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Abstract. Considered is a quantum system of N (≥ 2) charged particles moving in the

plane R2 under the influence of a perpendicular magnetic field. Each particle feels the

magnetic field concenrated on the positions of the other particles. The gauge potential

which gives this magnetic field is called a winding gauge potential. Properties of the

Dirac-Weyl operators with a winding gauge potential are investigated. Notions of local

quantization and partial quantization are introduced to determine them. Especially, it is

proven that existence of the zero-energy states of the Dirac-Weyl operators with a winding

gauge potential is well determined by the local quantization and the partial quantization.

Key words: Dirac-Weyl operators with a winding gauge potential, strong anticommuta-

tivity, decomposable operator.

1. Introduction

In a quantum system of a charged particle moving in the plane R2 under
the influence of a perpendicular magnetic field, where the gauge potential
of this magnetic field is stronly singular at some fixed isolated points, it is
well-known that the Aharonov-Bohm effect (the AB effect) occurs when the
particle goes around the magnetic field.

In a previous paper [13], the author considered a quantum system of N
(≥ 2) charged particles moving in the plane R2 under the influence of a per-
pendicular magnetic field. Each particle feels the magnetic field concenrated
on the positions of the other particles. The gauge potential which gives this
magnetic field is called a winding gauge potential. If two particls go around
each other, then an AB effect occurs in an extended sense. Hence, to inves-
tigate the properties of this system is very interesting. We also note that
this system is closely related to the fractional statics gas [7, 8]. In Ref. [13],
the author discussed this system from a view point of the representation of
the canonical commutation relations (CCR).

A motivation of this work comes from a paper [2] by A. Arai who studied
the Dirac-Weyl operator with a singular gauge potential and showed some
interesting behaviors of its zero-energy states. Our main aim of this paper is
to investigate behaviors of zero-energy states of Dirac-Weyl operators with
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a winding gauge potential.
In analyzing the system with wound AB effect, we encouter some mathe-

matical objects: strongly anticommuting self-adjoint operators, decompos-
able operators and compositions of them. Therefore, we must develope
a theory of these objects at the same time. By this reason, this work is
interesting from not only a physical view point but also a mathematical
view point.

The outline of the present paper is as follows. In Section 2, we describe
the quantum system we are going to study and present preliminary results.
First, we define the magnetic momentum operators with a winding gauge
potential and discuss some fundamental properties. Then, we introduce the
notions of the local quantization, partial quantization, and charecterize the
strong commutativity of the momentum operators with a winding gauge
potential. We show that the momentum operators with a winding gauge
potential can be expressed by the fibre direct integral of Arai’s momen-
tum operators [1]. In Section 3, we define the Dirac-Weyl operators with
a winding gauge potential and present some basic properties. Sections 4
and 5 are concerned with zero-energy states of the Dirac-Weyl operators.
In Section 4, we consider the case where the magnetic flux is locally quan-
tized. In this case, we show that the Dirac-Weyl operators with a winding
gauge potential have no zero-energy states. We also show that strong anti-
commutativity plays an important role. In Section 5, we discuss the case
where the magnetic flux is partially quantized. In this case, the existence
of the zero-energy states depends on the magnetic flux at each particle.
A theory of decomposable operators is useful in this case. In Appnedix A,
we give a fundamental definitions and properties of strongly anticommuting
self-adjoint operators in a Z2-graded Hilbert space and in Appendix B, we
summarize a theory of decomposable operators.

2. Preliminaries

2.1. Momentum operators with a winding gauge potential
We consider a qunatum system of N charged particles with charge q ∈

R \ {0} moving in the plane R2 under the influence of a perpendicular
magnetic field. The j th particle feels the magnetic field Bj given by a real
distribution of the form
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Bj(r1, . . . , rN ) =
∑

i6=j
γijδ(ri − rj), (r1, . . . , rj ∈ R2), (1)

where γij ∈ R (i, j = 1, . . . , N , i 6= j) and δ(r) is the Dirac’s delta distri-
bution. For simplicity, we assume the following.

Assumption
For i 6= j (i, j = 1, . . . , N),

γij = γji.

Gauge potential Aj (j = 1, . . . , N) of the magnetic field Bj are defined
to be R2-valued functions Aj = (Aj1, Aj2) on the domain

MN := {(r1, . . . , rN ) ∈ R2N | ri 6= rj}
such that

Bj = DxjAj2 −DyjAj1

in the sense of distribution on R2N , where Dxj and Dyj denote the distri-
butional partial differential operators in xj and yj , respectively. We denote
by ∆j (j = 1, . . . , N) the 2-dimensional Laplacian

∆j := D2
xj

+D2
yj
.

Using the well-known formula

∆j log |rj − rk| = 2πδ(rj − rk) (k 6= j),

we see that the distribution

φN (r1, . . . , rN ) :=
∑

i<j

γij
2π

log |ri − rj |

satisfies

∆jφN (r1, . . . , rN ) = Bj(r1, . . . , rN ).

From this fact, we can take as a gauge potential of the magnetic field

Aj = (Aj1, Aj2) = (−DyjφN , DxjφN ), j = 1, . . . , N.

Explicitly, we have

Aj1(r1, . . . , rN ) = −
∑

i6=j

γij
2π

yj − yi
|ri − rj |2 , (2)
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Aj2(r1, . . . , rN ) =
∑

i6=j

γij
2π

xj − xi
|ri − rj |2 , (3)

for (r1, . . . , rN ) ∈MN .

Definition 2.1 The gauge potential Aj = (Aj1, Aj2) (j = 1, . . . , N) given
by (2) and (3) is called the winding gauge potential.

We use a system of units where the light speed c and the Planck con-
stant ~ are equal to 1. Let

pj1 := −iDxj , pj2 := −iDyj (j = 1, . . . , N),

acting in L2(R2N ). We introduce the operators Pj1 and Pj2 defined by

Pjα := pjα − qAjα, (j = 1, . . . , N, α = 1, 2)

acting in L2(R2N ) with domain dom(Pjα) = dom(pjα) ∩ dom(Ajα).

Definition 2.2 The pair of operators Pj = (Pj1, Pj2) (j = 1, . . . , N) is
called the momentum operator with the winding gauge potential.

Let

S(N)
1 :=

{
(r1, . . . , rN ) ∈ R2N

∣∣ ri = (xi, yi) ∈ R2, yi 6= yj (i 6= j)
}
,

S(N)
2 :=

{
(r1, . . . , rN ) ∈ R2N

∣∣ ri = (xi, yi) ∈ R2, xi 6= xj (i 6= j)
}

and let

ψj1(r1, . . . , rN ) := −
∑

i6=j

γij
2π

Arctan
(
xj − xi
yj − yi

)
,

ψj2(r1, . . . , rN ) :=
∑

i6=j

γij
2π

Arctan
(
yj − yi
xj − xi

)
.

Then we can prove the following theorem.

Theorem 2.3 For each j = 1, . . . , N and α = 1, 2, Pjα is essentially
self-adjoint on C∞0 (S(N)

α ). Moreover, the following hold:

Pjα = eiqψjαpjαe−iqψjα , (4)

where we denote the closure of Pjα by Pjα.

Proof. In the similar way as in proof of [13, Theorem 2.3], we can show
the assertion. ¤
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By (1), it is clear that

DxjAj2(r1, . . . , rN )−DyjAj1(r1, . . . , rN ) = 0, j = 1, . . . , N

for each (r1, . . . , rN ) ∈MN . Therefore, we have

[Pj1, Pj2] = 0 on C∞0 (MN ).

