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Examples of globally hypoelliptic operator

on special dimensional spheres

without the bracket condition∗

Taishi Shimoda

(Received June 13, 2003)

Abstract. This paper gives examples of globally hypoelliptic operators on S3, S7, and

S15 which are sums of squares of real vector fields. These operators fail to satisfy the

infinitesimal transitivity condition (the bracket condition) at any point and therefore they

are not hypoelliptic in any subdomain.
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1. Introduction

Let M be a closed (compact connected without boundary) C∞ mani-
fold. For an open subset Ω of M , we denote by C∞(Ω) the space of smooth
functions in Ω. A differential operator L is said to be hypoelliptic in M if
and only if, for any open subset Ω of M , Lu ∈ C∞(Ω) for a distribution u
on M implies u ∈ C∞(Ω). On the other hand, L is said to be globally
hypoelliptic on M if and only if Lu ∈ C∞(M) for a distribution u implies
u ∈ C∞(M). By definition, hypoelliptic operators are globally hypoelliptic.

Let Z1, Z2, . . . , Zm be smooth real tangent vector fields on M (m is an
arbitrary positive integer). The differential operator L which we shall treat
is of the form:

L =
m∑

j=1

Zj
∗Zj , (1.1)

where Zj
∗ is the formal adjoint operator of Zj with respect to a fixed smooth

Riemannian metric on M . In this paper, we study a sufficient condition on
Z1, Z2, . . . , Zm under which L is globally hypoelliptic on M .
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Let V [Z1, . . . , Zm] be the linear space defined by

V [Z1, . . . , Zm] =
{ m∑

j=1

fjZj ; fj ∈ C∞(M)
}
.

For every Y ∈ V [Z1, . . . , Zm], exp tY denotes the one-parameter diffeo-
morphism group generated through integral curves by Y , and let
H[Z1, . . . , Zm] be the closed subgroup generated by {expY ; Y ∈ V } in
the group of C∞ diffeomorphism of M onto itself.

Definition 1.1 We say that H[Z1, . . . , Zm] is transitive on M if for any
x, y ∈M , there exists a g ∈ H[Z1, . . . , Zm] such that x = gy.

Next, let L[Z1, . . . , Zm] be the Lie algebra generated by V [Z1, . . . , Zm].

Definition 1.2 We say that H[Z1, . . . , Zm] is infinitesimally transitive at
p ∈ M if L[Z1, . . . , Zm]

∣∣
p

= TpM . (If this is fulfilled, we also say that
{Z1, . . . , Zm} satisfies the bracket condition at p.)

It is not difficult to see that H[Z1, . . . , Zm] is transitive on M if
H[Z1, . . . , Zm] is infinitesimally transitive at every p ∈M . These geometric
notions of transitivity and infinitesimal transitivity are closely related to
global hypoellipticity and hypoellipticity. We mention a well-known result
due to Hörmander and the conjecture given by Omori and Kobayashi.

Theorem (Hörmander [1]) If H[Z1, . . . , Zm] is infinitesimally transitive
at every p ∈M , then L defined by (1.1) is hypoelliptic in M .

Conjecture (Omori-Kobayashi [3]) If H[Z1, . . . , Zm] is transitive on M ,
then L defined by (1.1) is globally hypoelliptic on M .

Omori and Kobayashi give an affirmative answer to this conjecture un-
der an additional condition (Condition (D) below).

Now we present an interesting question concerning the above conjec-
ture: “Is it possible to construct a globally hypoelliptic operator L of the
form (1.1) with transitive but nowhere infinitesimally transitive system of
vector fields {Z1, . . . , Zm}?” The answer is affirmative in the case where
M = T 3 = [0, 2π] × [0, 2π] × [0, 2π]. In fact, as was studied in [3], the
following vector fields satisfy the conditions in the question above:

Z1 = ∂x, Z2 = ζ(x) ∂y, Z3 = η(x, y) ∂z,



Examples of globally hypoelliptic operator on spheres 221

where ζ(x) and η(x, y) are non-negative smooth functions such that they
do not vanish identically and their supports are mutually disjoint. This
example suggests that there will probably exist such a system ifM is decom-
posable to a direct product of three or more closed manifolds. So we are in-
terested in the case where M is not decomposable. In this paper, we demon-
strate the existence of such systems on special dimensional spheres S3, S7

and S15, where Sm is the m-dimensional standard unit sphere.

Theorem 1.3 For n ∈ {2, 4, 8}, there exist a positive integer m = m(n)
and a system of vector fields {Z1, . . . , Zm} on S2n−1 such that the following
three conditions hold:
(A) H[Z1, . . . , Zm] is transitive on S2n−1.
(B) There is no point in S2n−1 at which H[Z1, . . . , Zm] is infinitesimally

transitive.
(C) The differential operator L defined by (1.1) is globally hypoelliptic

on S2n−1.

