6]. Thus $W\left(C_{S}\right) \subset\{\lambda \in \mathbb{C}:|\lambda|<1\}$. To prove the reverse inclusion, let $\lambda=r e^{i \theta}$, where $0<r<1,0 \leq \theta \leq 2 \pi$. For $O_{T}(n)=\left\{n_{k}\right\}_{k=1}^{\infty}$ where $S\left(n_{k}\right)=n_{k+1}$, define $f=\sum_{k=1}^{\infty} \sqrt{\left(1-r^{2}\right)} r^{k-1} e^{-i(k-1) \theta} \chi_{\left\{n_{k}\right\}}$. A simple computation reveals that $\|f\|=1$ and $\left\langle C_{S} f, f\right\rangle=r e^{i \theta}$. This proves that $\{\lambda:|\lambda|<1\} \subset W\left(C_{s}\right)$. Hence $W\left(C_{S}\right)=\{\lambda:|\lambda|<1\}$. Next, if S is not invertible in $O_{T}(n)$, then S is not surjective and hence $S^{-1}\left(\left\{n_{1}\right\}\right)=\phi$. Taking f as defined above, we see that $\left\langle C_{S} f, f\right\rangle=r e^{i \theta}, 0<r<1,0 \leq$ $\theta \leq 2 \pi$. This proves that $\{\lambda \in \mathbb{C}:|\lambda|<1\} \subseteq W\left(C_{S}\right)$. Now S is injective. Therefore by corollary to Theorem 2.1.9 of Singh and Komal [9], $\left\|C_{s}\right\|=1$. Hence $W\left(C_{S}\right) \subseteq\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$. As proved earlier, if $|\lambda|=1$, then $\lambda \notin W\left(C_{S}\right)$. Thus in this case also $W\left(C_{S}\right)=\{\lambda:|\lambda|<1\}$.

Lemma 2.2 Let $T: N \rightarrow N$ be an injection and periodic at some $n \in N$. Then
(i) $W\left(C_{S}\right)=\{1\}$, if $\#\left(O_{T}(n)\right)=1$,
(ii) $W\left(C_{S}\right)=[-1,1]$, if $\#\left(O_{T}(n)\right)=2$,
(iii) $W\left(C_{S}\right)$ is the closed polygonal region whose boundary is the regular polygon with $\#\left(O_{T}(n)\right)$ sides inscribed in the unit circle having one of the vertex at 1 , where S is the restriction of T to $O_{T}(n)$.

Proof. If $\#\left(O_{T}(n)\right)=1$, then S is the identity map and so trivially $W\left(C_{S}\right)=\{1\}$. Further if $\#\left(O_{T}(n)\right) \geq 2$, then S is periodic of period $k=\#\left(O_{T}(n)\right)$. Clearly S is invertible. This implies that C_{S} is invertible and hence C_{S} is normal by Theorem 2.3 of Singh and Komal [9]. From corollary to Theorem 3.3 of singh and Komal [10], it follows that $\sigma\left(C_{S}\right)=$ $\left\{\lambda \in \mathbb{C}: \lambda^{k}=1\right\}$. By using normality of C_{S}, and the fact that range of an
operator on a finite dimensional space is always closed, we have $W\left(C_{S}\right)=$ $\overline{W\left(C_{S}\right)}=C_{o}\left(\sigma\left(C_{S}\right)\right)$. We have thus proved that $W\left(C_{S}\right)=C_{o}\{\lambda \in \mathbb{C}$: $\left.\lambda^{k}=1\right\}$. In particular, for $k=2, W\left(C_{S}\right)=[-1,1]$.

