Two criteria of Wiener type for minimally thin sets and rarefied sets in a cylinder

Ікико Мічамото

(Received March 20, 2006; Revised November 27, 2006)

Abstract. We shall give two criteria of Wiener type which characterize minimally thin sets and rarefied sets in a cylinder. We shall also show that a positive superharmonic function on a cylinder behaves regularly outside a rarefied set in a cylinder.

Key words: superharmonic function, minimally thin set, rarefied set, cylinder.

1. Introduction

Lelong-Ferrand [14] investigates the regularity of value distribution of a positive superharmonic function on the half-space \mathbf{T}_n through introducing the notion of a set "*effilé* at ∞ " which is defind by a criterion of Wiener type.

Essén and Jackson [7] observed that a subset E of \mathbf{T}_n is effilé at ∞ if and only if E is minimally thin at ∞ , and led later developments to a different direction. Their investigation was motivated by Ahlfors and Heins [1], Hayman [11], Ušakova [18] and Azarin [4], who are concerned with regularity of value distribution of a subharmonic function defined on the half plane \mathbf{T}_2 , the half-space \mathbf{T}_n or cone, outside a exceptional set covered by a sequence of balls. By introducing a new type of exceptional set in \mathbf{T}_n defined by another criterion of Wiener type, which is called a rarefied set, Essén and Jackson [8] gave a detailed covering theorem for it and sharpend their results by proving the regurality of value distribution outside the exceptional set, of a positive superharmonic function on T_n in place of a subharmonic function.

Essén and Jackson's concern is limited to a positive superharmonic function on \mathbf{T}_n which is a special cone, while Azarin [4] treats subharmonic functions defined on general cones. Lelong-Ferrand [15] also referred to a set effilé at ∞ in a cone without giving explicitly a criterion of Wiener type and extended her results in [14] for a positive superharmonic function on

²⁰⁰⁰ Mathematics Subject Classification: 31B05, 31B20.

a cone. In these senses, it seemed important to extend their results to a positive superharmonic functions on a cone and to try obtaining a result sharpening Azarin's result in a true sense. In the previous paper [16], we gave some results to this direction, including two criteria of Wiener types. In our recent paper [17], we obtained a result sharpening Azarin's result in a true sense by giving a covering theorem for a rarefied set in a cone.

On the other hand, Lelong-Ferrand [15] refered to a set effilé at ∞ in a cylinder without giving a criterion of Wiener type, and said that her results in [14] were also extended for a positive superharmonic function on a cylinder. Since a cylinder is a domain of completly different type from a cone in the sense that ∞ is a cusp of domain when it is changed into a bounded domain by a Kelvin transformation, it also seems valuable to observe how a series of results obtained with a cone follows when a cylinder is considered in place of a cone.

In this paper we shall first prove that a minimally thin set at ∞ in a cylinder is also defined by a criterion of Wiener type (Theorem 1). Next we shall define a rarefied set in a cylinder and show that it is also judged by another criterion of Wiener type (Theorem 2). We shall prove the regularity of boundary behavior of a positive superharmonic function on a cylinder outside a rarefied set (Theorem 3). Finally we shall give some connection between a minimally thin set and a rarefied set in a cylinder (Theorem 4).

2. Preliminaries

Let D be a bounded domain on \mathbf{R}^{n-1} $(n \ge 2)$ with smooth boundary. Consider the Dirichlet problem

$$(\Delta_n + \tau)f = 0 \quad \text{on } D$$

$$f = 0 \quad \text{on } \partial D.$$
(2.1)

We denote the least positive eigenvalue of (2.1) by τ_D and the normalized positive eigenfunction corresponding to τ_D by $f_D(X)$;

$$\int_D f_D^2(X) dX = 1,$$

where dX is the (n-1)-dimensional volume element. By $\Gamma_n(D)$, we denote the set $\{P = (X, y) \in \mathbf{R}^n; X \in D, -\infty < y < +\infty\}$. We call it a cylinder. It is known that the Martin boundary of $\Gamma_n(D)$ is the set $\partial\Gamma_n(D) \cup \{\infty, -\infty\}$ (Yoshida [19, p. 285]). When we denote the Martin kernel by K(P, Q) ($P \in$ $\Gamma_n(D), \ Q \in \partial \Gamma_n(D) \cup \{\infty, -\infty\}), \text{ we know}$ $K(P, \infty) = e^{\sqrt{\tau_D}y} f_D(X), \ K(P, -\infty) = \kappa e^{-\sqrt{\tau_D}y} f_D(X)$ $(P = (X, y) \in \Gamma_n(D)),$

where κ is a positive constant.

A subset E of $\Gamma_n(D)$ is called to be minimally thin at ∞ in $\Gamma_n(D)$ (Brelot [5, p. 122] and Doob [6, p. 208]), if there exists a point $P \in \Gamma_n(D)$ such that

$$\hat{R}^{E}_{K(\,\cdot\,,\,\infty)}(P)\neq K(P,\,\infty),$$

where $\hat{R}^{E}_{K(\cdot,\infty)}(P)$ is the regulalized reduced function of $K(\cdot,\infty)$ relative to E (Helms [12, p. 134]).

When we set

$$\Gamma_n(D; -\infty, b) = \{ P = (X, y) \in \mathbf{R}^n; X \in D, y < b \}$$
$$(-\infty < b < +\infty)$$

and E is a subset of $\Gamma_n(D)$ such that there exists a real number b satisfying $E \subset \Gamma_n(D; -\infty, b)$, E is called to be bounded above. If $E \subset \Gamma_n(D)$ is bounded above, then $\hat{R}^E_{K(\cdot,\infty)}$ is bounded on $\Gamma_n(D)$ and hence the greatest harmonic minorant of $\hat{R}^E_{K(\cdot,\infty)}$ is zero. When we denote by G(P, Q) ($P \in \Gamma_n(D)$, $Q \in \Gamma_n(D)$) the Green function of $\Gamma_n(D)$, we see from the Riesz decomposition theorem (Helms [12, p. 116]) that there exists a unique positive measure λ_E on $\Gamma_n(D)$ such that

$$\hat{R}^E_{K(\cdot,\infty)}(P) = G\lambda_E(P) \tag{2.2}$$

for any $P \in \Gamma_n(D)$ and λ_E is concentrated on B_E , where

 $B_E = \{ P \in \Gamma_n(D); E \text{ is not thin at } P \}$

(see Brelot [5, Theorem VIII, 11] and Doob [6, Theorem XI. 14(d)]).

The (Green) energy $\gamma(E)$ of λ_E is defined by

$$\gamma(E) = \int_{\Gamma_n(D)} (G\lambda_E) d\lambda_E$$

(see [12, p. 223]).

In the following, we put the strong assumption relative to D on \mathbb{R}^{n-1} : If $n \geq 3$, then D is a $C^{2,\alpha}$ -domain $(0 < \alpha < 1)$ on \mathbb{R}^{n-1} surrounded by

a finite number of mutually disjoint closed hypersurfaces (e.g. see [9, pp. 88-89] for the definition of $C^{2, \alpha}$ -domain). Then $f_D(X)$ is twice continuously differentiable on \overline{D} ([9, Theorem 6.15]).

3. Statement of results

Let E be a subset of $\Gamma_n(D)$ and $E(k) = E \cap I_k$, where

$$I_k = \{ (X, y) \in \Gamma_n(D) \colon k \le y < k+1 \}.$$

First, for a minimally thin set at ∞ with respect to $\Gamma_n(D)$ we shall give not only a criterion of Wiener type, but also another definition which is parallel to the difinition for a rarefied set at ∞ with respect to $\Gamma_n(D)$ (this definition can be state in more general form as in Armitage and Gardiner [3, Theorem 9.2.6]).

Theorem 1 For a subset E of $\Gamma_n(D)$, the following statements are equivalent:

- (I) E is minimally thin at ∞ with respect to $\Gamma_n(D)$.
- (II) $\sum_{k=0}^{\infty} \gamma (E(k)) e^{-2\sqrt{\tau_D}k} < +\infty.$
- (III) There exists a positive superharmonic function v(P) on $\Gamma_n(D)$ such that

$$\inf_{P \in \Gamma_n(D)} \frac{v(P)}{K(P,\infty)} = 0$$

and

$$E \subset M_v, \tag{3.1}$$

where

$$M_v = \{P = (X, y) \in \Gamma_n(D); v(P) \ge K(P, \infty)\}.$$

A subset E of $\Gamma_n(D)$ is said to be *rarefied* at ∞ with respect to $\Gamma_n(D)$, if there exists a positive superharmonic function v(P) on $\Gamma_n(D)$ such that

$$\inf_{P \in \Gamma_n(D)} \frac{v(P)}{K(P, \infty)} = 0$$

and

$$E \subset H_v,$$

where

$$H_v = \{P = (X, y) \in \Gamma_n(D); v(P) \ge e^{\sqrt{\tau_D y}}\}$$

(for the definition of rarefied sets at ∞ with respect to the half-space, see Aikawa and Essén [2, DEFINITION 12.4 in p. 74] and Hayman [10, p. 474]).