Remark 1.4 Let d(n) be the maximal dimension of L[Z1, . . . , Zm]
over S2n−1. Then for the systems which we construct, the pair of integers
(m(n), d(n)) is the following:

(m(n), d(n)) =





(3, 2) (n = 2),

(6, 6) (n = 4),

(10, 12) (n = 8).

Notice that d(n) < 2n− 1. This means Condition (B).

We prove this theorem by constructing {Z1, . . . , Zm} explicitly. The
idea based on [3] is the following. The transitivity of H[Z1, . . . , Zm] implies
the a priori estimate

‖u‖0 ≤ C‖Lu‖0 +DN‖u‖−N for all u ∈ C∞(M), (1.2)

where ‖ · ‖s stands for the norm of the Sobolev space of order s (see Theo-
rem 2.1 and Corollary 2.4 of [3]). It is not difficult to see that L is globally
hypoelliptic on M if we can find a regulator Λ, that is, an elliptic pseudo-
differential operator of order 1, which commutes with Z1, . . . , Zm. Further-
more, global hypoellipticity still holds, if the commutativity condition for Λ
is replaced by the following weaker condition introduced in Proposition 3.2
of [3]:
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(D) There exists a regulator Λ such that, for every δ, N > 0 and for all
u ∈ C∞(M), the following two estimates hold:

‖[Λ,L]u‖−1 ≤ δ‖Lu‖0 + C(δ,N)‖u‖−N ,

‖[Λ, [Λ,L]]u‖−2 ≤ δ‖Lu‖0 + C(δ,N)‖u‖−N .

These are trivial if Λ commutes with Z1, . . . , Zm. The point is that on S2n−1

(n = 2, 4, 8), we have a globally defined basis {W (n)
jk } which commutes with

the Laplacian ∆ on S2n−1 with respect to the induced metric from R2n.
For the construction of a system satisfying the conditions in Theorem 1.3,
we cut off the support of W (n)

jk to reduce the dimension of L[Z1, . . . , Zm],
while preserving the transitivity of H[Z1, . . . , Zm].

The plan of this paper is as follows. In §2, we construct a global basis
of non-vanishing smooth vector fields on S2n−1. We will take the basis
suitably for the study of the transitivity condition (A) by using the Hopf
mapping. In §3, we present explicit forms of the systems by using these
bases. Transitivity and nowhere infinitesimal transitivity conditions (A)
and (B) are discussed in §4. In §5, we introduce and prove a slightly
abstract theorem on global hypoellipticity which shows Condition (C) on
the systems constructed above.

2. The basis of non-vanishing smooth vector fields

Let n be 2 or 4 or 8. Then there exists a global basis of non-vanishing
vector fields on S2n−1. We denote by z = t(ξ, η) a point of R2n, where
ξ, η ∈ Rn. Here z, ξ and η are column vectors. We construct this basis as
restriction of vector fields on R2n

z of the form tz tV∇z with an antisymmetric
orthogonal matrix V .

We introduce the so-called Hopf mapping from R2n to Rn+1, which
turns out to be also from S2n−1 to Sn. This enables us to reduce the
study of the transitivity on S2n−1 to that on Sn and, if we choose the basis
of vector fields as follows, to transform the one-parameter diffeomorphism
groups on S2n−1 to rotations on Sn (see (2.7) and (2.8)). We identify Rn

with the complex number field C (n = 2), the quaternion field H (n = 4)
or Cayley’s algebra Ca[H] (n = 8). The Hopf mapping π(n) is defined by

R2n 3 z = t(ξ, η) 7−→ π(n)(z) =
(|ξ|2 − |η|2, 2ξη) ∈ Rn+1,

where |ξ| stands for the Euclidian norm of ξ and ξη the product of ξ
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and η in the sense of C or H or Ca[H]. We denote the elements by
π(n)(z) = (π(n)

0 (z), π(n)
1 (z), . . . , π(n)

n (z)). π(n) can be regarded as the map-
ping from S2n−1 to Sn, because |π(n)(z)| = |z|2.

Each element π(n)
j (z) of the Hopf mapping is represented by a real

symmetric 2n × 2n matrix H
(n)
j as the quadratic form tzH

(n)
j z because it

is a homogeneous polynomial of degree 2 with respect to z. These matrices
are orthogonal and satisfy the following:

H
(n)
j H

(n)
k = −H(n)

k H
(n)
j (j, k = 0, . . . , n; j 6= k). (2.1)

We define new matrices V (n)
jk to be

V
(n)
jk = H

(n)
j H

(n)
k (j, k = 0, . . . , n; j 6= k).