Theorem 2.3 Let $T: N \rightarrow N$ be injective. Then
(i) $W\left(C_{T}\right)=\{\lambda \in \mathbb{C}:|\lambda|<1\}$, if T is purely antiperiodic
(ii) $W\left(C_{T}\right)=C_{o}\left(\bigcup_{n \in P(T)}\left\{\lambda \in \mathbb{C}: \lambda^{n}=1\right\}\right)$, if T is purely periodic.
(iii) $W\left(C_{T}\right)=C_{o}\left(\{\lambda \in \mathbb{C}:|\lambda|<1\} \cup \bigcup_{k \in P(T)}\left\{\lambda \in \mathbb{C}: \lambda^{k}=1\right\}\right)$, if T is periodic at some $n \in N$ and antiperiodic at some other point $m \in N$.

Proof. The proof of (i) follows from Lemma 2.1. For the proof of (ii), write $l^{2}(\mathbb{N})=\sum_{n \in P(T)} \oplus l^{2}\left(O_{T}(n)\right)$ so that

$$
\begin{aligned}
W\left(C_{T}\right) & =C_{o}\left(\bigcup_{n \in P(T)} W\left(C_{T} \mid l^{2}\left(O_{T}(n)\right)\right)\right) \\
& =C_{o}\left(\bigcup_{n \in P(T)}\left\{\lambda \in \mathbb{C}: \lambda^{n}=1\right\}\right)
\end{aligned}
$$

where $C_{T} \mid l^{2}\left(O_{T}(n)\right)$ is restriction of C_{T} to $l^{2}\left(O_{T}(n)\right)$. For the proof of (iii), let $E=\{n \in N: T$ is periodic at $n\}$. Then $l^{2}(\mathbb{N})=l^{2}(E) \oplus l^{2}(N-E)$. Hence that

$$
\begin{aligned}
W\left(C_{T}\right) & =C_{o}\left(W\left(C_{T} \mid l^{2}(E)\right) \mathrm{U} W\left(C_{T} \mid l^{2}(N-E)\right)\right) \\
& =C_{o}\left(\bigcup_{k \in P(T)}\left\{\lambda \in \mathbb{C}: \lambda^{k}=1\right\} \mathrm{U}\{\lambda \in \mathbb{C}:|\lambda|<1\}\right)
\end{aligned}
$$

follows by using the above parts (i) and (ii).

3. Numerical Ranges of Non-Surjective Composition Operators

In this section we obtain the numerical ranges of non-surjective composition operators.

Lemma 3.1 Let $C_{T} \in B\left(l^{2}(\mathbb{N})\right)$. Then $W\left(C_{T} / l^{2}\left(E_{n}\right)\right)=\{\lambda \in \mathbb{C}:|\lambda| \leq$ $\left.\sqrt{f_{0}(n)} / 2\right\}$, where n is such that $f_{0}(n) \geq 2, T(n) \neq n ; T^{2}(n) \neq n$ and $E_{n}=T^{-1}(\{n\}) \mathrm{U}\{n\}$.

Proof. Suppose $f_{0}(n)=k \geq 2$ and $E_{n}=\left\{n, n_{1} n_{2} \ldots n_{k}\right\}$. Clearly

$$
f=f_{n} \chi_{\{n\}}+f_{n_{1}} \chi_{\left\{n_{1}\right\}}+\cdots+f_{n_{k}} \chi_{\left\{n_{k}\right\}} \in l^{2}\left(E_{n}\right)
$$

and

$$
\left\langle C_{T} f, f\right\rangle=\sum_{i=1}^{k} f_{n} \overline{f_{n_{i}}}
$$

