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Dominated semigroups of operators and
evolution processes

Brian JEFFERIES and Susumu OKADA
(Received April 3, 2002)

Abstract. A semigroup S acting on a Banach lattice F is said to be dominated if there
exists a positive semigroup T such that |S(t)z| < T(t)|z| for allz € E and ¢t > 0. It is
shown that a semigroup on LP is dominated if and only if it is associated with a family
of operator valued measures.
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I_ntroduction

The problem of determining when a semigroup S of operators acting
on a Dedekind complete Banach lattice is dominated by a semigroup 1" of
positive operators is an old one. Because |S(t)z| < T'(¢t)|z| for each element
z, it follows that S(t) must be a regular operator for each ¢ > 0. A related
question is when does the smallest such semigroup |S| exist — the modulus
semigroup of S. Although a Cp-contraction semigroup on L! is dominated
by a positive semigroup (see [12], [14]), C. Kipnis [12, pp. 374-376] gives an
example of a Cy-semigroup on #' which is not dominated by any positive
semigroup. Other examples are provided by the semigroups 7, mentioned
below with Sz > 0 and Rz # 0. A sufficient condition that a semigroup
S on an LP-space be dominated by a positive semigroup is provided by
I. Becker and G. Greiner [3, Proposition 2.3|: if there exists a real number
w such that || |S(¢)] ||zzey < e** for all t > 0 (that is, S is quasicontractive
with respect to the regular norm), then S is dominated and if, in addition, S
is a Cy-semigroup, then the modulus semigroup |S| is also a Cy-semigroup.

Regular operators R acting on LP-spaces were characterised in [10] in
terms of an operator bound of the form
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Here C' is a positive constant, f; and g; are bounded measurable functions
for each j = 1,...,k, and k is any positive integer. This has recently been
generalised to regular operators on a Banach lattice [23].

Another way of viewing the bound (0.1) is that the additive vector
valued set function A X B +— x g R(x, - ¥) is bounded in L? on the algebra
generated by all product sets A x B for each ¥ € LP. In the present work,
we adopt this viewpoint to characterise those semigroups S acting on LP
that are dominated by a semigroup of positive operators. The property in
question is exactly that there should exist an associated family (M;)s>o of
uniformly bounded, additive operator valued set functions considered in the
monograph [9] in relation to generalisations of the Feynman-Kac formula.
Equivalently, a multilinear bound of the form (0.1) is both necessary and

-sufficient for the existence of a dominating semigroup acting on 7.

The set functions (My);>o are defined on the algebra generated by all

cylinder sets

A={Xo€ By, X4, € By,...,Xt, € By, Xt € Bpy1} (0.2)

with respect to the random process (X;)o<s<t. The operator valued set
function M; acts on LP and is defined by the formula

Mi(A) = Q(Bry1) S(t—tn) -+ - Q(B2) S(te — t1) Q(B1) S(t1) Q(Bo);
(0.3)

see Section 3 for the precise statement. The spectral measure @} acting
on LP(u) is multiplication by characteristic functions. The operator valued
set function M; represents the ‘joint distribution’ of the random process
(Xs)s>0 before time t.

If we know that S is dominated, then it is easy to see that M; is uni-
formly bounded on the algebra generated by all cylinder sets A of the form
(0.2). The technical question of proving that M; is o-additive and extend-
ing M; to a suitable o-algebra of subsets of a sample space {2 presents no
problem if, say, u is a regular Borel measure, so we may think of M; as an
operator valued ‘measure’ for each ¢ > 0.

The results of Kipnis [12] and Kubokawa [14] may now be seen from
this viewpoint. According to [9, Theorem 2.3.6], a contraction semigroup
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S on L' produces operator valued measures (My)>0 acting on ! from for-
mula (0.3) and so, according to Theorem 3.1 below, S has a dominating
semigroup. Indeed, an estimate of the semivariation of an operator valued
measure underlies the proofs given in [12] and [14] in the L! case. Further-
more, the Co-semigroups constructed in [12] for £! and the semigroups T}
mentioned below with $z > 0 and Rz # 0 produce additive operator valued
set functions (M;)i>o acting on L}(R™) via formula (0.3). A calculation
shows that these are unbounded on the algebra generated by the cylinder
sets A of the form (0.2), that is, the range of each of the set functions M; on
the algebra is unbounded in the uniform operator norm. Such set functions
cannot be the restriction of operator valued measures defined on a o-algebra
of subsets of a set and therefore according to Theorem 3.1 of the present
paper, such semigroups cannot be dominated.

It is easy to see that the sufficient condition of 1. Becker and G. Greiner
[3, Proposition 2.3] for L? spaces, yields operator valued measures (Mz);>o
acting on LP from formula (0.3) and so, according to Theorem 3.1 below, .S
has a dominating semigroup.

Semigroups of positive operators acting on LP-spaces have been the
subject of recent interest in the mathematical physics literature in relation
to point interactions. For example, by taking an appropriate selfadjoint
extension of the Laplacian operator A restricted to C®°(R3\ {0}), we obtain
a Hamiltonian operator H = —%A—l—cé for which t — e~ is a Cjy-semigroup
of positive operators on LP only for £ < p < 3 (see [1], [4]). Semigroups such
as these have associated positive operator valued measures acting on LP by
formula (0.3), but they are not given by the transition functions of a Markov
process, that is, they are not Markov semigroups. Nevertheless, there is an
associated random process measured by operator valued measures instead
of a probability measure in the fashion described above.

On the other hand, the semigroups 7, : t — exp(g—iA) with S(z) > 0
arise in relation to analytic Feynman integrals [11]. Here A is the Laplacian
in R™. Although T, is a semigroup of regular operators on LP(IR™), there is
an associated operator valued measure acting on LP(R™) by formula (0.3)
if and only if R(z) = 0. In this case, the operator valued measure can be
written in terms of Wiener measure, see [9, Example 2.1.7] for the case p =
2. Thus, for any 1 < p < 0, it is only for Rz = 0 that T, is dominated
by a semigroup of positive operators on LP(R™), and if Rz is equal to zero,
then 7, is actually a semigroup of positive operators. The semigroup T,
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is a contraction on L?(R"), but it does not give rise to an operator valued
measure by formula (0.3) if Rz 0 — otherwise Feynman integration would
be much simpler! The result of Kipnis {12] and Kubokawa [14] is therefore
special to L' and, by duality, to L.