Similarly, we can check that

[Pjα, Pkβ ] = 0 on C∞0 (MN ) (5)

for j 6= k and α, β = 1, 2.
We say that self-adjoint operators {Tj}nj=1 strongly commute if their

spectral projections commute each other. It is well-known that {Tj}nj=1

strongly commute if and only if

eiaTjeibTk = eibTkeiaTj

for all a, b ∈ R and j, k = 1, . . . , n.
The above facts suggest that {Pjα | j = 1, . . . , N, α = 1, 2} may

strongly commute.
To investigate the strong commutativity of {Pjα | j= 1, . . . ,N, α= 1,2},

we introduce some notations. Let a, b ∈ R and C(x, y; a, b) be the rectan-
gular closed curve: (x, y) → (x+ a, y) → (x+ a, y+ b) → (x, y+ b) → (x, y)
in R2 and D(x, y; a, b) be its interior domain. Then, for each (r1, . . . , rN ) ∈
R2N with ri = (xi, yi) ∈ R2, we define

Φ(s,t)
j,k (r1, . . . , rN )

:=

{
ε(s)ε(t)

∑
i6=k γik#

{
i | i 6= k, ri ∈ D(rk; s, t)

}
(j = k)

−ε(s)ε(t)γjk#
{
(j, k) | (xk, yj) ∈ D((xj , yk); s, t)

}
(j 6= k)

where we use the symbol ε(t) (t ∈ R) defined by

ε(s) :=

{
1 (s ≥ 0)

−1 (s < 0)

and #A means the cardinality of the set A. The function Φ(s,t)
j,k defines

a unique self-adjoint multiplication operator on L2(R2N ). We denote it by
the same symbol Φ(s,t)

j,k .
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Theorem 2.4 For each s, t ∈ R and j, k = 1, . . . , N , we have
(i) eisPj1eitPk2 = exp(−iqΦ(s,t)

j,k )eitPk2eisPj1,

(ii) eisPjαeitPkα = eitPkαeisPjα (α = 1, 2),

Proof. In the similar way as in the proof of [13, Theorem 2.4], we can prove
this theorem. ¤

Definition 2.5 Let

Λ(N) := {(i, j) ∈ N× N | i < j, i, j = 1, . . . , N}.

(i) The magnetic flux is locally quantized if Φ(s,t)
j,k is a 2πZ/q-valued func-

tion for all s, t ∈ R and (j, k) ∈ Λ(N), equivalently, γij/θ0 ∈ Z for all
(j, k) ∈ Λ(N), where θ0 := 2π/q the flux quanta.

(ii) For each subset Λ of Λ(N), we say that the magnetic flux is partially
quantized with respect to Λ if Φ(s,t)

j,k is a 2πZ/q-valued function for all
s, t ∈ R and (j, k) ∈ Λ, equivalently, γij/θ0 ∈ Z for all (j, k) ∈ Λ.

Corollary 2.6 For each j, k = 1, . . . , N , we have the following facts:
(i) Pjα and Pkβ (j < k) strongly commute if and only if the magnetic flux

is partially quantized with respect to {(j, k)} ⊂ Λ(N).
(ii) Pj1 and Pj2 strongly commute if and only if the magnetic flux is par-

tially quantized with respect to Λj ⊂ Λ(N), where

Λj := {(i, j), (j, k) ∈ Λ(N) | i < j < k}. (6)

(iii) {Pjα | j = 1, . . . , N, α = 1, 2} is a family of strongly commuting self-
adjoint operators if and only if the magnetic flux is locally quantized.

Proof. These are simple applications of Theorem 2.4. ¤

2.2. Fibre direct integral decomposition of the momentum oper-
ators with the winding gauge potential

For later use, we represent the momentum operators with the winding
gauge potential as a fibre direct integral of Arai’s momentum operators [1].

For each i = 1, . . . , N , let R2
i is a copy of R2. Then, clearly, we have

R2N = R2
1 × · · · × R2

N .

For each j = 1, . . . , N , we define

Ωj := R2
1 × · · · × R̂2

j × · · · × R2
N ,
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where R̂2
j indicates the omission of R2

j .
Let ωj := (a1, . . . ,aj−1,aj+1, . . . ,aN ) ∈ Ωj . Then we define a multipli-

cation operator Ãjα(ωj) on L2(R2
j ) by

Ãjα(ωj)(rj) := Ajα(a1, . . . ,aj−1, rj ,aj+1, . . . ,aN ).

Then relative to the direct integral decomposition

L2(R2N ) =
∫ ⊕

Ωj

L2(R2
j ) dωj , (7)

we can represent the multiplication operator Ajα as

Ajα =
∫ ⊕

Ωj

Ãjα(ωj) dωj .

On the other hand, it is clear that

pjα =
∫ ⊕

Ωj

p̃jα dωj ,

where we denote the free momentum operator −iDxj , −iDyj acting in
L2(R2

j ) by p̃j1 and p̃j2, respectively. For each ωj ∈ Ωj , we define the linear
operator acting in L2(R2

j ) by

Pjα(ωj) := p̃jα − qÃjα(ωj),

dom(Pjα(ωj)) := dom(p̃jα) ∩ dom(Ãjα(ωj)),

where, for a linear operator A, dom(A) denotes the domain of A.

Definition 2.7 The operator Pjα(ωj) (j = 1, . . . , N, α = 1, 2) is called
Arai’s momentum operator [1].

Lemma 2.8 Let Pjα(ωj) be Arai’s momentum operator.
(i) For all ωj ∈ Ωj and α = 1, 2, Pjα(ωj) is essentially self-adjoint.
(ii) The mapping ωj ∈ Ωj → Pjα(ωj) is measurable, where Pjα(ωj) is the

closure of Pjα(ωj).

Proof. See [13, Lemma 2.8, Proposition 2.9]. ¤

By the above lemma, we can define a direct integral operator by
∫ ⊕

Ωj

Pjα(ωj) dωj .
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Moreover we have the following theorem.

Theorem 2.9 For each j = 1, . . . , N , α = 1, 2, we have

Pjα =
∫ ⊕

Ωj

Pjα(ωj) dωj .

Proof. See [13, Proposition 2.8]. ¤

2.3. A Hamiltonian with no ground states
As a Hamiltonian of the quantum system under consideration, we can

take the Schrödinger Hamiltonian HN (A) defined as the self-adjoint opera-
tor associated with the non-negative, closed, quadratic form

s(f, g) :=
N∑

j=1

{〈Pj1f, Pj1g〉+ 〈Pj2f, Pj2g〉},

f, g ∈
N⋂

j=1

(
dom(Pj1) ∩ dom(Pj2)

)

so that

dom(HN (A)1/2) =
N⋂

j=1

⋂

α=1,2

dom(Pjα)

and

〈HN (A)1/2f,HN (A)1/2g〉 = s(f, g), f, g ∈ dom(HN (A)1/2).

Theorem 2.10 The Hamiltonian HN (A) has no zero-energy states, i.e.,

ker(HN (A)) = {0}.
Proof. By (4), it is clear that

ker(Pjα) = {0} (8)

for each j = 1, . . . , N and α = 1, 2. On the other hand, we can show that

ker(HN (A)) =
N⋂

j=1

⋂

α=1,2

ker(Pjα).

Hence we have the desired result. ¤



Dirac-Weyl operators with a winding gauge potential 193

3. Dirac-Weyl operators with the winding gauge potential

Throughout this paper, the domain dom(S + T ) of the sum S + T of
two linear operators S and T from a Hilbert space to another is always
taken to be dom(S) ∩ dom(T ) unless otherwise stated.

Let σj (j = 1, 2, 3) be the Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

For each j = 1, . . . , N , we introduce

σ(j)
α :=

N︷ ︸︸ ︷
σ3 ⊗ · · · ⊗ σ3 ⊗ σα︸︷︷︸

j th

⊗I2 ⊗ · · · ⊗ I2 (α = 1, 2),

where I2 :=
(

1 0
0 1

)
. It is easy to see that

{σ(j)
α , σ

(j)
β } = 2δαβ , {σ(j)

α , σ
(k)
β } = 0, j 6= k

for α, β = 1, 2, j, k = 1, . . . , N , where {A,B} = AB + BA and δab is the
Kronecker delta.