Therefore $\left|\left\langle C_{T} f, f\right\rangle\right| \leq\left|f_{n}\right| \sum_{i=1}^{k}\left|f_{n_{i}}\right|$. In order to calculate the numerical radius of $C_{T} \mid l^{2}\left(E_{n}\right)$, we compute $\sup \left\{\left|f_{n}\right| \sum_{i=1}^{k}\left|f_{n_{i}}\right|\right\} \ldots \ldots$ (1) subject to the condition $\left|f_{n}\right|^{2}+\sum_{i=1}^{k}\left|f_{n_{i}}\right|^{2}=1$. Let $r_{i}=\left|f_{n_{i}}\right|$ for $i=1,2, \ldots, k$ and $r_{n}=\left|f_{n}\right|$. Consider the Lagranges function $F\left(r_{1}, r_{2} \ldots r_{k}, r_{n}, \lambda\right)=$ $r_{n} \sum_{i=1}^{k} r_{i}-\lambda\left(\sum_{i=1}^{k} r_{i}^{2}+r_{n}^{2}-1\right)$. Therefore, solving the equations $\partial F / \partial r_{n}=$ $\sum_{i=1}^{k} r_{i}-2 \lambda r_{n}=0, \partial F / \partial r_{i}=r_{n}-2 \lambda r_{i}=0$, for $i=1,2, \ldots, k$, the maximum expression (1) is $\sqrt{f_{0}(n)} / 2$. By the definition the numerical radius of C_{T} restricted to $l^{2}\left(E_{n}\right)$ is the maximum expression (1). Therefore $w\left(C_{T} \mid l^{2}\left(E_{n}\right)\right)=\sqrt{f_{0}(n)} / 2$. This proves that $W\left(C_{T} \mid l^{2}\left(E_{n}\right)\right) \subset\{\lambda:|\lambda| \leq$ $\left.\sqrt{f_{0}(n)} / 2\right\}$. Taking $f=\cos \alpha \chi_{\{n\}}+(\sin \alpha / \sqrt{k}) e^{-i \theta} \chi_{\left\{n_{1}, n_{2} \ldots n_{k}\right\}}$, we get $\|f\|=1$ and

$$
\left\langle C_{T} f, f\right\rangle=\frac{k \cos \alpha \sin \alpha e^{i \theta}}{\sqrt{k}}=\frac{\sqrt{k}}{2} \sin 2 \alpha e^{i \theta}=r e^{i \theta}
$$

where $r=(\sqrt{k} / 2) \sin 2 \alpha \leq \sqrt{k} / 2$. This proves that $\{\lambda \in \mathbb{C}:|\lambda| \leq$ $\left.\sqrt{f_{0}(n)} / 2\right\} \subset W\left(C_{T}\right)$. Thus $W\left(C_{T} \mid l^{2}\left(E_{n}\right)\right)=\left\{\lambda \in \mathbb{C}:|\lambda| \leq \sqrt{f_{0}(n)} / 2\right\}$.
Lemma 3.2 Let $C_{T} \in B\left(l^{2}(N)\right)$. Then $W\left(C_{T} \mid l^{2}\left(E_{n}\right)\right) \subseteq\{\lambda \in \mathbb{C}:|\lambda| \leq$ $\left.\sqrt{f_{0}(n)+3} / 2\right\}$, where n is such that $f_{0}(n) \geq 2, T(n) \neq n$ but $T^{2}(n)=n$, and $E_{n}=T^{-1}(\{n\}) \cup\{n\}$.

Proof. Suppose $f_{0}(n)=k \geq 2$ and $E_{n}=\left\{n, n_{1} n_{2} \ldots n_{k}\right\}$. From the hypothesis, $T(n)=n_{j}$ for some $j, 1 \leq j \leq k$. Clearly $f=f_{n} \chi_{\{n\}}+f_{n_{1}} \chi_{\left\{n_{1}\right\}}+$ $\cdots+f_{n_{k}} \chi_{\left\{n_{k}\right\}} \in l^{2}\left(E_{n}\right)$, and $\left|\left\langle C_{T} f, f\right\rangle\right| \leq\left|f_{n}\right| \sum_{i=1}^{k}\left|f_{n_{i}}\right|+\left|f_{n}\right|\left|f n_{j}\right|$. We shall now compute $\sup \left\{\left|f_{n}\right| \sum_{i=1}^{k}\left|f_{n_{i}}\right|+\left|f_{n}\right|\left|f_{n_{j}}\right|\right\} \ldots \ldots$ (1) subject to the condition $\sum_{i=1}^{k}\left|f_{n_{i}}\right|^{2}+\left|f_{n}\right|^{2}=1$. For this, consider the Lagrange's function $F\left(r_{1}, r_{2} \ldots, r_{n}, \lambda\right)=r_{n} \sum_{i=1}^{k} r_{i}+r_{n} r_{j}-\lambda\left(\sum_{i=1}^{k} r_{i}^{2}+r_{n}^{2}-1\right)$, where $r_{i}=\left|f_{n_{i}}\right|$ and $r_{n}=\left|f_{n}\right|$. Solving the equations $\partial F / \partial r_{n}=\sum_{i=1}^{k} r_{i}+r_{j}-2 \lambda r_{n}=0$, $\partial F / \partial r_{j}=2 r_{n}-2 \lambda r_{j}=0$, and $\partial F / \partial r_{i}=r_{n}-2 \lambda r_{i}=0$, for $i=1,2, \ldots, k$,
$i \neq j$, we find that the maximum expression (1) is equal to $\sqrt{f_{0}(n)+3} / 2$. This gives $w\left(C_{T} \mid l^{2}\left(E_{n}\right)\right)=\sqrt{f_{0}(n)+3} / 2$ which proves the lemma.