Perturbation theory for dominated semigroups in LP-spaces has been
the subject of recent study in [16]. The related question of showing that a
positive Cy-semigroup dominates another Cy-semigroup by prescribing con-
ditions on the generators is treated in [18, Part C-II, §4] and more recently,
in [19].

In Section 1, we set the notation and terminology concerning Banach
lattices used throughout the present work. The scalar variation of set func-
tions defined on finite product sets by operator products is computed in
Section 2. Special care has to be exercised to treat the case p = oo, where
we impose the additional assumption that the underlying measure space
is localisable, [21, pp.157-158|, otherwise, there is no restriction on the
measure space. The main result, Theorem 3.1, characterising dominated
semigroups in terms of the uniform boundedness of each of the associated
set functions (My)i>g is proved in Section 3. No continuity assumption is
needed for the semigroups S. In Proposition 3.3, we show that in the case
when the modulus semigroup |S| does exist the operator valued measure Ny
associated with |S| is actually the smallest positive operator valued set func-
tion dominating M; on the algebra of cylinder sets generated by (Xs)o<s<t-
As a byproduct of the proof, we show in Proposition 3.5 that Ny and M,
t > 0, share the same path spaces. Finally, a simple example shows that
the sufficient condition of [3, Proposition 2.3] for semigroup domination on
LP-spaces is not a necessary condition. An illustration of semigroup dom-
ination and its relationship with operator valued measures is given in the
context of the motion of a quantum particle in a magnetic field.

1. Preliminaries

Let F denote either the real or complex number field. Let Y be a locally
convex Hausdorfl space over F with dual space Y so that (Y, Y”) is a duality
between the vector spaces Y and Y'. In this notation, we write (y, y*) =
y*(y) for all y € Y and y* € Z, whenever Z is a linear subspace of the
algebraic dual of Y such that Z separates points of Y. The space of all
continuous linear maps from Y into Y is denoted by £(Y"). The pointwise
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convergence topology on L(Y) is called the strong operator topology.

Now let Y be a Banach space, and assume that its dual Y’ is equipped
with the dual norm topology B(Y',Y). Given W € L(Y) define its dual
operator W € L(Y') by (y, W'y') = (W(y),y') forally € Y and 3y € Y.
Let o(Y',Y) denote the weak* topology on Y’. Then

LY ryy) = (W' W € L(Y)} € LY. (1.1)

Let E be a Banach lattice over F with norm || - || and order relation
<. In the case in which F is complex, see [21, §11], for example. The
positive cone of E is defined to be E4 = {z € E : z > 0}. A continuous
linear operator from E into a Banach lattice is called positive if W maps the
positive cone F of E into that of the codomain, and this is denoted by W >
0. Let L(E)4 denote the subset of L(F) consisting of all positive operators.
Clearly, L(E), becomes an ordered set in which we can speak of increasing
nets. We call an operator W € L(E) regular if it is a linear combination of
positive operators, and the linear subspace of L(E) consisting of all regular
operators is denoted by L'(E). When E is Dedekind complete, the space
LF(E) is a vector lattice such that each W has its modulus |W| defined
by [W|(z) = supg<|y|<. |Wy| for all z € E,; see [21, Definition IV.1.7 and
Theorem IV.1.8].

Remark 1.1 Suppose that the Banach lattice E is Dedekind complete. If
operators R € L(E)4 and W € L(E) satisfy

|Wz| < R|z| forevery z€FE, (1.2)

then it easily follows that the operator W is regular and |W| < R. We
can deduce the same conclusion even when (1.2) holds only for all positive
elements  of . Because this result does not seem to be available in the
literature, we present a proof due to B. de Pagter.

To this end, assume that (1.2) holds for all z € E,. The operator
W then becomes order bounded, and hence regular because F is Dedekind
complete, [2, Theorem 1.13].

" "First consider the case when F = R. Let W¥ = WV 0 and W~ =
(=W)VO0. Since Wtz =sup{Wy:0 <y <z}, [2, p. 13|, we have W+ < R.
Moreover, W~ < R because W = (—W)*. Thus we have W+ Vv W~ < R.
Since

W =W+ W =WrVW +WrAW =WTvww,
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it follows that |W| < R.

Now consider the case when F = C. There is a real Banach lattice
ERr whose complexification equals E, [21, Definition I1.11.3]. There exist
operators Wy, Wo € L(E) such that W;(Fg) < Eg for j = 1, 2, the identity
W = W1 + iWs; holds, and

|W| = sup {(cos ) W1 + (sin@) W, : 0 < 0 < 2rr }; (1.3)
see [21, Theorem IV.1.8]. Now fix 6 € [0,2n[ and z € E.. Since
[We| = sup {(cos ) W1z + (sing) Wz : 0 < ¢ < 27}

(see [21, p.134]), we have ((cos@)W; + (sin@)Wa)z < |Wz| < Rz for all
z € F,. This together with (1.3) implies that |W| < R.

The dual space E’ of E is a Banach lattice with positive cone E’, such
that the modulus |2/| of each 2’ € E’ is defined as in the case of regular
operators; see [21, Corollary 3, p. 235], for example.

A subset of L(F) is called uniformly bounded if it is bounded in the
operator norm || - ||.

The Banach lattice E is called a KB-space if every norm bounded,
increasing sequence in E is convergent. It follows from [24, Theorem 113.4)
that every norm bounded, increasing net in a KB-space is convergent, from
which we can easily derive the following result.

Proposition 1.2 Let E be a KB-space. Then every uniformly bounded,
increasing net {Wataca in L(E)y has a limit W € L(E)y in the strong
operator topology and sup,e 4 Wa = W in the vector lattice LT (E).

Throughout the rest of this section, let (X, £, 1) denote a measure space
with p(€) C [O, oo]. When 1 < p < oo, the class of all equivalence classes
of pth integrable functions on X is denoted by LP(u), and is equipped with
the usual LP-norm || -||,. Now let us consider the case when p = co. By
L*(u) we denote the space of all equivalence classes of F-valued p-essentially
bounded, £-measurable functions on X, and by || - || the essential supre-
mum norm [8, Definition (20.11) and Theorem (20.14)]. An equivalence
class in LP(u) and its representative will not be distinguished when 1 <p <
oo. The identity operator on LP(u) is denote by Ip.

