Two criteria of Wiener type for minimally thin sets and rarefied sets in a cylinder

Ikuko Miyamoto

(Received March 20, 2006; Revised November 27, 2006)

Abstract

We shall give two criteria of Wiener type which characterize minimally thin sets and rarefied sets in a cylinder. We shall also show that a positive superharmonic function on a cylinder behaves regularly outside a rarefied set in a cylinder.

Key words: superharmonic function, minimally thin set, rarefied set, cylinder.

1. Introduction

Lelong-Ferrand [14] investigates the regularity of value distribution of a positive superharmonic function on the half-space \mathbf{T}_{n} through introducing the notion of a set "effilé at ∞ " which is defind by a criterion of Wiener type.

Essén and Jackson [7] observed that a subset E of \mathbf{T}_{n} is effilé at ∞ if and only if E is minimally thin at ∞, and led later developments to a different direction. Their investigation was motivated by Ahlfors and Heins [1], Hayman [11], Ušakova [18] and Azarin [4], who are concerned with regularity of value distribution of a subharmonic function defined on the half plane \mathbf{T}_{2}, the half-space \mathbf{T}_{n} or cone, outside a exceptional set covered by a sequence of balls. By introducing a new type of exceptional set in \mathbf{T}_{n} defined by another criterion of Wiener type, which is called a rarefied set, Essén and Jackson [8] gave a detailed covering theorem for it and sharpend their results by proving the regurality of value distribution outside the exceptional set, of a positive superharmonic function on T_{n} in place of a subharmonic function.

Essén and Jackson's concern is limited to a positive superharmonic function on \mathbf{T}_{n} which is a special cone, while Azarin [4] treats subharmonic functions defined on general cones. Lelong-Ferrand [15] also refered to a set effilé at ∞ in a cone without giving explicitely a criterion of Wiener type and extended her results in [14] for a positive superharmonic function on
a cone. In these senses, it seemed important to extend their results to a positive superharmonic functions on a cone and to try obtaining a result sharpening Azarin's result in a true sense. In the previous paper [16], we gave some results to this direction, including two criteria of Wiener types. In our recent paper [17], we obtained a result sharpening Azarin's result in a true sense by giving a covering theorem for a rarefied set in a cone.

On the other hand, Lelong-Ferrand [15] refered to a set effilé at ∞ in a cylinder without giving a criterion of Wiener type, and said that her results in [14] were also extended for a positive superharmonic function on a cylinder. Since a cylinder is a domain of completly different type from a cone in the sense that ∞ is a cusp of domain when it is changed into a bounded domain by a Kelvin transformation, it also seems valuable to observe how a series of results obtained with a cone follows when a cylinder is considered in place of a cone.

In this paper we shall first prove that a minimally thin set at ∞ in a cylinder is also defined by a criterion of Wiener type (Theorem 1). Next we shall define a rarefied set in a cylinder and show that it is also judged by another criterion of Wiener type (Theorem 2). We shall prove the regularity of boundary behavior of a positive superharmonic function on a cylinder outside a rarefied set (Theorem 3). Finally we shall give some connection between a minimally thin set and a rarefied set in a cylinder (Theorem 4).

2. Preliminaries

Let D be a bounded domain on $\mathbf{R}^{n-1}(n \geq 2)$ with smooth boundary. Consider the Dirichlet problem

$$
\begin{align*}
\left(\Delta_{n}+\tau\right) f & =0 & & \text { on } D \tag{2.1}\\
f & =0 & & \text { on } \partial D .
\end{align*}
$$

We denote the least positive eigenvalue of (2.1) by τ_{D} and the normalized positive eigenfunction corresponding to τ_{D} by $f_{D}(X)$;

$$
\int_{D} f_{D}^{2}(X) d X=1
$$

where $d X$ is the $(n-1)$-dimensional volume element. By $\Gamma_{n}(D)$, we denote the set $\left\{P=(X, y) \in \mathbf{R}^{n} ; X \in D,-\infty<y<+\infty\right\}$. We call it a cylinder. It is known that the Martin boundary of $\Gamma_{n}(D)$ is the set $\partial \Gamma_{n}(D) \cup\{\infty,-\infty\}$ (Yoshida [19, p. 285]). When we denote the Martin kernel by $K(P, Q)(P \in$
$\left.\Gamma_{n}(D), Q \in \partial \Gamma_{n}(D) \cup\{\infty,-\infty\}\right)$, we know

$$
\begin{aligned}
K(P, \infty)=e^{\sqrt{\tau_{D}} y} f_{D}(X), K(P,-\infty)= & \kappa e^{-\sqrt{\tau_{D}} y} f_{D}(X) \\
& \left(P=(X, y) \in \Gamma_{n}(D)\right),
\end{aligned}
$$

where κ is a positive constant.
A subset E of $\Gamma_{n}(D)$ is called to be minimally thin at ∞ in $\Gamma_{n}(D)$ (Brelot [5, p. 122] and Doob [6, p. 208]), if there exists a point $P \in \Gamma_{n}(D)$ such that

$$
\hat{R}_{K(\cdot, \infty)}^{E}(P) \neq K(P, \infty),
$$

where $\hat{R}_{K(\cdot, \infty)}^{E}(P)$ is the regulalized reduced function of $K(\cdot, \infty)$ relative to E (Helms [12, p. 134]).

When we set

$$
\begin{aligned}
& \Gamma_{n}(D ;-\infty, b)=\left\{P=(X, y) \in \mathbf{R}^{n} ; X \in D, y<b\right\} \\
&(-\infty<b<+\infty)
\end{aligned}
$$

and E is a subset of $\Gamma_{n}(D)$ such that there exists a real number b satisfying $E \subset \Gamma_{n}(D ;-\infty, b), E$ is called to be bounded above. If $E \subset \Gamma_{n}(D)$ is bounded above, then $\hat{R}_{K(\cdot, \infty)}^{E}$ is bounded on $\Gamma_{n}(D)$ and hence the greatest harmonic minorant of $\hat{R}_{K(\cdot, \infty)}^{E}$ is zero. When we denote by $G(P, Q) \quad(P \in$ $\left.\Gamma_{n}(D), Q \in \Gamma_{n}(D)\right)$ the Green function of $\Gamma_{n}(D)$, we see from the Riesz decomposition theorem (Helms [12, p. 116]) that there exists a unique positive measure λ_{E} on $\Gamma_{n}(D)$ such that

$$
\begin{equation*}
\hat{R}_{K(\cdot, \infty)}^{E}(P)=G \lambda_{E}(P) \tag{2.2}
\end{equation*}
$$

for any $P \in \Gamma_{n}(D)$ and λ_{E} is concentrated on B_{E}, where

$$
B_{E}=\left\{P \in \Gamma_{n}(D) ; E \text { is not thin at } P\right\}
$$

(see Brelot [5, Theorem VIII, 11] and Doob [6, Theorem XI. 14(d)]).
The (Green) energy $\gamma(E)$ of λ_{E} is defined by

$$
\gamma(E)=\int_{\Gamma_{n}(D)}\left(G \lambda_{E}\right) d \lambda_{E}
$$

(see [12, p. 223]).
In the following, we put the strong assumption relative to D on \mathbf{R}^{n-1} : If $n \geq 3$, then D is a $C^{2, \alpha}$-domain $(0<\alpha<1)$ on \mathbf{R}^{n-1} surrounded by
a finite number of mutually disjoint closed hypersurfaces (e.g. see $[9, \mathrm{pp}$. 88-89] for the definition of $C^{2, \alpha}$-domain). Then $f_{D}(X)$ is twice continuously differentiable on $\bar{D}([9$, Theorem 6.15]).

3. Statement of results

Let E be a subset of $\Gamma_{n}(D)$ and $E(k)=E \cap I_{k}$, where

$$
I_{k}=\left\{(X, y) \in \Gamma_{n}(D): k \leq y<k+1\right\} .
$$

First, for a minimally thin set at ∞ with respect to $\Gamma_{n}(D)$ we shall give not only a criterion of Wiener type, but also another definition which is parallel to the difinition for a rarefied set at ∞ with respect to $\Gamma_{n}(D)$ (this definition can be state in more general form as in Armitage and Gardiner [3, Theorem 9.2.6]).

Theorem 1 For a subset E of $\Gamma_{n}(D)$, the following statements are equivalent:
(I) E is minimally thin at ∞ with respect to $\Gamma_{n}(D)$.
(II) $\quad \sum_{k=0}^{\infty} \gamma(E(k)) e^{-2 \sqrt{\tau_{D}} k}<+\infty$.
(III) There exists a positive superharmonic function $v(P)$ on $\Gamma_{n}(D)$ such that

$$
\inf _{P \in \Gamma_{n}(D)} \frac{v(P)}{K(P, \infty)}=0
$$

and

$$
\begin{equation*}
E \subset M_{v} \tag{3.1}
\end{equation*}
$$

where

$$
M_{v}=\left\{P=(X, y) \in \Gamma_{n}(D) ; v(P) \geq K(P, \infty)\right\} .
$$

A subset E of $\Gamma_{n}(D)$ is said to be rarefied at ∞ with respect to $\Gamma_{n}(D)$, if there exists a positive superharmonic function $v(P)$ on $\Gamma_{n}(D)$ such that

$$
\inf _{P \in \Gamma_{n}(D)} \frac{v(P)}{K(P, \infty)}=0
$$

and

$$
E \subset H_{v}
$$

where

$$
H_{v}=\left\{P=(X, y) \in \Gamma_{n}(D) ; v(P) \geq e^{\sqrt{\tau_{D}} y}\right\}
$$

(for the definition of rarefied sets at ∞ with respect to the half-space, see Aikawa and Essén [2, DEFINITION 12.4 in p. 74] and Hayman [10, p. 474]).