Lemma 3.3 Let $C_{T} \in B\left(l^{2}(\mathbb{N})\right)$. Then $W\left(C_{T} \mid l^{2}\left(E_{n}\right)\right)$ is the closed elliptical disc with foci at 0 and 1 and major axis $=\sqrt{f_{0}(n)}$ and minor axis $=\sqrt{f_{0}(n)-1}$, where $f_{0}(n) \geq 2$ and $T(n)=n, E_{n}=T^{-1}\{n\}$.

Proof. Let $f_{0}(n)=k \geq 2$ and $E_{n}=T^{-1}(\{n\})=\left\{n, n_{1}, \ldots, n_{k-1}\right\}$. Then the range of $C_{T} \mid l^{2}\left(E_{n}\right)$ is the one dimensional subspace of $l^{2}(N)$ spanned by $\chi_{E_{n}}$. For $h=\chi_{\left\{n, n_{1}, \ldots, n_{k-1}\right\}} / \sqrt{k}$, and $g=\sqrt{k} \chi_{\{n\}},\left(C_{T} \mid l^{2}\left(E_{n}\right)\right)(f)=$ $\langle f, g\rangle h$ for every $f \in l^{2}\left(E_{n}\right)$.

Also $\|h\|=1$. Hence by the two dimensional Case 2.4 and Proposition 2.5 of Bourdon and Shapiro [5], $W\left(C_{T} \mid l^{2}\left(E_{n}\right)\right)$ is a closed elliptical disc with foci at 0 and 1 , major axis $=\sqrt{f_{0}(n)}$ and minor axis $=\sqrt{f_{0}(n)-1}$. This proves the lemma.

Theorem 3.4 Let $C_{T} \in B\left(l^{2}(N)\right)$ be such that T is purely antiperiodic but not injective. Then $W\left(C_{T}\right) \supseteq\left\{\lambda:|\lambda| \leq\left\|\sqrt{f_{0}}\right\|_{\infty} / 2\right\}$, where $\left\|f_{0}\right\|_{\infty}=$ $\sup \left\{f_{0}(n): n \in N\right\}$.

Proof. Let $n \in N$ be such that $f_{0}(n)=\sup \left\{f_{0}(m): m \in N\right\}=\left\|f_{0}\right\|_{\infty}$. This is possible, since by Theorem 2.1 of Singh and Komal [9] range of f_{0} is a finite set. By using Lemma 3.1 for any $m \in N$, we obtain $W\left(C_{T} \mid l^{2}\left(E_{m}\right)\right)=$ $\left\{\lambda \in \mathbb{C}:|\lambda| \leq \sqrt{f_{0}(m)} / 2\right\}$. In particular for $m=n, \mathrm{~W}\left(C_{T} \mid l^{2}\left(E_{n}\right)\right)=$ $\left\{\lambda \in \mathbb{C}:|\lambda| \leq\left\|\sqrt{f_{0}}\right\|_{\infty} / 2\right\}$. Hence $W\left(C_{T}\right) \supseteq\left\{\lambda \in \mathbb{C}:|\lambda| \leq\left\|\sqrt{f_{0}}\right\|_{\infty} / 2\right\}$.

