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Numerical ranges of composition operators on l2
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Abstract. In this paper we obtain numerical ranges of composition operators on l2.
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1. Preliminaries

Let N be the set of all positive integers and l2 = l2(N) be the Hilbert
space of all square summable sequences of complex numbers. Let T be
a mapping of N into itself. Then we can define a composition transfor-
mation CT from l2(N) into the space of all complex valued sequences by
CT f = foT for every f ∈ l2(N). In the case CT is bounded and the range
of CT is contained in l2(N), we call it a composition operator induced by T .
It is shown in [9] that a composition trasformation CT : l2(N) → l2(N) is
a bounded operator if and only if there exists a real number M > 0 such
that # (T−1({n})) ≤ M for every n ∈ N , where #(E) denotes the cardinal-
ity of the set E. Thus it is evident that a composition transformation CT is
unbounded if and only if the sequence {#(T−1({n}))}∞n=1 is an unbounded
sequence. From Theorem 3.1 of Singh and Komal [9], it follows that CT is
surjective if and only if T is injective.

The numerical range of a bounded linear operator A : H → H from
Hilbert space H into itself is defined as W (A) = {〈Ax, x〉 : ‖x‖ = 1}, where
〈 . , . 〉 is the inner product of H. The numerical radius of A is defined as
w(A) = sup{|〈Ax, x〉| : ‖x‖ = 1}. These concepts and their generalisations
have been studied extensively because of their connections and applications
to many different branches of Mathematics (e.g. see chapter I of Horn and
Johnson [12]).

Let T : N → N be a mapping. Two positive integers m and n are said
to be in the same orbit of T if there exit two positive integers r and s such
that T r(m) = T s(n). Here and else where, T r denotes the composition of T

with itself r times. If n ∈ N , then OT (n) = {m ∈ N : T r(m) = T s(n) for
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some r, s ∈ N} is called the orbit of n with respect to T .
A mapping T : N → N is said to be antiperiodic at n, if Tm(n) 6= n for

every m ∈ N . If T is antiperiodic at every n ∈ N , then we say that T is
purely antiperiodic. For an example, the mapping T : N → N defined by

T (n) =
{

n + 2, if n is even
n, if n is odd

is antiperiodic at every even natural number but not antiperiodic at an odd
natural number. If for a natural number n there exists m ∈ N such that
Tm(n) = n, then T is called periodic at n. If T is periodic at every n ∈ N ,
we say that T is purely periodic. The integer mn = inf{m : Tm(n) = n}
is called the period of T at n. The set {mn : n ∈ N} of periods of T is
denoted by P (T ). For sake of convenience, we shall use f0(n) to denote
the cardinality of the set T−1({n}). The smallest convex set containing
the set G ⊂ l2(N) is called the convex hull of G and we shall denote it by
Co(G). The spectrum of a bounded operator A on a Hilbert space H into
itself is defined by σ(A) = {λ ∈ C : A − λI is not invertible}. If F ⊂ N ,
then χF denotes the characteristics function of F . It is well known that
{χ{n} : n ∈ N} is an orthonormal basis for l2(N). The Banach algebra of
all bounded linear operators from l2(N) into itself is denoted by B(l2(N)).
For E ⊂ N , l2(E) = {f ∈ l2(N) : f(m) = 0 for every m /∈ E}. The symbol
CT |l2(E) denotes the restriction of CT to l2(E).

The composition operators have been the subject matter of a system-
atic study over the past three decades (e.g. see monographs Cowen and
Maccluer [2], Shapiro [11] and Singh and Manhas [13]). For more infor-
mation concerning composition operators on l2(N) and numerical ranges of
operators, we refer to Carlson [1], Singh and Komal ([9] and [10]), Gustafson
and Rao [3], Halmos [4], Matache [7] and Stout [14]. In this paper we com-
pute the numerical ranges of composition operators on l2(N). It is shown
that numerical range of an unbounded composition operator is the entire
complex plane.

