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Two criteria of Wiener type for minimally thin sets

and rarefied sets in a cylinder
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Abstract. We shall give two criteria of Wiener type which characterize minimally thin

sets and rarefied sets in a cylinder. We shall also show that a positive superharmonic

function on a cylinder behaves regularly outside a rarefied set in a cylinder.
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1. Introduction

Lelong-Ferrand [14] investigates the regularity of value distribution of a

positive superharmonic function on the half-space Tn through introducing

the notion of a set “effilé at ∞” which is defind by a criterion of Wiener

type.

Essén and Jackson [7] observed that a subset E of Tn is effilé at ∞

if and only if E is minimally thin at ∞, and led later developments to

a different direction. Their investigation was motivated by Ahlfors and

Heins [1], Hayman [11], Ušakova [18] and Azarin [4], who are concerned

with regularity of value distribution of a subharmonic function defined on

the half plane T2, the half-space Tn or cone, outside a exceptional set

covered by a sequence of balls. By introducing a new type of exceptional

set in Tn defined by another criterion of Wiener type, which is called a

rarefied set, Essén and Jackson [8] gave a detailed covering theorem for it

and sharpend their results by proving the regurality of value distribution

outside the exceptional set, of a positive superharmonic function on Tn in

place of a subharmonic function.

Essén and Jackson’s concern is limited to a positive superharmonic

function on Tn which is a special cone, while Azarin [4] treats subharmonic

functions defined on general cones. Lelong-Ferrand [15] also refered to a set

effilé at ∞ in a cone without giving explicitely a criterion of Wiener type

and extended her results in [14] for a positive superharmonic function on
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a cone. In these senses, it seemed important to extend their results to a

positive superharmonic functions on a cone and to try obtaining a result

sharpening Azarin’s result in a true sense. In the previous paper [16], we

gave some results to this direction, including two criteria of Wiener types.

In our recent paper [17], we obtained a result sharpening Azarin’s result in

a true sense by giving a covering theorem for a rarefied set in a cone.

On the other hand, Lelong-Ferrand [15] refered to a set effilé at ∞

in a cylinder without giving a criterion of Wiener type, and said that her

results in [14] were also extended for a positive superharmonic function on

a cylinder. Since a cylinder is a domain of completly different type from

a cone in the sense that ∞ is a cusp of domain when it is changed into

a bounded domain by a Kelvin transformation, it also seems valuable to

observe how a series of results obtained with a cone follows when a cylinder

is considered in place of a cone.

In this paper we shall first prove that a minimally thin set at ∞ in a

cylinder is also defined by a criterion of Wiener type (Theorem 1). Next we

shall define a rarefied set in a cylinder and show that it is also judged by

another criterion of Wiener type (Theorem 2). We shall prove the regularity

of boundary behavior of a positive superharmonic function on a cylinder

outside a rarefied set (Theorem 3). Finally we shall give some connection

between a minimally thin set and a rarefied set in a cylinder (Theorem 4).

2. Preliminaries

Let D be a bounded domain on R
n−1(n ≥ 2) with smooth boundary.

Consider the Dirichlet problem

(∆n + τ)f = 0 on D

f = 0 on ∂D.
(2.1)

We denote the least positive eigenvalue of (2.1) by τD and the normal-

ized positive eigenfunction corresponding to τD by fD(X);
∫

D

f2
D(X)dX = 1,

where dX is the (n− 1)-dimensional volume element. By Γn(D), we denote

the set {P = (X, y) ∈ R
n; X ∈ D, −∞ < y < +∞}. We call it a cylinder.

It is known that the Martin boundary of Γn(D) is the set ∂Γn(D)∪{∞, −∞}

(Yoshida [19, p. 285]). When we denote the Martin kernel by K(P, Q) (P ∈
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Γn(D), Q ∈ ∂Γn(D) ∪ {∞, −∞}), we know

K(P, ∞) = e
√

τDyfD(X), K(P, −∞) = κe−
√

τDyfD(X)

(P = (X, y) ∈ Γn(D)),

where κ is a positive constant.

A subset E of Γn(D) is called to be minimally thin at ∞ in Γn(D)

(Brelot [5, p. 122] and Doob [6, p. 208]), if there exists a point P ∈ Γn(D)

such that

R̂E
K( · ,∞)(P ) 6= K(P, ∞),

where R̂E
K( · ,∞)(P ) is the regulalized reduced function of K( · , ∞) relative

to E (Helms [12, p. 134]).

When we set

Γn(D;−∞, b) = {P = (X, y) ∈ R
n; X ∈ D, y < b}

(−∞ < b < +∞)

and E is a subset of Γn(D) such that there exists a real number b satisfying

E ⊂ Γn(D;−∞, b), E is called to be bounded above. If E ⊂ Γn(D) is

bounded above, then R̂E
K( · ,∞) is bounded on Γn(D) and hence the greatest

harmonic minorant of R̂E
K( · ,∞) is zero. When we denote by G(P, Q) (P ∈

Γn(D), Q ∈ Γn(D)) the Green function of Γn(D), we see from the Riesz de-

composition theorem (Helms [12, p. 116]) that there exists a unique positive

measure λE on Γn(D) such that

R̂E
K( · ,∞)(P ) = GλE(P ) (2.2)

for any P ∈ Γn(D) and λE is concentrated on BE , where

BE = {P ∈ Γn(D); E is not thin at P}

(see Brelot [5, Theorem VIII, 11] and Doob [6, Theorem XI. 14(d)]).

The (Green) energy γ(E) of λE is defined by

γ(E) =

∫

Γn(D)
(GλE)dλE

(see [12, p. 223]).

In the following, we put the strong assumption relative to D on R
n−1:

If n ≥ 3, then D is a C2, α-domain (0 < α < 1) on R
n−1 surrounded by
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a finite number of mutually disjoint closed hypersurfaces (e.g. see [9, pp.

88-89] for the definition of C2, α-domain). Then fD(X) is twice continuously

differentiable on D ([9, Theorem 6.15]).

3. Statement of results

Let E be a subset of Γn(D) and E(k) = E ∩ Ik, where

Ik = {(X, y) ∈ Γn(D) : k ≤ y < k + 1}.

First, for a minimally thin set at ∞ with respect to Γn(D) we shall give

not only a criterion of Wiener type, but also another definition which is

parallel to the difinition for a rarefied set at ∞ with respect to Γn(D) (this

definition can be state in more general form as in Armitage and Gardiner

[3, Theorem 9.2.6]).