Definition 3.1 For each j = 1, . . . , N , we define a linear opertor acting
in HN := C2N⊗ L2(R2N ) by

Qj := σ
(j)
1 ⊗ Pj1 + σ

(j)
2 ⊗ Pj2.

Qj is called the Dirac-Weyl operator with the winding gauge potential.

Let X be a Hilbert space. If X is a direct sum of X0̄ and X1̄ (i.e., X =
X0̄ ⊕ X1̄), then X is said to be Z2-graded Hilbert space. Let P0̄ and P1̄ be
the orthogonal projections onto X0̄ and X1̄, respectively. Then we define an
operator τ on X by

τ := P0̄ − P1̄.

It is not difficult to show that τ is self-adjoint and unitary.
Conversely, if there exists a self-adjoint unitary operator τ on a Hilbert

space X , then the operators P0̄ and P1̄ defined by

P0̄ :=
1
2
(I + τ), P1̄ :=

1
2
(I − τ)
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are orthogonal projections such that P0̄P1̄ = P1̄P0̄ = 0. Hence, X is
a Z2-graded Hilbert space with the direct sum decomposition X =
ran(P0̄)⊕ ran(P1̄), where, for a linear operator T , ran(T ) denotes the range
of T .

The operator τ is called the grading operator for X .
Let X be a Z2-graded Hilbert space and τ be the grading operator for X .

Let T be a linear operator acting in X satisfying τ dom(T ) ⊂ dom(T ). We
say that T is even if it satisfies

τTτ = T.

On the other hand, we say that T is odd, if it satisfies

τTτ = −T.
It is not hard to check that the linear operator τN on HN defined by

τN :=
N︷ ︸︸ ︷

σ3 ⊗ · · · ⊗ σ3⊗IL2(R2N )

is self-adjoint and unitary. Hence, τN is a grading operator for HN . Thus
HN is a Z2-graded Hilbert space and each Qj can be regarded as a linear
operator acting in Z2-graded Hilbert space.

From the definition of τN , it follows that

{τN , σ(j)
α ⊗ IL2(R2N )} = 0

for each α = 1, 2, j = 1, . . . , N , i.e., σ(j)
α ⊗ IL2(R2N ) is an odd operator.

We introduce

ĤN (A) := I2N ⊗HN (A),

where I2N =

N︷ ︸︸ ︷
I2 ⊗ · · · ⊗ I2.

Proposition 3.2 (i) For each Ψ ∈ C2N⊗alg C
∞
0 (MN ) (the symbol ⊗alg

means algebraic tensor product) and j, k = 1, . . . , N , j 6= k,

{Qj , Qk}Ψ = 0.

(ii) Each Qj is an odd operator i.e.,

{Qj , τN}Ψ = 0
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for all Ψ ∈ dom(Qj).
(iii) For each Ψ ∈ C2N⊗alg C

∞
0 (MN ),

ĤN (A)Ψ =
N∑

j=1

Q2
jΨ

=
( N∑

j=1

Qj

)2

Ψ.

Proof. Direct calculations. ¤

Let X = X0̄ ⊕ X1̄ be a Z2-graded Hilbert space. For a self-adjoint
operator T in X , we denote its spectral measure by ET (J) (J ∈ B1 the
Borel field of R). If T is odd, then we define

ET (J)0̄ :=
1
2
{ET (J)+ET (−J)}, ET (J)1̄ :=

1
2
{ET (J)−ET (−J)}

for each J ∈ B1.
Let A and B be odd self-adjoint operators in X . We say that A and

B strongly anticommute if the following hold:

[EA(J1)0̄,EB(J2)0̄] = [EA(J1)0̄,EB(J2)1̄] = [EA(J1)1̄,EB(J2)0̄] = 0,

{EA(J1)1̄,EB(J2)1̄}=0

for each J1, J2 in B1, where {a, b} := ab + ba. For reader’s convenience,
we summarize the basic properties of strongly anticommuting self-adjoint
operators in a Z2-graded Hilbert space in Appendix A.

Theorem 3.3 Let Λj (j = 1, . . . , N) be a subset of Λ(N) defined by (6).
(i) If the magnetic flux is partially quantized with respect to Λj, then Qj is

self-adjoint and

Q2
j = I2N ⊗ (P 2

j1 + P
2
j2).

(ii) If the magnetic flux is partially quantized with respect to Λj ∪Λk, then
Qj and Qk strongly anticommute.

Proof. (i) Suppose that γlm/θ0∈Z ((l,m)∈Λj). Then by Corollary 2.6 (ii),
Pj1 and Pj2 strongly commute. Hence, applying Proposition A.5, we can
conclude that σ(j)

1 ⊗Pj1 and σ(j)
2 ⊗Pj2 strongly anticommute. Therefore we

have the desired result by Proposition A.4 (ii).
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(ii) Suppose that γlm/θ0 ∈ Z ((l,m) ∈ Λj ∪ Λk). Then by an argument
similar to the proof of (i), Qj and Qk are self -adjoint. Moreover, applying
Proposition A.4 (iv), we can conclude that Qj and Qk strongly anticom-
mute. ¤

Theorem 3.4 Suppose that the magnetic flux is locally quantized. Then
the following hold:
(i) {Qj}Nj=1 is a family of strongly anticommuting self-adjoint operators.
(ii) For each Ψ in dom(Qj) ∩ dom(Qk) (j 6= k),

{Qj , Qk}Ψ = 0.

(iii) For each Ψ ∈ dom(Qj),

{τN , Qj}Ψ = 0.

(iv) The linear operator Q :=
∑N

j=1Qj is self-adjoint.

(v) ĤN (A) =
N∑

j=1

Q2
j

= Q2

Proof. These are simple applications of Theorem 3.3, Proposition A.4. ¤

Definition 3.5 Let H be a Z2-graded Hilbert space and τ be the grading
operator for H. Let {Qj}Nj=1 be a family of self-adjoint operators on H. We
say that the quadruple {H, τ,H, {Qj}Nj=1} is a model of N -fold supersym-
metric quantum mechanics, if the following (i)–(iii) hold:
(i) Qj is an odd operator i.e.,

{Qj , τ}Ψ = 0

for each Ψ ∈ dom(Qj).
(ii) For each Ψ ∈ dom(Qj) ∩ dom(Qk) (j 6= k),

{Qj , Qk}Ψ = 0.

(iii) For all Ψ ∈ ⋂N
j=1 dom(Q2

j ),

HΨ =
N∑

j=1

Q2
jΨ.
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The self-adjoint opertors Qj and H are called the j th supercharge and the
supersymmetric Hamiltonian, respectively.

If {Qj}Nj=1 is a family of strongly anticommuting self-adjoint operators,
then we say that the model

{H, τ,H, {Qj}Nj=1

}
is integrable.

Corollary 3.6 Suppose that the magnetic flux is locally quantized,
i.e., γij/θ0 ∈Z for each (i, j)∈Λ(N). Then the quandruple

{HN , τN , ĤN (A),
{Qj}Nj=1

}
is an integrable model of N -fold supersymmetric quantum me-

chanics.

Proposition 3.7 Let Π =
{H, τ,H, {Qj}Nj=1

}
be a model of N -fold super-

symmetric quantum mechanics. If Π is integrable, then the total supercharge

Q :=
N∑

j=1

Qj

is self-adjoint and satisfies

{Q, τ}Ψ = 0, Q2 = H.

Hence the quadruple {H, τ,H,Q} is a model of supersymmetric quantum
mechaics.

Proof. This immediately follows from Proposition A.4. ¤

Corollary 3.8 Let Qj (j = 1, . . . , N) be the Dirac-Weyl operator with the
winding gauge potential. Suppose that the magnetic flux is locally quantized.
Then the total supercharge

Q =
N∑

j=1

Qj

is odd, self-adjoint and satifies

ĤN (A) = Q2.