2. Numerical ranges of surjective composition operators

In this section we obtain the numerical ranges of surjective composition
operators.
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Lemma 2.1 Let T : N → N be injective and antiperiodic at some n ∈
N and let S be the restriction of T to OT (n). Then W (CS) = {λ ∈ C :
|λ| < 1}, where CS is a composition operator on l2(OT (n)) induced by S.

Proof. If S is invertible, then by Theorem 2.3 of Singh and Komal [9],
CS is normal and therefore W (CS) = Co(σ(CS)) in view of theorm 1.4.5
of Gustafason and Rao [3]. Since σ(CS) = {λ : |λ| = 1}, it follows that
W (CS) = {λ : |λ| ≤ 1}. If |λ| = 1 and λ ∈ W (CS), then |λ| = |〈Csf, f〉| ≤
‖CSf‖ ‖f‖ ≤ 1 for some unit vector f ∈ l2(OT (n)) implies that Schwartz
inequality becomes an equality. Hence CSf and f are linearly dependent
so that CSf = µf for some scalar µ. This contradicts the fact that CS

has no eigenvalue in the light of Lemma 2.1 of Komal and Pathania [6].
Thus W (CS) ⊂ {λ ∈ C : |λ| < 1}. To prove the reverse inclusion, let
λ = reiθ, where 0 < r < 1, 0 ≤ θ ≤ 2π. For OT (n) = {nk}∞k=1 where
S(nk) = nk+1, define f =

∑∞
k=1

√
(1− r2) rk−1e−i(k−1)θχ{nk}. A simple

computation reveals that ‖f‖ = 1 and 〈CSf, f〉 = reiθ. This proves that
{λ : |λ| < 1} ⊂ W (Cs). Hence W (CS) = {λ : |λ| < 1}. Next, if S is
not invertible in OT (n), then S is not surjective and hence S−1({n1}) = φ.
Taking f as defined above, we see that 〈CSf, f〉 = reiθ, 0 < r < 1, 0 ≤
θ ≤ 2π. This proves that {λ ∈ C : |λ| < 1} ⊆ W (CS). Now S is injective.
Therefore by corollary to Theorem 2.1.9 of Singh and Komal [9], ‖Cs‖ = 1.
Hence W (CS) ⊆ {λ ∈ C : |λ| ≤ 1}. As proved earlier, if |λ| = 1, then
λ /∈ W (CS). Thus in this case also W (CS) = {λ : |λ| < 1}. ¤

Lemma 2.2 Let T : N → N be an injection and periodic at some n ∈ N .
Then
(i) W (CS) = {1}, if #(OT (n)) = 1,
(ii) W (CS) = [−1, 1], if #(OT (n)) = 2,
(iii) W (CS) is the closed polygonal region whose boundary is the regular

polygon with #(OT (n)) sides inscribed in the unit circle having one of
the vertex at 1, where S is the restriction of T to OT (n).

Proof. If #(OT (n)) = 1, then S is the identity map and so trivially
W (CS) = {1}. Further if #(OT (n)) ≥ 2, then S is periodic of period
k = #(OT (n)). Clearly S is invertible. This implies that CS is invertible
and hence CS is normal by Theorem 2.3 of Singh and Komal [9]. From
corollary to Theorem 3.3 of singh and Komal [10], it follows that σ(CS) =
{λ ∈ C : λk = 1}. By using normality of CS , and the fact that range of an



4 B.S. Komal and S. Sharma

operator on a finite dimensional space is always closed, we have W (CS) =
W (CS) = Co(σ(CS)). We have thus proved that W (CS) = Co{λ ∈ C :
λk = 1}. In particular, for k = 2, W (CS) = [−1, 1]. ¤

Theorem 2.3 Let T : N → N be injective. Then
(i) W (CT ) = {λ ∈ C : |λ| < 1}, if T is purely antiperiodic
(ii) W (CT ) = Co

(⋃
n∈P (T ){λ ∈ C : λn = 1}

)
, if T is purely periodic.