If 1 < p < oo then LP(u) is a Dedekind complete Banach lattice whose
positive cone consists of all functions f € LP(u) such that f > 0 (u-almost
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everywhere), [21, Proposition II.8.3]. The Banach lattice LP(u) is a KB-
space (for example, see [17, Corollary 2.4.13]).

When p = oo, the space L*°(u) is a Banach lattice whose positive cone
consists of all f € L®(u) such that f > 0 (locally p-almost everywhere).
The Banach lattice L®°(u) is Dedekind complete if and only if L*(u) is
the dual of L*(u) if and only if the measure space (%, &, u) is localisable,
[21, Exercise 11.23]. Before we go further, we shall recall the definition of
localisable measure spaces. According to [21, pp.157-158], the measure
space (X, &, u) is called localisable if the following conditions are satisfied:

(a) & has no atoms of infinite measure; and

(b) with & denoting the ring of all sets in £ of finite measure, if {f4}4cg,
is a family of measurable functions on ¥ such that f4 = fp (p-almost
everywhere) on A N B whenever A, B € &, then there exists a lo-
cally measurable function f : ¥ — C such that f = f4 (u-almost
everywhere) on each set A € &.

Proposition 1.2 applies to the KB-space LP{u) if 1 < p < oo, but not to
L*®(u) which is not a KB-space except when L% (u) is finite-dimensional.

As usual, the space L®(u) poses special difficulties in our arguments.
To deal with L>®(u), we use the absolute weak* topology. Given z in a
Banach lattice F, define a seminorm on E’ by ¢, : 2’ — (|z|, |2/]) for all
z' € E'. The locally convex Hausdorff topology |o|(E’, E) given by the class
of seminorms ¢, z € E, is called the absolute weak * topology on the dual
space E' of E, [2, p. 169].

The seminorms g, x € F, are Riesz seminorms so that the lattice oper-
ations in E’ are continuous in |¢|(E’, E). The convergence of an increasing
net in E’ with respect to |o|(E’, E) is equivalent to that of the net with
respect to the weak* topology o(E’, E) on E’. The following proposition is
a direct consequence of this remark.

Proposition 1.3 The following statements hold on the dual Banach lat-
tice E' of E.
(i) - Bvery increasing net {z,}aca in E' such that sup,e4 |(zh, z)| < 0o
for every x € E has a limit in E' for the topology |o|(E', E).
(ii) If {Wa}taca is a uniformly bounded, increasing net in L(E'); then
there is an operator W € L(E')4 such that limyeq Woz = Wz for
every € E' in the topology |o|(E', E).



134 B. Jefferies and S. Okada

In Section 3 we shall apply the above proposition to E/ = L*°(u) when
(2,&, 1) is a localisable measure space. The following lemma, whose proof
is straightforward, will also be needed in Section 3.

Lemma 1.4 Let 1 < p < co. Then operators Wy, Wy € L(LP(u))4 sat-
isfy W1 < Way if and only if Wiz, y) < (Waz, y), for all z € LP(u)+ and
y € LP ().

2. Variation

By a semialgebra we mean a family C of subsets of a non-empty set
such that

(i) the whole set is a member of C;
(ii) C is closed under finite intersections; and
(iii) if A, B € C, then there exist a positive integer n and sets U; € C,
- j=0,1,...,n, such that AN B = Uy and A\B = U;.’_,_l Uj, and such
that U;?:on eCforallk=1,...,n.

The algebra generated by a semialgebra C is denoted by a(C).

Typical examples of semialgebras are the family of all rectangles
17— [aj, bj[ in R™ and that of all cylinder sets {w : w(t1) € Bi,...,w(ty) €
By} with By, ..., By Borel subsets of R, in the space C([0, 00[) of all con-
tinuous functions w : [0, 00[ — F.

An additive set function m : A — Y from an algebra A of subsets of
a set ) to a locally convex space Y is said to be bounded or have bounded
range if the set {m(A) : A € A} is bounded in the topology of Y. In
the case that X is a Banach space and Y = L£(X), boundedness for the
strong operator topology and for the uniform operator topology coincide by
the uniform boundedness principle. In this case, the terminology uniformly
bounded is used. Of course, an additive set function may be bounded on
a semialgebra C but not on the algebra a(C) it generates. In the examples
which follow, this is precisely the phenomenon in which we are interested.

~ Throughout this section, let (3, &, 1) be a measure space with u(€) C
[0,00]. By L£°(€) we denote the vector space of all F-valued, bounded
&-measurable functions on .

The family £2 = {B x C : B, C € &} of rectangles in the Cartesian
product ¥? = ¥ x ¥ is a semialgebra. A vector-valued set function m on
£2 is said to be separately additive if the set functions m(-,C) and m(B, -)
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on £ are additive whenever B, C € & are fixed. Such a set function m
can easily be shown to be additive on the semialgebra £2. Then m is
uniquely extended to an additive set function on a(£?); see, for example,
[13, Proposition 7.1].

Let 1 < p < co. The adjoint index p’ € [l,oo] is the extended real
number satisfying the equation 1/p+1/p’ = 1, with the understanding that
1/00 = 0.

For each f € L>(E), let Qp(f) € L(LP(u)) denote the operator defined
by

Qp(flz = fz, =€ LP(u). (2.1)

Given B € £, its characteristic function X, belongs to £>(£) and we let
QP(B) = QP(XB)‘

Remark 2.1 Let 1 < p < co. Let @), denote the L(LP(u))-valued additive
set function B +— @Qp(B), B € £. Then Q, is o-additive in the strong
operator topology on L(LP(u)), and satisfles Qp(X) = I, and Qp,(BNC) =
Qp(B) Qp(C) for all B, C € &; in other words, @, is a spectral measure.
The space of Qp-integrable functions coincides with £°°(€) and the integral
of each f € L®(€) over ¥ is the operator Q,(f) defined in (2.1). For the
details, see, for example, [5, Theorem XVIII.2.11 (¢)] or [20, (1), p. 436]. In
the case when p = 0o, the same result holds if L*°(u) is equipped with the

topology o(L%(u), L' (k).