Theorem 2 A subset E of $\Gamma_n(D)$ is rarefied at ∞ with respect to $\Gamma_n(D)$ if and only if

$$\sum_{k=0}^{\infty} e^{-\sqrt{\tau_D}k} \lambda_{(E(k))} \big(\Gamma_n(D) \big) < +\infty.$$

Theorem 3 Let v(P) be a positive superharmonic function on $\Gamma_n(D)$ and $c_{\infty}(v)$ be a constant defined by

$$\inf_{P \in \Gamma_n(D)} \frac{v(P)}{K(P,\infty)} = c_{\infty}(v).$$

Then there exists a rarefied set E at ∞ with respect to $\Gamma_n(D)$ such that $v(P)e^{-\sqrt{\tau_D}y}$ uniformly converges to $c_{\infty}(v)f_D(X)$ on $\Gamma_n(D) - E$ as $y \to +\infty$ $(P = (X, y) \in \Gamma_n(D)).$

Remark We observe the following fact from the definition of a rarefied set. Given any rarefied set E at ∞ with respect to $\Gamma_n(D)$, there exists a positive superharmonic function v(P) on $\Gamma_n(D)$ such that $v(P)e^{-\sqrt{\tau_D}y} \ge 1$ on E and

$$c_{\infty}(v) = \inf_{P = (X, y) \in \Gamma_n(D)} \frac{v(P)}{K(P, \infty)} = 0.$$

Hence $v(P)e^{-\sqrt{\tau_D}y}$ does not converge to $c_{\infty}(v)f_D(X) = 0$ at any point P = (X, y) of $\Gamma_n(D) - E$ as $y \to +\infty$.

A cylinder $\Gamma_n(D')$ is called a subcylinder of $\Gamma_n(D)$, if $\overline{D'} \subset D$ ($\overline{D'}$ is the closure of D'). As in \mathbf{T}_n (Essén and Jackson [8, Remark 3.2]), we have

Theorem 4 Let E be a subset of $\Gamma_n(D)$. If E is rarefied at ∞ with respect to $\Gamma_n(D)$, then E is minimally thin at ∞ with respect to $\Gamma_n(D)$. If E is contained in a subcylinder of $\Gamma_n(D)$ and E is minimally thin at ∞ with respect to $\Gamma_n(D)$, then E is rarefied at ∞ with respect to $\Gamma_n(D)$.

4. Lemmas

In the following we set

$$\Gamma_n(D; a, b) = \{ P = (X, y) \in \mathbf{R}^n ; X \in D, a \le y < b \}$$

(-\infty < a < b \le +\infty).

First of all, we remark that

$$C_1 e^{\sqrt{\tau_D}y} e^{-\sqrt{\tau_D}y'} f_D(X) f_D(X') \le G(P, Q)$$

$$\le C_2 e^{\sqrt{\tau_D}y} e^{-\sqrt{\tau_D}y'} f_D(X) f_D(X') \quad (4.1)$$

for any $P = (X, y) \in \Gamma_n(D)$ and any $Q = (X', y') \in \Gamma_n(D)$ satisfying y < y' - 1, where C_1 and C_2 are two positive constants (Yoshida [19]).

Lemma 1 Let μ be a positive measure on $\Gamma_n(D)$ such that there is a sequence of points $P_i = (X_i, y_i) \in \Gamma_n(D), y_i \to +\infty \ (i \to +\infty)$ satisfying

$$G\mu(P_i) = \int_{\Gamma_n(D)} G(P_i, Q) d\mu(Q) < +\infty$$

(*i* = 1, 2, 3, ...; *Q* \in \Gamma_n(D)).

Then for a real number l,

$$\int_{\Gamma_n(D;l,+\infty)} e^{-\sqrt{\tau_D}y'} f_D(X') d\mu(X',y') < +\infty$$
(4.2)

and

$$\lim_{L \to \infty} e^{-2\sqrt{\tau_D}L} \int_{\Gamma_n(D; -\infty, L)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu(X', y') = 0.$$
(4.3)

Proof. Take a real number l satisfying $P_1 = (X_1, y_1) \in \Gamma_n(D), y_1 + 1 \leq l$. Then from (4.1), we have

$$C_1 e^{\sqrt{\tau_D} y_1} f_D(X_1) \int_{\Gamma_n(D;l,\infty)} e^{-\sqrt{\tau_D} y'} f_D(X') d\mu(X', y')$$

$$\leq \int_{\Gamma_n(D)} G(P_1, Q) d\mu(Q) < +\infty,$$

which gives (4.2). For any positive number ε , from (4.2) we can take a large

number A such that

$$\int_{\Gamma_n(D;A,\infty)} e^{-\sqrt{\tau_D}y'} f_D(X') d\mu(X',y') < \frac{\varepsilon}{2}.$$

If we take a point $P_i = (X_i, y_i) \in \Gamma_n(D), y_i \ge A + 1$, then we have from (4.1)

$$C_1 e^{-\sqrt{\tau_D} y_i} f_D(X_i) \int_{\Gamma_n(D; -\infty, A)} e^{\sqrt{\tau_D} y'} f_D(X') d\mu(X', y')$$
$$\leq \int_{\Gamma_n(D)} G(P_i, Q) d\mu(Q) < +\infty.$$

If L (L > A) is sufficiently large, then

$$e^{-2\sqrt{\tau_D}L} \int_{\Gamma_n(D;-\infty,L)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu(X',y')$$

$$= e^{-2\sqrt{\tau_D}L} \int_{\Gamma_n(D;-\infty,A)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu(X',y')$$

$$+ e^{-2\sqrt{\tau_D}L} \int_{\Gamma_n(D;A,L)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu(X',y')$$

$$\leq e^{-2\sqrt{\tau_D}L} \int_{\Gamma_n(D;-\infty,A)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu(X',y')$$

$$+ \int_{\Gamma_n(D;A,\infty)} e^{-\sqrt{\tau_D}y'} f_D(X') d\mu(X',y') < \varepsilon,$$

which gives (4.3).

Lemma 2 Let v(P) be a positive superharmonic function on $\Gamma_n(D)$ such that

$$\inf_{P \in \Gamma_n(D)} \frac{v(P)}{K(P,\infty)} = 0.$$

Then for any positive number B the set

$$\{P = (X, y) \in \Gamma_n(D); v(P) \ge BK(P, \infty)\}$$

is minimally thin at ∞ with respect to $\Gamma_n(D)$.

Proof. Apply a result in Doob [6, p. 213] to the positive superharmonic function v(P). Then

$$\inf_{y \to \infty, P \in \Gamma_n(D)} \frac{v(P)}{K(P, \infty)} = \inf_{P \in \Gamma_n(D)} \frac{v(P)}{K(P, \infty)} = 0,$$

where "mf limit" means minimal-fine limit. This gives the conclusion. \Box

In the following we put

$$S_n(D; a, b) = \{ P = (X, y) \in \mathbf{R}^n ; X \in \partial D, a \le y < b \}$$
$$(-\infty < a < b \le +\infty)$$

and

$$S_n(D; -\infty, b) = \{ P = (X, y) \in \mathbf{R}^n; X \in \partial D, -\infty < y < b \}$$
$$(-\infty < b \le +\infty).$$

Hence $S_n(D; -\infty, +\infty)$ denoted simply by $S_n(D)$ is $\partial \Gamma_n(D)$.