Theorem $2 A$ subset E of $\Gamma_{n}(D)$ is rarefied at ∞ with respect to $\Gamma_{n}(D)$ if and only if

$$
\sum_{k=0}^{\infty} e^{-\sqrt{\tau_{D} k}} \lambda_{(E(k))}\left(\Gamma_{n}(D)\right)<+\infty .
$$

Theorem 3 Let $v(P)$ be a positive superharmonic function on $\Gamma_{n}(D)$ and $c_{\infty}(v)$ be a constant defined by

$$
\inf _{P \in \Gamma_{n}(D)} \frac{v(P)}{K(P, \infty)}=c_{\infty}(v) .
$$

Then there exists a rarefied set E at ∞ with respect to $\Gamma_{n}(D)$ such that $v(P) e^{-\sqrt{\tau_{D}} y}$ uniformly converges to $c_{\infty}(v) f_{D}(X)$ on $\Gamma_{n}(D)-E$ as $y \rightarrow$ $+\infty\left(P=(X, y) \in \Gamma_{n}(D)\right)$.

Remark We observe the following fact from the definition of a rarefied set. Given any rarefied set E at ∞ with respect to $\Gamma_{n}(D)$, there exists a positive superharmonic function $v(P)$ on $\Gamma_{n}(D)$ such that $v(P) e^{-\sqrt{\tau_{D}} y} \geq 1$ on E and

$$
c_{\infty}(v)=\inf _{P=(X, y) \in \Gamma_{n}(D)} \frac{v(P)}{K(P, \infty)}=0 .
$$

Hence $v(P) e^{-\sqrt{\tau_{D}} y}$ does not converge to $c_{\infty}(v) f_{D}(X)=0$ at any point $P=$ (X, y) of $\Gamma_{n}(D)-E$ as $y \rightarrow+\infty$.

A cylinder $\Gamma_{n}\left(D^{\prime}\right)$ is called a subcylinder of $\Gamma_{n}(D)$, if $\overline{D^{\prime}} \subset D\left(\overline{D^{\prime}}\right.$ is the closure of D^{\prime}). As in \mathbf{T}_{n} (Essén and Jackson [8, Remark 3.2]), we have Theorem 4 Let E be a subset of $\Gamma_{n}(D)$. If E is rarefied at ∞ with respect to $\Gamma_{n}(D)$, then E is minimally thin at ∞ with respect to $\Gamma_{n}(D)$. If E is contained in a subcylinder of $\Gamma_{n}(D)$ and E is minimally thin at ∞ with respect to $\Gamma_{n}(D)$, then E is rarefied at ∞ with respect to $\Gamma_{n}(D)$.

4. Lemmas

In the following we set

$$
\begin{aligned}
\Gamma_{n}(D ; a, b)=\left\{P=(X, y) \in \mathbf{R}^{n} ; X \in D,\right. & a \leq y<b\} \\
& (-\infty<a<b \leq+\infty) .
\end{aligned}
$$

First of all, we remark that

$$
\begin{align*}
C_{1} e^{\sqrt{\tau_{D}} y} e^{-\sqrt{\tau_{D}} y^{\prime}} f_{D}(X) f_{D}\left(X^{\prime}\right) & \leq G(P, Q) \\
& \leq C_{2} e^{\sqrt{\tau_{D}} y} e^{-\sqrt{\tau_{D} y^{\prime}}} f_{D}(X) f_{D}\left(X^{\prime}\right) \tag{4.1}
\end{align*}
$$

for any $P=(X, y) \in \Gamma_{n}(D)$ and any $Q=\left(X^{\prime}, y^{\prime}\right) \in \Gamma_{n}(D)$ satisfying $y<y^{\prime}-1$, where C_{1} and C_{2} are two positive constants (Yoshida [19]).

Lemma 1 Let μ be a positive measure on $\Gamma_{n}(D)$ such that there is a sequence of points $P_{i}=\left(X_{i}, y_{i}\right) \in \Gamma_{n}(D), y_{i} \rightarrow+\infty(i \rightarrow+\infty)$ satisfying

$$
\begin{aligned}
G \mu\left(P_{i}\right)=\int_{\Gamma_{n}(D)} G\left(P_{i}, Q\right) d \mu(Q)< & +\infty \\
& \left(i=1,2,3, \ldots ; Q \in \Gamma_{n}(D)\right) .
\end{aligned}
$$

Then for a real number l,

$$
\begin{equation*}
\int_{\Gamma_{n}(D ; l,+\infty)} e^{-\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right)<+\infty \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{L \rightarrow \infty} e^{-2 \sqrt{\tau_{D} L}} \int_{\Gamma_{n}(D ;-\infty, L)} e^{\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right)=0 \tag{4.3}
\end{equation*}
$$

Proof. Take a real number l satisfying $P_{1}=\left(X_{1}, y_{1}\right) \in \Gamma_{n}(D), y_{1}+1 \leq l$. Then from (4.1), we have

$$
\begin{aligned}
& C_{1} e^{\sqrt{\tau_{D}} y_{1}} f_{D}\left(X_{1}\right) \int_{\Gamma_{n}(D ; l, \infty)} e^{-\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \\
& \quad \leq \int_{\Gamma_{n}(D)} G\left(P_{1}, Q\right) d \mu(Q)<+\infty
\end{aligned}
$$

which gives (4.2). For any positive number ε, from (4.2) we can take a large
number A such that

$$
\int_{\Gamma_{n}(D ; A, \infty)} e^{-\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right)<\frac{\varepsilon}{2}
$$

If we take a point $P_{i}=\left(X_{i}, y_{i}\right) \in \Gamma_{n}(D), y_{i} \geq A+1$, then we have from (4.1)

$$
\begin{aligned}
C_{1} e^{-\sqrt{\tau_{D}} y_{i}} f_{D}\left(X_{i}\right) \int_{\Gamma_{n}(D ;-\infty, A)} & e^{\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \\
& \leq \int_{\Gamma_{n}(D)} G\left(P_{i}, Q\right) d \mu(Q)<+\infty
\end{aligned}
$$

If $L(L>A)$ is sufficiently large, then

$$
\begin{aligned}
& e^{-2 \sqrt{\tau_{D}} L} \int_{\Gamma_{n}(D ;-\infty, L)} e^{\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \\
& =e^{-2 \sqrt{\tau_{D}} L} \int_{\Gamma_{n}(D ;-\infty, A)} e^{\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \\
& \quad+e^{-2 \sqrt{\tau_{D}} L} \int_{\Gamma_{n}(D ; A, L)} e^{\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \\
& \leq e^{-2 \sqrt{\tau_{D}} L} \int_{\Gamma_{n}(D ;-\infty, A)} e^{\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \\
& \quad+\int_{\Gamma_{n}(D ; A, \infty)} e^{-\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right)<\varepsilon
\end{aligned}
$$

which gives (4.3).
Lemma 2 Let $v(P)$ be a positive superharmonic function on $\Gamma_{n}(D)$ such that

$$
\inf _{P \in \Gamma_{n}(D)} \frac{v(P)}{K(P, \infty)}=0
$$

Then for any positive number B the set

$$
\left\{P=(X, y) \in \Gamma_{n}(D) ; v(P) \geq B K(P, \infty)\right\}
$$

is minimally thin at ∞ with respect to $\Gamma_{n}(D)$.

Proof. Apply a result in Doob [6, p. 213] to the positive superharmonic function $v(P)$. Then

$$
\operatorname{mf}_{y \rightarrow \infty, P \in \lim _{n}(D)} \frac{v(P)}{K(P, \infty)}=\inf _{P \in \Gamma_{n}(D)} \frac{v(P)}{K(P, \infty)}=0,
$$

where "mf limit" means minimal-fine limit. This gives the conclusion.
In the following we put

$$
\begin{aligned}
S_{n}(D ; a, b)=\left\{P=(X, y) \in \mathbf{R}^{n} ; X \in \partial D\right. & a \leq y<b\} \\
& (-\infty<a<b \leq+\infty)
\end{aligned}
$$

and

$$
\begin{aligned}
S_{n}(D ;-\infty, b)=\left\{P=(X, y) \in \mathbf{R}^{n} ; X \in \partial D\right. & -\infty<y<b\} \\
& (-\infty<b \leq+\infty) .
\end{aligned}
$$

Hence $S_{n}(D ;-\infty,+\infty)$ denoted simply by $S_{n}(D)$ is $\partial \Gamma_{n}(D)$.
Lemma 3 Let $v(P)$ be a positive superharmonic function on $\Gamma_{n}(D)$ and put

$$
\begin{equation*}
c_{\infty}(v)=\inf _{P \in \Gamma_{n}(D)} \frac{v(P)}{K(P, \infty)}, \quad c_{-\infty}(v)=\inf _{P \in \Gamma_{n}(D)} \frac{v(P)}{K(P,-\infty)} . \tag{4.4}
\end{equation*}
$$

Then there are a unique positive measure μ on $\Gamma_{n}(D)$ and a unique positive measure ν on $S_{n}(D)$ such that

$$
\begin{aligned}
v(P)= & c_{\infty}(v) K(P, \infty)+c_{-\infty}(v) K(P,-\infty) \\
& +\int_{\Gamma_{n}(D)} G(P, Q) d \mu(Q)+\int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu(Q),
\end{aligned}
$$

where $\partial / \partial n_{Q}$ denotes the differentiation at Q along the inward normal into $\Gamma_{n}(D)$.