Theorem 3.5 Let $T: N \rightarrow N$ be a mapping such that $C_{T}: D\left(\subseteq l^{2}(N)\right) \rightarrow$ $l^{2}(N)$ is an unbounded operator, where D, the domain of C_{T} is a dense subspace of $l^{2}(\mathbb{N})$. Then $W\left(C_{T}\right)=\mathbb{C}$, the complex plane.

Proof. Suppose C_{T} is an unbounded operator. Then by Theorem 2.1 of Singh and Komal [9], there exists an increasing sequence $\left\{n_{k}\right\}$ of positive integers such that $f_{0}\left(n_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$. Now two cases can arise:

Case 1: $T\left(n_{k}\right) \neq n_{k}$ for infinitely many values of k. In this case either $T^{2}\left(n_{k}\right) \neq n_{k}$ for infinitely many values of k or $T^{2}\left(n_{k}\right)=n_{k}$ for all but finitely many values of k. Now if $T^{2}\left(n_{k}\right) \neq n_{k}$ for infinitely many values of k, then by Lemma 3.1, $W\left(C_{T} \mid l^{2}\left(E_{n_{k}}\right)\right)=\left\{\lambda \in \mathbb{C}:|\lambda| \leq \sqrt{f_{0}\left(n_{k}\right)} / 2\right\}$ for infinitely many values of k. But $W\left(C_{T} \mid l^{2}\left(E_{n_{k}}\right)\right) \subset W\left(C_{T}\right)$ for every k. Therefore $\mathbb{C} \subseteq W\left(C_{T}\right)$. Next suppose $T^{2}\left(n_{k}\right)=n_{k}$ for all but finitely many
values of k. Let $T^{-1}\left\{n_{k}\right\}=\left\{p_{1 k}, p_{2 k} \ldots, p_{m_{k^{k}}}\right\}$ and $T\left(n_{k}\right)=p_{j k}$ for some j, $1 \leq j \leq m_{k}$ as $T\left(n_{k}\right) \in T^{-1}\left(\left\{n_{k}\right\}\right)$. Now $f_{0}\left(n_{k}\right)=m_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Take

$$
\begin{aligned}
f= & \frac{1}{\sqrt{2}} \chi_{\left\{n_{k}\right\}}+\frac{e^{i \theta}}{\sqrt{2\left(m_{k}+3\right)}} \chi_{\left\{p_{1 k}, \ldots p_{(j-1) k}, p_{(j+1) k} \ldots p_{m_{k} k}\right\}} \\
& +\sqrt{\frac{2}{\left(m_{k}+3\right)}} \chi_{\left\{p_{j k}\right\}}
\end{aligned}
$$

for $0 \leq \theta \leq 2 \pi$. A simple computation reveals that $\|f\|=1$ and

$$
\left\langle C_{T} f, f\right\rangle=\frac{m_{k}-1}{\sqrt{2}} \frac{e^{i \theta}}{\sqrt{2\left(m_{k}+3\right)}}+\frac{2}{\sqrt{m_{k}+3}}
$$

Therefore, $2 / \sqrt{m_{k}+3}+\left(m_{k}-1\right) /\left(2 \sqrt{m_{k}+3}\right) e^{i \theta} \in W\left(C_{T}\right)$ for $0 \leq \theta \leq 2 \pi$ which implies that

$$
\left\{z \in \mathbb{C}:\left|z-\frac{2}{\sqrt{m_{k}+3}}\right| \leq \frac{m_{k}-1}{2 \sqrt{m_{k}+3}}\right\} \subset W\left(C_{T}\right) \ldots \ldots(*)
$$