Theorem 1 For a subset E of Γn(D), the following statements are equiv-

alent:

( I ) E is minimally thin at ∞ with respect to Γn(D).

( II )
∑∞

k=0 γ
(

E(k)
)

e−2
√

τDk < +∞.

(III) There exists a positive superharmonic function v(P ) on Γn(D) such

that

inf
P∈Γn(D)

v(P )

K(P, ∞)
= 0

and

E ⊂ Mv, (3.1)

where

Mv = {P = (X, y) ∈ Γn(D); v(P ) ≥ K(P, ∞)}.

A subset E of Γn(D) is said to be rarefied at ∞ with respect to Γn(D),

if there exists a positive superharmonic function v(P ) on Γn(D) such that

inf
P∈Γn(D)

v(P )

K(P, ∞)
= 0

and

E ⊂ Hv,
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where

Hv = {P = (X, y) ∈ Γn(D); v(P ) ≥ e
√

τDy}

(for the definition of rarefied sets at ∞ with respect to the half-space, see

Aikawa and Essén [2, DEFINITION 12.4 in p. 74] and Hayman [10, p. 474]).

Theorem 2 A subset E of Γn(D) is rarefied at ∞ with respect to Γn(D)

if and only if

∞
∑

k=0

e−
√

τDkλ(E(k))

(

Γn(D)
)

< +∞.

Theorem 3 Let v(P ) be a positive superharmonic function on Γn(D) and

c∞(v) be a constant defined by

inf
P∈Γn(D)

v(P )

K(P, ∞)
= c∞(v).

Then there exists a rarefied set E at ∞ with respect to Γn(D) such that

v(P )e−
√

τDy uniformly converges to c∞(v)fD(X) on Γn(D) − E as y →

+∞ (P = (X, y) ∈ Γn(D)).

Remark We observe the following fact from the definition of a rarefied

set. Given any rarefied set E at ∞ with respect to Γn(D), there exists a

positive superharmonic function v(P ) on Γn(D) such that v(P )e−
√

τDy≥1

on E and

c∞(v) = inf
P=(X, y)∈Γn(D)

v(P )

K(P, ∞)
= 0.

Hence v(P )e−
√

τDy does not converge to c∞(v)fD(X) = 0 at any point P =

(X, y) of Γn(D) − E as y → +∞.

A cylinder Γn(D′) is called a subcylinder of Γn(D), if D′ ⊂ D (D′ is

the closure of D′). As in Tn (Essén and Jackson [8, Remark 3.2]), we have

Theorem 4 Let E be a subset of Γn(D). If E is rarefied at ∞ with respect

to Γn(D), then E is minimally thin at ∞ with respect to Γn(D). If E is

contained in a subcylinder of Γn(D) and E is minimally thin at ∞ with

respect to Γn(D), then E is rarefied at ∞ with respect to Γn(D).
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4. Lemmas

In the following we set

Γn(D; a, b) = {P = (X, y) ∈ R
n; X ∈ D, a ≤ y < b}

(−∞ < a < b ≤ +∞).

First of all, we remark that

C1e
√

τDye−
√

τDy′

fD(X)fD(X ′) ≤ G(P, Q)

≤ C2e
√

τDye−
√

τDy′

fD(X)fD(X ′) (4.1)

for any P = (X, y) ∈ Γn(D) and any Q = (X ′, y′) ∈ Γn(D) satisfying

y < y′ − 1, where C1 and C2 are two positive constants (Yoshida [19]).

Lemma 1 Let µ be a positive measure on Γn(D) such that there is a

sequence of points Pi = (Xi, yi) ∈ Γn(D), yi → +∞ (i → +∞) satisfying

Gµ(Pi) =

∫

Γn(D)
G(Pi, Q)dµ(Q) < +∞

(i = 1, 2, 3, . . . ; Q ∈ Γn(D)).

Then for a real number l,
∫

Γn(D;l, +∞)
e−

√
τDy′

fD(X ′)dµ(X ′, y′) < +∞ (4.2)

and

lim
L→∞

e−2
√

τDL

∫

Γn(D;−∞, L)
e
√

τDy′

fD(X ′)dµ(X ′, y′) = 0. (4.3)

Proof. Take a real number l satisfying P1 = (X1, y1)∈Γn(D), y1 + 1 ≤ l.

Then from (4.1), we have

C1e
√

τDy1fD(X1)

∫

Γn(D;l,∞)
e−

√
τDy′

fD(X ′)dµ(X ′, y′)

≤

∫

Γn(D)
G(P1, Q)dµ(Q) < +∞,

which gives (4.2). For any positive number ε, from (4.2) we can take a large
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number A such that
∫

Γn(D;A,∞)
e−

√
τDy′

fD(X ′)dµ(X ′, y′) <
ε

2
.

If we take a point Pi = (Xi, yi) ∈ Γn(D), yi ≥ A + 1, then we have from

(4.1)

C1e
−√

τDyifD(Xi)

∫

Γn(D;−∞, A)
e
√

τDy′

fD(X ′)dµ(X ′, y′)

≤

∫

Γn(D)
G(Pi, Q)dµ(Q) < +∞.

If L (L > A) is sufficiently large, then

e−2
√

τDL

∫

Γn(D;−∞, L)
e
√

τDy′

fD(X ′)dµ(X ′, y′)

= e−2
√

τDL

∫

Γn(D;−∞, A)
e
√

τDy′

fD(X ′)dµ(X ′, y′)

+ e−2
√

τDL

∫

Γn(D;A, L)
e
√

τDy′

fD(X ′)dµ(X ′, y′)

≤ e−2
√

τDL

∫

Γn(D;−∞, A)
e
√

τDy′

fD(X ′)dµ(X ′, y′)

+

∫

Γn(D;A,∞)
e−

√
τDy′

fD(X ′)dµ(X ′, y′) < ε,

which gives (4.3). ¤

Lemma 2 Let v(P ) be a positive superharmonic function on Γn(D) such

that

inf
P∈Γn(D)

v(P )

K(P, ∞)
= 0.