Proof. By the Riesz decomposition theorem, we have a unique measure μ on $\Gamma_{n}(D)$ such that

$$
\begin{equation*}
v(P)=\int_{\Gamma_{n}(D)} G(P, Q) d \mu(Q)+h(P) \quad\left(P \in \Gamma_{n}(D)\right) \tag{4.5}
\end{equation*}
$$

where h is the greatest harmonic minorant of v on $\Gamma_{n}(D)$. Further by the Martin representation theorem we have another positive measure ν^{\prime} on

$$
\begin{aligned}
\partial \Gamma_{n}(D) \cup\{\infty, & -\infty\} \\
h(P)= & \int_{\partial \Gamma_{n}(D) \cup\{\infty,-\infty\}} K(P, Q) d \nu^{\prime}(Q) \\
= & K(P, \infty) \nu^{\prime}(\{\infty\})+K(P,-\infty) \nu^{\prime}(\{-\infty\}) \\
& +\int_{S_{n}(D)} K(P, Q) d \nu^{\prime}(Q) \quad\left(P \in \Gamma_{n}(D)\right) .
\end{aligned}
$$

We see from (4.4) that $\nu^{\prime}(\{\infty\})=c_{\infty}(v)$ and $\nu^{\prime}(\{-\infty\})=c_{-\infty}(v)$ (see Yoshida [19, p. 292]). Since

$$
\begin{equation*}
K(P, Q)=\lim _{P_{1} \rightarrow Q, P_{1} \in \Gamma_{n}(D)} \frac{G\left(P, P_{1}\right)}{G\left(P^{*}, P_{1}\right)}=\frac{\partial G(P, Q) / \partial n_{Q}}{\partial G\left(P^{*}, Q\right) / \partial n_{Q}} \tag{4.6}
\end{equation*}
$$

(P^{*} is a fixed reference point of the Martin kernel), we also obtain

$$
\begin{aligned}
h(P)=c_{\infty}(v) K & (P, \infty) \\
& +c_{-\infty}(v) K(P,-\infty)+\int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu(Q)
\end{aligned}
$$

by taking

$$
d \nu(Q)=\left\{\frac{\partial G\left(P^{*}, Q\right)}{\partial n_{Q}}\right\}^{-1} d \nu^{\prime}(Q) \quad\left(Q \in S_{n}(D)\right) .
$$

Finally this and (4.5) give the conclusion of this lemma.
We remark the following inequality which follows from (4.1).

$$
\begin{align*}
& C_{1} e^{\sqrt{\tau_{D}} y} e^{-\sqrt{\tau_{D} y^{\prime}}} f_{D}(X) \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) \leq \frac{\partial G(P, Q)}{\partial n_{Q}} \\
& \leq C_{2} e^{\sqrt{\tau_{D}} y} e^{-\sqrt{\tau_{D} y^{\prime}}} f_{D}(X) \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) \tag{4.7}
\end{align*}
$$

for any $P=(X, y) \in \Gamma_{n}(D)$ and any $Q=\left(X^{\prime}, y^{\prime}\right) \in S_{n}(D)$ satisfying $y<y^{\prime}-1$, where C_{1} and C_{2} are two positive constants.

Lemma 4 Let ν be a positive measure on $S_{n}(D)$ such that there is a sequence of points $P_{i}=\left(X_{i}, y_{i}\right) \in \Gamma_{n}(D), y_{i} \rightarrow+\infty(i \rightarrow+\infty)$ satisfying

$$
\int_{S_{n}(D)} \frac{\partial G\left(P_{i}, Q\right)}{\partial n_{Q}} d \nu(Q)<+\infty \quad(i=1,2,3, \ldots)
$$

Then for a real number l

$$
\int_{S_{n}(D ; l, \infty)} e^{-\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu\left(X^{\prime}, y^{\prime}\right)<\infty
$$

and

$$
\lim _{R \rightarrow \infty} e^{-2 \sqrt{\tau_{D}} R} \int_{S_{n}(D ;-\infty, R)} e^{\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu\left(X^{\prime}, y^{\prime}\right)=0
$$

Proof. If we use (4.7) in place of (4.1), we obtain this lemma in the completely paralleled way to the proof of Lemma 1.

Lemma 5 Let $E \subset \Gamma_{n}(D)$ be bounded above and $u(P)$ be a positive superharmonic function on $\Gamma_{n}(D)$ such that $u(P)$ is represented as

$$
\begin{align*}
u(P)= & \int_{\Gamma_{n}(D)} G(P, Q) d \mu_{u}(Q) \\
& +\int_{S_{n}(D)} \frac{\partial}{\partial n_{Q}} G(P, Q) d \nu_{u}(Q) \quad\left(P \in \Gamma_{n}(D)\right) . \tag{4.8}
\end{align*}
$$

with two positive measures μ_{u} and ν_{u} on $\Gamma_{n}(D)$ and $S_{n}(D)$, respectively, and

$$
u(P) \geq 1
$$

for any $P \in E$. Then

$$
\begin{align*}
\lambda_{E}\left(\Gamma_{n}(D)\right) \leq & \int_{\Gamma_{n}(D)} e^{\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu_{u}\left(X^{\prime}, y^{\prime}\right) \\
& +\int_{S_{n}(D)} e^{\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu_{u}\left(X^{\prime}, y^{\prime}\right) \tag{4.9}
\end{align*}
$$

When $u(P)=\hat{R}_{1}^{E}(P)\left(P \in \Gamma_{n}(D)\right)$, the equality holds in (4.9).
Proof. Since λ_{E} is concentrated on B_{E} and $u(P) \geq 1$ for any $P \in B_{E}$, we see from (4.8) that

$$
\begin{aligned}
& \lambda_{E}\left(\Gamma_{n}(D)\right)=\int_{\Gamma_{n}(D)} d \lambda_{E} \leq \int_{\Gamma_{n}(D)} u(P) d \lambda_{E}(P) \\
& =\int_{\Gamma_{n}(D)} \hat{R}_{K(\cdot, \infty)}^{E}(Q) d \mu_{u}(Q)
\end{aligned}
$$

$$
\begin{equation*}
+\int_{S_{n}(D)}\left(\int_{\Gamma_{n}(D)} \frac{\partial}{\partial n_{Q}} G(P, Q) d \lambda_{E}(P)\right) d \nu_{u}(Q) \tag{4.10}
\end{equation*}
$$

Now we have

$$
\begin{align*}
\hat{R}_{K(\cdot, \infty)}^{E}(Q) \leq K(Q, \infty)=e^{\sqrt{\tau_{D}} y^{\prime}} & f_{D}\left(X^{\prime}\right) \\
& \left(Q=\left(X^{\prime}, y^{\prime}\right) \in \Gamma_{n}(D)\right) \tag{4.11}
\end{align*}
$$

Since

$$
\int_{\Gamma_{n}(D)} \frac{\partial}{\partial n_{Q}} G(P, Q) d \lambda_{E}(P) \leq \varliminf_{\rho \rightarrow 0} \frac{1}{\rho} \int_{\Gamma_{n}(D)} G\left(P, P_{\rho}\right) d \lambda_{E}(P)
$$

for any $Q \in S_{n}(D)\left(P_{\rho}=\left(X_{\rho}, y_{\rho}\right)=Q+\rho n_{Q} \in \Gamma_{n}(D), n_{Q}\right.$ is the inward normal unit vector at Q) and

$$
\begin{aligned}
\int_{\Gamma_{n}(D)} G\left(P, P_{\rho}\right) d \lambda_{E}(P)=\hat{R}_{K(\cdot, \infty)}^{E} & \left(P_{\rho}\right) \\
& \leq K\left(P_{\rho}, \infty\right)=e^{\sqrt{\tau D} y_{\rho}} f_{D}\left(X_{\rho}\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
\int_{\Gamma_{n}(D)} \frac{\partial}{\partial n_{Q}} G(P, Q) d \lambda_{E}(P) \leq e^{\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) \tag{4.12}
\end{equation*}
$$

for any $Q=\left(X^{\prime}, y^{\prime}\right) \in S_{n}(D)$. Thus from (4.10), (4.11) and (4.12) we obtain (4.9).