(iii) W (CT ) = Co

(
{λ ∈ C : |λ| < 1} ∪⋃

k∈P (T ){λ ∈ C : λk = 1}
)
, if T is

periodic at some n ∈ N and antiperiodic at some other point m ∈ N .

Proof. The proof of (i) follows from Lemma 2.1. For the proof of (ii), write
l2(N) =

∑
n∈P (T )⊕l2(OT (n)) so that

W (CT ) = Co

( ⋃

n∈P (T )

W (CT |l2(OT (n)))
)

= Co

( ⋃

n∈P (T )

{λ ∈ C : λn = 1}
)

,

where CT |l2(OT (n)) is restriction of CT to l2(OT (n)). For the proof of (iii),
let E = {n ∈ N : T is periodic at n}. Then l2(N) = l2(E) ⊕ l2(N − E).
Hence that

W (CT ) = Co

(
W (CT |l2(E)) U W (CT |l2(N − E))

)

= Co

( ⋃

k∈P (T )

{λ ∈ C : λk = 1}U {λ ∈ C : |λ| < 1}
)

follows by using the above parts (i) and (ii). ¤

3. Numerical Ranges of Non-Surjective Composition Operators

In this section we obtain the numerical ranges of non-surjective compo-
sition operators.

Lemma 3.1 Let CT ∈ B(l2(N)). Then W (CT /l2(En)) =
{

λ ∈ C : |λ| ≤
√

f0(n)/2
}
, where n is such that f0(n) ≥ 2, T (n) 6= n; T 2(n) 6= n and

En = T−1({n}) U {n}.
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Proof. Suppose f0(n) = k ≥ 2 and En = {n, n1n2 . . . nk}. Clearly

f = fnχ{n}+fn1χ{n1}+· · ·+fnk
χ{nk} ∈ l2(En),

and

〈CT f, f〉 =
k∑

i=1

fnfni .

Therefore |〈CT f, f〉| ≤ |fn|
∑k

i=1 |fni |. In order to calculate the numerical
radius of CT |l2(En), we compute sup

{|fn|
∑k

i=1 |fni |
}
. . . . . . (1) subject to

the condition |fn|2 +
∑k

i=1 |fni |2 = 1. Let ri = |fni | for i = 1, 2, . . . , k

and rn = |fn|. Consider the Lagranges function F (r1, r2 . . . rk, rn, λ) =
rn

∑k
i=1 ri−λ

(∑k
i=1 r2

i +r2
n−1

)
. Therefore, solving the equations ∂F/∂rn =∑k

i=1 ri − 2λrn = 0, ∂F/∂ri = rn − 2λri = 0, for i = 1, 2, . . . , k, the
maximum expression (1) is

√
f0(n)/2. By the definition the numerical ra-

dius of CT restricted to l2(En) is the maximum expression (1). Therefore
w(CT |l2(En)) =

√
f0(n)/2. This proves that W (CT |l2(En)) ⊂ {

λ : |λ| ≤√
f0(n)/2

}
. Taking f = cos α χ{n} + (sin α/

√
k) e−iθχ{n1,n2...nk}, we get

‖f‖ = 1 and

〈CT f, f〉 =
k cos α sinα eiθ

√
k

=

√
k

2
sin 2α eiθ = reiθ,

where r = (
√

k/2) sin 2α ≤
√

k/2. This proves that
{
λ ∈ C : |λ| ≤√

f0(n)/2
}⊂W (CT ). Thus W (CT |l2(En)) =

{
λ ∈ C : |λ| ≤

√
f0(n)/2

}
. ¤

Lemma 3.2 Let CT ∈ B(l2(N)). Then W (CT |l2(En)) ⊆ {
λ ∈ C : |λ| ≤√

f0(n) + 3/2
}
, where n is such that f0(n) ≥ 2, T (n) 6= n but T 2(n) = n,

and En = T−1({n}) ∪ {n}.
Proof. Suppose f0(n) = k ≥ 2 and En = {n, n1n2 . . . nk}. From the hy-
pothesis, T (n) = nj for some j, 1 ≤ j ≤ k. Clearly f = fnχ{n}+fn1χ{n1}+
· · · + fnk