Lemma 2.2 Let1 < p < oo and let R € L(LP(u)). Let m : a(E?) —
L(LP(u)) denote the additive set function satisfying

m(B x C) = Qp(B) RQp(C), B,Cef. (2.2)
(i) The set function m has uniformly bounded range in L(LP(p)) if and
only if there is a constant ¢ > 0 such that
k k
> Qul95) RQp(f5) <c-|d fi®g;
j=1 L(LF{)) j=1
forall f;, g; € L2(E),j=1,...,k, and for all k =1,2,....

(ii) If p = 1 or oo, then m always has uniformly bounded range in
L(LF(n)).

oo
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(iii) When 1 < p < co, the set function m has uniformly bounded range in
L(LP(w)) if and only if R is regular.

Proof. (i) This has essentially been established in the second half of the
proof of Proposition 1 in [10] as an application of [6, Proposition I.1.11 and
Theorem 1.1.13].

(ii) Apply (i) and [10, Proposition 1].

(iii) This is a direct consequence of [10, Theorem 1]. O

The equality £({L*(u)) = L£7(L'(n)) holds; see Theorem IV.1.5 (ii) and
the remark after Definition IV.4.2 in [21]. In the case when p = co and
(3, €, 1) is localisable, we have L£(L®(un)) = Lf(L%°{u)), [21, Theorem
IV.1.5(i)].

Let 1 <p<ooandlet Re L5(LP(u)). Let m be the set function given
in Lemma 2.2. Given z € LP(u) and y € LP (), define an additive set
function mg, : a(€?) — F by

_ Mg y(A) = (m(A)z, y), Aca(&?). (2.3)

Since m has uniformly bounded range by Lemma 2.2, the range of mg, is
bounded in F, and hence its variation |mg 4|y is bounded. By definition,
the variation |mgyly : a(€2) — [0,00[ is the smallest, nonnegative-valued
additive set function dominating mgy, or

|mg,ylv(A) = sup {Z 'mw,y(B))} ,

Bew
where the supremum is taken over all finite partitions 7 of each set A €
a(£?) by elements B of £.

Lemma 2.3 Let 1 < p < o0 and R € L7(LP(n)). Let z € LP(u) and
y € LP (). Let my, be the set function given by formulae (2.2) and (2.3).
(i) The equalities

k
|mx,y|v(22) = sup { Z ‘<Qp(gj) RQP(fj)w’ y>'}

j=1

k
= sup { Z ’<Qp(f]> RQp(g5), y>)}’

j=1
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hold, where the supremum is taken over all k = 1,2,... and all f;, g; €
LX), j=1,...,k, such that

k
0<|fI<1 forall j=1,....,k and » |g| <1. (2.4)

(ii) Let B,C € £. If 1 < p < o0, or if p = 00 and the measure space
(3, &, ) is localisable, then

Imzylv(B x C) = (Qp(C) |R| Qp(B)lzl, |yl) (2.5)
and
k
Mg ylv(B x C) —Sup{z Cj) |IRQp(B;) zl, |y|>} (2.6)
i=1

where the supremum is taken over all E2-partitions {B; x C’j}?:l of
B x C. In particular,

[y |y (5%) = (|R(lz]), lyl)- (2.7)

Proof. (i) The F-valued set function my , satisfies

n

Z mz,y Bl X Cl)

maylv(57) = sup

where the supremum is taken over all n = 1,2,... and all scalars ¢, with
le] < 1 and pairwise disjoint sets B; x C} € 2,1 =1,...,n, (see [6,
Proposition I.1.11] as the semivariation and variation of mg , are the same).
The first equality then follows from the fact that every £2-simple function
¢ on X2 with ||¢|lcc < 1 can be expressed in the form ¢ = Z?=1 fi ®g;
satisfying (2.4). The second equality in (i) is now obvious.

(ii) To establish (2.7), note that every family {B; x C;}]; of pairwise
disjoint sets in &2 satisfies 31 [(Qp(C1) RQp(B)z, y)| < (IR|(|=]), lv]),
80 |Maylv(Z%) < {|R|(|z]), |y]). To prove the reverse inequality, let £ > 0.
By [10, Corollary 1] there exist a number k£ = 1,2, ... and functions f;, g; €
L>®(E), j=1,...,k, satisfying g; > 0 and the inequalities (2.4) such that

k
CIRI21), ) < D [(@p(ai) BRp(F)lxl, lyl)] + e (2.8)

=1
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Choose zg, yo € L®(E) such that |zg| = 1 = |yo|, || = 20 -z and
lyl = yo - v as functions on . Then

k k
> 1 @u(9) RQp(flal, y1)| = D 1{Qu(95 - 50) RQu(fs - @), y)-

j=1 j=1
(2.9)

It now follows from statement (i), (2.8) and (2.9) that (|R|(|z|), |y|) <
|maylv(E2) + €, which implies (2.7) as ¢ is arbitrary.

The identity (2.5) follows if we replace = and y by z - x g and ¥ - X4
respectively in (2.7).

The identity (2.6) follows from (2.5) and the definition of variation
because

{@p(Cb) RQp(Bo)z, y)| < (Qp(Co) |R Qp(Bo)al, Iyl)
< (Qp(Co) |RI @p(Bo)lzl, lyl)
for all By, Cy € & satisfying By C B and Cy C C. O
Lemma 2.4 Let p=1 and R € L(L*(n)). Let B € € be a set of o-finite

measure. If y € L>®(u), then there is a function z € L*™(u) such that
(z, R'y) = (z, z) for all z € L*(u) vanishing outside B.

Proof. The element R’y of (L'(u))’ may not be in L% () unless (Z, &, p) is
localisable. However, the restriction up of u to the o-algebra {BNC : C €
£} of subsets of B has the property that (L'(ug)) = L°°(up) because the
measure pp is o-finite. Thus the linear functional R'y restricted to L' (up)
which is naturally embedded into L!(u) can be represented by a function
z € L*°(up). This proves the lemma. O

Lemma 2.5 Let p = oo, and assume that the measure space (X, &, 1) is
localisable so that L™ (u) = (LY (u))’. Let W € LY(L (1)) and let R=W' ¢
L(L®(u)). If € L®(u) and y € L* (), then

(IR[(I1=]), lwl) = (I=], VI(Ily]))- (2.10)

Consequently, the operators R and |R| belong to L(L*(u)x) with |o| de-
noting the absolute weak™* topology |o|(L%°(w), L*(u)).