When $u(P)=\hat{R}_{1}^{E}(P), u(P)$ has the expression (4.8) by Lemma 3, because $\hat{R}_{1}^{E}(P)$ is bounded on $\Gamma_{n}(D)$. Then we easily have the equalities only in (4.10), because $\hat{R}_{1}^{E}(P)=1$ for any $P \in B_{E}$ (see Brelot [5, p. 61] and Doob [6, p. 169]). Hence if we can show that

$$
\begin{equation*}
\mu_{u}\left(\left\{P \in \Gamma_{n}(D) ; \hat{R}_{K(\cdot, \infty)}^{E}(P)<K(P, \infty)\right\}\right)=0 \tag{4.13}
\end{equation*}
$$

and

$$
\begin{align*}
& \nu_{u}\left(\left\{Q=\left(X^{\prime}, y^{\prime}\right) \in S_{n}(D)\right.\right. \\
& \left.\left.\quad \int_{\Gamma_{n}(D)} \frac{\partial}{\partial n_{Q}} G(P, Q) d \lambda_{E}(P)<e^{\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right)\right\}\right)=0 \tag{4.14}
\end{align*}
$$

then we can prove the equality in (4.9). To see (4.13), we remark that

$$
\left\{P \in \Gamma_{n}(D) ; \hat{R}_{K(\cdot, \infty)}^{E}(P)<K(P, \infty)\right\} \subset \Gamma_{n}(D)-B_{E}
$$

and

$$
\mu_{u}\left(\Gamma_{n}(D)-B_{E}\right)=0
$$

(see Brelot [5, Theorem VIII,11] and Doob [6, Theorem XI.14(d)]). To prove (4.14), we set

$$
\begin{equation*}
B_{E}^{\prime}=\left\{Q \in S_{n}(D) ; E \text { is not minimally thin at } Q\right\} \tag{4.15}
\end{equation*}
$$

and $e=\left\{P \in E ; \hat{R}_{K(\cdot, \infty)}^{E}(P)<K(P, \infty)\right\}$. Then e is a polar set (see Doob [6, Theorem VI.3(b)]) and hence for any $Q \in S_{n}(D)$

$$
\hat{R}_{K(\cdot, Q)}^{E}=\hat{R}_{K(\cdot, Q)}^{E-e}
$$

(see Doob [6, Theorem VI.3(c)]). Thus at any $Q \in B_{E}^{\prime}, E-e$ is not also minimally thin at Q and hence

$$
\begin{equation*}
\int_{\Gamma_{n}(D)} K(P, Q) d \eta(P)=\lim _{P^{\prime} \rightarrow Q, P^{\prime} \in E-e} \int_{\Gamma_{n}(D)} K\left(P, P^{\prime}\right) d \eta(P) \tag{4.16}
\end{equation*}
$$

for any positive measure η on $\Gamma_{n}(D)$, where

$$
K\left(P, P^{\prime}\right)=\frac{G\left(P, P^{\prime}\right)}{G\left(P^{*}, P^{\prime}\right)} \quad\left(P \in \Gamma_{n}(D), P^{\prime} \in \Gamma_{n}(D)\right)
$$

(see Brelot [5, Theorem XV,6]). Now, take $\eta=\lambda_{E}$ in (4.16). Since

$$
\begin{aligned}
& \lim _{P \rightarrow Q, P \in \Gamma_{n}(D)} \frac{K(P, \infty)}{G\left(P^{*}, P\right)} \\
& =e^{\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right)\left\{\frac{\partial G\left(P^{*}, Q\right)}{\partial n_{Q}}\right\}^{-1} \quad\left(Q=\left(X^{\prime}, y^{\prime}\right) \in S_{n}(D)\right)
\end{aligned}
$$

(for the existence of the limit in the left side, see Jerison and Kenig [13, (7.9) in p. 87]), we obtain from (4.6)

$$
\begin{aligned}
& \int_{\Gamma_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \lambda_{E}(P) \\
& \quad=e^{\sqrt{\tau_{D} y^{\prime}}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right){\underline{P^{\prime} \rightarrow Q, P^{\prime} \in E-e}}^{\lim _{\Gamma_{n}(D)} \frac{G\left(P, P^{\prime}\right)}{K\left(P^{\prime}, \infty\right)} d \lambda_{E}(P) .}
\end{aligned}
$$

for any $Q=\left(X^{\prime}, y^{\prime}\right) \in B_{E}^{\prime}$. Since

$$
\int_{\Gamma_{n}(D)} \frac{G\left(P, P^{\prime}\right)}{K\left(P^{\prime}, \infty\right)} d \lambda_{E}(P)=\frac{1}{K\left(P^{\prime}, \infty\right)} \hat{R}_{K(\cdot, \infty)}^{E}\left(P^{\prime}\right)=1
$$

for any $P^{\prime} \in E-e$, we have

$$
\int_{\Gamma_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \lambda_{E}(P)=e^{\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right)
$$

for any $Q=\left(X^{\prime}, y^{\prime}\right) \in B_{E}^{\prime}$, which shows

$$
\begin{align*}
& \left\{Q=\left(X^{\prime}, y^{\prime}\right) \in S_{n}(D)\right. \\
& \qquad \begin{aligned}
& \Gamma_{n}(D) \\
&\left.\frac{\partial}{\partial n_{Q}} G(P, Q) d \lambda_{E}(P)<e^{\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right)\right\} \\
& \subset S_{n}(D)-B_{E}^{\prime}
\end{aligned}
\end{align*}
$$

Let h be the greatest harmonic minorant of $u(P)=\hat{R}_{1}^{E}(P)$ and ν_{u}^{\prime} be the Martin representing measure of h. If we can prove that

$$
\begin{equation*}
\hat{R}_{h}^{E}=h \tag{4.18}
\end{equation*}
$$

on $\Gamma_{n}(D)$, then $\nu_{u}^{\prime}\left(S_{n}(D)-B_{E}^{\prime}\right)=0$ (see Essén and Jackson [8, pp. 240241], Brelot [5, Theorem XV,11] and, Aikawa and Essén [2, Part II, p. 188]). Since

$$
d \nu_{u}^{\prime}(Q)=\frac{\partial}{\partial n_{Q}} G\left(P_{0}, Q\right) d \nu_{u}(Q) \quad\left(Q \in S_{n}(D)\right)
$$

from (4.6), we also have $\nu_{u}\left(S_{n}(D)-B_{E}^{\prime}\right)=0$, which gives (4.14) from (4.17).
To prove (4.18), set $u^{*}=\hat{R}_{1}^{E}-h$. Then

$$
u^{*}+h=\hat{R}_{1}^{E}=\hat{R}_{u^{*}+h}^{E} \leq \hat{R}_{u^{*}}^{E}+\hat{R}_{h}^{E}
$$

(see Brelot [5, VI, 10. d)] and Helms [12, THEOREM 7.12 (iv)]), and hence

$$
\hat{R}_{h}^{E}-h \geq u^{*}-\hat{R}_{u^{*}}^{E} \geq 0
$$

from which (4.18) follows.

5. Proof of Theorem 1

Proof of $(\mathrm{I}) \Rightarrow(\mathrm{II})$. Apply the Riesz decomposition theorem to the superharmonic function $\hat{R}_{K(\cdot, \infty)}^{E}$ on $\Gamma_{n}(D)$. Then we have a positive measure μ
on $\Gamma_{n}(D)$ satisfying

$$
G \mu(P)<\infty
$$

for any $P \in \Gamma_{n}(D)$ and a non-negative greatest harmonic minorant H of $\hat{R}_{K(\cdot, \infty)}^{E}$ such that

$$
\begin{equation*}
\hat{R}_{K(\cdot, \infty)}^{E}=G \mu+H \tag{5.1}
\end{equation*}
$$

We remark that $K(P, \infty)\left(P \in \Gamma_{n}(D)\right.$ is a minimal function at ∞.
Let E be a minimally thin set at ∞ with respect to $\Gamma_{n}(D)$. Then $\hat{R}_{K(\cdot, \infty)}^{E}$ is a potential (see Doob [6, p. 208]) and hence $H \equiv 0$ on $\Gamma_{n}(D)$. Since

$$
\begin{equation*}
\hat{R}_{K(\cdot, \infty)}^{E}=K(P, \infty) \tag{5.2}
\end{equation*}
$$

for any $P \in B_{E}$ (Brelot [5, p. 61] and Doob [6, p. 169]), we see from (5.1)

$$
\begin{equation*}
G \mu(P)=K(P, \infty) \tag{5.3}
\end{equation*}
$$

for any $P \in B_{E}$. Take a sufficiently large integer L from Lemma 1 such that

$$
C_{2} e^{-2 \sqrt{\tau_{D} L}} \int_{\Gamma_{n}(D ;-\infty, L)} e^{\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right)<\frac{1}{4}
$$

where C_{2} is the constant in (4.1). Then from (4.1)

$$
\int_{\Gamma_{n}(D ;-\infty, L)} G(P, Q) d \mu(Q) \leq \frac{1}{4} K(P, \infty)
$$

for any $P=(X, y) \in \Gamma_{n}(D), y \geq L+1$, and hence from (5.3)

$$
\begin{equation*}
\int_{\Gamma_{n}(D ; L,+\infty)} G(P, Q) d \mu(Q) \geq \frac{3}{4} K(P, \infty) \tag{5.4}
\end{equation*}
$$

for any $P=(X, y) \in B_{E}, y \geq L+1$. Now, divide $G \mu$ into three parts:

$$
\begin{equation*}
G \mu(P)=A_{1}^{(k)}(P)+A_{2}^{(k)}(P)+A_{3}^{(k)}(P) \quad\left(P \in \Gamma_{n}(D)\right), \tag{5.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{1}^{(k)}(P)=\int_{\Gamma_{n}(D ; k-1, k+2)} G(P, Q) d \mu(Q), \\
& A_{2}^{(k)}(P)=\int_{\Gamma_{n}(D ;-\infty, k-1)} G(P, Q) d \mu(Q),
\end{aligned}
$$

$$
A_{3}^{(k)}(P)=\int_{\Gamma_{n}(D ; k+2,+\infty)} G(P, Q) d \mu(Q)
$$

Then we shall show that there exists an integer N such that

$$
\begin{array}{r}
B_{E} \cap \overline{I_{k}} \subset\left\{P=(X, y) \in \Gamma_{n}(D) ; A_{1}^{(k)}(P) \geq \frac{1}{4} K(P, \infty)\right\} \\
(k \geq N) . \tag{5.6}
\end{array}
$$