Then by means of (2.1), we have the following properties of {V (n)
jk }:

V
(n)
jk = −V (n)

kj if j 6= k. (2.2)

V
(n)
jα V

(n)
αk = V

(n)
jk if j, k and α are mutually distinct. (2.3)

V
(n)
jk V

(n)
αβ = V

(n)
αβ V

(n)
jk if j, k, α and β are mutually distinct. (2.4)

The basis W (n)
jk on S2n−1 is defined as the restriction of the vector fields

W
(n)
jk = tz tV

(n)
jk ∇ on R2n, where ∇ = t(∂z1 , . . . , ∂z2n). These vector fields

are well-defined on S2n−1 thanks to the antisymmetricity (2.2).
By (2.3) and (2.4), we see that W (n)

jk have the following relations which
we need to observe the dimension of L[Z1, . . . , Zm]:

[W (n)
jα ,W

(n)
αk ] = −2Wjk if j, k and α are mutually distinct. (2.5)

[W (n)
jk ,W

(n)
αβ ] = 0 if j, k, α and β are mutually distinct. (2.6)

On the other hand, the one-parameter diffeomorphism group generated
by W (n)

jk on S2n−1 is transformed by π(n) to a rotation on Sn:

π
(n)
k (exp(tW (n)

jk )z) = (cos 2t)π(n)
k (z)− (sin 2t)π(n)

j (z) if j 6= k.

(2.7)

π(n)
α (exp(tW (n)

jk )z) = π(n)
α (z) if j, k and α are mutually distinct.

(2.8)
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Furthermore, W (n)
jk commutes with the Laplacian on S2n−1 with respect

to the induced metric from R2n, which plays a crucial role in proving the
global hypoellipticity.

3. Explicit forms of vector fields

We represent here explicit forms of vector fields satisfying the conditions
in Theorem 1.3. We prepare some cut-off functions on S2n−1. Let ϕ1(t),
ϕ2(t) and ψ(t) be functions on R such that





ϕ1, ϕ2, ψ ∈ C∞(R), 0 ≤ ϕ1, ϕ2, ψ ≤ 1,
ϕ1 = 1 on {t ≥ 3/4}, suppϕ1 ⊂ {t ≥ 1/2},
ϕ2 = 1 on {t ≤ 0}, suppϕ2 ⊂ {t ≤ 1/4},
ψ = 1 on {t ≥ 5/6}, suppψ ⊂ {t > 2/3},

let Φ(n)
1 , Φ(n)

2 (n = 2, 4, 8) and Ψ (n)
1 , Ψ (n)

2 (n = 4, 8) cut-off functions on S2n−1

defined as follows:

Φ
(n)
1 (z) =ϕ1

(
π

(n)
0 (z)

)
, Φ

(n)
2 (z) =ϕ2

(
π

(n)
0 (z)

)
(n= 2,4,8),

Ψ
(4)
1 (z) =ψ

( 1∑

j=0

(π(4)
j (z))2

)
, Ψ

(4)
2 (z) =ψ

( 4∑

j=2

(π(4)
j (z))2

)
,

Ψ
(8)
1 (z) =ψ

( 3∑

j=0

(π(8)
j (z))2

)
, Ψ

(8)
2 (z) =ψ

( 8∑

j=4

(π(8)
j (z))2

)
.

Φ
(n)
1 and Φ(n)

2 have their supports near the north pole and on the southern
hemisphere respectively. Φ(n)

2 Ψ
(n)
1 and Φ

(n)
2 Ψ

(n)
2 have their supports on the

disjoint domains in the southern hemisphere.
We begin with the case n = 4, 8.

Proposition 3.1 Let n be 4. The following system of six vector fields
on S7 satisfies Conditions (A), (B) and (C) in Theorem 1.3:

{
W

(4)
04 , W

(4)
12 , Φ

(4)
1 W

(4)
13 , Φ

(4)
1 W

(4)
23 ,

Φ
(4)
2 Ψ

(4)
1 W

(4)
01 , Φ

(4)
2 Ψ

(4)
2 W

(4)
34

}
.

Proposition 3.2 Let n be 8. The following system of ten vector fields
on S15 satisfies Conditions (A), (B) and (C) in Theorem 1.3:
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{
W

(8)
08 , W

(8)
14 , W

(8)
25 , Φ

(8)
1 W

(8)
23 , Φ

(8)
1 W

(8)
34 , Φ

(8)
2 W

(8)
37 ,

Φ
(8)
2 Ψ

(8)
1 W

(8)
01 , Φ

(8)
2 Ψ

(8)
1 W

(8)
23 , Φ

(8)
2 Ψ

(8)
2 W

(8)
67 , Φ

(8)
2 Ψ

(8)
2 W

(8)
78

}
.