Lemma 3 Let v(P) be a positive superharmonic function on $\Gamma_n(D)$ and put

$$c_{\infty}(v) = \inf_{P \in \Gamma_n(D)} \frac{v(P)}{K(P,\infty)}, \quad c_{-\infty}(v) = \inf_{P \in \Gamma_n(D)} \frac{v(P)}{K(P,-\infty)}.$$
 (4.4)

Then there are a unique positive measure μ on $\Gamma_n(D)$ and a unique positive measure ν on $S_n(D)$ such that

$$\begin{split} v(P) &= c_{\infty}(v) K(P, \ \infty) + c_{-\infty}(v) K(P, \ -\infty) \\ &+ \int_{\Gamma_n(D)} G(P, \ Q) d\mu(Q) + \int_{S_n(D)} \frac{\partial G(P, \ Q)}{\partial n_Q} d\nu(Q), \end{split}$$

where $\partial/\partial n_Q$ denotes the differentiation at Q along the inward normal into $\Gamma_n(D)$.

Proof. By the Riesz decomposition theorem, we have a unique measure μ on $\Gamma_n(D)$ such that

$$v(P) = \int_{\Gamma_n(D)} G(P, Q) d\mu(Q) + h(P) \quad (P \in \Gamma_n(D)), \tag{4.5}$$

where h is the greatest harmonic minorant of v on $\Gamma_n(D)$. Further by the Martin representation theorem we have another positive measure ν' on
$$\begin{split} \partial \Gamma_n(D) \cup \{\infty, -\infty\} \\ h(P) &= \int_{\partial \Gamma_n(D) \cup \{\infty, -\infty\}} K(P, Q) d\nu'(Q) \\ &= K(P, \infty)\nu'(\{\infty\}) + K(P, -\infty)\nu'(\{-\infty\}) \\ &+ \int_{S_n(D)} K(P, Q) d\nu'(Q) \quad (P \in \Gamma_n(D)). \end{split}$$

We see from (4.4) that $\nu'(\{\infty\}) = c_{\infty}(v)$ and $\nu'(\{-\infty\}) = c_{-\infty}(v)$ (see Yoshida [19, p. 292]). Since

$$K(P, Q) = \lim_{P_1 \to Q, P_1 \in \Gamma_n(D)} \frac{G(P, P_1)}{G(P^*, P_1)} = \frac{\partial G(P, Q)/\partial n_Q}{\partial G(P^*, Q)/\partial n_Q}$$
(4.6)

 $(P^* \text{ is a fixed reference point of the Martin kernel})$, we also obtain

$$\begin{split} h(P) &= c_{\infty}(v) K(P, \infty) \\ &+ c_{-\infty}(v) K(P, -\infty) + \int_{S_n(D)} \frac{\partial G(P, Q)}{\partial n_Q} d\nu(Q) \end{split}$$

by taking

$$d\nu(Q) = \left\{\frac{\partial G(P^*, Q)}{\partial n_Q}\right\}^{-1} d\nu'(Q) \quad (Q \in S_n(D)).$$

Finally this and (4.5) give the conclusion of this lemma.

We remark the following inequality which follows from (4.1).

$$C_{1}e^{\sqrt{\tau_{D}}y}e^{-\sqrt{\tau_{D}}y'}f_{D}(X)\frac{\partial}{\partial n_{X'}}f_{D}(X') \leq \frac{\partial G(P,Q)}{\partial n_{Q}}$$
$$\leq C_{2}e^{\sqrt{\tau_{D}}y}e^{-\sqrt{\tau_{D}}y'}f_{D}(X)\frac{\partial}{\partial n_{X'}}f_{D}(X')$$
(4.7)

for any $P = (X, y) \in \Gamma_n(D)$ and any $Q = (X', y') \in S_n(D)$ satisfying y < y' - 1, where C_1 and C_2 are two positive constants.

Lemma 4 Let ν be a positive measure on $S_n(D)$ such that there is a sequence of points $P_i = (X_i, y_i) \in \Gamma_n(D), y_i \to +\infty \ (i \to +\infty)$ satisfying

$$\int_{S_n(D)} \frac{\partial G(P_i, Q)}{\partial n_Q} d\nu(Q) < +\infty \quad (i = 1, 2, 3, \ldots).$$

Then for a real number l

$$\int_{S_n(D;l,\infty)} e^{-\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu(X', y') < \infty.$$

and

$$\lim_{R \to \infty} e^{-2\sqrt{\tau_D}R} \int_{S_n(D; -\infty, R)} e^{\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu(X', y') = 0.$$

Proof. If we use (4.7) in place of (4.1), we obtain this lemma in the completely paralleled way to the proof of Lemma 1.

Lemma 5 Let $E \subset \Gamma_n(D)$ be bounded above and u(P) be a positive superharmonic function on $\Gamma_n(D)$ such that u(P) is represented as

$$u(P) = \int_{\Gamma_n(D)} G(P, Q) d\mu_u(Q) + \int_{S_n(D)} \frac{\partial}{\partial n_Q} G(P, Q) d\nu_u(Q) \quad (P \in \Gamma_n(D)).$$
(4.8)

with two positive measures μ_u and ν_u on $\Gamma_n(D)$ and $S_n(D)$, respectively, and

$$u(P) \ge 1$$

for any $P \in E$. Then

$$\lambda_E \big(\Gamma_n(D) \big) \le \int_{\Gamma_n(D)} e^{\sqrt{\tau_D} y'} f_D(X') d\mu_u(X', y') + \int_{S_n(D)} e^{\sqrt{\tau_D} y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu_u(X', y').$$
(4.9)

When $u(P) = \hat{R}_1^E(P)$ $(P \in \Gamma_n(D))$, the equality holds in (4.9).

Proof. Since λ_E is concentrated on B_E and $u(P) \ge 1$ for any $P \in B_E$, we see from (4.8) that

$$\lambda_E \big(\Gamma_n(D) \big) = \int_{\Gamma_n(D)} d\lambda_E \le \int_{\Gamma_n(D)} u(P) d\lambda_E(P)$$
$$= \int_{\Gamma_n(D)} \hat{R}^E_{K(\cdot,\infty)}(Q) d\mu_u(Q)$$

Minimally thin sets and rarefied sets in a cylinder

$$+ \int_{S_n(D)} \left(\int_{\Gamma_n(D)} \frac{\partial}{\partial n_Q} G(P, Q) d\lambda_E(P) \right) d\nu_u(Q).$$
(4.10)

Now we have

$$\hat{R}^{E}_{K(\cdot,\infty)}(Q) \le K(Q,\infty) = e^{\sqrt{\tau_{D}}y'} f_{D}(X')$$

$$(Q = (X', y') \in \Gamma_{n}(D)). \quad (4.11)$$

Since

$$\int_{\Gamma_n(D)} \frac{\partial}{\partial n_Q} G(P, Q) d\lambda_E(P) \leq \lim_{\rho \to 0} \frac{1}{\rho} \int_{\Gamma_n(D)} G(P, P_\rho) d\lambda_E(P)$$

for any $Q \in S_n(D)$ $(P_\rho = (X_\rho, y_\rho) = Q + \rho n_Q \in \Gamma_n(D), n_Q$ is the inward normal unit vector at Q) and

$$\int_{\Gamma_n(D)} G(P, P_{\rho}) d\lambda_E(P) = \hat{R}^E_{K(\cdot, \infty)}(P_{\rho})$$
$$\leq K(P_{\rho}, \infty) = e^{\sqrt{\tau_D} y_{\rho}} f_D(X_{\rho}),$$

we have

$$\int_{\Gamma_n(D)} \frac{\partial}{\partial n_Q} G(P, Q) d\lambda_E(P) \le e^{\sqrt{\tau_D} y'} \frac{\partial}{\partial n_{X'}} f_D(X') \tag{4.12}$$

for any $Q = (X', y') \in S_n(D)$. Thus from (4.10), (4.11) and (4.12) we obtain (4.9).