Take any $P=(X, y) \in \overline{I_{k}} \cap \Gamma_{n}(D)$. When by Lemma 1 we choose a sufficiently large integer N_{1} such that

$$
e^{-2 \sqrt{\tau_{D}} k} \int_{\Gamma_{n}(D ;-\infty, k-1)} e^{\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \leq \frac{1}{4 C_{2}} \quad\left(k \geq N_{1}\right)
$$

and

$$
\int_{\Gamma_{n}(D ; k+2, \infty)} e^{-\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \leq \frac{1}{4 C_{2}} \quad\left(k \geq N_{1}\right)
$$

we have from (4.1) that

$$
\begin{equation*}
A_{2}^{(k)}(P) \leq \frac{1}{4} K(P, \infty) \quad\left(k \geq N_{1}\right) \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{3}^{(k)}(P) \leq \frac{1}{4} K(P, \infty) \quad\left(k \geq N_{1}\right) \tag{5.8}
\end{equation*}
$$

Put

$$
N=\max \left\{N_{1}, L+1\right\} .
$$

If $P=(X, y) \in B_{E} \cap \overline{I_{k}}(k \geq N)$, then we have from (5.4), (5.5), (5.7) and (5.8) that

$$
\begin{aligned}
A_{1}^{(k)}(P) & \geq \int_{\Gamma_{n}(D ; L,+\infty)} G(P, Q) d \mu(Q)-A_{2}^{(k)}(P)-A_{3}^{(k)}(P) \\
& \geq \frac{1}{4} K(P, \infty),
\end{aligned}
$$

which gives (5.6).
Since the measure $\lambda_{E(k)}$ is concentrated on $B_{E(k)}$ and $B_{E_{k}} \subset \overline{E_{k}} \cap \Gamma_{n}(D)$,
we finally obtain by (5.6) that

$$
\begin{aligned}
& \gamma(E(k))=\int_{\Gamma_{n}(D)}\left(G \lambda_{E(k)}\right) d \lambda_{E(k)} \\
& \leq \int_{B_{E(k)}} e^{\sqrt{\tau_{D} y}} f_{D}(X) d \lambda_{E(k)}(X, y) \\
& \leq 4 \int_{B_{E(k)}} A_{1}^{(k)}(P) d \lambda_{E(k)}(P) \\
& =4 \int_{\Gamma_{n}(D ; k-1, k+2)}\left\{\int_{\Gamma_{n}(D)} G(P, Q) d \lambda_{E(k)}(P)\right\} d \mu(Q) \\
& \leq 4 \int_{\Gamma_{n}(D ; k-1, k+2)} e^{\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \quad(k \geq N)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \sum_{k=N}^{\infty} \gamma(E(k)) e^{-2 \sqrt{\tau_{D}} k} \\
& \leq 4 \sum_{k=N}^{\infty} \int_{\Gamma_{n}(D ; k-1, k+2)} e^{\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) e^{-2 \sqrt{\tau_{D}} k} d \mu\left(X^{\prime}, y^{\prime}\right) \\
& \leq 12 e^{4 \sqrt{\tau_{D}}} \int_{\Gamma_{n}(D ; N-1, \infty)} e^{-\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \\
& <\infty
\end{aligned}
$$

from Lemma 1. This gives (II).
Proof of (II) \Rightarrow (III). Since

$$
\hat{R}_{K(\cdot, \infty)}^{E(k)}(Q)=K(Q, \infty)
$$

for any $Q \in B_{E(k)}$ as in (5.2), we have

$$
\begin{aligned}
& \gamma(E(k))= \int_{B_{E(k)}} K(Q, \infty) d \lambda_{E(k)}(Q) \\
& \geq e^{\sqrt{\tau_{D}} k} \int_{B_{E(k)}} f_{D}\left(X^{\prime}\right) d \lambda_{E(k)}\left(X^{\prime}, y^{\prime}\right) \\
& \quad\left(Q=\left(X^{\prime}, y^{\prime}\right) \in \Gamma_{n}(D)\right)
\end{aligned}
$$

and hence from (4.1)

$$
\begin{align*}
& \hat{R}_{K(\cdot, \infty)}^{E(k)}(P) \\
& \leq C_{2} e^{\sqrt{\tau_{D}} y} f_{D}(X) \int_{B_{E(k)}} e^{-\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \lambda_{E(k)}\left(X^{\prime}, y^{\prime}\right) \\
& \leq C_{2} e^{\sqrt{\tau_{D}} y} f_{D}(X) e^{-2 \sqrt{\tau_{D}} k} \gamma(E(k)) \tag{5.9}
\end{align*}
$$

for any $P=(X, y) \in \Gamma_{n}(D)$ and any integer k satisfying $k-1 \geq y$. If we define a measure μ on $\Gamma_{n}(D)$ by

$$
\mu=\sum_{k=0}^{\infty} \lambda_{E(k)}
$$

then from (I) and (5.9)

$$
G \mu(P)=\int_{\Gamma_{n}(D)} G(P, Q) d \mu(Q)=\sum_{k=0}^{\infty} \hat{R}_{K(\cdot, \infty)}^{E(k)}(P)
$$

is a finite-valued superharmonic function on $\Gamma_{n}(D)$ and

$$
G \mu(P) \geq \int_{\Gamma_{n}(D)} G(P, Q) d \lambda_{E(k)}(Q)=\hat{R}_{K(\cdot, \infty)}^{E(k)}(P)=K(P, \infty)
$$

for any $P=(X, y) \in B_{E(k)}$, and from (4.1)

$$
G \mu(P) \geq C^{\prime} K(P, \infty)
$$

for any $P=(X, y) \in \Gamma_{n}(D ;-\infty, 0)$, where

$$
C^{\prime}=C_{1} \int_{\Gamma_{n}(D ; 1,+\infty)} e^{-\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right)
$$

It is evident from (5.4) that C^{\prime} is positive. If we set

$$
E(-1)=E \cap \Gamma_{n}(D ;-\infty, 0), \quad E^{\prime}=\bigcup_{k=-1}^{\infty} B_{E(k)}
$$

and $B=\min \left(C^{\prime}, 1\right)$, then

$$
E^{\prime} \subset\left\{P=(X, y) \in \Gamma_{n}(D) ; G \mu(P) \geq B K(P, \infty)\right\}
$$

Since E^{\prime} is equal to E except a polar set S (see Brelot [5, p. 57] and Doob [$6, \mathrm{p} .177]$), we can take a positive measure η on $\Gamma_{n}(D)$ such that $G \eta$ is identically $+\infty$ on S (see Doob [6, p. 58]). If we define a measure ν on
$\Gamma_{n}(D)$ by

$$
\nu=\frac{1}{B}(\mu+\eta),
$$

then

$$
\begin{equation*}
E \subset\left\{P=(X, y) \in \Gamma_{n}(D) ; G \nu(P) \geq K(P, \infty)\right\} \tag{5.10}
\end{equation*}
$$

If we put $v(P)=G \nu(P)$, then (5.10) shows that $v(P)$ is the function required in (III).
Proof of (III) \Rightarrow (I). Let $v(P)$ be the function in (III). By Lemma 3, we can find two positive measures μ on $\Gamma_{n}(D)$ and ν on $S_{n}(D)$ such that

$$
\begin{aligned}
v(P)= & c_{-\infty}(v) K(P,-\infty)+\int_{\Gamma_{n}(D)} G(P, Q) d \mu(Q) \\
& +\int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu(Q) \quad\left(P \in \Gamma_{n}(D)\right) .
\end{aligned}
$$

When we put

$$
W(P)=\int_{\Gamma_{n}(D)} G(P, Q) d \mu(Q)+\int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu(Q)
$$

we have

$$
\begin{aligned}
W(P) & =v(P)-c_{-\infty}(v) K(P,-\infty) \\
& \geq\left\{e^{\sqrt{\tau_{D}} y}-c_{-\infty}(v) \kappa e^{-\sqrt{\tau_{D}} y}\right\} f_{D}(X) \geq \frac{1}{2} K(P, \infty)
\end{aligned}
$$

for any $P=(X, y) \in M_{v}, y \geq y_{0}$, with a sufficiently large y_{0}, which gives

$$
\begin{align*}
& M_{v} \cap \Gamma_{n}\left(D ; y_{0}, \infty\right) \\
& \qquad \subset\left\{P=(X, y) \in \Gamma_{n}(D) ; W(P) \geq \frac{1}{2} K(P, \infty)\right\} . \tag{5.11}
\end{align*}
$$

We easily see that

$$
\begin{equation*}
\left\{P=(X, y) \in \Gamma_{n}(D) ; W(P) \geq \frac{1}{2} K(P, \infty)\right\} \subset U \cup V \tag{5.12}
\end{equation*}
$$

where

$$
U=\left\{P=(X, y) \in \Gamma_{n}(D) ; \int_{\Gamma_{n}(D)} G(P, Q) d \mu(Q) \geq \frac{1}{4} K(P, \infty)\right\}
$$

and

$$
V=\left\{P=(X, y) \in \Gamma_{n}(D) ; \int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu(Q) \geq \frac{1}{4} K(P, \infty)\right\} .
$$

By Lemma 2 applied to $\int_{\Gamma_{n}(D)} G(P, Q) d \mu(Q)$ and $\int_{S_{n}(D)} \partial G(P, Q) / \partial n_{Q} d \nu(Q)$, U and V are minimally thin sets at ∞ with respect to $\Gamma_{n}(D)$, respectively. When we observe

$$
E \subset\left(M_{v} \cap \Gamma_{n}\left(D ; y_{0}, \infty\right)\right) \cup \Gamma_{n}\left(D ;-\infty, y_{0}\right),
$$

we see from (3.1), (5.11) and (5.12) that E is a minimally thin set at ∞ with respect to $\Gamma_{n}(D)$.