In case n = 2, we need another vector field W (2) on R4 which can be
regarded as a smooth vector field on S3:

W (2) = tz

(
O2 −I2
I2 O2

)
∇,

where I2 and O2 are the 2 × 2 identity matrix and the 2 × 2 zero matrix
respectively.

Proposition 3.3 Let n be 2. The following system of three vector fields
on S3 satisfies Conditions (A), (B) and (C) in Theorem 1.3:

{
W (2), Φ

(2)
1 W

(2)
12 , Φ

(2)
2 W

(2)
01

}
.

We prove these propositions in the following sections. Let{
W

(n)
1 , . . . ,W

(n)
m(n)

}
be the same system as in Proposition 3.1 or 3.2 or 3.3.

We write H[
W

(n)
1 , . . . ,W

(n)
m(n)

]
and L[

W
(n)
1 , . . . ,W

(n)
m(n)

]
as H(n) and L(n)

respectively. The proof of the transitivity and the nowhere infinitesimal
transitivity of H(n) will be done in the next section. The global hypoellip-
ticity of

∑m(n)
j=1 W

(n)
j

∗
W

(n)
j on S2n−1 will be studied in §5.

4. Transitivity and nowhere infinitesimal transitivity

4.1. Nowhere infinitesimal transitivity
We prove Condition (B) in Propositions 3.1, 3.2 and 3.3.

In case n = 2 W (2) commutes withW (2)
01 andW (2)

12 . In addition, Φ(2)
1 W

(2)
12

and Φ(2)
2 W

(2)
01 are commutative thanks to the disjointness of their supports.

Therefore, the dimension of L(2) at every point is less than two. And hence,
Condition (B) in Proposition 3.3 applies.

Before going into the other cases, we study the dimension of the Lie
algebra generated by W (n)

jk ’s at every p ∈ S2n−1. To do this, we introduce
the following abstract group. Let G(n) be a group with the unit element e
generated by ε, a0, a1, . . . , an which satisfy

ε2 = e, a2
p = e (p = 0, . . . , n),
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εap = apε (p = 0, . . . , n),

apaq = εaqap (p, q = 0, . . . , n; p 6= q).

This is a finite group consisting of 2n+1 elements, and is isomorphic to the
subgroup generated by H(n)

0 , . . . , H
(n)
n in SO(2n). For a subgroup G of G(n),

we denote by d(n)(G) the number of elements of the form apaq (p < q) in G.
Note that d(n)(σ1σ2) = d(n)(σ1)+d(n)(σ2) if two subgroups σ1 and σ2 of G(n)

are commutative. Let [(α1, β1), . . . , (αm, βm)] be the subgroup of G(n) gen-
erated by aα1aβ1 , . . . , aαmaβm . Then (2.3) and (2.4) yield

the dimension of L[W (n)
j1k1

,W
(n)
j2k2

, . . . ,W
(n)
jmkm

] at every p ∈ S2n−1

is less than d(n)([(j1, k1), . . . , (jm, km)]).

This fact allows us to verify Condition (B) in the case n = 4, 8.

In case n = 4 We divide S7 into four domains: the support of Φ(4)
1 , that

of Φ(4)
2 Ψ

(4)
1 , that of Φ(4)

2 Ψ
(4)
2 and otherwise, and investigate the maximal

dimension of L(4) at a point belonging to each domain. First, suppose that
p ∈ suppΦ(4)

1 . Then we have

dimL(4)
∣∣
p
≤ dimL[W (4)

04 ,W
(4)
12 ,W

(4)
13 ,W

(4)
23 ]

∣∣
p
.

The subgroup [(0, 4), (1, 2), (1, 3), (2, 3)] of G(4) corresponding to the Lie
algebra on the right hand side is decomposable to [(0, 4)][(1, 2), (1, 3), (2, 3)].
So by the fact mentioned above, dimL(4)

∣∣
p

is less than four. In the same
way, we obtain subgroups corresponding to the Lie algebras on the other
domains and their values of d(4), which are illustrated with Table 1. This
implies that the dimension of L(4) at every point is less than six. And hence
Condition (B) in Proposition 3.1 is verified.