Moreover, the quadruple {HN , τN , ĤN (A), Q} is a model of supersymmetric
quantum mechanics.
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4. Zero-energy states of the Dirac-Weyl operators with the wind-
ing gauge potential (I) — the case where the magnetic flux is
locally quantized

Throughout this section, we assume the following condition:
γij
θ0

∈ Z for each (i, j) ∈ Λ(N), (9)

i.e., the magnetic flux is locally quantized.
Relative to the fibre direct integral decomposition (7), we have

HN =
∫ ⊕

Ωj

C2N⊗ L2(R2
j ) dωj .

For each ωj ∈ Ωj , we define a linear operator acting in L2(R2
j ) by

Qj(ωj) := σ
(j)
1 ⊗ Pj1(ωj) + σ

(j)
2 ⊗ Pj2(ωj). (10)

Lemma 4.1 Assume that (9). Then, for each j = 1, . . . , N , the following
hold:
(i) For each ωj ∈ Ωj, Qj(ωj) is self-adjoint.
(ii) The mapping ωj ∈ Ωj → Qj(ωj) is measurable.
(iii) ker(Qj(ωj)) = {0}.
Proof. (i) By [1, Theorem 2.1], Pj1(ωj) and Pj2(ωj) strongly commute if
and only if the magnetic flux is partially qunatized with respect to Λj .
Hence σ(j)

1 ⊗ Pj1(ωj) and σ(j)
2 ⊗ Pj2(ωj) strongly anticommute by Proposi-

tion A.5 (iii). Applying Proposition A.4 (ii), Qj(ωj) is self-adjoint.
(ii) It suffices to show that the mapping ωj ∈ Ωj → eisQj(ωj) is measur-

able for each s ∈ R (see [13, Appendix A]). By the Trotter product formula,
we have

eisQj(ωj) = s-lim
n→∞

(
eis/nσ

(j)
1 ⊗Pj1(ωj)eis/nσ

(j)
2 ⊗Pj2(ωj)

)n
. (11)

On the other hand, by the measurability of Pjα(ωj) (α = 1, 2), we can con-

clude that the mapping ωj → eis/nσ
(j)
1 ⊗Pj1(ωj)eis/nσ

(j)
2 ⊗Pj2(ωj) is measurable.

Combining this with (11), we have the desired result.
(iii) By the strong anticommutativity of σ(j)

1 ⊗Pj1(ωj) and σ(j)
2 ⊗Pj2(ωj),

we obtain

Qj(ωj)2 = I2N ⊗ (Pj1(ωj)2 + Pj2(ωj)2). (12)
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On the other hand, using Theorem 2.9 and (8), we can conclude that
ker(Pjα(ωj))= {0} by Proposition B.10 (iii) and Proposition B.5 (iv). Com-
bining this with (12), we can show that {0}=ker(Qj(ωj)2)= ker(Qj(ωj)).

¤

By the above lemma, we can define a self-adjoint operator by
∫ ⊕

Ωj

Qj(ωj) dωj (j = 1, . . . , N).

Furthermore, we obtain a following useful theorem.

Theorem 4.2 Assume that (9). Then Qj is decomposable and

Qj =
∫ ⊕

Ωj

Qj(ωj) dωj .

Proof. Under the assumption (9), σ(j)
1 ⊗Pj1 and σ(j)

2 ⊗Pj2 are decomposable
and odd self-adjoint operators. Moreover, σ(j)

1 ⊗Pj1 and σ(j)
2 ⊗Pj2 strongly

anticommute. Hence we can apply Proposition B.13 (iv) and conclude the
assertion in the theorem. ¤

Corollary 4.3 Assume that (9). For each j = 1, . . . , N , we have

ker(Qj) = {0}.

Hence, the total supercharge Q :=
∑N

j=1Qj has no zero-energy states.

Proof. By Proposition B.10 (iii) and Theorem 4.2, we obtain

ker(Qj) =
∫ ⊕

Ωj

ker(Qj(ωj)) dωj .

Hence, applying Lemma 4.1 (iii) and Proposition B.5 (iv), we have ker(Qj) =
{0} (j = 1, . . . ,N). By the strong anticommutativity of {Qj}Nj=1, we have
ker(Q) =

⋂N
j=1 ker(Qj) = {0}. ¤

5. Zero-energy states of the Dirac-Weyl operators with the wind-
ing gauge potential (II) — the case where the magnetic flux
is not locally quantized

In Section 4, the strong anticommutativity played an important role.
We also saw that the strong anticommutativity was closely connected with
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the local quantization. In this section, we do not assume the local quan-
tization. Hence, we can not apply the strong anticommutativity. By this
reason, to analyze the zero-energy states of the Dirac-Weyl operators is
more difficult in this case.

Let X be a Hilbert space. For a linear operator T on X and a subspace
of D ⊂ dom(T ), T dD denotes the restriction of T to D.

We first consider the minimal version of the Dirac-Weyl operators Qj

Qj,min := QjdC2N⊗alg C
∞
0 (MN ).

It is easy to check that each Qj,min is symmetric and hence closable. We
denote its closure by Qj,min.

Lemma 5.1 For each j = 1, . . . , N ,

ker(Qj,min) = {0}.
Proof. Let Ψ ∈ ker(Qj,min). Then there exists a sequence {Ψn}∞n=1 ∈
C2N⊗alg C

∞
0 (MN ) such that Ψn → Ψ and Qj,minΨn → 0 in C2N⊗L2(R2N )

as n→∞. By (5) and the fact {σ(j)
1 , σ

(j)
2 } = 0 (j = 1, . . . , N), we have

‖Qj,minΨn‖2 = ‖I2N ⊗ Pj1Ψn‖2 + ‖I2N ⊗ Pj2Ψn‖2.

Hence PjαΨn→0 (α=1,2) as n→∞. This implies that Ψ∈dom(I2N ⊗Pj1)∩
dom(I2N ⊗Pj2) and PjαΨ= 0. Thus, by (8), we have Ψ =0. ¤

Although the above lemma shows that Qj,min has no zero-energy states,
self-adjoint extensions of Qj,min may have zero-energy states. In fact this is
true, as is shown below.

Relative to the natural identification

HN = C2(j−1)⊗ (C2 ⊗ L2(R2N ))⊗ C2(N−j)
, (13)

we can represent Qj as

Qj :=

N︷ ︸︸ ︷
σ3 ⊗ · · · ⊗ σ3 ⊗ Qj︸︷︷︸

j th

⊗I2 ⊗ · · · ⊗ I2,

where

Qj := σ1 ⊗ Pj1 + σ2 ⊗ Pj2
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acting in C2 ⊗ L2(R2N ). We also note that under the identification
C2 ⊗ L2(R2N ) = L2(R2N ;C2), Qj is written as

Qj =

(
0 Q−j

Q+
j 0

)

with

Q±j := Pj1 ± iPj2.

Hence, Qj,min is written as

Qj,min =

N︷ ︸︸ ︷
σ3 ⊗ · · · ⊗ σ3 ⊗ Qj,min︸ ︷︷ ︸

j th

⊗I2 ⊗ · · · ⊗ I2,

on C2(j−1)⊗alg (C2 ⊗alg C
∞
0 (MN ))⊗alg C2(N−j)

, where we set

Qj,min := QjdC2 ⊗alg C
∞
0 (MN ).

Let

Q±j,min := Q±j dC∞0 (MN ).

Then we have

Qj,min =

(
0 Q

−
j,min

Q
+
j,min 0

)
,

where Qj,min and Q
±
j,min are the closure of Qj,min and Q±j,min, respectively.