since numerical range of an operator is convex. We now show that $\mathbb{C} \subseteq$ $W\left(C_{T}\right)$. Since $m_{k} \rightarrow \infty$, choose m_{k} so large that $\sqrt{m_{k}+3} / 2 \geq|\lambda|+4 \geq$ $|\lambda|+4 / \sqrt{m_{k}+3}$. This implies that

$$
\begin{aligned}
\left|\lambda-\frac{2}{\sqrt{m_{k}+3}}\right| & \leq|\lambda|+\frac{2}{\sqrt{m_{k}+3}} \\
& \leq \frac{\sqrt{m_{k}+3}}{2}-\frac{4}{\sqrt{m_{k}+3}}+\frac{2}{\sqrt{m_{k}+3}} \\
& =\frac{m_{k}+1}{2 \sqrt{m_{k}+3}}
\end{aligned}
$$

Hence by $\left({ }^{*}\right) \lambda \in W\left(C_{T}\right)$.
Case II: $T\left(n_{k}\right)=n_{k}$ for all but finitely many values of k. An application of Lemma 3.3 yields that the closed elliptical disc with foci at 0,1 , major axis $=\sqrt{f_{0}\left(n_{k}\right)}$ and minor axis $=\sqrt{f_{0}\left(n_{k}\right)-1}$ is contained in $W\left(C_{T}\right)$. Since $f_{0}\left(n_{k}\right) \rightarrow \infty$, we conclude that $\mathbb{C} \subseteq W\left(C_{T}\right)$. This completes the proof of the theorem.

We shall now give an example of an unbounded composition operator.
Example 3.6 Let $D=\left\{f \in l^{2}(\mathbb{N}): f(n)=0\right.$ for all but finitely many values of $n\}$. Then D is a dense linear subspace of $l^{2}(\mathbb{N})$. Let $T: N \rightarrow N$
be defined as

$$
T(p)=\left\{\begin{array}{cc}
2^{2^{m}}+1, & \text { if } p \in\left[2^{2^{m-1}}+1,2^{2^{m}}\right] \text { for } m=1,2, \ldots \\
3, & \text { if } p \in\{1,2\}
\end{array}\right.
$$

where $[m, n]$ denotes the set of all positive integers p such that $m \leq p \leq n$. Then $f_{0}(p)=\#\left(T^{-1}(\{p\})\right) \rightarrow \infty$ as $p \rightarrow \infty$. Therefore $C_{T}: D \rightarrow l^{2}(N)$ is not bounded.

Theorem 3.7 Let $C_{T} \in B\left(l^{2}(N)\right)$ and T be such that $T^{2}(n)=T(n)$ for every $n \in N$. Then
(i) $W\left(C_{T}\right)=\{1\}$, if T is the identity map.
(ii) $W\left(C_{T}\right)=C_{0}\left(\cup_{n \in T(N)} D n\right)$, if T is not the identity map, where $D n$ is the elliptical disc with foci at 0 , 1, major axis $=\sqrt{f_{0}(n)}$ and minor axis $=\sqrt{f_{0}(n)-1}$.

Proof. The proof of part (i) is trivial. For the proof of part (ii) if $n \in T(N)$, write $E_{n}=T^{-1}(\{n\})$. Now $C_{T}\left(l^{2}\left(E_{n}\right)\right) \subset l^{2}\left(E_{n}\right)$ and $C_{T}\left(l^{2}\left(N-E_{n}\right)\right) \subseteq$ $l^{2}\left(N-E_{n}\right)$. Therefore, $C_{T}=\sum_{n \in T(N)} \oplus\left(C_{T} \mid l^{2}\left(E_{n}\right)\right)$ because $l^{2}(N)=$ $\sum_{n \in T(N)} \oplus l^{2}\left(E_{n}\right)$. Hence $W\left(C_{T}\right)=C_{0}\left(\bigcup_{n \in T(N)}^{\infty} W\left(C_{T} \mid l^{2}\left(E_{n}\right)\right)\right)$. But by Lemma 3.3, $W\left(C_{T} \mid l^{2}\left(E_{n}\right)\right)=D_{n}$. Therefore the proof of the theorem is complete.