When $u(P) = \hat{R}_1^E(P)$, u(P) has the expression (4.8) by Lemma 3, because $\hat{R}_1^E(P)$ is bounded on $\Gamma_n(D)$. Then we easily have the equalities only in (4.10), because $\hat{R}_1^E(P) = 1$ for any $P \in B_E$ (see Brelot [5, p. 61] and Doob [6, p. 169]). Hence if we can show that

$$\mu_u \big(\{ P \in \Gamma_n(D); \hat{R}^E_{K(\cdot,\infty)}(P) < K(P,\infty) \} \big) = 0$$
(4.13)

and

$$\nu_u \left(\left\{ Q = (X', y') \in S_n(D); \right. \\ \left. \int_{\Gamma_n(D)} \frac{\partial}{\partial n_Q} G(P, Q) d\lambda_E(P) < e^{\sqrt{\tau_D} y'} \frac{\partial}{\partial n_{X'}} f_D(X') \right\} \right) = 0,$$

$$(4.14)$$

then we can prove the equality in (4.9). To see (4.13), we remark that

$$\{P \in \Gamma_n(D); \hat{R}^E_{K(\cdot,\infty)}(P) < K(P,\infty)\} \subset \Gamma_n(D) - B_E$$

and

$$\mu_u(\Gamma_n(D) - B_E) = 0$$

(see Brelot [5, Theorem VIII,11] and Doob [6, Theorem XI.14(d)]). To prove (4.14), we set

$$B'_E = \{Q \in S_n(D); E \text{ is not minimally thin at } Q\}$$
(4.15)

and $e = \{P \in E; \hat{R}^{E}_{K(\cdot,\infty)}(P) < K(P,\infty)\}$. Then *e* is a polar set (see Doob [6, Theorem VI.3(b)]) and hence for any $Q \in S_n(D)$

$$\hat{R}^E_{K(\,\cdot\,,\,Q)} = \hat{R}^{E-e}_{K(\,\cdot\,,\,Q)}$$

(see Doob [6, Theorem VI.3(c)]). Thus at any $Q \in B'_E$, E - e is not also minimally thin at Q and hence

$$\int_{\Gamma_n(D)} K(P, Q) d\eta(P) = \lim_{P' \to Q, P' \in E-e} \int_{\Gamma_n(D)} K(P, P') d\eta(P) \quad (4.16)$$

for any positive measure η on $\Gamma_n(D)$, where

$$K(P, P') = \frac{G(P, P')}{G(P^*, P')} \quad \left(P \in \Gamma_n(D), \ P' \in \Gamma_n(D)\right)$$

(see Brelot [5, Theorem XV,6]). Now, take $\eta = \lambda_E$ in (4.16). Since

$$\lim_{P \to Q, P \in \Gamma_n(D)} \frac{K(P, \infty)}{G(P^*, P)}$$
$$= e^{\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') \left\{ \frac{\partial G(P^*, Q)}{\partial n_Q} \right\}^{-1} \quad \left(Q = (X', y') \in S_n(D)\right)$$

(for the existence of the limit in the left side, see Jerison and Kenig [13, (7.9) in p. 87]), we obtain from (4.6)

$$\begin{split} &\int_{\Gamma_n(D)} \frac{\partial G(P,Q)}{\partial n_Q} d\lambda_E(P) \\ &= e^{\sqrt{\tau_D} y'} \frac{\partial}{\partial n_{X'}} f_D(X') \lim_{P' \to Q, \, P' \in E-e} \int_{\Gamma_n(D)} \frac{G(P,P')}{K(P',\,\infty)} d\lambda_E(P). \end{split}$$

for any $Q = (X', y') \in B'_E$. Since

$$\int_{\Gamma_n(D)} \frac{G(P, P')}{K(P', \infty)} d\lambda_E(P) = \frac{1}{K(P', \infty)} \hat{R}^E_{K(\cdot, \infty)}(P') = 1$$

for any $P' \in E - e$, we have

$$\int_{\Gamma_n(D)} \frac{\partial G(P, Q)}{\partial n_Q} d\lambda_E(P) = e^{\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X')$$

for any $Q = (X', y') \in B'_E$, which shows

$$\begin{cases} Q = (X', y') \in S_n(D); \\ \int_{\Gamma_n(D)} \frac{\partial}{\partial n_Q} G(P, Q) d\lambda_E(P) < e^{\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') \\ \subset S_n(D) - B'_E. \quad (4.17) \end{cases}$$

Let h be the greatest harmonic minorant of $u(P) = \hat{R}_1^E(P)$ and ν'_u be the Martin representing measure of h. If we can prove that

$$\hat{R}_h^E = h \tag{4.18}$$

on $\Gamma_n(D)$, then $\nu'_u(S_n(D) - B'_E) = 0$ (see Essén and Jackson [8, pp. 240–241], Brelot [5, Theorem XV,11] and, Aikawa and Essén [2, Part II, p. 188]). Since

$$d\nu'_u(Q) = \frac{\partial}{\partial n_Q} G(P_0, Q) d\nu_u(Q) \quad (Q \in S_n(D))$$

from (4.6), we also have $\nu_u(S_n(D) - B'_E) = 0$, which gives (4.14) from (4.17). To prove (4.18), set $u^* = \hat{R}_1^E - h$. Then

$$u^* + h = \hat{R}_1^E = \hat{R}_{u^*+h}^E \le \hat{R}_{u^*}^E + \hat{R}_h^E$$

(see Brelot [5, VI, 10. d)] and Helms [12, THEOREM 7.12 (iv)]), and hence

$$\hat{R}_{h}^{E} - h \ge u^{*} - \hat{R}_{u^{*}}^{E} \ge 0,$$

from which (4.18) follows.

5. Proof of Theorem 1

Proof of (I) \Rightarrow (II). Apply the Riesz decomposition theorem to the superharmonic function $\hat{R}^{E}_{K(\cdot,\infty)}$ on $\Gamma_{n}(D)$. Then we have a positive measure μ

on $\Gamma_n(D)$ satisfying

 $G\mu(P) < \infty$

for any $P\in \Gamma_n(D)$ and a non-negative greatest harmonic minorant H of $\hat{R}^E_{K(\cdot,\,\infty)}$ such that

$$\hat{R}^E_{K(\cdot,\infty)} = G\mu + H. \tag{5.1}$$

We remark that $K(P, \infty)$ $(P \in \Gamma_n(D)$ is a minimal function at ∞ .

Let *E* be a minimally thin set at ∞ with respect to $\Gamma_n(D)$. Then $\hat{R}^E_{K(\cdot,\infty)}$ is a potential (see Doob [6, p. 208]) and hence $H \equiv 0$ on $\Gamma_n(D)$. Since

$$\hat{R}^E_{K(\cdot,\infty)} = K(P,\infty) \tag{5.2}$$

for any $P \in B_E$ (Brelot [5, p. 61] and Doob [6, p. 169]), we see from (5.1)

$$G\mu(P) = K(P, \infty) \tag{5.3}$$

for any $P \in B_E$. Take a sufficiently large integer L from Lemma 1 such that

$$C_2 e^{-2\sqrt{\tau_D}L} \int_{\Gamma_n(D; -\infty, L)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu(X', y') < \frac{1}{4},$$

where C_2 is the constant in (4.1). Then from (4.1)

$$\int_{\Gamma_n(D;-\infty,L)} G(P,Q) d\mu(Q) \le \frac{1}{4} K(P,\infty)$$

for any $P = (X, y) \in \Gamma_n(D), y \ge L + 1$, and hence from (5.3)

$$\int_{\Gamma_n(D;L,+\infty)} G(P,Q) d\mu(Q) \ge \frac{3}{4} K(P,\infty)$$
(5.4)

for any $P = (X, y) \in B_E$, $y \ge L + 1$. Now, divide $G\mu$ into three parts:

$$G\mu(P) = A_1^{(k)}(P) + A_2^{(k)}(P) + A_3^{(k)}(P) \quad (P \in \Gamma_n(D)),$$
(5.5)

where

$$A_1^{(k)}(P) = \int_{\Gamma_n(D;k-1,k+2)} G(P, Q) d\mu(Q),$$

$$A_2^{(k)}(P) = \int_{\Gamma_n(D;-\infty,k-1)} G(P, Q) d\mu(Q),$$

$$A_3^{(k)}(P) = \int_{\Gamma_n(D; k+2, +\infty)} G(P, Q) d\mu(Q).$$

Then we shall show that there exists an integer N such that

$$B_E \cap \overline{I_k} \subset \left\{ P = (X, y) \in \Gamma_n(D); \ A_1^{(k)}(P) \ge \frac{1}{4} K(P, \infty) \right\}$$
$$(k \ge N). \quad (5.6)$$

Take any $P = (X, y) \in \overline{I_k} \cap \Gamma_n(D)$. When by Lemma 1 we choose a sufficiently large integer N_1 such that

$$e^{-2\sqrt{\tau_D}k} \int_{\Gamma_n(D;-\infty,k-1)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu(X',y') \le \frac{1}{4C_2} \quad (k\ge N_1)$$

and

$$\int_{\Gamma_n(D;k+2,\infty)} e^{-\sqrt{\tau_D}y'} f_D(X') d\mu(X',y') \le \frac{1}{4C_2} \quad (k \ge N_1),$$

we have from (4.1) that

$$A_2^{(k)}(P) \le \frac{1}{4}K(P,\infty) \quad (k \ge N_1)$$
 (5.7)

and

$$A_3^{(k)}(P) \le \frac{1}{4}K(P,\infty) \quad (k \ge N_1).$$
 (5.8)

Put

$$N = \max\{N_1, L+1\}.$$

If $P = (X, y) \in B_E \cap \overline{I_k}$ $(k \ge N)$, then we have from (5.4), (5.5), (5.7) and (5.8) that

$$\begin{split} A_1^{(k)}(P) &\geq \int_{\Gamma_n(D;L,+\infty)} G(P,\,Q) d\mu(Q) - A_2^{(k)}(P) - A_3^{(k)}(P) \\ &\geq \frac{1}{4} K(P,\,\infty), \end{split}$$

which gives (5.6).