χ{nk} ∈ l2(En), and |〈CT f, f〉| ≤ |fn|
∑k

i=1 |fni | + |fn| |fnj |. We
shall now compute sup

{|fn|
∑k

i=1 |fni | + |fn| |fnj |
}
. . . . . . (1) subject to the

condition
∑k

i=1 |fni |2 + |fn|2 = 1. For this, consider the Lagrange’s function
F (r1, r2 . . . , rn, λ) = rn

∑k
i=1 ri+rnrj−λ

(∑k
i=1 r2

i +r2
n−1

)
, where ri = |fni |

and rn = |fn|. Solving the equations ∂F/∂rn =
∑k

i=1 ri + rj − 2λrn = 0,
∂F/∂rj = 2rn − 2λrj = 0, and ∂F/∂ri = rn − 2λri = 0, for i = 1, 2, . . . , k,
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i 6= j, we find that the maximum expression (1) is equal to
√

f0(n) + 3/2.
This gives w(CT |l2(En)) =

√
f0(n) + 3/2 which proves the lemma. ¤

Lemma 3.3 Let CT ∈ B(l2(N)). Then W (CT |l2(En)) is the closed ellip-
tical disc with foci at 0 and 1 and major axis =

√
f0(n) and minor axis

=
√

f0(n)− 1, where f0(n) ≥ 2 and T (n) = n, En = T−1{n}.
Proof. Let f0(n) = k ≥ 2 and En = T−1({n}) = {n, n1, . . . , nk−1}. Then
the range of CT |l2(En) is the one dimensional subspace of l2(N) spanned
by χEn . For h = χ{n,n1,...,nk−1}/

√
k, and g =

√
k χ{n}, (CT |l2(En))(f) =

〈f, g〉h for every f ∈ l2(En).
Also ‖h‖ = 1. Hence by the two dimensional Case 2.4 and Proposi-

tion 2.5 of Bourdon and Shapiro [5], W (CT |l2(En)) is a closed elliptical disc
with foci at 0 and 1, major axis =

√
f0(n) and minor axis =

√
f0(n)− 1.

This proves the lemma. ¤

Theorem 3.4 Let CT ∈ B(l2(N)) be such that T is purely antiperiodic
but not injective. Then W (CT ) ⊇ {

λ : |λ| ≤ ‖√f0‖∞/2
}
, where ‖f0‖∞ =

sup{f0(n) : n ∈ N}.
Proof. Let n ∈ N be such that f0(n) = sup{f0(m) : m ∈ N} = ‖f0‖∞.
This is possible, since by Theorem 2.1 of Singh and Komal [9] range of f0 is
a finite set. By using Lemma 3.1 for any m ∈ N , we obtain W (CT |l2(Em)) ={
λ ∈ C : |λ| ≤

√
f0(m)/2

}
. In particular for m = n, W(CT |l2(En)) ={

λ ∈ C : |λ| ≤ ‖√f0‖∞/2
}
. Hence W (CT ) ⊇ {

λ ∈ C : |λ| ≤ ‖√f0‖∞/2
}
.
¤

Theorem 3.5 Let T : N → N be a mapping such that CT : D (⊆ l2(N)) →
l2(N) is an unbounded operator, where D, the domain of CT is a dense
subspace of l2(N). Then W (CT ) = C, the complex plane.