Now we introduce the operators defined by

Q
(1)
j,min :=

N︷ ︸︸ ︷
σ3 ⊗ · · · ⊗ σ3 ⊗ Q

(1)
j,min︸ ︷︷ ︸
j th

⊗I2 ⊗ · · · ⊗ I2,

Q
(1)
j,min :=

(
0 Q+∗

j,min

Q
+
j,min 0

)
,
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and

Q
(2)
j,min :=

N︷ ︸︸ ︷
σ3 ⊗ · · · ⊗ σ3 ⊗ Q

(2)
j,min︸ ︷︷ ︸
j th

⊗I2 ⊗ · · · ⊗ I2,

Q
(2)
j,min :=

(
0 Q

−
j,min

Q−∗j,min 0

)
.

It is not difficult to show that Q(1)
j,min and Q(2)

j,min are self-adjoint exten-
sions of Qj,min.

To state the main result of this section, we introduce some notations.
Let Z+ be the set of non-negative integers. We introduce

Wj,± :=
{

(p, k1, . . . , kN ) ∈ Z+ × ZN
∣∣∣∣ p+

N∑

ν=1

kν < ±Φj

θ0
,

kν > ±γνj
θ0
, ν 6= j

}
,

Φj :=
∑

(l,m)∈Λj

γlm

and set

Nj,±(N ; q) := #Wj,±,

the cardinality of Wj,±. We have

Nj,−(N ; q) = N+(N ;−q).
Theorem 5.2 For each j = 1, . . . , N , the following hold:
(i) ker(Q(1)

j,min) 6= {0} if and only if Nj,−(N ; q) 6= 0.

(ii) ker(Q(2)
j,min) 6= {0} if and only if Nj,+(N ; q) 6= 0.

(iii) If the magnetic flux is partially quantized with respect to Λj, then
ker(Q(α)

j,min) = {0} (α = 1, 2).

We will give a proof of this theorem later.

Definition 5.3 Let ΠN :=
{H, τ,H, {Q}Nj=1

}
be a model of N -fold su-

persymmetric quantum mechanics.
(i) If each Qj has no zero-energy states, then we say that N -fold super-

symmetry of ΠN is broken.
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(ii) Let E be a subset of {1, . . . , N}. If each Qj (j ∈ E) has no zero-energy
states and each Qk (k ∈ Ec := {1, . . . , N} \E) has zero-energy states,
then we say that N -fold supersymmetry of ΠN is partially broken with
respect to E.

Corollary 5.4 Let

Π(α)
N :=

{
C2N⊗ L2(R2N ), τN , ĤN (A), {Q(α)

j,min}Nj=1

}
(α = 1, 2).

Let E be a subset of {1, . . . , N} such that
⋃
j∈E Λj 6= Λ(N). If the mag-

netic flux is partially quantized with respect to
⋃
j∈E Λj and for each j ∈ Ec,

Nj,−(N ; q) 6= 0 (resp. Nj,+(N ; q) 6= 0), then the N -fold supersymmetry of

Π(1)
N (resp. Π(2)

N ) is partially broken with respect to E.

To prove Theorem 5.2, we need some preparations.
We want to investigate the zero-energy states of Q(α)

j,min (α = 1, 2). Since

ker(Q(α)
j,min) = C2(j−1)⊗ ker(Q(α)

j,min)⊗ C2(N−j)
, (α = 1, 2),

it suffices to inveatigate the zero-energy states of Q
(α)
j,min (α = 1, 2).

Lemma 5.5 Relative to the fibre direct integral decomposition (7), Q
±
j,min

is decomposable.

Proof. Let Nj (j = 1, . . . , N) be the von Neumann algebra generated by
the diagonalizable operators on L2(R2N ) =

∫ ⊕
Ωj
L2(R2

j ) dωj . Then it is easy
to prove that

Nj ⊆ (Q±
j,min)

′
s,

where, for a linear operator T , (T )′s denotes the strong commutant of T
(see Proposition B.9). Hence, by Proposition B.9 (i), we have the desired
result. ¤

By the above lemma, Q
±
j,min can be represented as

Q
±
j,min =

∫ ⊕

Ωj

Q
±
j,min(ωj) dωj .

Therefore, our next task is to determine the fibre Q
±
j,min(ωj) of Q

±
j,min. For

this purpose, we introduce

D
(±)
j (ω) := (Pj1(ω)± iPj2(ω))dC∞0 (R2

j (ω))
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for ω = (a1, . . . , âj , . . . ,aN ) ∈ Ωj , where

R2
j (ω) := R2 \ {ai}i6=j .

For each Ψ ∈ C∞0 (MN ) and ω = (a1, . . . , âj , . . . ,aN ) ∈ Ωj (ai 6= ak, if
i 6= k), we define a vector Ψ̃(ω) ∈ C∞0 (R2(ω)) defined by

Ψ̃(ω)(rj) := Ψ(a1, . . . ,aj−1, rj ,aj+1, . . . ,aN ).

Moreover, we introduce

C∞0 (MN )|ω :=
{
Ψ̃(ω) ∈ C∞0 (R2

j (ω))
∣∣ Ψ ∈ C∞0 (MN )

}
.

Lemma 5.6 For each ω = (a1, . . . , âj , . . . ,aN ) ∈ Ωj (ai 6= ak, if i 6= k),
we have

C∞0 (MN )|ω = C∞0 (R2
j (ω)).

Proof. For each f ∈ C∞0 (R2
j (ω)), we define a vector Tf ∈ C∞(R2N ) by

Tf (r1, . . . , rN ) = f(rj), (r1, . . . , rN ) ∈ R2N .

Taking a vector η ∈C∞0 (MN ) such that supp η̃(ω)⊇ suppf and η̃(ω)(rj) = 1
(rj ∈ suppf), we can show that Tfη ∈C∞0 (MN ) and

(̃Tfη)(ω) = fη̃(ω) = f.

Therefore, we can conclude that f ∈ C∞0 (MN )|ω which imply C∞0 (R2
j (ω)) ⊆

C∞0 (MN )|ω.
Conversely, for each Ψ ∈ C∞0 (MN ), it is clear that Ψ̃(ω) ∈ C∞0 (R2

j (ω))
which implies C∞0 (R2

j (ω)) ⊇ C∞0 (MN )|ω. ¤

Proposition 5.7 For each j = 1, . . . , N , we have

Q
±
j,min(ω) = D

±
j (ω) a.e. ω

Proof. For a linear operator T , we denote its graph by gr(T ). Since
C∞0 (MN ) is a core of Q

±
j,min, we have

gr(Q±
j,min) =

{
Ψ⊕ Q

±
j,minΨ

∣∣ Ψ ∈ C∞0 (MN )
}−
,

where we consider the graph norm topology. Hence it follows from the
definition of the decomposable operator (i.e., Definition B.7) that

gr(Q±
j,min(ω)) =

{
Ψ̃(ω)⊕ Q

±
j,min(ω)Ψ̃(ω)

∣∣ Ψ ∈ C∞0 (MN )
}−
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for a.e. ω. Combining this with Lemma 5.6, we have

gr(Q±
j,min(ω)) =

{
Ψ⊕ Q

±
j,min(ω)Ψ

∣∣ Ψ ∈ C∞0 (MN )|ω
}−

=
{
Ψ⊕D

(±)
j (ω)Ψ

∣∣ Ψ ∈ C∞0 (R2
j (ω))

}−

= gr(D(±)
j (ω))

for a.e. ω, where we use the fact

Q
±
j,min(ω)Ψ̃(ω) = D

(±)
j (ω)Ψ̃(ω) a.e. ω

for Ψ ∈ C∞0 (MN ). Hence, we have the desired result. ¤

Let A be a closed linear operator on a Hilbert space X . We introduce
a following notation:

L[A] :=
(

0 A∗

A 0

)
.

Note that L[A] is a self-adjoint operator acting in X ⊕ X .

Theorem 5.8 For each j = 1, . . . , N , we have

Q
(1)
j,min =

∫ ⊕

Ωj

L[D(+)
j (ω)] dω, Q

(2)
j,min =

∫ ⊕

Ωj

L[D(−)
j (ω)∗] dω.