Since the measure $\lambda_{E(k)}$ is concentrated on $B_{E(k)}$ and $B_{E_k} \subset \overline{E_k} \cap \Gamma_n(D)$,

we finally obtain by (5.6) that

$$\begin{split} \gamma \big(E(k) \big) &= \int_{\Gamma_n(D)} (G\lambda_{E(k)}) d\lambda_{E(k)} \\ &\leq \int_{B_{E(k)}} e^{\sqrt{\tau_D} y} f_D(X) d\lambda_{E(k)}(X, y) \\ &\leq 4 \int_{B_{E(k)}} A_1^{(k)}(P) d\lambda_{E(k)}(P) \\ &= 4 \int_{\Gamma_n(D;k-1,k+2)} \left\{ \int_{\Gamma_n(D)} G(P, Q) d\lambda_{E(k)}(P) \right\} d\mu(Q) \\ &\leq 4 \int_{\Gamma_n(D;k-1,k+2)} e^{\sqrt{\tau_D} y'} f_D(X') d\mu(X', y') \quad (k \ge N) \end{split}$$

and hence

$$\sum_{k=N}^{\infty} \gamma(E(k)) e^{-2\sqrt{\tau_D}k}$$

$$\leq 4 \sum_{k=N}^{\infty} \int_{\Gamma_n(D;k-1,k+2)} e^{\sqrt{\tau_D}y'} f_D(X') e^{-2\sqrt{\tau_D}k} d\mu(X',y')$$

$$\leq 12 e^{4\sqrt{\tau_D}} \int_{\Gamma_n(D;N-1,\infty)} e^{-\sqrt{\tau_D}y'} f_D(X') d\mu(X',y')$$

$$< \infty$$

from Lemma 1. This gives (II).

Proof of (II) \Rightarrow (III). Since

$$\hat{R}_{K(\cdot,\infty)}^{E(k)}(Q) = K(Q,\infty)$$

for any $Q \in B_{E(k)}$ as in (5.2), we have

and hence from (4.1)

$$\hat{R}_{K(\cdot,\infty)}^{E(k)}(P) \leq C_2 e^{\sqrt{\tau_D}y} f_D(X) \int_{B_{E(k)}} e^{-\sqrt{\tau_D}y'} f_D(X') d\lambda_{E(k)}(X', y') \\ \leq C_2 e^{\sqrt{\tau_D}y} f_D(X) e^{-2\sqrt{\tau_D}k} \gamma(E(k))$$
(5.9)

for any $P = (X, y) \in \Gamma_n(D)$ and any integer k satisfying $k - 1 \ge y$. If we define a measure μ on $\Gamma_n(D)$ by

$$\mu = \sum_{k=0}^{\infty} \lambda_{E(k)}$$

then from (I) and (5.9)

$$G\mu(P) = \int_{\Gamma_n(D)} G(P, Q) d\mu(Q) = \sum_{k=0}^{\infty} \hat{R}_{K(\cdot, \infty)}^{E(k)}(P)$$

is a finite-valued superharmonic function on $\Gamma_n(D)$ and

$$G\mu(P) \ge \int_{\Gamma_n(D)} G(P, Q) d\lambda_{E(k)}(Q) = \hat{R}_{K(\cdot, \infty)}^{E(k)}(P) = K(P, \infty)$$

for any $P = (X, y) \in B_{E(k)}$, and from (4.1)

 $G\mu(P) \ge C'K(P,\infty)$

for any $P = (X, y) \in \Gamma_n(D; -\infty, 0)$, where

$$C' = C_1 \int_{\Gamma_n(D;1,+\infty)} e^{-\sqrt{\tau_D}y'} f_D(X') d\mu(X', y').$$

It is evident from (5.4) that C' is positive. If we set

$$E(-1) = E \cap \Gamma_n(D; -\infty, 0), \quad E' = \bigcup_{k=-1}^{\infty} B_{E(k)}$$

and $B = \min(C', 1)$, then

$$E' \subset \{P = (X, y) \in \Gamma_n(D); \ G\mu(P) \ge BK(P, \infty)\}.$$

Since E' is equal to E except a polar set S (see Brelot [5, p. 57] and Doob [6, p. 177]), we can take a positive measure η on $\Gamma_n(D)$ such that $G\eta$ is identically $+\infty$ on S (see Doob [6, p. 58]). If we define a measure ν on

 $\Gamma_n(D)$ by

$$\nu = \frac{1}{B}(\mu + \eta),$$

then

$$E \subset \{P = (X, y) \in \Gamma_n(D); \ G\nu(P) \ge K(P, \infty)\}.$$
(5.10)

If we put $v(P) = G\nu(P)$, then (5.10) shows that v(P) is the function required in (III).

Proof of (III) \Rightarrow (I). Let v(P) be the function in (III). By Lemma 3, we can find two positive measures μ on $\Gamma_n(D)$ and ν on $S_n(D)$ such that

$$\begin{split} v(P) &= c_{-\infty}(v) K(P, -\infty) + \int_{\Gamma_n(D)} G(P, Q) d\mu(Q) \\ &+ \int_{S_n(D)} \frac{\partial G(P, Q)}{\partial n_Q} d\nu(Q) \quad (P \in \Gamma_n(D)). \end{split}$$

When we put

$$W(P) = \int_{\Gamma_n(D)} G(P, Q) d\mu(Q) + \int_{S_n(D)} \frac{\partial G(P, Q)}{\partial n_Q} d\nu(Q),$$

we have

$$W(P) = v(P) - c_{-\infty}(v)K(P, -\infty)$$

$$\geq \left\{ e^{\sqrt{\tau_D}y} - c_{-\infty}(v)\kappa e^{-\sqrt{\tau_D}y} \right\} f_D(X) \geq \frac{1}{2}K(P, \infty)$$

for any $P = (X, y) \in M_v$, $y \ge y_0$, with a sufficiently large y_0 , which gives

$$M_v \cap \Gamma_n(D; y_0, \infty)$$

$$\subset \left\{ P = (X, y) \in \Gamma_n(D); W(P) \ge \frac{1}{2} K(P, \infty) \right\}. \quad (5.11)$$

We easily see that

$$\left\{P = (X, y) \in \Gamma_n(D); W(P) \ge \frac{1}{2}K(P, \infty)\right\} \subset U \cup V,$$
 (5.12)

where

$$U = \left\{ P = (X, y) \in \Gamma_n(D); \int_{\Gamma_n(D)} G(P, Q) d\mu(Q) \ge \frac{1}{4} K(P, \infty) \right\}$$

and

$$V = \left\{ P = (X, y) \in \Gamma_n(D); \int_{S_n(D)} \frac{\partial G(P, Q)}{\partial n_Q} d\nu(Q) \ge \frac{1}{4} K(P, \infty) \right\}$$

By Lemma 2 applied to $\int_{\Gamma_n(D)} G(P,Q) d\mu(Q)$ and $\int_{S_n(D)} \partial G(P,Q) / \partial n_Q d\nu(Q)$, U and V are minimally thin sets at ∞ with respect to $\Gamma_n(D)$, respectively. When we observe

$$E \subset (M_v \cap \Gamma_n(D; y_0, \infty)) \cup \Gamma_n(D; -\infty, y_0),$$

we see from (3.1), (5.11) and (5.12) that E is a minimally thin set at ∞ with respect to $\Gamma_n(D)$.