Then for any positive number B the set

{P = (X, y) ∈ Γn(D); v(P ) ≥ BK(P, ∞)}

is minimally thin at ∞ with respect to Γn(D).
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Proof. Apply a result in Doob [6, p. 213] to the positive superharmonic

function v(P ). Then

mf lim
y→∞, P∈Γn(D)

v(P )

K(P, ∞)
= inf

P∈Γn(D)

v(P )

K(P, ∞)
= 0,

where “mf limit” means minimal-fine limit. This gives the conclusion. ¤

In the following we put

Sn(D; a, b) = {P = (X, y) ∈ R
n; X ∈ ∂D, a ≤ y < b}

(−∞ < a < b ≤ +∞)

and

Sn(D;−∞, b) = {P = (X, y) ∈ R
n; X ∈ ∂D, −∞ < y < b}

(−∞ < b ≤ +∞).

Hence Sn(D;−∞, +∞) denoted simply by Sn(D) is ∂Γn(D).

Lemma 3 Let v(P ) be a positive superharmonic function on Γn(D) and

put

c∞(v) = inf
P∈Γn(D)

v(P )

K(P, ∞)
, c−∞(v) = inf

P∈Γn(D)

v(P )

K(P, −∞)
. (4.4)

Then there are a unique positive measure µ on Γn(D) and a unique positive

measure ν on Sn(D) such that

v(P ) = c∞(v)K(P, ∞) + c−∞(v)K(P, −∞)

+

∫

Γn(D)
G(P, Q)dµ(Q) +

∫

Sn(D)

∂G(P, Q)

∂nQ
dν(Q),

where ∂/∂nQ denotes the differentiation at Q along the inward normal into

Γn(D).

Proof. By the Riesz decomposition theorem, we have a unique measure µ

on Γn(D) such that

v(P ) =

∫

Γn(D)
G(P, Q)dµ(Q) + h(P ) (P ∈ Γn(D)), (4.5)

where h is the greatest harmonic minorant of v on Γn(D). Further by

the Martin representation theorem we have another positive measure ν ′ on
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∂Γn(D) ∪ {∞, −∞}

h(P ) =

∫

∂Γn(D)∪{∞,−∞}
K(P, Q)dν ′(Q)

= K(P, ∞)ν ′({∞}) + K(P, −∞)ν ′({−∞})

+

∫

Sn(D)
K(P, Q)dν ′(Q) (P ∈ Γn(D)).

We see from (4.4) that ν ′({∞}) = c∞(v) and ν ′({−∞}) = c−∞(v) (see

Yoshida [19, p. 292]). Since

K(P, Q) = lim
P1→Q, P1∈Γn(D)

G(P, P1)

G(P ∗, P1)
=

∂G(P, Q)/∂nQ

∂G(P ∗, Q)/∂nQ
(4.6)

(P ∗ is a fixed reference point of the Martin kernel), we also obtain

h(P ) = c∞(v)K(P, ∞)

+ c−∞(v)K(P, −∞) +

∫

Sn(D)

∂G(P, Q)

∂nQ
dν(Q)

by taking

dν(Q) =

{

∂G(P ∗, Q)

∂nQ

}−1

dν ′(Q) (Q ∈ Sn(D)).

Finally this and (4.5) give the conclusion of this lemma. ¤

We remark the following inequality which follows from (4.1).

C1e
√

τDye−
√

τDy′

fD(X)
∂

∂nX′

fD(X ′) ≤
∂G(P, Q)

∂nQ

≤ C2e
√

τDye−
√

τDy′

fD(X)
∂

∂nX′

fD(X ′) (4.7)

for any P = (X, y) ∈ Γn(D) and any Q = (X ′, y′) ∈ Sn(D) satisfying

y < y′ − 1, where C1 and C2 are two positive constants.

Lemma 4 Let ν be a positive measure on Sn(D) such that there is a se-

quence of points Pi = (Xi, yi) ∈ Γn(D), yi → +∞ (i → +∞) satisfying
∫

Sn(D)

∂G(Pi, Q)

∂nQ
dν(Q) < +∞ (i = 1, 2, 3, . . .).
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Then for a real number l
∫

Sn(D;l,∞)
e−

√
τDy′ ∂

∂nX′

fD(X ′)dν(X ′, y′) < ∞.

and

lim
R→∞

e−2
√

τDR

∫

Sn(D;−∞, R)
e
√

τDy′ ∂

∂nX′

fD(X ′)dν(X ′, y′) = 0.

Proof. If we use (4.7) in place of (4.1), we obtain this lemma in the com-

pletely paralleled way to the proof of Lemma 1. ¤

Lemma 5 Let E ⊂ Γn(D) be bounded above and u(P ) be a positive su-

perharmonic function on Γn(D) such that u(P ) is represented as

u(P ) =

∫

Γn(D)
G(P, Q)dµu(Q)

+

∫

Sn(D)

∂

∂nQ
G(P, Q)dνu(Q) (P ∈ Γn(D)). (4.8)

with two positive measures µu and νu on Γn(D) and Sn(D), respectively,

and

u(P ) ≥ 1

for any P ∈ E. Then

λE

(

Γn(D)
)

≤

∫

Γn(D)
e
√

τDy′

fD(X ′)dµu(X ′, y′)

+

∫

Sn(D)
e
√

τDy′ ∂

∂nX′

fD(X ′)dνu(X ′, y′). (4.9)

When u(P ) = R̂E
1 (P ) (P ∈ Γn(D)), the equality holds in (4.9).

Proof. Since λE is concentrated on BE and u(P ) ≥ 1 for any P ∈ BE , we

see from (4.8) that

λE

(

Γn(D)
)

=

∫

Γn(D)
dλE ≤

∫

Γn(D)
u(P )dλE(P )

=

∫

Γn(D)
R̂E

K( · ,∞)(Q)dµu(Q)



Minimally thin sets and rarefied sets in a cylinder 517

+

∫

Sn(D)

(
∫

Γn(D)

∂

∂nQ
G(P, Q)dλE(P )

)

dνu(Q). (4.10)

Now we have

R̂E
K( · ,∞)(Q) ≤ K(Q, ∞) = e

√
τDy′

fD(X ′)

(Q = (X ′, y′) ∈ Γn(D)). (4.11)

Since
∫

Γn(D)

∂

∂nQ
G(P, Q)dλE(P ) ≤ lim

ρ→0

1

ρ

∫

Γn(D)
G(P, Pρ)dλE(P )

for any Q ∈ Sn(D) (Pρ = (Xρ, yρ) = Q + ρnQ ∈ Γn(D), nQ is the inward

normal unit vector at Q) and

∫

Γn(D)
G(P, Pρ)dλE(P ) = R̂E

K( · ,∞)(Pρ)

≤ K(Pρ, ∞) = e
√

τDyρfD(Xρ),

we have
∫

Γn(D)

∂

∂nQ
G(P, Q)dλE(P ) ≤ e

√
τDy′ ∂

∂nX′

fD(X ′) (4.12)

for any Q = (X ′, y′) ∈ Sn(D). Thus from (4.10), (4.11) and (4.12) we

obtain (4.9).