Table 1. Dimension of Lie algebra in case n = 4

Domain Corresponding subgroup of G(4) d(4)(·)
suppΦ(4)

1
[(0, 4)][(1, 2), (1, 3), (2, 3)] 1 + 3C2

suppΦ(4)
2 Ψ

(4)
1

[(0, 4), (1, 2), (0, 1)] 4C2

suppΦ(4)
2 Ψ

(4)
2

[(1, 2)][(0, 4), (3, 4)] 1 + 3C2

otherwise [(0, 4)][(1, 2)] 1 + 1

In case n = 8 As in the preceding case, we illustrate the subgroups of G(8)
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Table 2. Dimension of Lie algebra in case n = 8

Domain Corresponding subgroup of G(8) d(8)(·)
suppΦ(8)

1
[(0, 8)][(1, 4), (2, 3), (2, 5), (3, 4)] 1 + 5C2

suppΦ(8)
2 Ψ

(8)
1

[(0, 4), (0, 1), (0, 8), (1, 4)] 4C2 + 4C2

· [(2, 3), (2, 5), (3, 7)]

suppΦ(8)
2 Ψ

(8)
2

[(0, 8), (3, 7), (6, 7), (7, 8)] 1 + 1 + 5C2

· [(1, 4)][(2, 5)]

suppΦ(8)
2 \ [(0, 8)][(1, 5)][(2, 5)][(3, 7)] 1 + 1 + 1 + 1

(suppΨ (8)
1 ∪ suppΨ (8)

2 )
otherwise [(0, 8)][(1, 4)][(2, 5)] 1 + 1 + 1

corresponding to L(8) on each domain and their value of d(8) with Table 2.
This reveals that the dimension of L(8) at every point is less than twelve.
Now the proof of Condition (B) is completed.

4.2. Transitivity
For the proof of Condition (A) in Propositions 3.1, 3.2 and 3.3, it

suffices to show that there exists, for any z ∈ S2n−1, a g ∈ H(n) such that
gz = t(1, 0, . . . , 0). The verification of this consists of the following two
steps:

Step 1: We construct a g1 ∈ H(n) such that π(n)(g1z) = t(1, 0, . . . , 0).
Step 2: We choose a g2 ∈ H(n) so that g2g1z = t(1, 0, . . . , 0), where g1 is

as in Step 1.

All of vector fields multiplied by Φ(n)
1 in the system are needed only for the

proof of Step 2, and are not necessary in Step 1.
Let us begin with Step 1. Roughly speaking, this step is equiva-

lent to showing the transitivity of H(n) on Sn. Since the action of the
one-parameter diffeomorphism group generated by W (n)

jk on S2n−1 is inter-
preted as a rotation on Sn due to (2.7) and (2.8), we can choose t so that
π

(n)
k (exp(tW (n)

jk )z) = 0 (or π(n)
j (exp(tW (n)

jk )z) = 0). From now on we shall

construct g1 as the form exp(trW
(n)
jr

) exp(tr−1W
(n)
jr−1

) · · · exp(t1W
(n)
j1

), where
a sequence of numbers {ts}r

s=1 are chosen successively.

Step 1 in case n = 4 We construct g1 according to Table 3 as follows.
In each row of Table 3, there are a vector field, a notation ‘p → q’ and
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Table 3. Construction of g1 in case n = 4

π
(4)
0 π

(4)
1 π

(4)
2 π

(4)
3 π

(4)
4

W
(4)
12 1 → 2 ∗ 0 ∗ ∗ ∗

W
(4)
04 0 → 4 0 0 ∗ ∗ ∗

Φ
(4)
2 Ψ

(4)
2 W

(4)
34 3 → 4 0 0 ∗ 0 ∗

W
(4)
04 4 → 0 ∗ 0 ∗ 0 0

W
(4)
12 2 → 1 ∗ ∗ 0 0 0

Φ
(4)
2 Ψ

(4)
1 W

(4)
01 1 → 0 −1 0 0 0 0

W
(4)
04 0 ↔ 0 1 0 0 0 0

five symbols ‘∗’ or ‘0’ or ‘1’ or ‘−1’ in order. Let Ws be the vector field,
‘αs → βs’ the notation in the (s+ 1)-st row in Table 3 (s = 1, . . . , 7). We
choose a sequence {ts}7

s=1 inductively in the following way. Let z0 = z.
We take ts so that π(4)

αs (exp(tsWs)zs−1) = 0 and set zs = exp(tsWs)zs−1.
If {ts}6

s=1 is determined, we set t7 = π/2. We repeat this procedure and
obtain {ts}7

s=1. For this sequence, the explicit form of g1 in question is
equal to

exp((π/2)W (4)
04 ) exp(t6Φ

(4)
2 Ψ

(4)
1 W

(4)
01 ) exp(t5W

(4)
12 ) exp(t4W

(4)
04 )

exp(t3Φ
(4)
2 Ψ

(4)
2 W

(4)
34 ) exp(t2W

(4)
04 ) exp(t1W

(4)
12 ).

Five symbols on the right hand side of the (s+ 1)-st row stand for the
state of π(4)(zs). If ‘∗’ is in the π(4)

α -column, π(4)
α (zs) is unknown. If ‘0’

(resp. ‘±1’) is in the π(4)
α -column, π(4)

α (zs) = 0 (resp. = ±1). Two boxes
in the (s+ 1)-st row mean the elements of π(4) given a change by exp(tWs).