Therefore, under the identification (13), we have

Q
(1)
j,min = σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

j−1

⊗
∫ ⊕

Ωj

L[D(+)
j (ω)] dω ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

N−j
,

Q
(2)
j,min = σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸

j−1

⊗
∫ ⊕

Ωj

L[D(−)
j (ω)∗] dω ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

N−j
.

Proof. This is a simple application of Proposition 5.7. ¤

Remark 5.9 The self-adjoint operators L[D(+)
j (ω)] and L[D(−)

j (ω)∗] are
called Arai’s supercharge [2].

Corollary 5.10 For each j = 1, . . . , N , we have

ker(Q(1)
j,min) =

∫ ⊕

Ωj

ker(L[D(+)
j (ω)]) dω,
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ker(Q(2)
j,min) =

∫ ⊕

Ωj

ker(L[D(−)
j (ω)∗]) dω.

Therefore, under the identification (13), we have

ker(Q(1)
j,min) = C2(j−1)⊗

∫ ⊕

Ωj

ker(L[D(+)
j (ω)]) dω ⊗ C2(N−j)

,

ker(Q(2)
j,min) = C2(j−1)⊗

∫ ⊕

Ωj

ker(L[D(−)
j (ω)∗]) dω ⊗ C2(N−j)

.

The following lemma is proven by A. Arai in [2].

Lemma 5.11 For each j = 1, . . . , N , the following hold:
(i) dim ker(L[D(+)

j (ω)]) = N−(N ; q),

dimker(L[D(−)
j (ω)∗]) = N+(N ; q).

(ii) If the magnetic flux is partially quantized with respect to Λj, then

ker(L[D(+)
j (ω)]) = {0}, ker(L[D(−)

j (ω)∗]) = {0}
Proof. See [2, Theorem 4.7]. ¤

Now, we are ready to prove Theorem 5.2.

Proof of Theorem 5.2.
(i) By Cororally 5.10, Lemma 5.11 and Proposition B.10 (iii), we have

ker(Q(1)
j,min) 6= {0} ⇐⇒ ker(L[D(+)

j (ω)]) 6= {0} a.e. ω

⇐⇒ Nj,−(N ; q) 6= 0.

Similary, we can prove (ii).
(iii) If the magnetic flux is partially qunatized with respect to Λj , then,

it follows from Lemma 5.11 that

ker(L[D(+)
j (ω)]) = {0}, ker(L[D(−)

j (ω)∗]) = {0} a.e. ω.

Hence by Proposition B.10 (iii), we have the desired assertion. ¤

A. Strongly anticommuting self-ajoint operators on a Z2-graded
Hilbert space

Let Z2 be the residue class ring mod 2, with the elements 0̄ and 1̄.
When applied to elements of Z2, the symbol “+” always denotes addition
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modulo 2.
Suppose that H is a Hilbert space. If H is a direct sum of H0̄ and H1̄

(i.e., H = H0̄ ⊕ H1̄), where H0̄ and H1̄ are closed subspaces of H, then
H is said to be Z2-graded Hilbert space. Throughout this section, we fix
the Z2-grading H = H0̄ ⊕H1̄. Let P0̄ and P1̄ be the orthogonal projections
onto H0̄ and H1̄, respectively. We define an operator τ on H by

τ := P0̄ − P1̄.

It is not difficult to see that τ is self-adjoint and unitary. We refer to the
operator τ as the grading operator for H.

We introduce

L(H) := {B : a linear operator on H s.t. Pα dom(B) ⊂ dom(B)

for each α ∈ Z2}.
Note that B(H) ⊂ L(H) and hence L(H) 6= ∅. If B ∈ L(H) satisfies

B = τBτ,

then B is said to be even. On the other hand, if

B = −τBτ,
then B is said to be odd. An element in L(H) is said to be homogeneous, if
it is even or odd. For a homogeneous operator B in L(H), we define

ρ(B) :=

{
0 if B is even

1 if B is odd
.

The value ρ(B) is called the parity of B.
For an element B in L(H), we introduce

B0̄ := P0̄BP0̄ + P1̄BP1̄, dom(B0̄) = dom(B),

B1̄ := P0̄BP1̄ + P1̄BP0̄, dom(B1̄) = dom(B).

Then it is clear that B0̄ (resp. B1̄) is even (resp. odd) and

B = B0̄ +B1̄.

We say that B0̄ (resp. B1̄) is even (resp. odd) part of B. Note that if B is
self-adjoint, then B0̄ and B1̄ are also self-adjoint.
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For each A, B in L(H), we define

[A,B]SΨ = [A0̄, B0̄]Ψ + [A0̄, B1̄]Ψ + [A1̄, B0̄]Ψ + {A1̄, B1̄}Ψ,
for Ψ ∈ dom(AB) ∩ dom(BA), where [a, b] := ab − ba (commutator) and
{a, b} := ab+ ba (anticommutator). The operation [·, ·]S is said to be super-
commutator.

Let M(R) be the set of all complex valued Borel measurable functions
on R. If f ∈M(R) satisfies

f(−x) = f(x)

for all x ∈ R, then f is said to be even. If f satisfies

f(−x) = −f(x)

for all x ∈ R, then f is said to be odd. We can also define the notions of
homogenous element and parity of Borel measurable functions by the same
way as in the case of linear operators.

Proposition A.1 Suppose that A is a homogeneous self-adjoint operator
on H and f is a homogeneous element in M(R). Then f(A) is also homo-
geneous with

ρ(f(A)) = ρ(f)ρ(A).

Here f(A) is given by the operational calculus.

Proof. Since τ is unitary and self-adjoint, we have

τf(A)τ = f(τAτ) = f((−1)ρ(A)A) = (−1)ρ(A)ρ(f)f(A)

by the operational calculus. ¤

Given a self-adjoint operator S on a Hilbert space, we denote its spectral
measure by ES(J) for an arbitary J in B1 (the Borel field of R).

Let A be an odd self-adjoint operator on H. Then, by Propositon A.1,
we have

EA(J)0̄ =
1
2
{EA(J) +EA(−J)}, EA(J)1̄ =

1
2
{EA(J)−EA(−J)}

for each J ∈ B1, where −J := {−x ∈ R | x ∈ J}.
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Definition A.2 Suppose that A and B are odd self-ajoint operators onH.
We say that A and B strongly anticommute, when

[EA(J1), EB(J2)]S = 0

for each J1 and J2 in B1.

It is not hard to see that A and B strongly anticommute if and only if

[EA(J1)0̄,EB(J2)0̄] = [EA(J1)0̄,EB(J2)1̄] = [EA(J1)1̄,EB(J2)0̄] = 0,

{EA(J1)1̄,EB(J2)1̄}= 0

for each J1, J2 in B1.
Following theorem is a fundamental characterization of the strong anti-

commutativity.

Theorem A.3 Let A and B be odd self-ajoint operators on H. The fol-
lowing conditions are equivalent to each other.
(i) A and B strongly anticommute.
(ii) [eisA, eitB]S = 0 for each s, t in R.
(iii) [Rz(A), Rw(B)]S = 0 for each z, w in C\R, where Rz(T ) := (T − z)−1.

Proof. See [12]. ¤

Proposition A.4 Suppose that A,B,A1, . . . , An are odd self-adjoint op-
erators on H.
(i) If A and B are bounded, then A and B strongly anticommute if and

only if

{A,B} = 0.

(ii) If {Aj}nj=1 is a family of strongly anticommuting self-ajoint operators,
then

∑n
j=1Aj is self-ajoint and

( n∑

j=1

Aj

)2

=
n∑

j=1

A2
j .

(iii) If A and B strongly anticommute, then for each Ψ∈ dom(A)∩dom(B),

{A,B}Ψ = 0.

(iv) Let A1, A2, A3, A4 be odd operators in H. If {A1, A2, A3, A4} is
a family of strongly anticommuting self-adjoint operators, then two
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self-adjoint operators B := A1 + A2 and C := A3 + A4 strongly anti-
commute.