Proof. Given f, g € L®(E), z € L®(u)+ and y € LY(u),, we have
(Qoo(9) RQoo(f)z, y) = (z, Q1(f) W Q1(9)y),
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and hence, statement (i) and (2.7) in Lemma 2.3 imply (2.10). The last
statement of the lemma is a direct consequence of (2.10). O

Whenn =1,2,...and 1 < p < 00, each separately additive set function
on the semialgebra £t = {[[. B, : B € £,1=0,1,...,n} is additive.

Proposition 2.6 Letn = 1,2,... and 1 < p < o0. Let Ry,...,R, €
LF(LP(u)). The unique additive extension to a(E™) of the additive map
on 1.

H Bl L Qp(Bn) Rn Qp(Bn—l) U Qp(Bl)RlQP(BO)a
1=0

H B € 5n+1,
1=0
is denoted by m(™ : a(EM) — L(LP(w)).
(i) The set function m™ has uniformly bounded range.
(ii) Suppose that 1 < p < co. Let x € LP(u) and y € LP (). Then the
variation |m§f2|v of the additive set function m&”@} 1 a(E™Y) — F given
by méng(A) = (m™(A)z, y) for every A € a(E™Y) satisfies

|m§c’2!v( II Bz) = (Qp(Br)|Rnl -+ Qp(B1)|R1|Qp(Bo)zl, [y])
= (2.11)

for all T]jo B € ML

(iii) Consider the case when p = oo. Suppose that the measure space
(3, &, 1) is localisable and that Ry € L{L™(u)s) for every l=1,...,n
with o standing for the weak* topology o(L>®(u), L*(u)). Then the
equality (2.11) holds for every []j, B; € E™+1.

Proof. (i) Since the operators Ry,..., R, are regular, we may assume
that they are positive. Then m(™ is a positive operator valued additive set
function on a(£™*!) so that

0 <mM(4) < m(n)(gn“) =R, -, R,

which proves statement (i).
(il) When n = 1, this statement has already been given in Lemma
2.3 (ii). So assume that (ii) holds for some positive integer n. Given C € &,
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define an additive set function v(©) : a(E"*') — F by vO([[]} B) =
mg?;' 2 (C’ X H"+1 Bl) for all By, .. .,Bn+1 € £. By the assumption we have

n+1
Ny (T181) = (@olBosa) 1Rusa| QB
=1
- Qp(B1) |[R1Qp(C) 2|, Jyl)  (2.12)
for all By,...,Bp41 €E.
Now fix a set [[[0y B; € E*1. For simplicity let
U= Qp(Bn+1) IRn—l-ll Qp(Bn) e Qp(B2) IR2]~
It is then clear that

n+1
iy (11 Br) £ (U QB IRl QB el o). (219

=0

Now we show the reverse inequality. By the definition of dual operators

(UQp(B1) |R1| @p(Bo) |zl, lyl) = (Qp(B1) |R1| Qp(Bo) |, U'(|y]))
(2.14)

when 1 < p < co. If p = 1, then Lemma 2.4 allows us to assume that
U'(ly]) € L®(u) so that (2.14) still holds. Let € > 0. Lemma 2.3 (ii) implies
that there is an £2-partition {C; x D;}¥_; of By x By (k € N) for which

(Qp(B1) | Ra| @p(Bo) Iz], U'([y])) —

k
< S{Qu(Dy) |1R1Qp(Cy) 2, U ()
7j=1
k
= (U Qo(Dy) IR1Qu(Cy) zl, Iyl). (2.15)

Substituting C; and D; for C' and B; in (2.12) gives that
(U Qp(D;) [R1Qp(Cy) 2, ly])
n+1 n+1
= (€ IV(D xHBl> < [m{H), (ijDijBl>,

=2 =2
(2.16)
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for every j = 1,..., k. Thus, it follows from (2.14), (2.15) and (2.16) that
(U Qp(B1) |1 R1| @p(Bo)lzl, y]) — e

k n+1 n+1
< imi, <Cj xD;x [ Bl> = |m§7§rl)|v< II Bl>’
j=1 1=2 1=0

which establishes the reverse inequality of (2.13) because ¢ is arbitrary.
(iii) When n = 1, this statement has been given in Lemma 2.3 (ii).
Assume that (iii) holds for a positive integer n. Let By, Bi,...,Bpt1 € €.
For each [ = 2,...,n+ 1, we have R, = (W)’ for some W; € L(L'(1)); see
(1.1). An appeal to Lemma 2.3 (ii) ensures (2.11) with (n -+ 1) in place of
n and with p = co. In fact, in the proof of statement (ii) replace U’ by

|Wa| Q1(Bz2) - - - Q1(Br) [Whna1| Q1(Bn+1)- O

3. Dominated semigroups

Let (%, €, u) be a measure space with u(€) C [0,00]. Let Q = w000,
that is, Q is the set of all paths w : [0,00[ — £. When ¢ > 0, define a
function X; : @ — X by X¢(w) = w(t) for each w € Q. Given a finite subset
K of [0,00[, let X : @ — X denote the function

w i (Xg(w) ek, w € Q.

Let ¢ > 0 and let P; denote the collection of all finite partitions of the
interval [0, t}. When «, 8 € P; and 3 is a refinement of o, we write o < 3.
This defines an order relation in P; with which P; becomes a directed set.
For each oo = {0,¢1,...,tn,t} € Pr(n € N), let

n+1
Ea:{HBl:BZEE, l=0,1,...,n+1}
1=0

which is a semialgebra of subsets of the product space 3. The class A} =
User, Xa 1(£%) is a semialgebra of subsets of . Those sets belonging to
A} are cylinder sets in Q. Let A; = a(A}), which contains the subalgebra
Al® = o(X71(E%)) for every a € P;. Tt is then clear that Ay = Uaer, Al
For t = 0, let Ag = a(X51(£)).

Let 1 < p < 0. Let S be a (one-parameter) semigroup of continuous

linear operators on the Banach lattice LP(u). By this we mean that S :
[0,00[ — L(LP(w)) is a map such that S(s+t) = S(s) S(t) for all 5, ¢t >
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0 and S(0) = I,. No assumption is made about the continuity of the
semigroup S. Let Qp : £ — L(LP(u)) denote the additive set function given
in Remark 2.1.