In [5] Bourdon and Shapiro considered the zero inclusion question i.e. for which T does $\mathrm{W}\left(C_{T}\right)$ contain the origin? This is proved in Theorem 3.1 of [5] that if T is not identity, $0 \in \overline{W\left(C_{T}\right)}$. We in the following theorem show that $W\left(C_{T}\right)$ always contains the origin when $T \neq I$.

Theorem 3.8 Let $C_{T} \in B\left(l^{2}(N)\right)$ and T be not the identity map. Then $0 \in W\left(C_{T}\right)$.

Proof. If T is not surjective, then we can choose a positive integer $n_{0} \notin$ $T(N)$. Clearly $\left\|\chi_{\left\{n_{0}\right\}}\right\|=1$ and $\left\langle C_{T} \chi_{\left\{n_{0}\right\}}, \chi_{\left\{n_{0}\right\}}\right\rangle=o$. Thus $0 \in W\left(C_{T}\right)$. Next, suppose T is surjective. Now if T is injective, then since $T \neq I$, so there exists $n \in N$ for which $T(n) \neq n$. Again $\left\langle C_{T} \chi_{\{n\}}, \chi_{\{n\}}\right\rangle=o$. Further, if T is not injective, then $T\left(n_{1}\right)=T\left(n_{2}\right)=n$ (say) for two distict positive integers n_{1} and n_{2}. Atleast one of n_{1} and n_{2}, say n_{1} is distinct from n. By surjectivity of $T, T\left(n_{0}\right)=n_{1}$ for some $n_{0} \in N$. Moreover, $n_{1} \notin T^{-1}\left(\left\{n_{1}\right\}\right)$; otherwise $T\left(n_{1}\right)=n_{1}$ and so $n_{1}=n$ which contradicts the choice of n. Clearly $\left\langle C_{T} \chi_{\left\{n_{1}\right\}}, \chi_{\left\{n_{1}\right\}}\right\rangle=0$. Thus $0 \in W\left(C_{T}\right)$.

Fig. 3.1.

Example 3.9 Let $T: N \rightarrow N$ be defined by $T(n)=p n+q, p, q \in N$. Then $W\left(C_{T}\right)=\{\lambda:|\lambda|<1\}$.

Example 3.10 Let $T: N \rightarrow N$ be defined by $T(n)=\sum_{j=0}^{k+1} 2^{2 j}$ if $n \in$ $\left[\sum_{j=0}^{k} 2^{2 j}, \sum_{j=1}^{k+1} 2^{2 j}\right]$ for $k=0,1,2,3, \ldots$ Then $C_{T}: D \rightarrow l^{2}(N)$ is an unbounded operator where D is given in Example 3.6. Then

$$
r_{k}=\frac{\sqrt{f_{0}\left(\sum_{j=0}^{k+1} 2^{2 j}\right)}}{2}=\frac{\sqrt{2^{2(k+1)}}}{2}=\frac{2^{(k+1)}}{2}
$$

Then in view of Lemma 3.1 the closed disc $\left\{\lambda \in \mathbb{C}:|\lambda| \leq 2^{k}\right\} \subset W\left(C_{T}\right)$ for each $k=0,1,2, \ldots$ It follows that $\mathbb{C} \subset W\left(C_{T}\right)$. Hence $W\left(C_{T}\right)=\mathbb{C}$.