Proof. Suppose CT is an unbounded operator. Then by Theorem 2.1 of
Singh and Komal [9], there exists an increasing sequence {nk} of positive
integers such that f0(nk) →∞ as k →∞. Now two cases can arise:

Case 1: T (nk) 6= nk for infinitely many values of k. In this case either
T 2(nk) 6= nk for infinitely many values of k or T 2(nk) = nk for all but
finitely many values of k. Now if T 2(nk) 6= nk for infinitely many values
of k, then by Lemma 3.1, W (CT |l2(Enk

)) =
{
λ ∈ C : |λ| ≤

√
f0(nk)/2

}
for infinitely many values of k. But W (CT |l2(Enk

)) ⊂ W (CT ) for every k.
Therefore C ⊆ W (CT ). Next suppose T 2(nk) = nk for all but finitely many
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values of k. Let T−1{nk} = {p1k, p2k . . . , pm
kk
} and T (nk) = pjk for some j,

1 ≤ j ≤ mk as T (nk) ∈ T−1({nk}). Now f0(nk) = mk → ∞ as k → ∞.
Take

f =
1√
2

χ{nk} +
eiθ

√
2(mk + 3)

χ{p1k,...p(j−1)k,p(j+1)k...pmkk}

+

√
2

(mk + 3)
χ{pjk},

for 0 ≤ θ ≤ 2π. A simple computation reveals that ‖f‖ = 1 and

〈CT f, f〉 =
mk − 1√

2
eiθ

√
2(mk + 3)

+
2√

mk + 3
.

Therefore, 2/
√

mk + 3 + (mk − 1)/(2
√

mk + 3) eiθ ∈ W (CT ) for 0 ≤ θ ≤ 2π

which implies that
{

z ∈ C :
∣∣∣z − 2√

mk + 3

∣∣∣ ≤ mk − 1
2
√

mk + 3

}
⊂ W (CT ) . . . . . . (∗),

since numerical range of an operator is convex. We now show that C ⊆
W (CT ). Since mk → ∞, choose mk so large that

√
mk + 3/2 ≥ |λ| + 4 ≥

|λ|+ 4/
√

mk + 3. This implies that
∣∣∣λ− 2√

mk + 3

∣∣∣≤ |λ|+ 2√
mk + 3

≤
√

mk + 3
2

− 4√
mk + 3

+
2√

mk + 3

=
mk + 1

2
√

mk + 3
.

Hence by (*) λ ∈ W (CT ).

Case II: T (nk) = nk for all but finitely many values of k. An application of
Lemma 3.3 yields that the closed elliptical disc with foci at 0, 1, major axis
=

√
f0(nk) and minor axis =

√
f0(nk)− 1 is contained in W (CT ). Since

f0(nk) → ∞, we conclude that C ⊆ W (CT ). This completes the proof of
the theorem. ¤

We shall now give an example of an unbounded composition operator.

Example 3.6 Let D = {f ∈ l2(N) : f(n) = 0 for all but finitely many
values of n}. Then D is a dense linear subspace of l2(N). Let T : N → N
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be defined as

T (p) =
{

22m
+ 1, if p ∈ [

22m−1
+ 1, 22m]

for m = 1, 2, . . .

3, if p ∈ {1, 2}
where [m,n] denotes the set of all positive integers p such that m ≤ p ≤ n.
Then f0(p) = #(T−1({p})) → ∞ as p → ∞. Therefore CT : D → l2(N) is
not bounded.

Theorem 3.7 Let CT ∈ B(l2(N)) and T be such that T 2(n) = T (n) for
every n ∈ N . Then
(i) W (CT ) = {1}, if T is the identity map.
(ii) W (CT ) = C0(∪n∈T (N)Dn), if T is not the identity map, where Dn is

the elliptical disc with foci at 0, 1, major axis =
√

f0(n) and minor
axis =

√
f0(n)− 1.