6. Proof of Theorem 2

Let E be a rarefied set at ∞ with respect to $\Gamma_n(D)$. Then there exists a positive superharmonic function v(P) on $\Gamma_n(D)$ such that

$$\inf_{P=(X,y)\in\Gamma_n(D)}\frac{v(P)}{K(P,\infty)}=0$$

and

$$E \subset H_v. \tag{6.1}$$

By Lemma 3, we can find two positive measures μ on $\Gamma_n(D)$ and ν on $S_n(D)$ such that

$$\begin{split} v(P) &= c_{-\infty}(v) K(P, -\infty) + \int_{\Gamma_n(D)} G(P, Q) d\mu(Q) \\ &+ \int_{S_n(D)} \frac{\partial G(P, Q)}{\partial n_Q} d\nu(Q) \quad (P \in \Gamma_n(D)). \end{split}$$

Now we write

$$v(P) = c_{-\infty}(v)K(P, -\infty) + B_1^{(k)}(P) + B_2^{(k)}(P) + B_3^{(k)}(P), \quad (6.2)$$

where

$$B_1^{(k)}(P) = \int_{\Gamma_n(D; -\infty, k-1)} G(P, Q) d\mu(Q) + \int_{S_n(D; -\infty, k-1)} \frac{\partial G(P, Q)}{\partial n_Q} d\nu(Q),$$

$$B_2^{(k)}(P) = \int_{\Gamma_n(D; k-1, k+2)} G(P, Q) d\mu(Q) + \int_{S_n(D; k-1, k+2)} \frac{\partial G(P, Q)}{\partial n_Q} d\nu(Q)$$

and

$$B_{3}^{(k)}(P) = \int_{\Gamma_{n}(D; k+2, \infty)} G(P, Q) d\mu(Q) + \int_{S_{n}(D; k+2, \infty)} \frac{\partial G(P, Q)}{\partial n_{Q}} d\nu(Q) \quad (P \in \Gamma_{n}(D); k = 1, 2, 3, \ldots).$$

First we shall show the existence of an integer N such that

$$H_v \cap I_k \subset \left\{ P = (X, y) \in I_k; B_2^{(k)}(P) \ge \frac{1}{2} e^{\sqrt{\tau_D} y} \right\}$$
 (6.3)

for any integer $k, k \ge N$. Since v(P) is finite almost everywhere on $\Gamma_n(D)$, from Lemmas 1 and 4 applied to

$$\int_{\Gamma_n(D)} G(P, Q) d\mu(Q) \quad \text{and} \quad \int_{S_n(D)} \frac{\partial G(P, Q)}{\partial n_Q} d\nu(Q)$$

respectively, we can take an integer N such that for any $k, k \ge N$,

$$e^{-2\sqrt{\tau_D}k} \int_{\Gamma_n(D;-\infty,k-1)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu(X',y') \le \frac{1}{12C_2 J_D}, \quad (6.4)$$

$$\int_{\Gamma_n(D;k+2,+\infty)} e^{-\sqrt{\tau_D}y'} f_D(X') d\mu(X',y') \le \frac{1}{12C_2 J_D},$$
(6.5)

$$e^{-2\sqrt{\tau_D}k} \int_{S_n(D;-\infty,k-1)} e^{\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu(X',y') \le \frac{1}{12C_2 J_D} \quad (6.6)$$

and

$$\int_{S_n(D;k+2,+\infty)} e^{-\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu(X',y') \le \frac{1}{12C_2 J_D}, \qquad (6.7)$$

where

$$J_D = \sup_{X \in D} f_D(X).$$

Then for any $P = (X, y) \in I_k \ (k \ge N)$, we have

$$B_1^{(k)}(P) \le C_2 e^{-\sqrt{\tau_D}y} f_D(X) \int_{\Gamma_n(D; -\infty, k-1)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu(X', y')$$

$$+ C_2 e^{-\sqrt{\tau_D}y} f_D(X) \int_{S_n(D; -\infty, k-1)} e^{\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu(X', y')$$

$$\leq 2C_2 e^{-\sqrt{\tau_D}y} J_D e^{2\sqrt{\tau_D}k} \frac{1}{12C_2 J_D} = \frac{1}{6} e^{\sqrt{\tau_D}y}$$

from (4.1), (4.7), (6.4) and (6.6), and

$$B_{3}^{(k)}(P) \leq C_{2}e^{\sqrt{\tau_{D}}y}f_{D}(X)\int_{\Gamma_{n}(D;k+2,+\infty)}e^{-\sqrt{\tau_{D}}y'}f_{D}(X')d\mu(X',y') + C_{2}e^{\sqrt{\tau_{D}}y}f_{D}(X)\int_{S_{n}(D;k+2,+\infty)}e^{-\sqrt{\tau_{D}}y'}\frac{\partial}{\partial n_{X'}}f_{D}(X')d\nu(X',y') \leq \frac{1}{6}e^{\sqrt{\tau_{D}}y}$$

from (4.1), (4.7), (6.5) and (6.7). Further we can assume that

$$6\kappa c_{-\infty}(v)J_D \le e^{2\sqrt{\tau_D}y}$$

for any $P = (X, y) \in I_k$ $(k \ge N)$, hence if $P = (X, y) \in I_k \cap H_v$ $(k \ge N)$, then we obtain

$$B_2^{(k)}(P) \ge e^{\sqrt{\tau_D}y} - \frac{1}{6}e^{\sqrt{\tau_D}y} - \frac{1}{6}e^{\sqrt{\tau_D}y} - \frac{1}{6}e^{\sqrt{\tau_D}y} = \frac{1}{2}e^{\sqrt{\tau_D}y}$$

from (6.2), which gives (6.3).

Now we observe from (6.1) and (6.3) that

$$B_2^{(k)}(P) \ge \frac{1}{2}e^{\sqrt{\tau_D}k} \quad (k \ge N)$$

for any $P \in E(k)$. If we define a function $u_k(P)$ on $\Gamma_n(D)$ by

$$u_k(P) = 2e^{-\sqrt{\tau_D}k}B_2^{(k)}(P),$$

then

$$u_k(P) \ge 1 \quad (P \in E(k), \, k \ge N)$$

and

$$u_k(P) = \int_{\Gamma_n(D)} G(P, Q) d\mu_k(Q) + \int_{S_n(D)} \frac{\partial G(P, Q)}{\partial n_Q} d\nu_k(Q)$$

with two measures

$$d\mu_k(Q) = \begin{cases} 2e^{-\sqrt{\tau_D}k} d\mu(Q) & (Q \in \Gamma_n(D; k-1, k+2)) \\ 0 & (Q \in \Gamma_n(D; -\infty, k-1) \cup \Gamma_n(D; k+2, \infty)) \end{cases}$$

and

$$d\nu_k(Q) = \begin{cases} 2e^{-\sqrt{\tau_D}k}d\nu(Q) & (Q \in S_n(D; k-1, k+2)) \\ 0 & (Q \in S_n(D; -\infty, k-1) \cup S_n(D; k+2, \infty)). \end{cases}$$

Hence by applying Lemma 5 to $u_k(P)$, we obtain

$$\lambda_{E(k)}(\Gamma_n(D)) \leq 2e^{-\sqrt{\tau_D}k} \left\{ \int_{\Gamma_n(D;k-1,k+2)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu(X',y') \right. \\ \left. + \int_{S_n(D;k-1,k+2)} e^{\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu(X',y') \right\}$$

 $(k \ge N)$. Finally we have

~~

$$\begin{split} &\sum_{k=N}^{\infty} e^{-\sqrt{\tau_D}k} \lambda_{E(k)} \big(\Gamma_n(D) \big) \\ &\leq 6 e^{4\sqrt{\tau_D}} \bigg\{ \int_{\Gamma_n(D;N-1,\infty)} e^{-\sqrt{\tau_D}y'} f_D(X') d\mu(X', y') \\ &+ \int_{S_n(D;N-1,\infty)} e^{-\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu(X', y') \bigg\}. \end{split}$$

If we take a sufficiently large N, then the integrals of the right side are finite from Lemmas 1 and 4.