Step 1 in case n = 8 We construct g1 by using Table 4 in the same way
as in the case n = 4. The different point of the procedure in the case n = 4
is that, if ‘−’ appears in the π(8)

0 -column of the (s+ 1)-st row, we take ts so
that π(8)

αs (exp(tsWs)zs−1) = 0 and π(8)
0 (exp(tsWs)zs−1) ≤ 0.

Step 1 in case n = 2 We proceed with a different consideration from
that in cases n = 4, 8. We note that π(2)(exp(tW (2))z) draws a unit
circle in S2 when t runs over R for every z ∈ S3. Given z ∈ S3,
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Table 4. Construction of g1 in case n = 8

π
(8)
0 π

(8)
1 π

(8)
2 π

(8)
3 π

(8)
4 π

(8)
5 π

(8)
6 π

(8)
7 π

(8)
8

W
(8)
14 1 → 4 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗

W
(8)
25 2 → 5 ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗

W
(8)
08 0 → 8 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗

Φ
(8)
2 W

(8)
37 3 → 7 0 0 0 0 ∗ ∗ ∗ ∗ ∗

Φ
(8)
2 Ψ

(8)
2 W

(8)
67 6 → 7 0 0 0 0 ∗ ∗ 0 ∗ ∗

Φ
(8)
2 Ψ

(8)
2 W

(8)
78 7 → 8 0 0 0 0 ∗ ∗ 0 0 ∗

W
(8)
14 4 → 1 0 ∗ 0 0 0 ∗ 0 0 ∗

W
(8)
25 5 → 2 0 ∗ ∗ 0 0 0 0 0 ∗

W
(8)
08 8 → 0 − ∗ ∗ 0 0 0 0 0 0

Φ
(8)
2 Ψ

(8)
1 W

(8)
01 1 → 0 − 0 ∗ 0 0 0 0 0 0

Φ
(8)
2 Ψ

(8)
1 W

(8)
23 2 → 3 − 0 0 ∗ 0 0 0 0 0

W
(8)
08 0 → 8 0 0 0 ∗ 0 0 0 0 ∗

Φ
(8)
2 W

(8)
37 3 → 7 0 0 0 0 0 0 0 ∗ ∗

Φ
(8)
2 Ψ

(8)
2 W

(8)
78 7 → 8 0 0 0 0 0 0 0 0 1

W
(8)
08 8 → 0 1 0 0 0 0 0 0 0 0

we choose a t1 ∈ R such that π(2)(exp(t1W (2))z) lies in the half circle
{(a, b, 0) ∈ S2; a ≤ 0}. This is possible, because every unit circle in S2

intersects every half circle. Next, we set z1 = exp(t1W (2))z and take t2
so that π(2)

0 (exp(t2Φ
(2)
2 W

(2)
01 )z1) = −1. Consequently, we obtain g1 as the

following form

g1 = exp((π/2)W (2)) exp(t2Φ
(2)
2 W

(2)
01 ) exp(t1W (2)).

Now we go to Step 2. Let E(n) be the inverse image π(n)−1
(1, 0, . . . , 0).

This is a closed submanifold of S2n−1 and can be identified with Sn−1. If
jk 6= 0, we can regard W (n)

jk as a smooth vector field on E(n).
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Step 2 in case n = 2 E(2) ' S1 and W (2)
12 acts transitively on it. Since

Φ
(2)
1 is identically equal to 1 on E(2), g2 is obtained by g2 = exp(s1Φ

(2)
1 W

(2)
12 )

for a suitable s1 ∈ R.

Step 2 in case n = 4 E(4) ' S3 and {W (4)
12 ,W

(4)
13 ,W

(4)
23 } is a basis of

TqE
(4) at every q ∈ E(4). So H[W (4)

12 ,W
(4)
13 ,W

(4)
23 ] acts transitively on E(4),

and hence g2 is obtained by

g2 = exp(s1W
(4)
12 ) exp(s2Φ

(4)
1 W

(4)
13 ) exp(s3Φ

(4)
1 W

(4)
23 )

for suitable s1, s2, s3 ∈ R.

Step 2 in case n = 8 E(8) ' S7 and L[W (8)
14 ,W

(8)
23 ,W

(8)
25 ,W

(8)
34 ]

spans TqE
(8) at every q ∈ E(8). So H[W (8)

14 ,W
(8)
23 ,W

(8)
25 ,W

(8)
34 ] acts

transitively on E(8). Therefore g2 is obtained as an element of
H[W (8)

14 , Φ
(8)
1 W

(8)
23 ,W

(8)
25 , Φ

(4)
1 W

(8)
34 ].

5. Global hypoellipticity

Here we state the following slightly abstract theorem.