Proof. (i) This follows from Theorem A.3.
(ii), (iii) See [14].
(iv) By Theorem A.3, we have

[eisAj , eitAk ]S = 0 (14)

for all s, t ∈ R and j, k = 1, . . . , 4 (j 6= k). On the other hand, we have

eisB = s-lim
n→∞

(
eisA1/neisA2/n

)n
, eitC = s-lim

n→∞
(
eitA3/neitA4/n

)n (15)

by the Trotter product formula. Using (14), it is not hard to show that
[(
eisA1/neisA2/n

)n
,
(
eitA3/neitA4/n

)n]
S

= 0

for each n ∈ N. Combining this with (15), we can prove that

[eisB, eitC ]S = 0

for all s, t ∈ R. Hence we have the desired result by Theorem A.3. ¤

Proposition A.5 Let K be a Hilbert space. Let {Aj}nj=1 be a family of odd
self-adjoint operators on H and {Bj}nj=1 be a family of self-adjoint operators
on K.
(i) The Hilbert space H⊗K has a following natural Z2-grading structure:

H⊗K = (H0̄ ⊗K)⊕ (H1̄ ⊗K). (16)

Relative to this Z2-grading, the operator

τ⊗ := τ ⊗ IK

is the grading operator for H ⊗ K, where τ is the grading operator
for H.

(ii) The self-adjoint operator Aj ⊗Bj (j = 1, . . . , n) is odd (relative to the
Z2-grading (16)).

(iii) If {A}nj=1 is strongly anticommuting and {B}nj=1 is strongly commut-
ing, then {Aj ⊗Bj}nj=1 is strongly anticommuting.

Proof. (i) and (ii) are very easy.
(iii) By the spectral theorem for strongly commuting self-adjoint

operators (the unbouded version of [9, problem VII, 4]), there is a σ-finite
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measure space (M,ν), unitary operator U : K → L2(M, dν) and real-valued
Borel functions F1, . . . , Fn on M with

[(UBjU−1)f ](m) = Fj(m)f(m).

Hence, we can identify H⊗K with
∫ ⊕
M H dν. Under this identification, we

have

Aj ⊗Bj =
∫ ⊕

M
Fj(m)Aj dν(m).

Since {Fj(m)Aj}nj=1 is a family of strongly anticommuting self-adjoint
operators, we have the desired assertion by Proposition B.13 (iii). ¤

B. Decomposable operators

Let (Λ, µ) be a σ-finite measure space. Let

K :=
∫ ⊕

Λ
H dµ(λ)

be the direct integral of H which will be fixed in what follows.
First, we begin with the following lemma.

Lemma B.1 Let {φn | n ∈ N} ⊂ K be a family of vectors in K.
(i) If a family of vectors {φn(λ) | n ∈ N} ⊂ H is total in H for µ-a.e. λ

(i.e., linear span of {φn(λ) | n ∈ N} is dense in H for µ-a.e. λ), then
{fφn | f ∈ L∞(Λ,dµ), n ∈ N} is total in K.

(ii) If {φn | n ∈ N} is total in K, then {φn(λ) | n ∈ N} is total in H for
µ-a.e. λ.

Proof. (i) We set

D := Lin{fφn | f ∈ L∞(Λ,dµ)}−,
where, for each subset V, Lin(V) means the subspace algebraically generated
by V. For each Ψ ∈ D⊥, f ∈ L∞(Λ,dµ) and n ∈ N, we have

0 = 〈Ψ, fφn〉K
=

∫

Λ
f(λ)〈Ψ(λ), φn(λ)〉H dµ(λ)

=
∫

Λ
gn(λ)∗f(λ) dµ(λ),
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where gn(λ) := 〈φn(λ),Ψ(λ)〉H. Note that gn ∈ L1(Λ,dµ). Since f is
arbitary, we can take f to be a real valued function. Then we have
〈Im(gn), f〉L2(Λ,dµ) = 0. Hence, taking f = sgn(Im(gn)), we get

∫

Λ
| Im(gn(λ))|dµ(λ) = 0,

which implies

Im(gn) = 0. (17)

On the other hand, if we take f = ih, where h is a real valued function,
then we have 〈Re(gn), h〉L2(Λ,dµ) = 0. Therefore, taking h = sgn(Re(gn)),
we have ∫

Λ
|Re(gn(λ))|dµ(λ) = 0.

Hence we conclude that Re(gn) = 0. Combining this with (17), we obtain
that gn = 0. Since {φn(λ) | n ∈ N} is total in H for µ-a.e. λ, we have

gn = 0 ⇐⇒ gn(λ) = 0 µ-a.e. λ

⇐⇒ Ψ(λ) = 0 µ-a.e. λ.

Hence D⊥ = {0}.
(ii) Since (Λ, µ) is σ-finite, there is a family of measurable sets

{Bn | n ∈ N} such that

Λ =
∞⋃

n=1

Bn, µ(Bn) <∞. (18)

For each φ ∈ H, we set Φ := χBnφ. Then it is clear that Φ ∈ K. There-
fore, from the assumption, it follows that there is a sequence {Φn}∞n=1 ⊂
Lin{φn | n ∈ N} such that ‖Φ − Φn‖K → 0 (n → ∞). Hence, there exists
a subsequence {Φnk

}k such that

‖Φ(λ)− Φnk
(λ)‖H → 0 µ-a.e. λ,

which implies that

‖φ− Φnk
(λ)‖ → 0 µ-a.e. λ in Bn.

Since {Φnk
(λ)}k⊂Lin{φn(λ) |n∈N} µ-a.e. λ, we conclude that {φn |n∈N}

is total in H for µ-a.e. λ in Bn. Combining this with (18), we have the
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desired result. ¤

Let F : Λ → H be a H-valued mapping on Λ. We say that F is mea-
surable if C-valued function λ→ 〈Ψ, F (λ)〉H is measurable for each Ψ ∈ H.

For a B(H)-valued mapping B : Λ 3 λ → B(λ) ∈ B(H), we say that
the mapping λ → B(λ) is measurable if the mapping λ → 〈φ,B(λ)φ〉H is
measurable for each φ ∈ H.

Definition B.2 For each λ ∈ Λ, let D(λ) be the closed subspace of H and
P (λ) be an orthogonal projection onto D(λ). If the mapping λ → P (λ) is
measurable, then we say that the field λ→ D(λ) is measurable.

Proposition B.3 The field λ→ D(λ) is measurable if and only if there is
a sequence {φn}∞n=1 ⊂ K such that {φn(λ)}∞n=1 is total in D(λ) for µ-a.e. λ.

Proof. If the field λ → D(λ) is measurable, then a linear operator P :=∫ ⊕
Λ P (λ) dµ(λ) is an orthogonal projection. Since K is separable, so is

ran(P ). Hence we can choose a sequence {φn}∞n=1 ⊂ ran(P ) which is total
in ran(P ). Applying Lemma B.1, we can conclude that {φn(λ)}∞n=1 is total
in D(λ) for µ-a.e. λ.

Conversely, assume that there is a sequence {φn}∞n=1 ⊂ K such
that {φn(λ)}∞n=1 is total in D(λ) for µ-a.e. λ. By Lemma B.1 (i),
{fφn | f ∈ L∞(Λ,dµ), n ∈ N} is total in K. On the other hand, for each
Ψ ∈ Lin{fφn | f ∈ L∞(λ, dµ), n ∈ N}, we can easily check that

P (λ)Ψ(λ) = Ψ(λ).

Hence, the mapping λ → P (λ)Ψ(λ) is measurable. Therefore we can con-
clude that the mapping λ → P (λ)Ψ(λ) is measurable for each Ψ in K. By
this, we can easily prove that λ→ P (λ) is measurable. ¤

Definition B.4 For each λ ∈ Λ, let D(λ) be a closed subspace of H and
P (λ) be the orthogonal projection onto D(λ). If the field λ → D(λ) is
measurable, we can define the orthogonal projection P :=

∫ ⊕
Λ P (λ) dµ(λ).