When u(P ) = R̂E
1 (P ), u(P ) has the expression (4.8) by Lemma 3,

because R̂E
1 (P ) is bounded on Γn(D). Then we easily have the equalities

only in (4.10), because R̂E
1 (P ) = 1 for any P ∈ BE (see Brelot [5, p. 61]

and Doob [6, p. 169]). Hence if we can show that

µu

(

{P ∈ Γn(D); R̂E
K( · ,∞)(P ) < K(P, ∞)}

)

= 0 (4.13)

and

νu

({

Q = (X ′, y′) ∈ Sn(D);

∫

Γn(D)

∂

∂nQ
G(P, Q)dλE(P ) < e

√
τDy′ ∂

∂nX′

fD(X ′)

})

= 0,

(4.14)
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then we can prove the equality in (4.9). To see (4.13), we remark that

{P ∈ Γn(D); R̂E
K( · ,∞)(P ) < K(P, ∞)} ⊂ Γn(D) − BE

and

µu(Γn(D) − BE) = 0

(see Brelot [5, Theorem VIII,11] and Doob [6, Theorem XI.14(d)]). To prove

(4.14), we set

B′
E = {Q ∈ Sn(D); E is not minimally thin at Q} (4.15)

and e = {P ∈ E; R̂E
K( · ,∞)(P ) < K(P, ∞)}. Then e is a polar set (see Doob

[6, Theorem VI.3(b)]) and hence for any Q ∈ Sn(D)

R̂E
K( · , Q) = R̂E−e

K( · , Q)

(see Doob [6, Theorem VI.3(c)]). Thus at any Q ∈ B ′
E , E − e is not also

minimally thin at Q and hence
∫

Γn(D)
K(P, Q)dη(P ) = lim

P ′→Q,P ′∈E−e

∫

Γn(D)
K(P, P ′)dη(P ) (4.16)

for any positive measure η on Γn(D), where

K(P, P ′) =
G(P, P ′)
G(P ∗, P ′)

(

P ∈ Γn(D), P ′ ∈ Γn(D)
)

(see Brelot [5, Theorem XV,6]). Now, take η = λE in (4.16). Since

lim
P→Q, P∈Γn(D)

K(P, ∞)

G(P ∗, P )

= e
√

τDy′ ∂

∂nX′

fD(X ′)

{

∂G(P ∗, Q)

∂nQ

}−1
(

Q = (X ′, y′) ∈ Sn(D)
)

(for the existence of the limit in the left side, see Jerison and Kenig [13,

(7.9) in p. 87]), we obtain from (4.6)

∫

Γn(D)

∂G(P, Q)

∂nQ
dλE(P )

= e
√

τDy′ ∂

∂nX′

fD(X ′) lim
P ′→Q, P ′∈E−e

∫

Γn(D)

G(P, P ′)
K(P ′, ∞)

dλE(P ).
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for any Q = (X ′, y′) ∈ B′
E . Since

∫

Γn(D)

G(P, P ′)
K(P ′, ∞)

dλE(P ) =
1

K(P ′, ∞)
R̂E

K( · ,∞)(P
′) = 1

for any P ′ ∈ E − e, we have
∫

Γn(D)

∂G(P, Q)

∂nQ
dλE(P ) = e

√
τDy′ ∂

∂nX′

fD(X ′)

for any Q = (X ′, y′) ∈ B′
E , which shows

{

Q = (X ′, y′) ∈ Sn(D);

∫

Γn(D)

∂

∂nQ
G(P, Q)dλE(P ) < e

√
τDy′ ∂

∂nX′

fD(X ′)

}

⊂ Sn(D) − B′
E . (4.17)

Let h be the greatest harmonic minorant of u(P ) = R̂E
1 (P ) and ν ′

u be the

Martin representing measure of h. If we can prove that

R̂E
h = h (4.18)

on Γn(D), then ν ′
u(Sn(D) − B′

E) = 0 (see Essén and Jackson [8, pp. 240–

241], Brelot [5, Theorem XV,11] and, Aikawa and Essén [2, Part II, p. 188]).

Since

dν ′
u(Q) =

∂

∂nQ
G(P0, Q)dνu(Q) (Q ∈ Sn(D))

from (4.6), we also have νu(Sn(D)−B′
E) = 0, which gives (4.14) from (4.17).

To prove (4.18), set u∗ = R̂E
1 − h. Then

u∗ + h = R̂E
1 = R̂E

u∗+h ≤ R̂E
u∗ + R̂E

h

(see Brelot [5, VI, 10. d)] and Helms [12, THEOREM 7.12 (iv)]), and hence

R̂E
h − h ≥ u∗ − R̂E

u∗ ≥ 0,

from which (4.18) follows. ¤

5. Proof of Theorem 1

Proof of (I) ⇒ (II). Apply the Riesz decomposition theorem to the super-

harmonic function R̂E
K( · ,∞) on Γn(D). Then we have a positive measure µ
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on Γn(D) satisfying

Gµ(P ) < ∞

for any P ∈ Γn(D) and a non-negative greatest harmonic minorant H of

R̂E
K( · ,∞) such that

R̂E
K( · ,∞) = Gµ + H. (5.1)

We remark that K(P, ∞) (P ∈ Γn(D) is a minimal function at ∞.

Let E be a minimally thin set at ∞ with respect to Γn(D). Then

R̂E
K( · ,∞) is a potential (see Doob [6, p. 208]) and hence H ≡ 0 on Γn(D).