6. Proof of Theorem 2

Let E be a rarefied set at ∞ with respect to $\Gamma_{n}(D)$. Then there exists a positive superharmonic function $v(P)$ on $\Gamma_{n}(D)$ such that

$$
\inf _{P=(X, y) \in \Gamma_{n}(D)} \frac{v(P)}{K(P, \infty)}=0
$$

and

$$
\begin{equation*}
E \subset H_{v} . \tag{6.1}
\end{equation*}
$$

By Lemma 3, we can find two positive measures μ on $\Gamma_{n}(D)$ and ν on $S_{n}(D)$ such that

$$
\begin{aligned}
& v(P)=c_{-\infty}(v) K(P,-\infty)+\int_{\Gamma_{n}(D)} G(P, Q) d \mu(Q) \\
&+\int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu(Q) \quad\left(P \in \Gamma_{n}(D)\right) .
\end{aligned}
$$

Now we write

$$
\begin{equation*}
v(P)=c_{-\infty}(v) K(P,-\infty)+B_{1}^{(k)}(P)+B_{2}^{(k)}(P)+B_{3}^{(k)}(P), \tag{6.2}
\end{equation*}
$$

where

$$
\begin{aligned}
B_{1}^{(k)}(P)= & \int_{\Gamma_{n}(D ;-\infty, k-1)} G(P, Q) d \mu(Q) \\
& +\int_{S_{n}(D ;-\infty, k-1)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu(Q),
\end{aligned}
$$

$$
\begin{aligned}
B_{2}^{(k)}(P)= & \int_{\Gamma_{n}(D ; k-1, k+2)} G(P, Q) d \mu(Q) \\
& +\int_{S_{n}(D ; k-1, k+2)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu(Q)
\end{aligned}
$$

and

$$
\begin{aligned}
& B_{3}^{(k)}(P)=\int_{\Gamma_{n}(D ; k+2, \infty)} G(P, Q) d \mu(Q) \\
& +\int_{S_{n}(D ; k+2, \infty)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu(Q) \quad\left(P \in \Gamma_{n}(D) ; k=1,2,3, \ldots\right) .
\end{aligned}
$$

First we shall show the existence of an integer N such that

$$
\begin{equation*}
H_{v} \cap I_{k} \subset\left\{P=(X, y) \in I_{k} ; B_{2}^{(k)}(P) \geq \frac{1}{2} e^{\sqrt{\tau_{D}} y}\right\} \tag{6.3}
\end{equation*}
$$

for any integer $k, k \geq N$. Since $v(P)$ is finite almost everywhere on $\Gamma_{n}(D)$, from Lemmas 1 and 4 applied to

$$
\int_{\Gamma_{n}(D)} G(P, Q) d \mu(Q) \quad \text { and } \quad \int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu(Q)
$$

respectively, we can take an integer N such that for any $k, k \geq N$,

$$
\begin{align*}
& e^{-2 \sqrt{\tau_{D}} k} \int_{\Gamma_{n}(D ;-\infty, k-1)} e^{\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \leq \frac{1}{12 C_{2} J_{D}} \tag{6.4}\\
& \int_{\Gamma_{n}(D ; k+2,+\infty)} e^{-\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \leq \frac{1}{12 C_{2} J_{D}} \tag{6.5}\\
& e^{-2 \sqrt{\tau_{D}} k} \int_{S_{n}(D ;-\infty, k-1)} e^{\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu\left(X^{\prime}, y^{\prime}\right) \leq \frac{1}{12 C_{2} J_{D}} \tag{6.6}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{S_{n}(D ; k+2,+\infty)} e^{-\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu\left(X^{\prime}, y^{\prime}\right) \leq \frac{1}{12 C_{2} J_{D}}, \tag{6.7}
\end{equation*}
$$

where

$$
J_{D}=\sup _{X \in D} f_{D}(X)
$$

Then for any $P=(X, y) \in I_{k}(k \geq N)$, we have

$$
B_{1}^{(k)}(P) \leq C_{2} e^{-\sqrt{\tau_{D}} y} f_{D}(X) \int_{\Gamma_{n}(D ;-\infty, k-1)} e^{\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right)
$$

$$
\begin{aligned}
& +C_{2} e^{-\sqrt{\tau_{D}} y} f_{D}(X) \int_{S_{n}(D ;-\infty, k-1)} e^{\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu\left(X^{\prime}, y^{\prime}\right) \\
\leq & 2 C_{2} e^{-\sqrt{\tau_{D}} y} J_{D} e^{2 \sqrt{\tau_{D}} k} \frac{1}{12 C_{2} J_{D}}=\frac{1}{6} e^{\sqrt{\tau_{D}} y}
\end{aligned}
$$

from (4.1), (4.7), (6.4) and (6.6), and

$$
\begin{aligned}
& B_{3}^{(k)}(P) \leq C_{2} e^{\sqrt{\tau_{D}} y} f_{D}(X) \int_{\Gamma_{n}(D ; k+2,+\infty)} e^{-\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) \\
& \quad+C_{2} e^{\sqrt{\tau_{D}} y} f_{D}(X) \int_{S_{n}(D ; k+2,+\infty)} e^{-\sqrt{\tau_{D}} y^{\prime}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu\left(X^{\prime}, y^{\prime}\right) \\
& \leq \frac{1}{6} e^{\sqrt{\tau_{D}} y}
\end{aligned}
$$

from (4.1), (4.7), (6.5) and (6.7). Further we can assume that

$$
6 \kappa c_{-\infty}(v) J_{D} \leq e^{2 \sqrt{\tau_{D}} y}
$$

for any $P=(X, y) \in I_{k}(k \geq N)$, hence if $P=(X, y) \in I_{k} \cap H_{v}(k \geq N)$, then we obtain

$$
B_{2}^{(k)}(P) \geq e^{\sqrt{\tau_{D}} y}-\frac{1}{6} e^{\sqrt{\tau_{D}} y}-\frac{1}{6} e^{\sqrt{\tau_{D}} y}-\frac{1}{6} e^{\sqrt{\tau_{D}} y}=\frac{1}{2} e^{\sqrt{\tau_{D}} y}
$$

from (6.2), which gives (6.3).
Now we observe from (6.1) and (6.3) that

$$
B_{2}^{(k)}(P) \geq \frac{1}{2} e^{\sqrt{\tau_{D}} k} \quad(k \geq N)
$$

for any $P \in E(k)$. If we define a function $u_{k}(P)$ on $\Gamma_{n}(D)$ by

$$
u_{k}(P)=2 e^{-\sqrt{\tau_{D}} k} B_{2}^{(k)}(P),
$$

then

$$
u_{k}(P) \geq 1 \quad(P \in E(k), k \geq N)
$$

and

$$
u_{k}(P)=\int_{\Gamma_{n}(D)} G(P, Q) d \mu_{k}(Q)+\int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu_{k}(Q)
$$

with two measures

$$
d \mu_{k}(Q)=\left\{\begin{array}{l}
2 e^{-\sqrt{\tau_{D}} k} d \mu(Q) \quad\left(Q \in \Gamma_{n}(D ; k-1, k+2)\right) \\
0 \quad\left(Q \in \Gamma_{n}(D ;-\infty, k-1) \cup \Gamma_{n}(D ; k+2, \infty)\right)
\end{array}\right.
$$

and

$$
d \nu_{k}(Q)=\left\{\begin{array}{l}
2 e^{-\sqrt{\tau_{D} k}} d \nu(Q) \quad\left(Q \in S_{n}(D ; k-1, k+2)\right) \\
0 \quad\left(Q \in S_{n}(D ;-\infty, k-1) \cup S_{n}(D ; k+2, \infty)\right) .
\end{array}\right.
$$

Hence by applying Lemma 5 to $u_{k}(P)$, we obtain

$$
\begin{aligned}
\lambda_{E(k)}\left(\Gamma_{n}(D)\right) \leq & 2 e^{-\sqrt{\tau_{D}} k}\left\{\int_{\Gamma_{n}(D ; k-1, k+2)} e^{\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right)\right. \\
& \left.+\int_{S_{n}(D ; k-1, k+2)} e^{\sqrt{\tau_{D} y^{\prime}}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu\left(X^{\prime}, y^{\prime}\right)\right\}
\end{aligned}
$$

($k \geq N$). Finally we have

$$
\begin{aligned}
& \sum_{k=N}^{\infty} e^{-\sqrt{\tau_{D}} k} \lambda_{E(k)}\left(\Gamma_{n}(D)\right) \\
& \leq 6 e^{4 \sqrt{\tau_{D}}}\{
\end{aligned} \int_{\Gamma_{n}(D ; N-1, \infty)} e^{-\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu\left(X^{\prime}, y^{\prime}\right) .
$$

If we take a sufficiently large N, then the integrals of the right side are finite from Lemmas 1 and 4.