Proof. The proof of part (i) is trivial. For the proof of part (ii) if n ∈ T (N),
write En = T−1({n}). Now CT (l2(En)) ⊂ l2(En) and CT (l2(N − En)) ⊆
l2(N − En). Therefore, CT =

∑
n∈T (N)⊕(CT |l2(En)) because l2(N) =∑

n∈T (N)⊕l2(En). Hence W (CT ) = C0

(⋃∞
n∈T (N) W (CT |l2(En))

)
. But by

Lemma 3.3, W (CT |l2(En)) = Dn. Therefore the proof of the theorem is
complete. ¤

In [5] Bourdon and Shapiro considered the zero inclusion question i.e. for
which T does W(CT ) contain the origin? This is proved in Theorem 3.1 of
[5] that if T is not identity, 0 ∈ W (CT ). We in the following theorem show
that W (CT ) always contains the origin when T 6= I.

Theorem 3.8 Let CT ∈ B(l2(N)) and T be not the identity map. Then
0 ∈ W (CT ).

Proof. If T is not surjective, then we can choose a positive integer n0 /∈
T (N). Clearly ‖χ{n0}‖ = 1 and 〈CT χ{n0}, χ{n0}〉 = o. Thus 0 ∈ W (CT ).
Next, suppose T is surjective. Now if T is injective, then since T 6= I, so
there exists n ∈ N for which T (n) 6= n. Again 〈CT χ{n}, χ{n}〉 = o. Further,
if T is not injective, then T (n1) = T (n2) = n (say) for two distict positive
integers n1 and n2. Atleast one of n1 and n2, say n1 is distinct from n. By
surjectivity of T , T (n0) = n1 for some n0 ∈ N . Moreover, n1 /∈ T−1({n1});
otherwise T (n1) = n1 and so n1 = n which contradicts the choice of n.
Clearly 〈CT χ{n1}, χ{n1}〉 = 0. Thus 0 ∈ W (CT ). ¤
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Fig. 3.1.

Example 3.9 Let T : N → N be defined by T (n) = pn + q, p, q ∈ N .
Then W (CT ) = {λ : |λ| < 1}.
Example 3.10 Let T : N → N be defined by T (n) =

∑k+1
j=0 22j if n ∈[∑k

j=0 22j ,
∑k+1

j=1 22j
]

for k = 0, 1, 2, 3, . . .. Then CT : D → l2(N) is an
unbounded operator where D is given in Example 3.6. Then

rk =

√
f0

(∑k+1
j=0 22j

)

2
=

√
22(k+1)

2
=

2(k+1)

2
.

Then in view of Lemma 3.1 the closed disc {λ ∈ C : |λ| ≤ 2k} ⊂ W (CT ) for
each k = 0, 1, 2, . . . It follows that C ⊂ W (CT ). Hence W (CT ) = C.

Example 3.11 Let T : N → N be defined by

T (n) =





1, if n ∈ {1, 2}
1 +

k∑
j=0

22j
, if n ∈

[
1 +

k∑
j=0

22j
,
k+1∑
j=0

22j

]

for k = 0, 1, 2, 3, 4, 5

n, if n >
6∑

j=0
22j

Then f0(1) = 2, f0

(
1 +

∑k
j=0 22j)

= 22k+1
for k = 0, 1, 2, . . . , 5. By

Lemma 3.3, W (CT ) = D1 ∪
⋃5

i=0 Dmk
, where Dmk

is an elliptical disc with
foci at 0, 1, major axis =

√
2 and minor axis = 1, Dmk

is an elliptical
disc with foci at 0, 1, major axis = 22k

and minor axis =
√

22k+1 − 1, for
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Fig. 3.2.

Fig. 3.3.

k = 0, 1, 2, 3, 4, 5 and mk = 1 +
∑k

j=0 22j
.

Example 3.12 (i)

T (n) =
{

n + 1, if n is odd
n− 1, if n is even
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(ii)

T (n) =





n + 1, if n = 1

n− 1, if n = 2

n , if n is odd ≥ 3

n− 1, if n is even ≥ 3

W (CT ) = C0({−1} U D1), where D1 is ellipse with foci at 0, 1 and
major axis =

√
2 and minor axis = 1.
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