Since

R̂E
K( · ,∞) = K(P, ∞) (5.2)

for any P ∈ BE (Brelot [5, p. 61] and Doob [6, p. 169]), we see from (5.1)

Gµ(P ) = K(P, ∞) (5.3)

for any P ∈ BE . Take a sufficiently large integer L from Lemma 1 such

that

C2e
−2

√
τDL

∫

Γn(D;−∞, L)
e
√

τDy′

fD(X ′)dµ(X ′, y′) <
1

4
,

where C2 is the constant in (4.1). Then from (4.1)
∫

Γn(D;−∞, L)
G(P, Q)dµ(Q) ≤

1

4
K(P, ∞)

for any P = (X, y) ∈ Γn(D), y ≥ L + 1, and hence from (5.3)
∫

Γn(D;L, +∞)
G(P, Q)dµ(Q) ≥

3

4
K(P, ∞) (5.4)

for any P = (X, y) ∈ BE , y ≥ L + 1. Now, divide Gµ into three parts:

Gµ(P ) = A
(k)
1 (P ) + A

(k)
2 (P ) + A

(k)
3 (P ) (P ∈ Γn(D)), (5.5)

where

A
(k)
1 (P ) =

∫

Γn(D;k−1, k+2)
G(P, Q)dµ(Q),

A
(k)
2 (P ) =

∫

Γn(D;−∞, k−1)
G(P, Q)dµ(Q),
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A
(k)
3 (P ) =

∫

Γn(D;k+2, +∞)
G(P, Q)dµ(Q).

Then we shall show that there exists an integer N such that

BE ∩ Ik ⊂

{

P = (X, y) ∈ Γn(D); A
(k)
1 (P ) ≥

1

4
K(P,∞)

}

(k ≥ N). (5.6)

Take any P = (X, y) ∈ Ik ∩ Γn(D). When by Lemma 1 we choose a

sufficiently large integer N1 such that

e−2
√

τDk

∫

Γn(D;−∞, k−1)
e
√

τDy′

fD(X ′)dµ(X ′, y′) ≤
1

4C2
(k ≥ N1)

and
∫

Γn(D;k+2,∞)
e−

√
τDy′

fD(X ′)dµ(X ′, y′) ≤
1

4C2
(k ≥ N1),

we have from (4.1) that

A
(k)
2 (P ) ≤

1

4
K(P, ∞) (k ≥ N1) (5.7)

and

A
(k)
3 (P ) ≤

1

4
K(P, ∞) (k ≥ N1). (5.8)

Put

N = max{N1, L + 1}.

If P = (X, y) ∈ BE ∩ Ik (k ≥ N), then we have from (5.4), (5.5), (5.7) and

(5.8) that

A
(k)
1 (P )≥

∫

Γn(D;L, +∞)
G(P, Q)dµ(Q) − A

(k)
2 (P ) − A

(k)
3 (P )

≥
1

4
K(P, ∞),

which gives (5.6).

Since the measure λE(k) is concentrated on BE(k) and BEk
⊂Ek∩Γn(D),
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we finally obtain by (5.6) that

γ
(

E(k)
)

=

∫

Γn(D)
(GλE(k))dλE(k)

≤

∫

BE(k)

e
√

τDyfD(X)dλE(k)(X, y)

≤ 4

∫

BE(k)

A
(k)
1 (P )dλE(k)(P )

= 4

∫

Γn(D;k−1, k+2)

{
∫

Γn(D)
G(P, Q)dλE(k)(P )

}

dµ(Q)

≤ 4

∫

Γn(D;k−1, k+2)
e
√

τDy′

fD(X ′)dµ(X ′, y′) (k ≥ N)

and hence
∞
∑

k=N

γ
(

E(k)
)

e−2
√

τDk

≤ 4
∞
∑

k=N

∫

Γn(D;k−1, k+2)
e
√

τDy′

fD(X ′)e−2
√

τDkdµ(X ′, y′)

≤ 12e4
√

τD

∫

Γn(D;N−1,∞)
e−

√
τDy′

fD(X ′)dµ(X ′, y′)

< ∞

from Lemma 1. This gives (II).

Proof of (II) ⇒ (III). Since

R̂
E(k)
K( · ,∞)(Q) = K(Q, ∞)

for any Q ∈ BE(k) as in (5.2), we have

γ
(

E(k)
)

=

∫

BE(k)

K(Q, ∞)dλE(k)(Q)

≥ e
√

τDk

∫

BE(k)

fD(X ′)dλE(k)(X
′, y′)

(Q = (X ′, y′) ∈ Γn(D))

and hence from (4.1)
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R̂
E(k)
K( · ,∞)(P )

≤ C2e
√

τDyfD(X)

∫

BE(k)

e−
√

τDy′

fD(X ′)dλE(k)(X
′, y′)

≤ C2e
√

τDyfD(X)e−2
√

τDkγ
(

E(k)
)

(5.9)

for any P = (X, y) ∈ Γn(D) and any integer k satisfying k − 1 ≥ y. If we

define a measure µ on Γn(D) by

µ =
∞
∑

k=0

λE(k)

then from (I) and (5.9)

Gµ(P ) =

∫

Γn(D)
G(P, Q)dµ(Q) =

∞
∑

k=0

R̂
E(k)
K( · ,∞)(P )

is a finite-valued superharmonic function on Γn(D) and

Gµ(P ) ≥

∫

Γn(D)
G(P, Q)dλE(k)(Q) = R̂

E(k)
K( · ,∞)(P ) = K(P, ∞)

for any P = (X, y) ∈ BE(k), and from (4.1)

Gµ(P ) ≥ C ′K(P, ∞)

for any P = (X, y) ∈ Γn(D;−∞, 0), where

C ′ = C1

∫

Γn(D;1, +∞)
e−

√
τDy′

fD(X ′)dµ(X ′, y′).

It is evident from (5.4) that C ′ is positive. If we set

E(−1) = E ∩ Γn(D;−∞, 0), E′ =
∞
⋃

k=−1

BE(k)

and B = min(C ′, 1), then

E′ ⊂ {P = (X, y) ∈ Γn(D); Gµ(P ) ≥ BK(P, ∞)}.

Since E′ is equal to E except a polar set S (see Brelot [5, p. 57] and Doob

[6, p. 177]), we can take a positive measure η on Γn(D) such that Gη is

identically +∞ on S (see Doob [6, p. 58]). If we define a measure ν on
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Γn(D) by

ν =
1

B
(µ + η),

then

E ⊂ {P = (X, y) ∈ Γn(D); Gν(P ) ≥ K(P, ∞)}. (5.10)

If we put v(P ) = Gν(P ), then (5.10) shows that v(P ) is the function re-

quired in (III).