Theorem 5.1 Let M be a closed smooth manifold, Z1, . . . , Zm smooth real
tangent vector fields on M , and ζ1, . . . , ζm smooth non-negative functions
on M . Assume that H[ζ1Z1, . . . , ζmZm] acts transitively on M , and that
Zj commutes with the Laplacian ∆M on M for every j. Then the operator
L =

∑m
j=1(ζjZj)∗ζjZj is globally hypoelliptic on M .

Condition (C) on the systems in Propositions 3.1, 3.2 and 3.3 follows
from this theorem since they satisfy the assumptions in the theorem: the
transitivity, the commutativity and the non-negativity (of cut-off functions).
In what follows, we prove Theorem 5.1.

Proof of Theorem 5.1. The proof is done in the same way as in §4 of [3].
By the transitivity of H[ζ1Z1, . . . , ζmZm], we have

‖u‖0 ≤ C0‖Lu‖0 +DN‖u‖−N . (5.1)

Thus, by means of Theorem 3.3 of [3], it is sufficient to check Condition (D)
with some regulator Λ to hold. That is to show the next statement:

For any δ > 0 and any N > 0, there exists a constant C(δ,N)
such that the following two inequalities hold for all u ∈ C∞(M):
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‖[Λ,L]u‖−1 ≤ δ‖Lu‖0 + C(δ,N)‖u‖−N , (5.2)

‖[Λ, [Λ,L]]u‖−2 ≤ δ‖Lu‖0 + C(δ,N)‖u‖−N . (5.3)

We shall show (5.2) and (5.3) provided that Λ = (1−∆M )1/2. We remark
that Λs = (1 − ∆M )s/2 can be regarded as an element of ψDOs by the
ellipticity of ∆M , where we denote by ψDOr the space of pseudodifferential
operators of order r (cf. [2]). ∆M commutes with Zj by the assumption in
Theorem 5.1, so Λs does.

First we prove two inequalities needed later. We denote by (f, g) =∫
M fg dµ the usual L2-inner product on M , where dµ stands for the volume

element on M . Integration by parts gives the following inequality:
m∑

j=1

∥∥∥ζjZju
∥∥∥

2

0
≤

(
Lu, u

)
. (5.4)

This implies, together with (5.1), that for every N > 0
m∑

j=1

∥∥∥ζjZju
∥∥∥

0
≤ C1‖Lu‖0 +DN‖u‖−N . (5.5)

Now let us begin with (5.2). By the commutativity, Λ−1[Λ,L]u can be
rewritten as follows:

Λ−1[Λ,L]u=2Λ−1
m∑

j=1

Z∗j
[
Λ,ζj

]
ζjZju+Λ−1

m∑

j=1

Z∗j
[
ζj , [Λ,ζj ]

]
Zju.

Thus the right hand side of (5.2) is estimated

‖[Λ,L]u‖−1

≤ C2

( m∑

j=1

∥∥∥Λ−1Z∗j
[
Λ, ζj

]
ζjZju

∥∥∥
0
+

m∑

j=1

∥∥∥
[
ζj , [Λ, ζj ]

]
Zju

∥∥∥
0

)
.

Set Σj = {p ∈ M ; ζj(p) = 0}. Let χj be a smooth function which is
identically equal to 1 on Σj if Σj is not empty, and identically equal to 0 if
Σj is empty (j = 1, . . . ,m). These functions will be chosen later. We divide
ζjZj in the first term into χjζjZj and (1− χj)ζjZj , Zj in the second term
into Zjχj and Zj(1− χj). Then, an asymptotic expansion formula yields
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‖[Λ,L]u‖−1

≤ C3

( m∑

j=1

∥∥∥|∇ζj |χjζjZju
∥∥∥

0
+

∥∥∥|∇ζj |χju
∥∥∥

0

)
(5.6)

+ C4({χj})
( m∑

j=1

‖(ζjZj)2u‖−1 +
m∑

j=1

‖ζjZju‖−1 + ‖u‖−1

)
,

where C3 is independent of the choice of {χj} and ∇ζj stands for the gra-
dient of ζj . Here we identified (1−χj) with (ζj)−1(1−χj)ζj ∈ C∞(S2n−1).
Given arbitrary positive numbers δ and N , we choose the support of χj so
small that

∣∣∣|∇ζj |χj

∣∣∣ ≤ δ

6C3(C0 + C1)
.