Let ¢t > 0. We shall define an additive set function M; : Ay — L(LP(u))
as follows. Let A € A} and choose an o = {0,¢t1,...,tn,t} € P; such that
A€ X;1(£%), and hence A = X5*( o By) for some By, B, ..., Bpy1 €
E.

Define an operator M;(A) € L(LP(u)) by

Mi(A) = Qp(Bnt1) S(t —tn) - -~ S(t2 — t1) Qp(B1) S(t1) Qp(Bo)-

Since S is a semigroup and @Qp(X) = I, the definition of M;(A) does not
depend on the choice of o € P; satisfying A € X;1(€%). This is the basis
of [9, Definition 2.1.1]. An explicit proof has been written, for example, in
(13, Proposition 7.1]. It is clear that the set function

- M : Av—— My(A), Ae A;,

is additive because P; is directed, and hence it can uniquely be extended to
an additive set function on A;. This extension to 4; is denoted also by M;.

When ¢t = 0, the set function My : Ay — L(LP(p)) is defined by
Mo(X5 (B)) = Qp(B) for every B€ &.

In the notation of [9, Definition 2.1.1] we have obtained a temporally
homogeneous Markov evolution process (€2, (As) >0, (Mi)i>0; (Xi)e>0) with
time set [O, oo[, stochastic space (2, £) and state space LP(u), provided 1 <
p < 00. The terminology emphasises the relationship with Markov processes
in probability theory, where S is a semigroup of operators acting on the
space of probability measures A representing the initial distribution of the
process. The action is given in terms of the transition function p:(x, dy) so
that

SEA @) = [ Mda) (o, do).

Now consider the case in which p = co. In the present setting, we need
to assume that

(Al) (%,&,p) is localisable, and

(A2) S(t) € L(L*®(u),) for each t > 0,
where o stands for the weak* topology o(L>®(u), L'(u)). The corresponding
state space is L°{u),. Condition (A2) is equivalent to the requirement
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that each bounded linear operator S(¢) : L% (u) — L*(u) is the dual of a
bounded linear operator in £(L!(u)); see (1.1).

A semigroup T : [0,00[— L(LP(w)) is called positive if T(t) > 0 for
every t > 0. Such a semigroup 7 is said to dominate S if

Tzl = |15@)zl, =€ LP(w), (3.1)

for every t > 0. Clearly (3.1) is equivalent to that S(¢) is regular and
T(t) > |S(¢)| for every t > 0 (see Section 1). Here, if p = oo then we need
to assume (A1) which guarantees the existence of |S(t)]. A semigroup S is
said to be dominated if such a dominating semigroup 1" exists. When § is
dominated and |S| is a semigroup of positive operators with the property
that if T dominates S then |S|(t) < T(¢t) for all ¢ > 0, we call |S| the
modulus semigroup of §. We are now ready to present our main result.

Theorem 3.1 Let 1 <p < oo, and assume the extra conditions (Al) and
(A2) when p = co. Then the operator-valued, additive set function M; :
Ay — L(LP(u)) has uniformly bounded range for every t > 0 if and only if
S is dominated. In this case, the modulus semigroup |S| of S exists.

The following lemma will be used in the proof of the above theorem.

Lemma 3.2 Let 1 <p < 00, and assume (Al) and (A2) for p = co. Let
t > 0 and suppose that there is a constant ¢ > 0 satisfying || M,(A)| < ¢ for
all Ac A,

(i) For every t > 0, the operator S(t) is regular.

(ii) Given o= {0,t1...,tn,t} € Py, let

Wi = |S(t = ta)l 1S (tn — ta-1)| -+ S(t2 — )| 1S (1)
Then, there exists an operator |S|(t) € L(LP(u)) such that given x €
LP(p)
— 1 (a)
|S](t)x = Lim W™,

_in the norm || - ||, when 1 < p < oo and in the absolute weak™ topology
lo|(L°(w), L*(n)) when p = oo. Moreover

51(8) = sup Wi and |5](¢) > |S(2)| (3.2)
[0 t

in the order of the vector lattice L*(LP(u)).
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(iif) The equality |S|(t) = |S|(t — 5) |S|(s) holds whenever 0 < s < t.
(iv) Put [S](0) = I,. Then |S|: [0,00[— L(LP(u)) is the modulus semi-
group of S.

Proof. (i) If p = 1 or oo, then every operator in L(LP(u)) is regular,
so consider the case when 1 < p < co. By assumption M; has uniformly
bounded range, and hence, Mt(Aéa)) is also uniformly bounded for the
coarsest partition e = {0,¢} € P;. Now statement (i) is a consequence of
Lemma 2.2 (iii) and the fact that

My(X3'(B % C)) = Qp(B) S(t) @»(C),  B,CE€E.

(ii) Let a € P;. Let z € LP(u) and y € LP'(u). Define an F-valued,
additive set function Mz, by

Mg y(A) = (My(A)z, y), A€ A, (3.3)
and its restriction to Aga) is denoted by Mt(;?y. Applying Proposition 2.6
to the F-valued, additive set function Mt(;?y o X;1 on a(£%) yields

[42,| () = (W e, lyl)- (3.4)
Moreover, by [6, Proposition 1.1.11],

M2, ] (9) < IMi gl (@) < g izl -yl (3.5)

It follows from (3.4) and (3.5) that KWt(a)a:, y)| < e |zlp - |yl for
all z € LP(u) and y € L¥ (u), and hence, HWt(a)H < 4c for all a € P;.
In other words, the increasing net {Wt(a)x}aept is uniformly bounded in
L(LP(u))+. Hence, statement (i) is a consequence of Proposition 1.2 and
[17, Corollary 2.4.13] when 1 < p < oo, and that of Proposition 1.3 when
p = oo because L®(u) = (L(u)).

(iii) Let o € P;. Take an o € P; such that a < o and {s} € /.
There exist 8 € P, and v € P, satisfying Wt(al) = Wt(l)s W Since
Wt(l)s < |S|(t—s) and wi® < |S|(s) and since o € P; is arbitrary, it follows
that |S|(t) < |S[(¢ — s) [5](s).