Proof of (III) ⇒ (I). Let v(P ) be the function in (III). By Lemma 3, we

can find two positive measures µ on Γn(D) and ν on Sn(D) such that

v(P ) = c−∞(v)K(P, −∞) +

∫

Γn(D)
G(P, Q)dµ(Q)

+

∫

Sn(D)

∂G(P, Q)

∂nQ
dν(Q) (P ∈ Γn(D)).

When we put

W (P ) =

∫

Γn(D)
G(P, Q)dµ(Q) +

∫

Sn(D)

∂G(P, Q)

∂nQ
dν(Q),

we have

W (P ) = v(P ) − c−∞(v)K(P, −∞)

≥
{

e
√

τDy − c−∞(v)κe−
√

τDy
}

fD(X) ≥
1

2
K(P, ∞)

for any P = (X, y) ∈ Mv, y ≥ y0, with a sufficiently large y0, which gives

Mv ∩ Γn(D; y0, ∞)

⊂

{

P = (X, y) ∈ Γn(D); W (P ) ≥
1

2
K(P, ∞)

}

. (5.11)

We easily see that
{

P = (X, y) ∈ Γn(D); W (P ) ≥
1

2
K(P, ∞)

}

⊂ U ∪ V, (5.12)

where

U =

{

P = (X, y) ∈ Γn(D);

∫

Γn(D)
G(P, Q)dµ(Q) ≥

1

4
K(P, ∞)

}
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and

V =

{

P = (X, y) ∈ Γn(D);

∫

Sn(D)

∂G(P, Q)

∂nQ
dν(Q) ≥

1

4
K(P, ∞)

}

.

By Lemma 2 applied to
∫

Γn(D)G(P,Q)dµ(Q) and
∫

Sn(D)∂G(P,Q)/∂nQdν(Q),

U and V are minimally thin sets at ∞ with respect to Γn(D), respectively.

When we observe

E ⊂ (Mv ∩ Γn(D; y0, ∞)) ∪ Γn(D;−∞, y0),

we see from (3.1), (5.11) and (5.12) that E is a minimally thin set at ∞

with respect to Γn(D). ¤

6. Proof of Theorem 2

Let E be a rarefied set at ∞ with respect to Γn(D). Then there exists

a positive superharmonic function v(P ) on Γn(D) such that

inf
P=(X, y)∈Γn(D)

v(P )

K(P, ∞)
= 0

and

E ⊂ Hv. (6.1)

By Lemma 3, we can find two positive measures µ on Γn(D) and ν on Sn(D)

such that

v(P ) = c−∞(v)K(P, −∞) +

∫

Γn(D)
G(P, Q)dµ(Q)

+

∫

Sn(D)

∂G(P, Q)

∂nQ
dν(Q) (P ∈ Γn(D)).

Now we write

v(P ) = c−∞(v)K(P, −∞) + B
(k)
1 (P ) + B

(k)
2 (P ) + B

(k)
3 (P ), (6.2)

where

B
(k)
1 (P ) =

∫

Γn(D;−∞, k−1)
G(P, Q)dµ(Q)

+

∫

Sn(D;−∞, k−1)

∂G(P, Q)

∂nQ
dν(Q),
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B
(k)
2 (P ) =

∫

Γn(D; k−1, k+2)
G(P, Q)dµ(Q)

+

∫

Sn(D;k−1, k+2)

∂G(P, Q)

∂nQ
dν(Q)

and

B
(k)
3 (P ) =

∫

Γn(D; k+2,∞)
G(P, Q)dµ(Q)

+

∫

Sn(D;k+2,∞)

∂G(P, Q)

∂nQ
dν(Q) (P ∈ Γn(D); k = 1, 2, 3, . . .).

First we shall show the existence of an integer N such that

Hv ∩ Ik ⊂

{

P = (X, y) ∈ Ik; B
(k)
2 (P ) ≥

1

2
e
√

τDy

}

(6.3)

for any integer k, k ≥ N . Since v(P ) is finite almost everywhere on Γn(D),

from Lemmas 1 and 4 applied to
∫

Γn(D)
G(P, Q)dµ(Q) and

∫

Sn(D)

∂G(P, Q)

∂nQ
dν(Q)

respectively, we can take an integer N such that for any k, k ≥ N ,

e−2
√

τDk

∫

Γn(D;−∞, k−1)
e
√

τDy′

fD(X ′)dµ(X ′, y′)≤
1

12C2JD
, (6.4)

∫

Γn(D;k+2,+∞)
e−

√
τDy′

fD(X ′)dµ(X ′, y′)≤
1

12C2JD
, (6.5)

e−2
√

τDk

∫

Sn(D;−∞, k−1)
e
√

τDy′ ∂

∂nX′

fD(X ′)dν(X ′, y′)≤
1

12C2JD
(6.6)

and
∫

Sn(D;k+2, +∞)
e−

√
τDy′ ∂

∂nX′

fD(X ′)dν(X ′, y′) ≤
1

12C2JD
, (6.7)

where

JD = sup
X∈D

fD(X).

Then for any P = (X, y) ∈ Ik (k ≥ N), we have

B
(k)
1 (P ) ≤ C2e

−√
τDyfD(X)

∫

Γn(D;−∞, k−1)
e
√

τDy′

fD(X ′)dµ(X ′, y′)
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+ C2e
−√

τDyfD(X)

∫

Sn(D;−∞, k−1)
e
√

τDy′ ∂

∂nX′

fD(X ′)dν(X ′, y′)

≤ 2C2e
−√

τDyJDe2
√

τDk 1

12C2JD
=

1

6
e
√

τDy

from (4.1), (4.7), (6.4) and (6.6), and

B
(k)
3 (P ) ≤ C2e

√
τDyfD(X)

∫

Γn(D;k+2,+∞)
e−

√
τDy′

fD(X ′)dµ(X ′, y′)

+ C2e
√

τDyfD(X)

∫

Sn(D;k+2,+∞)
e−

√
τDy′ ∂

∂nX′

fD(X ′)dν(X ′, y′)

≤
1

6
e
√

τDy

from (4.1), (4.7), (6.5) and (6.7). Further we can assume that

6κc−∞(v)JD ≤ e2
√

τDy

for any P = (X, y) ∈ Ik (k ≥ N), hence if P = (X, y) ∈ Ik ∩ Hv (k ≥ N),

then we obtain

B
(k)
2 (P ) ≥ e

√
τDy −

1

6
e
√

τDy −
1

6
e
√

τDy −
1

6
e
√

τDy =
1

2
e
√

τDy

from (6.2), which gives (6.3).