The closed subspace ran(P ) is called the direct integral of D(λ) and denoted
by

∫ ⊕
Λ D(λ) dµ(λ).

Proposition B.5 Suppose that the fields λ → G(λ) and λ → D(λ) are
measurable. Let

G :=
∫ ⊕

Λ
G(λ) dµ(λ), D =

∫ ⊕

Λ
D(λ) dµ(λ).
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Then the following hold.
(i) G⊥ =

∫ ⊕
Λ G(λ)⊥ dµ(λ).

(ii) G ⊆ D ⇐⇒ G(λ) ⊆ D(λ) µ-a.e. λ.
(iii) G ∩ D =

∫ ⊕
Λ G(λ) ∩ D(λ) dµ(λ).

(iv) G = {0} ⇐⇒ G(λ) = {0} µ-a.e. λ.
Proof. Easy (or see [11]). ¤

Lemma B.6 Let λ→ G(λ) be a measurable field of closed subspaces of

K ⊕K =
∫ ⊕

Λ
H⊕H dµ(λ)

and let

G :=
∫ ⊕

Λ
G(λ) dµ(λ).

Then G is the graph of a closed linear operator in K if and only if G(λ) is
the graph of a closed linear operator in H µ-a.e. λ.

Proof. By Proposition B.5 (iii), we have

G ∩ ({0} ⊕ K) =
∫ ⊕

Λ
G(λ) ∩ ({0} ⊕H) dµ(λ).

Hence

G ∩ ({0}⊕K)= {0⊕ 0} ⇐⇒ G(λ)∩ ({0}⊕H)= {0⊕ 0} µ-a.e. λ,

which means the desired assertion in the proposition. ¤

For a linear operator T , we denote its graph by gr(T ).

Definition B.7 (i) For each λ ∈ Λ, let A(λ) be a closed operator on H.
We say that the mapping λ → A(λ) is said to be measurable if the
field λ→ gr(A(λ)) is measurable.

(ii) Let λ → A(λ) be a measurable field of closed operators. Then, by
Lemma B.6, there exists a closed operator A on K such that

gr(A) =
∫ ⊕

Λ
gr(A(λ)) dµ(λ).
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We say that the closed operator A is decomposable and denote it by

A =
∫ ⊕

Λ
A(λ) dµ(λ).

(iii) Let λ→ A(λ) be a measurable field of closed operators. If

A(λ) = f(λ)IH

with f(λ) ∈ C, for each λ ∈ Λ, then we say that the closed operator∫ ⊕
Λ A(λ) dµ(λ) is diagonalizable.

Remark B.8 Let A =
∫ ⊕
Λ A(λ) dµ(λ) be a decomposable operator. Then

we can easily check that

dom(A) =
{
φ ∈ K

∣∣∣∣ φ(λ) ∈ dom(A(λ)) µ-a.e. λ,
∫

Λ
‖A(λ)φ(λ)‖2

H dµ(λ) < ∞
}

and

(Aφ)(λ) = A(λ)φ(λ) µ-a.e. λ,

for each φ ∈ dom(A).

Let A be a closed operator on K. We set

(A)′s :=
{
B ∈ B(K)

∣∣ B dom(A) ⊆ dom(A),

BAφ = ABφ (φ ∈ dom(A))
}
,

where B(K) denotes the set of all bounded operators on K. We say (A)′s the
strong commutant of A.

The following proposition is often useful.

Proposition B.9 Let N (K) be the abelian von Neumann algebra of
bounded diagonalizable opertors on K and R(K) be the von Neumann algebra
of bouded decomposable operators on K. Let A be a closed operator on K.
(i) A is decomposable if and only if N (K) ⊆ (A)′s.
(ii) A is diagonalizable if and only if R(K) ⊆ (A)′s.

Proof. See [11]. ¤
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Proposition B.10 Let A =
∫ ⊕
Λ A(λ) dµ(λ) and B =

∫ ⊕
Λ B(λ) dµ(λ) be

decomposable opertors on K. Then:
(i) A ⊆ B if and only if A(λ) ⊆ B(λ) for µ-a.e. λ.
(ii) A = B if and only if A(λ) = B(λ) for µ-a.e. λ.
(iii) ker(A) =

∫ ⊕
Λ ker(A(λ)) dµ(λ)

(iv) A∗ =
∫ ⊕
Λ A(λ)∗ dµ(λ).

Proof. Easy (or see [11]). ¤

Proposition B.11 Let A =
∫ ⊕
Λ A(λ) dµ(λ) be a decomposable operator

on K. Then the following hold.
(i) A is symmetric if and only if A(λ) is symmetric for µ-a.e. λ.
(ii) A is self-adjoint if and only if A(λ) is self-adjoint for µ-a.e. λ.
(iii) A is unitary if and only if A(λ) is unitary for µ-a.e. λ.

Proof. These are simple applications of Proposition B.10. ¤

Proposition B.12 Let A =
∫ ⊕
Λ A(λ) dµ(λ) and B =

∫ ⊕
Λ B(λ) dµ(λ) be

self-adjoint decomposable operators on K. Then A and B strongly commute
if and only if A(λ) and B(λ) strongly commute for µ-a.e. λ.

Proof. By Proposition B.10 (ii), we have

A and B strongly commute

⇐⇒ [eisA, eitB] = 0 for each s, t ∈ R.
⇐⇒ [eisA(λ), eitB(λ)] = 0 µ-a.e. λ for each s, t ∈ R.
⇐⇒ A(λ) and B(λ) strongly commute for µ-a.e. λ. ¤

Proposition B.13 Let H = H0̄⊕H1̄ be a Z2-graded Hilbert space and let
A =

∫ ⊕
Λ A(λ) dµ(λ) and B =

∫ ⊕
Λ B(λ) dµ(λ) be decomposable opertors on

K =
∫ ⊕
Λ H dµ(λ). Then the following hold:

(i) The Hilbert space K has the following natural Z2-grading structure:

K = K0̄ ⊕K1̄,

K0̄ :=
∫ ⊕

Λ
H0̄ dµ(λ), K1̄ :=

∫ ⊕

Λ
H1̄ dµ(λ).

The grading operator for K = K0̄ ⊕K1̄ is given by τK =
∫ ⊕
Λ τH dµ(λ),

where τH is the grading operator for H.
(ii) A is odd if and only if A(λ) is odd for µ-a.e. λ.
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(iii) Suppose that A and B are odd self-adjoint operators. Then A and
B strongly anticommute if and only if A(λ) and B(λ) strongly anti-
commute for µ-a.e. λ.

(iv) Suppose that A and B are odd self-adjoint operators. If A and B

strongly anticommute, then a self-adjoint operator C := A + B is
decomposable with

C =
∫ ⊕

Λ
(A(λ) +B(λ)) dµ(λ).

Proof. (i) Easy.
(ii) By Proposition B.10 (ii), we have

A is odd.

⇐⇒ τKAτK = −A.
⇐⇒ τHA(λ)τH = −A(λ) for µ-a.e. λ.

⇐⇒ A(λ) is odd for µ-a.e. λ.

(iii) In the same way as the proof of Proposition B.12, we can prove the
assertion.

(iv) By Proposition B.9 (i), we obtain

(A)′s ⊇ N (K), (B)′s ⊇ N (K).

Hence, we can easily check that

(C)′s ⊇ (A)′s ∩ (B)′s ⊇ N (K).

Applying Proposition B.9 (i) again, we can conclude that C is decomposable.
For each Ψ ∈ dom(C) = dom(A) ∩ dom(B), we have

(CΨ)(λ) = [(A+B)Ψ](λ)

= A(λ)Ψ(λ) +B(λ)Ψ(λ) µ-a.e. λ.

Hence we have the desired result. ¤
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