Suppose that a subset E of $\Gamma_n(D)$ satisfies

$$\sum_{k=0}^{\infty} e^{-\sqrt{\tau_D}k} \lambda_{E(k)} \big(\Gamma_n(D) \big) < +\infty.$$

Then from the second part of Lemma 5 applied to E(k), we have

$$\sum_{k=0}^{\infty} e^{-\sqrt{\tau_D}k} \left(\int_{\Gamma_n(D)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu_k^*(X', y') \right. \\ \left. + \int_{S_n(D)} e^{\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu_k^*(X', y') \right) < \infty, \quad (6.8)$$

where μ_k^* and ν_k^* are two positive measures on $\Gamma_n(D)$ and $S_n(D)$, respectively, such that

$$\hat{R}_{1}^{E(k)}(P) = \int_{\Gamma_{n}(D)} G(P, Q) d\mu_{k}^{*}(Q)$$

Minimally thin sets and rarefied sets in a cylinder

$$+ \int_{S_n(D)} \frac{\partial}{\partial n_Q} G(P, Q) d\nu_k^*(Q).$$
(6.9)

Consider the function $v_0(P)$ on $\Gamma_n(D)$ defined by

$$v_0(P) = \sum_{k=-1}^{\infty} e^{\sqrt{\tau_D}(k+1)} \hat{R}_1^{E(k)}(P) \quad (P \in \Gamma_n(D)).$$

Then $v_0(P)$ is a superharmonic function on $\Gamma_n(D)$ or identically ∞ on $\Gamma_n(D)$. Take any positive integer k_0 and write

$$v_0(P) = v_1(P) + v_2(P) \quad (P \in \Gamma_n(D)),$$

where

$$v_1(P) = \sum_{k=-1}^{k_0+1} e^{\sqrt{\tau_D}(k+1)} \hat{R}_1^{E(k)}(P), \ v_2(P) = \sum_{k_0+2}^{\infty} e^{\sqrt{\tau_D}(k+1)} \hat{R}_1^{E(k)}(P)$$

Since μ_k^* and ν_k^* are concentrated on $B_{E(k)} \subset \overline{E(k)} \cap \Gamma_n(D)$ and $B'_{E(k)} \subset \overline{E(k)} \cap S_n(D)$ (see (4.15) for the notation $B'_{E(k)}$), respectively (Brelot [5, Theorem XV,11]), we have from (4.1) and (4.7) that

$$e^{\sqrt{\tau_D}(k+1)} \int_{\Gamma_n(D)} G(P_0, Q) d\mu_k^*(Q)$$

$$\leq C_2 e^{\sqrt{\tau_D}k} e^{\sqrt{\tau_D}(y_0+1)} f_D(X_0) \int_{\Gamma_n(D)} e^{-\sqrt{\tau_D}y'} f_D(X') d\mu_k^*(X', y')$$

$$\leq C_2 e^{\sqrt{\tau_D}(y_0+1)} f_D(X_0) e^{-\sqrt{\tau_D}k} \int_{\Gamma_n(D)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu_k^*(X', y')$$

and

$$e^{\sqrt{\tau_D}(k+1)} \int_{S_n(D)} \frac{\partial}{\partial n_Q} G(P_0, Q) d\nu_k^*(Q)$$

$$\leq C_2 e^{\sqrt{\tau_D}(y_0+1)} f_D(X_0) e^{-\sqrt{\tau_D}k} \int_{S_n(D)} e^{\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu_k^*(X', y')$$

for a point $P_0 = (X_0, y_0) \in \Gamma_n(D)$, $y_0 \le k_0 + 1$, and any integer $k \ge k_0 + 2$. Hence we know

$$v_2(P_0) \le C_2 e^{\sqrt{\tau_D}(y_0+1)} f_D(X_0)$$

$$\times \sum_{k_0+2}^{\infty} e^{-\sqrt{\tau_D}k} \bigg\{ \int_{\Gamma_n(D)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu_k^*(X',y') \\ + \int_{S_n(D)} e^{\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu_k^*(X',y') \bigg\}.$$
(6.10)

This and (6.8) show that $v_2(P_0)$ is finite and hence $v_0(P)$ is a positive superharmonic function on $\Gamma_n(D)$. To see

$$c_{\infty}(v_0) = \inf_{P \in \Gamma_n(D)} \frac{v_0(P)}{K(P,\infty)} = 0,$$
(6.11)

consider the representations of $v_0(P)$, $v_1(P)$ and $v_2(P)$

$$\begin{split} v_{0}(P) &= c_{\infty}(v_{0})K(P, \, \infty) + c_{-\infty}(v_{0})K(P, \, -\infty) \\ &+ \int_{\Gamma_{n}(D)} G(P, \, Q)d\mu_{(0)}(Q) + \int_{S_{n}(D)} \frac{\partial G(P, \, Q)}{\partial n_{Q}}d\nu_{(0)}(Q), \\ v_{1}(P) &= c_{\infty}(v_{1})K(P, \, \infty) + c_{-\infty}(v_{1})K(P, \, -\infty) \\ &+ \int_{\Gamma_{n}(D)} G(P, \, Q)d\mu_{(1)}(Q) + \int_{S_{n}(D)} \frac{\partial G(P, \, Q)}{\partial n_{Q}}d\nu_{(1)}(Q), \end{split}$$

and

$$v_{2}(P) = c_{\infty}(v_{2})K(P, \infty) + c_{-\infty}(v_{2})K(P, -\infty) + \int_{\Gamma_{n}(D)} G(P, Q)d\mu_{(2)}(Q) + \int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}}d\nu_{(2)}(Q)$$

by Lemma 3. It is evident from (6.9) that $c_{\infty}(v_1) = 0$ for any k_0 . Since

$$\begin{aligned} c_{\infty}(v_2) &= \inf_{P \in \Gamma_n(D)} \frac{v_2(P)}{K(P,\infty)} \le \frac{v_2(P_0)}{K(P_0,\infty)} \\ &\le C_2 e^{\sqrt{\tau_D}} \sum_{k_0+2}^{\infty} e^{-\sqrt{\tau_D}k} \bigg\{ \int_{\Gamma_n(D)} e^{\sqrt{\tau_D}y'} f_D(X') d\mu_k^*(X',y') \\ &+ \int_{S_n(D)} e^{\sqrt{\tau_D}y'} \frac{\partial}{\partial n_{X'}} f_D(X') d\nu_k^*(X',y') \bigg\} \to 0 \quad (k_0 \to +\infty) \end{aligned}$$

from (6.8) and (6.10), we know $c_{\infty}(v_2) = 0$ and hence $c_{\infty}(v_0) = 0$, which is (6.11). Since $\hat{R}_1^{E(k)} = 1$ on $B_{E(k)}, B_{E(k)} \subset \overline{E(k)} \cap \Gamma_n(D)$ (Brelot [5, p. 61] and

Doob [6, p. 169]), we see

$$v_0(P) \ge e^{\sqrt{\tau_D}(k+1)} \ge e^{\sqrt{\tau_D}y}$$

for any $P = (X, y) \in B_{E(k)}$ (k = -1, 0, 1, 2, ...). If we set $E' = \bigcup_{k=-1}^{\infty} B_{E(k)}$, then

$$E' \subset H_{v_0}.\tag{6.12}$$

Since E' is equal to E except a polar set S, we can take another positive superharmonic function v_3 on $\Gamma_n(D)$ such that $v_3 = G\eta$ with a positive measure η on $\Gamma_n(D)$ and v_3 is identically $+\infty$ on S (see Doob [6, p. 58]). Finally, define a positive superharmonic function v on $\Gamma_n(D)$ by

$$v = v_0 + v_3.$$

Since $c_{\infty}(v_3) = 0$, it is easy to see from (6.11) that $c_{\infty}(v) = 0$. Also we see from (5.12) that $E \subset H_v$. Thus we complete to prove that E is a rarefied set at ∞ with respect to $\Gamma_n(D)$.