Now we observe from (6.1) and (6.3) that

B
(k)
2 (P ) ≥

1

2
e
√

τDk (k ≥ N)

for any P ∈ E(k). If we define a function uk(P ) on Γn(D) by

uk(P ) = 2e−
√

τDkB
(k)
2 (P ),

then

uk(P ) ≥ 1 (P ∈ E(k), k ≥ N)

and

uk(P ) =

∫

Γn(D)
G(P, Q)dµk(Q) +

∫

Sn(D)

∂G(P, Q)

∂nQ
dνk(Q)

with two measures

dµk(Q) =

{

2e−
√

τDkdµ(Q) (Q ∈ Γn(D; k − 1, k + 2))

0 (Q ∈ Γn(D;−∞, k − 1) ∪ Γn(D; k + 2, ∞))
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and

dνk(Q) =

{

2e−
√

τDkdν(Q) (Q ∈ Sn(D; k − 1, k + 2))

0 (Q ∈ Sn(D;−∞, k − 1) ∪ Sn(D; k + 2, ∞)).

Hence by applying Lemma 5 to uk(P ), we obtain

λE(k)

(

Γn(D)
)

≤ 2e−
√

τDk

{
∫

Γn(D;k−1, k+2)
e
√

τDy′

fD(X ′)dµ(X ′, y′)

+

∫

Sn(D;k−1, k+2)
e
√

τDy′ ∂

∂nX′

fD(X ′)dν(X ′, y′)

}

(k ≥ N). Finally we have

∞
∑

k=N

e−
√

τDkλE(k)

(

Γn(D)
)

≤ 6e4
√

τD

{
∫

Γn(D;N−1,∞)
e−

√
τDy′

fD(X ′)dµ(X ′, y′)

+

∫

Sn(D;N−1,∞)
e−

√
τDy′ ∂

∂nX′

fD(X ′)dν(X ′, y′)

}

.

If we take a sufficiently large N , then the integrals of the right side are finite

from Lemmas 1 and 4.

Suppose that a subset E of Γn(D) satisfies

∞
∑

k=0

e−
√

τDkλE(k)

(

Γn(D)
)

< +∞.

Then from the second part of Lemma 5 applied to E(k), we have

∞
∑

k=0

e−
√

τDk

(
∫

Γn(D)
e
√

τDy′

fD(X ′)dµ∗
k(X

′, y′)

+

∫

Sn(D)
e
√

τDy′ ∂

∂nX′

fD(X ′)dν∗
k(X ′, y′)

)

< ∞, (6.8)

where µ∗
k and ν∗

k are two positive measures on Γn(D) and Sn(D), respec-

tively, such that

R̂
E(k)
1 (P ) =

∫

Γn(D)
G(P, Q)dµ∗

k(Q)
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+

∫

Sn(D)

∂

∂nQ
G(P, Q)dν∗

k(Q). (6.9)

Consider the function v0(P ) on Γn(D) defined by

v0(P ) =
∞
∑

k=−1

e
√

τD(k+1)R̂
E(k)
1 (P ) (P ∈ Γn(D)).

Then v0(P ) is a superharmonic function on Γn(D) or identically ∞ on

Γn(D). Take any positive integer k0 and write

v0(P ) = v1(P ) + v2(P ) (P ∈ Γn(D)),

where

v1(P ) =

k0+1
∑

k=−1

e
√

τD(k+1)R̂
E(k)
1 (P ), v2(P ) =

∞
∑

k0+2

e
√

τD(k+1)R̂
E(k)
1 (P ).

Since µ∗
k and ν∗

k are concentrated on BE(k) ⊂ E(k) ∩ Γn(D) and B′
E(k) ⊂

E(k) ∩ Sn(D) (see (4.15) for the notation B ′
E(k)), respectively (Brelot [5,

Theorem XV,11]), we have from (4.1) and (4.7) that

e
√

τD(k+1)

∫

Γn(D)
G(P0, Q)dµ∗

k(Q)

≤ C2e
√

τDke
√

τD(y0+1)fD(X0)

∫

Γn(D)
e−

√
τDy′

fD(X ′)dµ∗
k(X

′, y′)

≤ C2e
√

τD(y0+1)fD(X0)e
−√

τDk

∫

Γn(D)
e
√

τDy′

fD(X ′)dµ∗
k(X

′, y′)

and

e
√

τD(k+1)

∫

Sn(D)

∂

∂nQ
G(P0, Q)dν∗

k(Q)

≤ C2e
√

τD(y0+1)fD(X0)e
−√

τDk

∫

Sn(D)
e
√

τDy′ ∂

∂nX′

fD(X ′)dν∗
k(X ′, y′)

for a point P0 = (X0, y0) ∈ Γn(D), y0 ≤ k0 +1, and any integer k ≥ k0 +2.

Hence we know

v2(P0) ≤ C2e
√

τD(y0+1)fD(X0)
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×
∞
∑

k0+2

e−
√

τDk

{
∫

Γn(D)
e
√

τDy′

fD(X ′)dµ∗
k(X

′, y′)

+

∫

Sn(D)
e
√

τDy′ ∂

∂nX′

fD(X ′)dν∗
k(X ′, y′)

}

. (6.10)

This and (6.8) show that v2(P0) is finite and hence v0(P ) is a positive

superharmonic function on Γn(D). To see

c∞(v0) = inf
P∈Γn(D)

v0(P )

K(P, ∞)
= 0, (6.11)

consider the representations of v0(P ), v1(P ) and v2(P )

v0(P ) = c∞(v0)K(P, ∞) + c−∞(v0)K(P, −∞)

+

∫

Γn(D)
G(P, Q)dµ(0)(Q) +

∫

Sn(D)

∂G(P, Q)

∂nQ
dν(0)(Q),

v1(P ) = c∞(v1)K(P, ∞) + c−∞(v1)K(P, −∞)

+

∫

Γn(D)
G(P, Q)dµ(1)(Q) +

∫

Sn(D)

∂G(P, Q)

∂nQ
dν(1)(Q),

and

v2(P ) = c∞(v2)K(P, ∞) + c−∞(v2)K(P, −∞)

+

∫

Γn(D)
G(P, Q)dµ(2)(Q) +

∫

Sn(D)

∂G(P, Q)

∂nQ
dν(2)(Q)

by Lemma 3. It is evident from (6.9) that c∞(v1) = 0 for any k0. Since

c∞(v2) = inf
P∈Γn(D)

v2(P )

K(P, ∞)
≤

v2(P0)

K(P0, ∞)

≤ C2e
√

τD

∞
∑

k0+2

e−
√

τDk

{
∫

Γn(D)
e
√

τDy′

fD(X ′)dµ∗
k(X

′, y′)

+

∫

Sn(D)
e
√

τDy′ ∂

∂nX′

fD(X ′)dν∗
k(X ′, y′)

}

→ 0 (k0 → +∞)

from (6.8) and (6.10), we know c∞(v2) = 0 and hence c∞(v0) = 0, which is

(6.11).