If B € Py and v € P then |S|(t) = W W because WP Wi =

Wt(a) for some a € P;. When 1 < p < oo it follows, from statement (i)
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applied to |S|(t — s) and |S|(s) separately, that |S|(t) > lim,ep,_,
limpep, W W = |8](t - 5) |S|(s).

Now let p = oo. Let |o| stand for the topology |o|(L®(u), L' ().
Let z € L®(p)4+. By (i) the net {Ws(ﬂ)l'}ﬁe’/)s converges to |S|(s)z in the
topology |o|. If v € Py_s then Wt(Zl € L(L*®(u)|4) by Lemma 2.5, and
hence |S|(t)z > limgep, Wt(;g wP g = Wt(Zl |S|(s) z, where the limit is
with respect to |o|. Again by (i), we have

15|z > lim W[S|(s)z = [S|(t— ) [S](s) @,
YEPt—s

from which the inequality |S|(¢) > [S|(t — s) |S|(s) follows as € L*®(u)+
is arbitrary.

(iv) It follows from statements (i) and (ii) that |S| is a semigroup dom-
inating S. Let T : [0, 00[ — L(LP(u)) be a positive semigroup dominating
S. If ¢ >0, then T'(t) > Wt(a) for every o € P; and hence T'(t) > |S|(t). In
other words, |S| is the smallest positive semigroup dominating S. O

Proof of Theorem 3.1. Assume first that M; has uniformly bounded range
for every t > 0. Let |S|(t) € L(LP(u)), t > 0, denote the operators ob-
tained in Lemma 3.2. Let [S|(0) = I,. Then according to Lemma 3.2,
the semigroup |S| : [0,00[ — L(LP(w)) is the smallest positive semigroup
dominating S.

To prove the converse statement, let ¢ > 0. Define an additive set
function N; : Ay — L(LP(w)) by replacing S with |S| in the definition of
M;. Then

[Me(A)|| < [INe(AI < IN(DI =[Sl A€ A,
which implies that M; has uniformly bounded range. O

Let t > 0. The existence of a modulus semigroup |S| is established in
Theorem 3.1. The natural question arises as to whether or not the additive
set function Ny : Ay — L(LP(u)) given in the above proof is the smallest
one-dominating My in the sense that |M;(A)| < Ni(A) for all A € A;. This
question has the affirmative answer as is seen from the following result.

Proposition 3.3 Lett > 0 and 1 < p < co. Let the assumption be as in
Theorem 3.1. Suppose that the additive set function M; : Ay — L{LP(u))
has uniformly bounded range. Let Ny : Ay — L(LP(u)) denote the additive
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set function defined by the replacement of S with |S| in the definition of
M. Then N, is the smallest, positive operator valued additive set function
on Ay dominating M. Moreover, the equality

(Ng( - ):L’,y> = lMt,x,y]v on A (3.6)
holds for every x € LP(u); and y € LP' (i), where Mgy : Ay — T is the
additive set function given by (3.3). In particular,

(lSI(t)x,y) = <Nt(Q)xa y) = ’Mt,z,ylv(ﬂ), fOT all ¢ Z 0. (37)

Proof. It suffices to consider the case in which ¢t > 0. Fix z € LP(u)+ and
y € LP ()4, and let Ny, denote the [0, co[-valued, additive set function
on A; defined by

Nigzy(A) = (Ny(A)z, v), A€ A (3.8)
By the definition of variation
|Mt,ac,ylv < Nt,:t,y on At. (39)

Now let A € Af and choose an o = {0,¢1,...,t1,t} € P such that
A= X;l( ntl BL) for some By, Bi,...,Bpnt1 € €. Let fo € Py, b1 €
Ptz—t1>---,,8n—l € P,—t, ., and B, € Pi_t,. By Proposition 2.6 there
exists a refinement v € P; of o such that 4 € X;1(£7) and

(Qu(Brs1) W) Qu(Br) - W Qu(B1) W Qu(Bo) z, y)
= ‘Mt(;),y‘v(A)’ (3.10)

where Mt(’l)’y denotes the restriction of M; s, to Ath). Since |Mt(;),y|v(A) <
| My z.yv(A), it follows that

(Qp(Bar1) W Qu(Br) - - W), Qp(B1) ISI(t1) Qp(Bo) 2, y)
< [Myzylv(A4). (3.11)

In fact, Lemma 3.2 (i) implies that the net {Wt'go Qp(Bo) x}ﬁ ep,, O™
verges to |S|(t1) @p(Bo) z in the norm || - ||, when 1 < p < co and in the
topology |o|(L% (1), L'(u)) when p = oo. So (3.11) follows at once if 1 <
p < 0. In the case in which p = oo, the inequality (3.11) is a consequence
of the fact that the operator Qeo(Bn+1) Wt(fzz Qoo{Br) - - Wt(f_lzl Qoo(B1)
is continuous from L% (u) into itself when L*°(u) is equipped with
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lo|(L®(1), L (1)). By continuing this process m times in (3.11) we can
prove that

Nt,z,y(A) < (Ny(A)z, y) < |Mt,$,y\V(A)-

Since these inequalities hold for every A € Af, the additive set functions
Nizy and (Mg g lv satisfy the inequality Ny, < [Miz |y setwise on the
algebra A;. This, together with (3.9), implies the equality (3.6). Then (3.7)
follows by evaluating the set functions in the equality (3.6) at Q.

Now, let P; : Ay — L(LP(u)) be an arbitrary positive operator valued
additive set function dominating M;. The definition of variation yields
(P )zyy) 2 | Mgyl = (Ni( )z, y) as set functions on A;. Hence, by
Lemma 1.4 we have P,(A) > Ny(A) for every A € A;, which completes the
proof of the proposition. O

From Proposition 3.3 arises a natural question as to whether or not IVy
on A has a o-additive extension to the smallest o-algebra S generated by
At whenever M; has such an extension Mt Moreover, we also expect that
if Mt is ‘concentrated’ on a subset A then so is Nt Up to this point, the
path space = £0:[ has played a formal role. It may be possible to take
2 to be much smaller.