7. Proofs of Theorems 3 and 4

Proof of Theorem 3. By Lemma 3 we have

$$\begin{split} v(P) = c_{\infty}(v) K(P, \ \infty) + c_{-\infty}(v) K(P, \ -\infty) \\ + \int_{\Gamma_n(D)} G(P, \ Q) d\mu(Q) + \int_{S_n(D)} \frac{\partial G(P, \ Q)}{\partial n_Q} d\nu(Q) \end{split}$$

for two positive measures μ and ν on $\Gamma_n(D)$ and $S_n(D)$, respectively. Then

$$v_1(P) = v(P) - c_{\infty}(v)K(P, \infty) - c_{-\infty}(v)K(P, -\infty)$$
$$(P = (X, y) \in \Gamma_n(D))$$

also is a positive superharmonic function on $\Gamma_n(D)$ such that

$$\inf_{P=(X,y)\in\Gamma_n(D)}\frac{v_1(P)}{K(P,\infty)}=0.$$

We shall prove the existence of a rarefied set E at ∞ with respect to $\Gamma_n(D)$ such that

$$v_1(P)e^{-\sqrt{\tau_D}y}$$
 $(P = (X, y) \in \Gamma_n(D))$

uniformly converges to 0 on $\Gamma_n(D) - E$ as $y \to +\infty$. Let $\{\varepsilon_i\}$ be a sequence of positive numbers ε_i satisfying $\varepsilon_i \to 0$ $(i \to +\infty)$. Put

$$F_i = \{ P = (X, y) \in \Gamma_n(D); v_1(P) \ge \varepsilon_i e^{\sqrt{\tau_D} y} \} \quad (i = 1, 2, 3, \ldots).$$

Then F_i (i = 1, 2, 3, ...) is rarefied at ∞ with respect to $\Gamma_n(D)$ and hence

$$\sum_{k=0}^{\infty} e^{-\sqrt{\tau_D}k} \lambda_{F_i(k)} \big(\Gamma_n(D) \big) < \infty \quad (i = 1, 2, 3, \ldots)$$

by Theorem 2. Take a sequence $\{q_i\}$ such that

$$\sum_{k=q_i}^{\infty} e^{-\sqrt{\tau_D}k} \lambda_{F_i(k)} (\Gamma_n(D)) < \frac{1}{2^i} \quad (i = 1, 2, 3, \ldots)$$

and set

$$E = \bigcup_{i=1}^{\infty} \bigcup_{k=q_i}^{\infty} F_i(k).$$

Then

$$\lambda_{E(m)}\big(\Gamma_n(D)\big) \le \sum_{i=1}^{\infty} \sum_{k=q_i}^{\infty} \lambda_{F_i \cap I_k \cap I_m}\big(\Gamma_n(D)\big) \quad (m=1, 2, 3, \ldots),$$

because λ is a countably sub-additive set function as in Aikawa and Essén [2, Lemma 2.4 (iii)] and in Essén and Jakson [8, p. 241]. Since

$$\sum_{m=1}^{\infty} \lambda_{E(m)} (\Gamma_n(D)) e^{-\sqrt{\tau_D}m}$$

$$\leq \sum_{i=1}^{\infty} \sum_{k=q_i}^{\infty} \sum_{m=1}^{\infty} \lambda_{F_i \cap I_k \cap I_m} (\Gamma_n(D)) e^{-\sqrt{\tau_D}m}$$

$$= \sum_{i=1}^{\infty} \sum_{k=q_i}^{\infty} \lambda_{F_i(k)} (\Gamma_n(D)) e^{-\sqrt{\tau_D}k} \leq \sum_{i=1}^{\infty} \frac{1}{2^i} = 1,$$

we know by Theorem 2 that E is a rarefied set at ∞ with respect to $\Gamma_n(D)$. It is easy to see that

$$v_1(P)e^{-\sqrt{\tau_D}y}$$
 $(P = (X, y) \in \Gamma_n(D)$

uniformly converges to 0 on $\Gamma_n(D) - E$ as $y \to \infty$.

Proof of Theorem 4. Since $\lambda_{E(k)}$ is concentrated on $B_{E(k)} \subset \overline{E(k)} \cap \Gamma_n(D)$, we see

$$\gamma(E(k)) = \int_{\Gamma_n(D)} \hat{R}_{K(\cdot,\infty)}^{E(k)}(P) d\lambda_{E(k)}(P)$$

$$\leq \int_{\Gamma_n(D)} K(P,\infty) d\lambda_{E(k)}(P) \leq J_D e^{\sqrt{\tau_D}(k+1)} \lambda_{E(k)}(\Gamma_n(D))$$

and hence

$$\sum_{k=0}^{\infty} e^{-2\sqrt{\tau_D}k} \gamma \big(E(k) \big) \le J_D e^{\sqrt{\tau_D}} \sum_{k=0}^{\infty} e^{-\sqrt{\tau_D}k} \lambda_{E(k)} \big(\Gamma_n(D) \big),$$

which gives the conclusion in the first part from Theorems 1 and 2.

To prove the second part, put $J'_D = \min_{X \in \overline{D}} f_D(X)$. Since

$$K(P, \infty) = e^{\sqrt{\tau_D}y} f_D(X) \ge J'_D e^{\sqrt{\tau_D}y} \ge J'_D e^{\sqrt{\tau_D}k}$$
$$(P = (X, y) \in E(k)),$$

and

$$\hat{R}_{K(\cdot,\infty)}^{E(k)}(P) = K(P,\infty)$$

for any $P \in B_{E(k)}$, we have

$$\gamma(E(k)) = \int_{\Gamma_n(D)} \hat{R}_{K(\cdot,\infty)}^{E(k)}(P) d\lambda_{E(k)}(P) \ge J'_D e^{\sqrt{\tau_D}k} \lambda_{E(k)}(\Gamma_n(D)).$$

Since

$$J_D' \sum_{k=0}^{\infty} e^{-\sqrt{\tau_D}k} \lambda_{E(k)} \big(\Gamma_n(D) \big) \le \sum_{k=0}^{\infty} e^{-2\sqrt{\tau_D}k} \gamma \big(E(k) \big) < +\infty$$

from Theorem 1, it follows from Theorem 2 that E is rarefied at ∞ with respect to $\Gamma_n(D)$.

References

- Ahlfors L.V. and Heins M.H., Questions of regularity connected with the Phragmén-Lindelöf principle. Ann. Math. 50 (1949), 341–346.
- [2] Aikawa H. and Essén M., Potential Theory-Selected Topics. Lect. Notes in Math. vol. 1633, Springer-Verlag, 1996.
- [3] Armitage D.H. and Gardiner S.J., Classical potential theory. Springer-Verlag, 2001.

- [4] Azarin V.S., Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone. Mat. Sb. (108) 66 (1965), 248-264; Amer. Math. Soc. Translation (2) 80 (1969), 119-138.
- [5] Brelot M., On Topologies and Boundaries in Potential Theory. Lect. Notes in Math. vol. 175, Springer-Verlag, 1971.
- [6] Doob J.I., Classical Potential Theory and Its Probabilistic Couterpart. Springer-Verlag, 1984.
- [7] Essén M. and Jackson H.L., A comparison between minimally thin sets and generalized Azarin sets. Canad. Math. Bull. 18 (1975), 335–346.
- [8] Essén M. and Jackson H.L., On the covering properties of certain exceptional sets in a half-space. Hiroshima Math. J. 10 (1980), 233–262.
- [9] Gilbarg D. and Trudinger N.S., *Elliptic partial differential equations of second order*. Springer Verlag, Berlin 1977.
- [10] Hayman W.K., Subharmonic functions. vol. 2, Academic Press, 1989.
- [11] Hayman W.K., Questions of regurarity connected with the Phragmén-Lindelöf principle. J. Math. Pure Appl. 35 (1956), 115–126.
- [12] Helms L.L., Introduction to Potential Theory. Wiley, New York, 1969.
- [13] Jerison D.S. and Kenig C.E., Boundary behaviour of harmonic functions in nontangentially accessible domains. Adv. in Math. 46 (1982), 80–147.
- [14] Lelong-Ferrand J., Étude au voisinage de la frotière des fonctions surharmoniques positives dans un demi-espace. Ann. Sci. École Norm. Sup. (3) 66 (1949), 125–159.
- [15] Lelong-Ferrand J., Étude des fonctions surharmoniques positives dans un cylindre ou dans un cône. C.R. Acad. Sci. Paris 229 (1949), 340–341.
- [16] Miyamoto I. and Yoshida H., Two criterions of Wiener type for minimally thin sets and rarefied sets in a cone. J. Math. Soc. Japan 54 (2002), 487–512.
- [17] Miyamoto I. and Yoshida H., On a covering property of rarefied sets at infinity in a cone. Advanced Studies in Pure Math. 44 (2006), 233–244.
- [18] Ušakova I.V., Some estimates of subharmonic functions in the circle. Zap. Mech-Mat. Fak. i Har'kov. Mat. Obšč. 29 (1963), 53–66(Russian).
- Yoshida H., Nevanlinna norm of a subharmonic function on a cone or on a cylinder. Proc. London Math. Soc. (3) 54 (1987), 267–299.

Department of Mathmatics and Informatics Graduate School of Science Chiba University 1-33 Yayoi-cho, Inage-ku Chiba, 263-8522, Japan E-mail: miyamoto@math.s.chiba-u.ac.jp