Since R̂
E(k)
1 = 1 on BE(k), BE(k) ⊂ E(k)∩ Γn(D) (Brelot [5, p. 61] and
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Doob [6, p. 169]), we see

v0(P ) ≥ e
√

τD(k+1) ≥ e
√

τDy

for any P = (X, y) ∈ BE(k) (k = −1, 0, 1, 2, . . .). If we set E ′ = ∪∞
k=−1BE(k),

then

E′ ⊂ Hv0 . (6.12)

Since E′ is equal to E except a polar set S, we can take another positive

superharmonic function v3 on Γn(D) such that v3 = Gη with a positive

measure η on Γn(D) and v3 is identically +∞ on S (see Doob [6, p. 58]).

Finally, define a positive superharmonic function v on Γn(D) by

v = v0 + v3.

Since c∞(v3) = 0, it is easy to see from (6.11) that c∞(v) = 0. Also we see

from (5.12) that E ⊂ Hv. Thus we complete to prove that E is a rarefied

set at ∞ with respect to Γn(D). ¤

7. Proofs of Theorems 3 and 4

Proof of Theorem 3. By Lemma 3 we have

v(P ) = c∞(v)K(P, ∞) + c−∞(v)K(P, −∞)

+

∫

Γn(D)
G(P, Q)dµ(Q) +

∫

Sn(D)

∂G(P, Q)

∂nQ
dν(Q)

for two positive measures µ and ν on Γn(D) and Sn(D), respectively. Then

v1(P ) = v(P ) − c∞(v)K(P, ∞) − c−∞(v)K(P, −∞)

(P = (X, y) ∈ Γn(D))

also is a positive superharmonic function on Γn(D) such that

inf
P=(X, y)∈Γn(D)

v1(P )

K(P, ∞)
= 0.

We shall prove the existence of a rarefied set E at ∞ with respect to Γn(D)

such that

v1(P )e−
√

τDy (P = (X, y) ∈ Γn(D))
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uniformly converges to 0 on Γn(D)−E as y → +∞. Let {εi} be a sequence

of positive numbers εi satisfying εi → 0 (i → +∞). Put

Fi = {P = (X, y) ∈ Γn(D); v1(P ) ≥ εie
√

τDy} (i = 1, 2, 3, . . .).

Then Fi (i = 1, 2, 3, . . .) is rarefied at ∞ with respect to Γn(D) and hence

∞
∑

k=0

e−
√

τDkλFi(k)

(

Γn(D)
)

< ∞ (i = 1, 2, 3, . . .)

by Theorem 2. Take a sequence {qi} such that

∞
∑

k=qi

e−
√

τDkλFi(k)

(

Γn(D)
)

<
1

2i
(i = 1, 2, 3, . . .)

and set

E =
∞
⋃

i=1

∞
⋃

k=qi

Fi(k).

Then

λE(m)

(

Γn(D)
)

≤
∞
∑

i=1

∞
∑

k=qi

λFi∩Ik∩Im

(

Γn(D)
)

(m = 1, 2, 3, . . .),

because λ is a countably sub-additive set function as in Aikawa and Essén

[2, Lemma 2.4 (iii)] and in Essén and Jakson [8, p. 241]. Since

∞
∑

m=1

λE(m)

(

Γn(D)
)

e−
√

τDm

≤
∞
∑

i=1

∞
∑

k=qi

∞
∑

m=1

λFi∩Ik∩Im

(

Γn(D)
)

e−
√

τDm

=
∞
∑

i=1

∞
∑

k=qi

λFi(k)

(

Γn(D)
)

e−
√

τDk ≤
∞
∑

i=1

1

2i
= 1,

we know by Theorem 2 that E is a rarefied set at ∞ with respect to Γn(D).

It is easy to see that

v1(P )e−
√

τDy (P = (X, y) ∈ Γn(D)

uniformly converges to 0 on Γn(D) − E as y → ∞. ¤



Minimally thin sets and rarefied sets in a cylinder 533

Proof of Theorem 4. Since λE(k) is concentrated on BE(k) ⊂ E(k)∩Γn(D),

we see

γ
(

E(k)
)

=

∫

Γn(D)
R̂

E(k)
K( · ,∞)(P )dλE(k)(P )

≤

∫

Γn(D)
K(P, ∞)dλE(k)(P ) ≤ JDe

√
τD(k+1)λE(k)

(

Γn(D)
)

and hence
∞
∑

k=0

e−2
√

τDkγ
(

E(k)
)

≤ JDe
√

τD

∞
∑

k=0

e−
√

τDkλE(k)

(

Γn(D)
)

,

which gives the conclusion in the first part from Theorems 1 and 2.

To prove the second part, put J ′
D = minX∈D fD(X). Since

K(P, ∞) = e
√

τDyfD(X) ≥ J ′
De

√
τDy ≥ J ′

De
√

τDk

(P = (X, y) ∈ E(k)),

and

R̂
E(k)
K( · ,∞)(P ) = K(P, ∞)

for any P ∈ BE(k), we have

γ
(

E(k)
)

=

∫

Γn(D)
R̂

E(k)
K( · ,∞)(P )dλE(k)(P ) ≥ J ′

De
√

τDkλE(k)

(

Γn(D)
)

.

Since

J ′
D

∞
∑

k=0

e−
√

τDkλE(k)

(

Γn(D)
)

≤
∞
∑

k=0

e−2
√

τDkγ
(

E(k)
)

< +∞

from Theorem 1, it follows from Theorem 2 that E is rarefied at ∞ with

respect to Γn(D). ¤
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