Suppose that a subset E of $\Gamma_{n}(D)$ satisfies

$$
\sum_{k=0}^{\infty} e^{-\sqrt{\tau_{D} k}} \lambda_{E(k)}\left(\Gamma_{n}(D)\right)<+\infty
$$

Then from the second part of Lemma 5 applied to $E(k)$, we have

$$
\begin{align*}
\sum_{k=0}^{\infty} e^{-\sqrt{\tau_{D}} k} & \left(\int_{\Gamma_{n}(D)} e^{\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu_{k}^{*}\left(X^{\prime}, y^{\prime}\right)\right. \\
& \left.+\int_{S_{n}(D)} e^{\sqrt{\tau_{D} y^{\prime}}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu_{k}^{*}\left(X^{\prime}, y^{\prime}\right)\right)<\infty \tag{6.8}
\end{align*}
$$

where μ_{k}^{*} and ν_{k}^{*} are two positive measures on $\Gamma_{n}(D)$ and $S_{n}(D)$, respectively, such that

$$
\hat{R}_{1}^{E(k)}(P)=\int_{\Gamma_{n}(D)} G(P, Q) d \mu_{k}^{*}(Q)
$$

$$
\begin{equation*}
+\int_{S_{n}(D)} \frac{\partial}{\partial n_{Q}} G(P, Q) d \nu_{k}^{*}(Q) . \tag{6.9}
\end{equation*}
$$

Consider the function $v_{0}(P)$ on $\Gamma_{n}(D)$ defined by

$$
v_{0}(P)=\sum_{k=-1}^{\infty} e^{\sqrt{\tau_{D}}(k+1)} \hat{R}_{1}^{E(k)}(P) \quad\left(P \in \Gamma_{n}(D)\right) .
$$

Then $v_{0}(P)$ is a superharmonic function on $\Gamma_{n}(D)$ or identically ∞ on $\Gamma_{n}(D)$. Take any positive integer k_{0} and write

$$
v_{0}(P)=v_{1}(P)+v_{2}(P) \quad\left(P \in \Gamma_{n}(D)\right),
$$

where

$$
v_{1}(P)=\sum_{k=-1}^{k_{0}+1} e^{\sqrt{\tau_{D}}(k+1)} \hat{R}_{1}^{E(k)}(P), v_{2}(P)=\sum_{k_{0}+2}^{\infty} e^{\sqrt{\tau_{D}}(k+1)} \hat{R}_{1}^{E(k)}(P)
$$

Since μ_{k}^{*} and ν_{k}^{*} are concentrated on $B_{E(k)} \subset \overline{E(k)} \cap \Gamma_{n}(D)$ and $B_{E(k)}^{\prime} \subset$ $\overline{E(k)} \cap S_{n}(D)$ (see (4.15) for the notation $B_{E(k)}^{\prime}$), respectively (Brelot [5, Theorem XV,11]), we have from (4.1) and (4.7) that

$$
\begin{aligned}
& e^{\sqrt{\tau_{D}}(k+1)} \int_{\Gamma_{n}(D)} G\left(P_{0}, Q\right) d \mu_{k}^{*}(Q) \\
& \leq C_{2} e^{\sqrt{\tau_{D}} k} e^{\sqrt{\tau_{D}}\left(y_{0}+1\right)} f_{D}\left(X_{0}\right) \int_{\Gamma_{n}(D)} e^{-\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu_{k}^{*}\left(X^{\prime}, y^{\prime}\right) \\
& \leq C_{2} e^{\sqrt{\tau_{D}}\left(y_{0}+1\right)} f_{D}\left(X_{0}\right) e^{-\sqrt{\tau_{D}} k} \int_{\Gamma_{n}(D)} e^{\sqrt{\tau_{D}} y^{\prime}} f_{D}\left(X^{\prime}\right) d \mu_{k}^{*}\left(X^{\prime}, y^{\prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& e^{\sqrt{\tau_{D}}(k+1)} \int_{S_{n}(D)} \frac{\partial}{\partial n_{Q}} G\left(P_{0}, Q\right) d \nu_{k}^{*}(Q) \\
& \leq C_{2} e^{\sqrt{\tau_{D}}\left(y_{0}+1\right)} f_{D}\left(X_{0}\right) e^{-\sqrt{\tau_{D}} k} \int_{S_{n}(D)} e^{\sqrt{\tau_{D} y^{\prime}}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu_{k}^{*}\left(X^{\prime}, y^{\prime}\right)
\end{aligned}
$$

for a point $P_{0}=\left(X_{0}, y_{0}\right) \in \Gamma_{n}(D), y_{0} \leq k_{0}+1$, and any integer $k \geq k_{0}+2$. Hence we know

$$
v_{2}\left(P_{0}\right) \leq C_{2} e^{\sqrt{\tau_{D}}\left(y_{0}+1\right)} f_{D}\left(X_{0}\right)
$$

$$
\begin{align*}
& \times \sum_{k_{0}+2}^{\infty} e^{-\sqrt{\tau_{D}} k}\left\{\int_{\Gamma_{n}(D)} e^{\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu_{k}^{*}\left(X^{\prime}, y^{\prime}\right)\right. \\
& \left.\quad+\int_{S_{n}(D)} e^{\sqrt{\tau_{D} y^{\prime}}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu_{k}^{*}\left(X^{\prime}, y^{\prime}\right)\right\} \tag{6.10}
\end{align*}
$$

This and (6.8) show that $v_{2}\left(P_{0}\right)$ is finite and hence $v_{0}(P)$ is a positive superharmonic function on $\Gamma_{n}(D)$. To see

$$
\begin{equation*}
c_{\infty}\left(v_{0}\right)=\inf _{P \in \Gamma_{n}(D)} \frac{v_{0}(P)}{K(P, \infty)}=0 \tag{6.11}
\end{equation*}
$$

consider the representations of $v_{0}(P), v_{1}(P)$ and $v_{2}(P)$

$$
\begin{aligned}
v_{0}(P)= & c_{\infty}\left(v_{0}\right) K(P, \infty)+c_{-\infty}\left(v_{0}\right) K(P,-\infty) \\
& +\int_{\Gamma_{n}(D)} G(P, Q) d \mu_{(0)}(Q)+\int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu_{(0)}(Q) \\
v_{1}(P)= & c_{\infty}\left(v_{1}\right) K(P, \infty)+c_{-\infty}\left(v_{1}\right) K(P,-\infty) \\
& +\int_{\Gamma_{n}(D)} G(P, Q) d \mu_{(1)}(Q)+\int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu_{(1)}(Q)
\end{aligned}
$$

and

$$
\begin{aligned}
v_{2}(P)= & c_{\infty}\left(v_{2}\right) K(P, \infty)+c_{-\infty}\left(v_{2}\right) K(P,-\infty) \\
& +\int_{\Gamma_{n}(D)} G(P, Q) d \mu_{(2)}(Q)+\int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu_{(2)}(Q)
\end{aligned}
$$

by Lemma 3 . It is evident from (6.9) that $c_{\infty}\left(v_{1}\right)=0$ for any k_{0}. Since

$$
\begin{aligned}
& c_{\infty}\left(v_{2}\right)=\inf _{P \in \Gamma_{n}(D)} \frac{v_{2}(P)}{K(P, \infty)} \leq \frac{v_{2}\left(P_{0}\right)}{K\left(P_{0}, \infty\right)} \\
& \leq C_{2} e^{\sqrt{\tau_{D}}} \sum_{k_{0}+2}^{\infty} e^{-\sqrt{\tau_{D}} k}\left\{\int_{\Gamma_{n}(D)} e^{\sqrt{\tau_{D} y^{\prime}}} f_{D}\left(X^{\prime}\right) d \mu_{k}^{*}\left(X^{\prime}, y^{\prime}\right)\right. \\
& \left.\quad+\int_{S_{n}(D)} e^{\sqrt{\tau_{D} y^{\prime}}} \frac{\partial}{\partial n_{X^{\prime}}} f_{D}\left(X^{\prime}\right) d \nu_{k}^{*}\left(X^{\prime}, y^{\prime}\right)\right\} \rightarrow 0 \quad\left(k_{0} \rightarrow+\infty\right)
\end{aligned}
$$

from (6.8) and (6.10), we know $c_{\infty}\left(v_{2}\right)=0$ and hence $c_{\infty}\left(v_{0}\right)=0$, which is (6.11).

Since $\hat{R}_{1}^{E(k)}=1$ on $B_{E(k)}, B_{E(k)} \subset \overline{E(k)} \cap \Gamma_{n}(D)$ (Brelot [5, p. 61] and

Doob [6, p. 169]), we see

$$
v_{0}(P) \geq e^{\sqrt{\tau_{D}}(k+1)} \geq e^{\sqrt{\tau_{D}} y}
$$

for any $P=(X, y) \in B_{E(k)}(k=-1,0,1,2, \ldots)$. If we set $E^{\prime}=\cup_{k=-1}^{\infty} B_{E(k)}$, then

$$
\begin{equation*}
E^{\prime} \subset H_{v_{0}} \tag{6.12}
\end{equation*}
$$

Since E^{\prime} is equal to E except a polar set S, we can take another positive superharmonic function v_{3} on $\Gamma_{n}(D)$ such that $v_{3}=G \eta$ with a positive measure η on $\Gamma_{n}(D)$ and v_{3} is identically $+\infty$ on S (see Doob [6, p. 58]). Finally, define a positive superharmonic function v on $\Gamma_{n}(D)$ by

$$
v=v_{0}+v_{3} .
$$

Since $c_{\infty}\left(v_{3}\right)=0$, it is easy to see from (6.11) that $c_{\infty}(v)=0$. Also we see from (5.12) that $E \subset H_{v}$. Thus we complete to prove that E is a rarefied set at ∞ with respect to $\Gamma_{n}(D)$.