This is possible, because the inequality |∇ζj | ≤ C
√
ζj follows from the

non-negativity of ζj . Next we apply the interpolation inequality:

‖v‖−1 ≤ ε‖v‖0 + C(ε,N)‖v‖−(N+1)

to the fourth and fifth terms on the right hand side of (5.6) with ε =
δ/(3C4(C0 + C1)). Then we obtain by using (5.1) and (5.5)

‖[Λ,L]u‖−1 ≤ 2δ
3
‖Lu‖0 + C5({χj}, N)‖u‖−N

+ C4({χj})
m∑

j=1

‖(ζjZj)2u‖−1. (5.7)

To evaluate the third term on the right hand side of the above inequality,
we need the following lemma.

Lemma 5.2 For any positive integer N , there exists a constant C(N)
such that

m∑

j=1

‖(ζjZj)2u‖2
−1/2≤C(N)

(
‖Lu‖2

0 + ‖u‖2
−N

)
for all u∈C∞(M).

(5.8)

This lemma will be proved in the last of this section. If we admit this
for the moment, the third term on the right hand side of (5.7) is evaluated
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as

C4({χj})
m∑

j=1

‖(ζjZj)2u‖−1 ≤ δ

3
‖Lu‖0 + C6({χj}, N)‖u‖−N . (5.9)

Here we used the interpolation inequality:

‖v‖−1 ≤ ε‖v‖−1/2 + C(ε,N)‖v‖−N−1.

Therefore we obtain (5.2) by combining (5.7) with (5.9).
Next we show (5.3). By simple calculation, we have the following

equality:

Λ−2
[
Λ, [Λ,L]

]
u = 2

m∑

j=1

Λ−2Z∗j [Λ, ζj ]2Zju

+ 2
m∑

j=1

Λ−2Z∗j
[
Λ, [Λ, ζj ]

]
ζjZju+Ru,

where R ∈ ψDO−1. This implies
∥∥∥
[
[Λ,L], Λ

]
u
∥∥∥
−2

≤ C7

( m∑

j=1

∥∥∥[Λ, ζj ]2Zju
∥∥∥
−1

+
m∑

j=1

‖ζjZju‖−1 + ‖u‖−1

)
.

So we can prove (5.3) in the same way as the proof of (5.2). Now (5.2) and
(5.3) are verified. ¤

Proof of Lemma 5.2. Substituting u in (5.4) by Λ−1/2ζjZju, we have

m∑

j=1

∥∥∥ζjZjΛ
−1/2ζjZju

∥∥∥
2

0
≤

m∑

j=1

(
LΛ−1/2ζjZju,Λ

−1/2ζjZju
)
. (5.10)

The left hand side is evaluated from below as
m∑

j=1

∥∥∥ζjZjΛ
−1/2ζjZju

∥∥∥
2

0
≥ 1

2

m∑

j=1

‖(ζjZj)2u‖2
−1/2 − C

m∑

j=1

‖ζjZju‖2
0.

(5.11)

We treat the right hand side of (5.10). By the commutativity, LΛ−1/2ζjZju
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can be represented as

LΛ−1/2ζjZju = Λ−1/2ζjZjL+
m∑

k=1

MjkζkZk +Mj0,

where Mjk ∈ ψDO1/2 (k = 0, . . . ,m). Consequently we have

m∑

j=1

(
LΛ−1/2ζjZju,Λ

−1/2ζjZju
)

≤
m∑

j=1

∣∣∣
(
Λ−1ζjZjLu, ζjZju

)∣∣∣ +
m∑

j, k=1

∣∣∣
(
Λ−1/2MjkζkZku, ζjZju

)∣∣∣

+
m∑

j=1

∣∣∣
(
Λ−1/2Mj0u, ζjZju

)∣∣∣.

Since Λ−1ζjZj , Λ−1/2Mjk ∈ ψDO0, we have by Schwarz’ inequality

m∑

j=1

(
LΛ−1/2ζjZju,Λ

−1/2ζjZju
)

≤ C

(
‖Lu‖2

0 +
m∑

j=1

‖ζjZju‖2
0 + ‖u‖2

0

)
.

Combining this inequality with (5.10) and (5.11), we obtain
m∑

j=1

‖(ζjZj)2u‖2
−1/2 ≤ C

(
‖Lu‖2

0 +
m∑

j=1

‖ζjZju‖2
0 + ‖u‖2

0

)
.

Applying (5.1) and (5.5) with the right hand side, we obtain (5.8). ¤
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Nagase.

[ 3 ] Omori H. and Kobayashi T., Global hypoellipticity of subelliptic operators on closed

manifolds. Hokkaido Math. J., 28 (1999), 613–633.



Examples of globally hypoelliptic operator on spheres 235

[ 4 ] Shimoda T., Examples of globally hypoelliptic operator on special dimensional

spheres without infinitesimal transitivity. Proc. Japan Acad., 78, Ser. A, No. 7

(2002), 112–115.

Mathematical Institute

Tohoku University

Sendai 980-8578, Japan

E-mail: taishi@math.tohoku.ac.jp