To give a precise statement addressing these problems in Proposition 3.5
below, let Y be a locally convex Hausdorff space. The vector space L£(Y)
equipped with the strong operator topology is denoted by L£s(Y). Those
Ls(Y)-valued o-additive set functions are called operator valued measures.
Let ¢t > 0. Let v be an F-valued or operator valued measure. Let A be
a thick subset of €; in other words, v(F) = 0 for every E € S; satisfying
E N A = {; the scalar case can be found in (7, §17], for example. In this
case, we may say that v is concentrated on the thick subset A. For instance,
Wiener measure defined on the measurable space (£2, S;) is concentrated on
the subspace of all F-valued continuous functions on [0, oo[ which vanish
at 0 and which are constant on [t, oo[; see (15, §3], for example. We omit
the proof of the following lemma as it is routine in view of the definition of
variation.

Lemma 3.4 Let t > 0. Suppose that an additive set function v: Ay — F
admits a o-additive extension U to Sy (that is, v is the restriction of the
measure U : S; — F to A;). Then the variation |v|, : Ay — [0, 00 of v is
the restriction of the variation ||y : S — [0, 00[ (of D).
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In the following proposition we adopt the notation of Proposition 3.3.

Proposition 3.5 Lett > 0 and 1 < p < 0o. Let Q C Z0l gnd let A,
be the algebra generated by cylinder sets (0.2). The o-algebra of subsets of
Q generated by A; is denoted by S;. When 1 < p < oo the space LP(u) is
equipped with the usual norm topology, and when p = oo the space L*°(u)
is with the weak* topology o (L°°(u), L* ().

Assume that the additive set function My : Ay — L(LP(n)) has uni-
formly bounded range and, furthermore, that M; has an eztension to an
operator valued measure My : St — Ls(LP(1)) on the o-algebra S¢ of subsets
of Q.

(i) There is an operator valued measure Ny : S; — Ls(LP(1)) such that

Ny is the restriction of N; and

<Nt( : ).’1}, y> = ’],\Zt,a:,ylv: T e Lp(ﬂ)+a Y€ Lp,(//a)_*_ (3.12)

- on S;. Here J\’/.\ft,x,y is the measure (My( - )z, y) on S;.

(i) If M, is concentrated on a subset A of Q) (that is, A is thick with
respect to My), then so is Ny.

Proof. (i) We can easily define an additive set function Ny : S —
Ls(LP(u)) satisfying (3.12) on S, in which ]]\’;I;,x,ylv is o-additive. Con-
sequently, the set function (Nt( )z, y) is o-additive for all x € LP(u) and
y € LP (11). In other words, with a fixed z € LP(), the set function Ny(- )z :
St — LP(u) is o-additive by the Orlicz-Pettis theorem, [6, Corollary I.4.4],
and hence, Ny : 8 — L (LP(u)) is o-additive.

Now fix € LP(u), and y € L' (u) +- It follows from Lemma 3.4 that
|]\A/.I'Jt,m,y|V is an extension of |Myzyly. This together with (3.6) and (3.12)
implies that (Ny(-)z,y) = (Ni(-)z, y) on A;, and hence, N; = N; on A;
because z € LP(u), and y € L7 (1) 4+ are arbitrarily fixed.

(ii) This follows from (3.12). O

Remark 3.6 It is not assumed that the semigroup § in Theorem 3.1
is strongly continuous at zero, that is, a Cp-semigroup. Conditions un-
der which the modulus semigroup |S| is also a Cp-semigroup when S is a
Cyg-semigroup are considered by Becker and Greiner [3). A necessary and
sufficient condition in any Banach lattice with an order continuous norm is
that S should be dominated by a positive Cy-semigroup [3, Theorem 2.1].
However, it is not so easy to detect if such a dominating semigroup exists.
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On the other hand, if the Cy-semigroup S is. quasicontractive with respect
to the regular norm in the sense of [3, Proposition 2.3] (see the Introduc-
tion), then it is shown in [3, Proposition 2.3] that the modulus semigroup
|S| exists and is strongly continuous at zero. The following simple example
shows that this is not a necessary condition for the case of Cy-semigroups
acting on LP-spaces.

Example 3.7 TLet 1 <p < ocoand ¢ =exp (X[O,oo[)' Let T be the group of
translations acting on LP(R). The operator of multiplication by a bounded
measurable function 9 is written as My. Then the semigroup S of oper-
ators defined by S(t) = M, /4T (t)My for all t > 0 has the property that
|S(t)llzczey = e for all ¢ > 0. Although S is a Co-semigroup of positive
operators, it is not quasicontractive with respect to the regular norm as
mentioned above, so the sufficient condition of [3, Proposition 2.3] for semi-
group domination on LP-spaces is not a necessary condition.

In addition to the examples mentioned in [3, §3], the following example
illustrates the connection between the modulus semigroup and the semivari-
ation of the associated measure.

Example 3.8 Let P = %% be the momentum operator acting in L2(R)
for a quantum mechanical particle with unit mass on the line. The Hamilto-
nian operator for the motion of the particle under the influence of a magnetic
field corresponding to a magnetic vector potential A : R — R is given by
H(A) = 1(P —4A)? (in an appropriate system of units) and e"*#(A) ¢ ¢
R, is the corresponding dynamical group. In the imaginary-time picture,
the semigroup e=HA)t ¢ > 0, is dominated and its modulus semigroup is
e~HO)t ¢ >0, corresponding to a zero magnetic vector potential.

Let M/ be the operator valued set function corresponding to the semi-
group S(t) = e H(A)t ¢ >0, in the formula (0.3), and set M; = MY for all
t > 0. Then M; is related to Wiener measure W7 starting at £ € R by the
formula

((E)s,v) = | < [ #x dW"”) o(z) d,

EeS, and ¢, € LA(R).

The underlying path space §2 may be taken to be the space of all continuous
functions w : [0, oco[— R with X (w) = w(s) for all s > 0.
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The operator valued measure M is related to the unperturbed measure
M, via the Feynman-Kac-Ité formula, [22, §15],

wp ) = [

1 t t
exp <—i <§/ A’oXsds—i-/ AoXSdXS>>th
E 0 0

(3.13)

forall E € S; and t > 0. That e~ #(0¢ ¢ > 0, is actually the modulus
semigroup of e H(A)? ¢ > 0, is easily seen from (3.7) and (3.13), because
the integrand of the right-hand side of equation (3.13) has modulus one, so
that

(71O, ¢) = Miyo(@) = [Miy4|(Q), Torall .6 € L*(R),.
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