Example 3.11 Let $T: N \rightarrow N$ be defined by

$$
T(n)=\left\{\begin{array}{cl}
1, & \text { if } n \in\{1,2\} \\
1+\sum_{j=0}^{k} 2^{2^{j}}, & \text { if } n \in\left[1+\sum_{j=0}^{k} 2^{2^{j}}, \sum_{j=0}^{k+1} 2^{2^{j}}\right] \\
& \text { for } k=0,1,2,3,4,5 \\
n, & \text { if } n>\sum_{j=0}^{6} 2^{2^{j}}
\end{array}\right.
$$

Then $f_{0}(1)=2, f_{0}\left(1+\sum_{j=0}^{k} 2^{2^{j}}\right)=2^{2^{k+1}}$ for $k=0,1,2, \ldots, 5$. By Lemma 3.3, $W\left(C_{T}\right)=D_{1} \cup \bigcup_{i=0}^{5} D_{m_{k}}$, where $D_{m_{k}}$ is an elliptical disc with foci at 0,1 , major axis $=\sqrt{2}$ and minor axis $=1, D_{m_{k}}$ is an elliptical disc with foci at 0,1 , major axis $=2^{2^{k}}$ and minor axis $=\sqrt{2^{2 k+1}-1}$, for

Fig. 3.2.

Fig. 3.3.
$k=0,1,2,3,4,5$ and $m_{k}=1+\sum_{j=0}^{k} 2^{2^{j}}$.
Example 3.12 (i)

$$
T(n)= \begin{cases}n+1, & \text { if } n \text { is odd } \\ n-1, & \text { if } n \text { is even }\end{cases}
$$

(ii)

$$
T(n)=\left\{\begin{aligned}
n+1, & \text { if } n=1 \\
n-1, & \text { if } n=2 \\
n, & \text { if } n \text { is odd } \geq 3 \\
n-1, & \text { if } n \text { is even } \geq 3
\end{aligned}\right.
$$

$W\left(C_{T}\right)=C_{0}\left(\{-1\} U D_{1}\right)$, where D_{1} is ellipse with foci at 0,1 and major axis $=\sqrt{2}$ and minor axis $=1$.

References

[1] Carlson J.W., The spectra and commutant of some weighted composition operators, Trans. Amer. Math. Soc., 317 (1990), 631-654.
[2] Cowen C.C. and Maccluer B.D., Composition operators on spaces of analytic functions, CRC Press Boca Raton, 1995.
[3] Gustafson K.E. and Rao D.K.M., Numerical Range, The field of values of Linear operators and Matrices, Springer Verlag, New York, 1997.
[4] Halmos P.R. Hilbert space Problem Book, Van Nostrand, Princeton, New Jersey, 1997.
[5] Bourdon P.S. and Shapiro H., When is zero in the numerical range of a composition operator?, Integ. Equ. Oper. Theory, 44 (2002), 410-441.
[6] Komal B.S. and Pathania R.S., On Eigenvalues of composition operators on l^{2}, Indian J. Pure and Appl. Math., 22 (3), 213-219.
[7] Matache V., Numerical ranges of composition operators, Linear Algebra and its application, 331 (2001), 61-74.
[8] Ridge W.C., Numerical Ranges of a weighted shift with periodic weights, Proc. Amer. Math. Soc., 55 (1976), 107-110.
[9] Singh R.K. and Komal B.S., Composition operators on l^{p} and its adjoint, Proc. Amer. Math. Soc., 70 (1978), 21-25.
[10] Singh R.K. and Komal B.S., Composition operators, Bull. Austral. Math. Soc., 18 (1970), 439-446.
[11] Shapiro J.H., Composition operators and classical Function theory, Springer Verlag, 1993.
[12] Horn R.A. and Johnson C.R., Topics in matrix anaysis, Cambridge University press, New York, 1991.
[13] Singh R.K. and Manhas J.S., Composition operators on function spaces, NorthHolland Mathematics Studies 179, Elsevier Science Publishers Amsterdam, New York, 1993.
[14] Stout Q.F., The Numerical range of a weighted shift, Proc. Amer. Math. Soc., 88 (1983), 495-502.
B.S. Komal

Department of Mathematics,
University of Jammu,
Jammu- 180006. (INDIA)
E-mail: bskomal2@yahoo.co.in
S. Sharma

Department of Mathematics,
University of Jammu,
Jammu- 180006. (INDIA)
E-mail: shalluk3@yahoo.co.in

[^0]: 2000 Mathematics Subject Classification : Primary 47B99, Secondary 47B38.