7. Proofs of Theorems 3 and 4

Proof of Theorem 3. By Lemma 3 we have

$$
\begin{aligned}
v(P)= & c_{\infty}(v) K(P, \infty)+c_{-\infty}(v) K(P,-\infty) \\
& +\int_{\Gamma_{n}(D)} G(P, Q) d \mu(Q)+\int_{S_{n}(D)} \frac{\partial G(P, Q)}{\partial n_{Q}} d \nu(Q)
\end{aligned}
$$

for two positive measures μ and ν on $\Gamma_{n}(D)$ and $S_{n}(D)$, respectively. Then

$$
\begin{aligned}
v_{1}(P)=v(P)-c_{\infty}(v) K(P, \infty)-c_{-\infty}(v) & K(P,-\infty) \\
& \left(P=(X, y) \in \Gamma_{n}(D)\right)
\end{aligned}
$$

also is a positive superharmonic function on $\Gamma_{n}(D)$ such that

$$
\inf _{P=(X, y) \in \Gamma_{n}(D)} \frac{v_{1}(P)}{K(P, \infty)}=0 .
$$

We shall prove the existence of a rarefied set E at ∞ with respect to $\Gamma_{n}(D)$ such that

$$
v_{1}(P) e^{-\sqrt{\tau_{D}} y} \quad\left(P=(X, y) \in \Gamma_{n}(D)\right)
$$

uniformly converges to 0 on $\Gamma_{n}(D)-E$ as $y \rightarrow+\infty$. Let $\left\{\varepsilon_{i}\right\}$ be a sequence of positive numbers ε_{i} satisfying $\varepsilon_{i} \rightarrow 0(i \rightarrow+\infty)$. Put

$$
F_{i}=\left\{P=(X, y) \in \Gamma_{n}(D) ; v_{1}(P) \geq \varepsilon_{i} e^{\sqrt{\tau_{D}} y}\right\} \quad(i=1,2,3, \ldots) .
$$

Then $F_{i}(i=1,2,3, \ldots)$ is rarefied at ∞ with respect to $\Gamma_{n}(D)$ and hence

$$
\sum_{k=0}^{\infty} e^{-\sqrt{\tau_{D}} k} \lambda_{F_{i}(k)}\left(\Gamma_{n}(D)\right)<\infty \quad(i=1,2,3, \ldots)
$$

by Theorem 2. Take a sequence $\left\{q_{i}\right\}$ such that

$$
\sum_{k=q_{i}}^{\infty} e^{-\sqrt{\tau_{D}} k} \lambda_{F_{i}(k)}\left(\Gamma_{n}(D)\right)<\frac{1}{2^{i}} \quad(i=1,2,3, \ldots)
$$

and set

$$
E=\bigcup_{i=1}^{\infty} \bigcup_{k=q_{i}}^{\infty} F_{i}(k)
$$

Then

$$
\lambda_{E(m)}\left(\Gamma_{n}(D)\right) \leq \sum_{i=1}^{\infty} \sum_{k=q_{i}}^{\infty} \lambda_{F_{i} \cap I_{k} \cap I_{m}}\left(\Gamma_{n}(D)\right) \quad(m=1,2,3, \ldots),
$$

because λ is a countably sub-additive set function as in Aikawa and Essén [2, Lemma 2.4 (iii)] and in Essén and Jakson [8, p. 241]. Since

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \lambda_{E(m)}\left(\Gamma_{n}(D)\right) e^{-\sqrt{\tau_{D}} m} \\
& \quad \leq \sum_{i=1}^{\infty} \sum_{k=q_{i}}^{\infty} \sum_{m=1}^{\infty} \lambda_{F_{i} \cap I_{k} \cap I_{m}}\left(\Gamma_{n}(D)\right) e^{-\sqrt{\tau_{D}} m} \\
& \quad=\sum_{i=1}^{\infty} \sum_{k=q_{i}}^{\infty} \lambda_{F_{i}(k)}\left(\Gamma_{n}(D)\right) e^{-\sqrt{\tau_{D}} k} \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}}=1,
\end{aligned}
$$

we know by Theorem 2 that E is a rarefied set at ∞ with respect to $\Gamma_{n}(D)$. It is easy to see that

$$
v_{1}(P) e^{-\sqrt{\tau_{D}} y} \quad\left(P=(X, y) \in \Gamma_{n}(D)\right.
$$

uniformly converges to 0 on $\Gamma_{n}(D)-E$ as $y \rightarrow \infty$.

Proof of Theorem 4. Since $\lambda_{E(k)}$ is concentrated on $B_{E(k)} \subset \overline{E(k)} \cap \Gamma_{n}(D)$, we see

$$
\begin{aligned}
\gamma(E(k)) & =\int_{\Gamma_{n}(D)} \hat{R}_{K(\cdot, \infty)}^{E(k)}(P) d \lambda_{E(k)}(P) \\
& \leq \int_{\Gamma_{n}(D)} K(P, \infty) d \lambda_{E(k)}(P) \leq J_{D} e^{\sqrt{\tau_{D}}(k+1)} \lambda_{E(k)}\left(\Gamma_{n}(D)\right)
\end{aligned}
$$

and hence

$$
\sum_{k=0}^{\infty} e^{-2 \sqrt{\tau_{D}} k} \gamma(E(k)) \leq J_{D} e^{\sqrt{\tau_{D}}} \sum_{k=0}^{\infty} e^{-\sqrt{\tau_{D}} k} \lambda_{E(k)}\left(\Gamma_{n}(D)\right)
$$

which gives the conclusion in the first part from Theorems 1 and 2.
To prove the second part, put $J_{D}^{\prime}=\min _{X \in \bar{D}} f_{D}(X)$. Since

$$
\begin{aligned}
& K(P, \infty)=e^{\sqrt{\tau_{D}} y} f_{D}(X) \geq J_{D}^{\prime} e^{\sqrt{\tau_{D}} y} \geq J_{D}^{\prime} e^{\sqrt{\tau_{D}} k} \\
&(P=(X, y) \in E(k)),
\end{aligned}
$$

and

$$
\hat{R}_{K(\cdot, \infty)}^{E(k)}(P)=K(P, \infty)
$$

for any $P \in B_{E(k)}$, we have

$$
\gamma(E(k))=\int_{\Gamma_{n}(D)} \hat{R}_{K(\cdot, \infty)}^{E(k)}(P) d \lambda_{E(k)}(P) \geq J_{D}^{\prime} e^{\sqrt{\tau_{D} k}} \lambda_{E(k)}\left(\Gamma_{n}(D)\right)
$$

Since

$$
J_{D}^{\prime} \sum_{k=0}^{\infty} e^{-\sqrt{\tau_{D}} k} \lambda_{E(k)}\left(\Gamma_{n}(D)\right) \leq \sum_{k=0}^{\infty} e^{-2 \sqrt{\tau_{D}} k} \gamma(E(k))<+\infty
$$

from Theorem 1, it follows from Theorem 2 that E is rarefied at ∞ with respect to $\Gamma_{n}(D)$.

References

[1] Ahlfors L.V. and Heins M.H., Questions of regularity connected with the PhragménLindelöf principle. Ann. Math. 50 (1949), 341-346.
[2] Aikawa H. and Essén M., Potential Theory-Selected Topics. Lect. Notes in Math. vol. 1633, Springer-Verlag, 1996.
[3] Armitage D.H. and Gardiner S.J., Classical potential theory. Springer-Verlag, 2001.
[4] Azarin V.S., Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone. Mat. Sb. (108) 66 (1965), 248-264; Amer. Math. Soc. Translation (2) 80 (1969), 119-138.
[5] Brelot M., On Topologies and Boundaries in Potential Theory. Lect. Notes in Math. vol. 175, Springer-Verlag, 1971.
[6] Doob J.l., Classical Potential Theory and Its Probabilistic Couterpart. SpringerVerlag, 1984.
[7] Essén M. and Jackson H.L., A comparison between minimally thin sets and generalized Azarin sets. Canad. Math. Bull. 18 (1975), 335-346.
[8] Essén M. and Jackson H.L., On the covering properties of certain exceptional sets in a half-space. Hiroshima Math. J. 10 (1980), 233-262.
[9] Gilbarg D. and Trudinger N.S., Elliptic partial differential equations of second order. Springer Verlag, Berlin 1977.
[10] Hayman W.K., Subharmonic functions. vol. 2, Academic Press, 1989.
[11] Hayman W.K., Questions of regurarity connected with the Phragmén-Lindelöf principle. J. Math. Pure Appl. 35 (1956), 115-126.
[12] Helms L.L., Introduction to Potential Theory. Wiley, New York, 1969.
[13] Jerison D.S. and Kenig C.E., Boundary behaviour of harmonic functions in nontangentially accessible domains. Adv. in Math. 46 (1982), 80-147.
[14] Lelong-Ferrand J., Étude au voisinage de la frotière des fonctions surharmoniques positives dans un demi-espace. Ann. Sci. École Norm. Sup. (3) 66 (1949), 125-159.
[15] Lelong-Ferrand J., Étude des fonctions surharmoniques positives dans un cylindre ou dans un cône. C.R. Acad. Sci. Paris 229 (1949), 340-341.
[16] Miyamoto I. and Yoshida H., Two criterions of Wiener type for minimally thin sets and rarefied sets in a cone. J. Math. Soc. Japan 54 (2002), 487-512.
[17] Miyamoto I. and Yoshida H., On a covering property of rarefied sets at infinity in a cone. Advanced Studies in Pure Math. 44 (2006), 233-244.
[18] Ušakova I.V., Some estimates of subharmonic functions in the circle. Zap. MechMat. Fak. i Har’kov. Mat. Obšč. 29 (1963), 53-66(Russian).
[19] Yoshida H., Nevanlinna norm of a subharmonic function on a cone or on a cylinder. Proc. London Math. Soc. (3) 54 (1987), 267-299.

Department of Mathmatics and Informatics Graduate School of Science
Chiba University
1-33 Yayoi-cho, Inage-ku
Chiba, 263-8522, Japan
E-mail: miyamoto@math.s.chiba-u.ac.jp

