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Two criteria of Wiener type for minimally thin sets
and rarefied sets in a cylinder
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Abstract. We shall give two criteria of Wiener type which characterize minimally thin
sets and rarefied sets in a cylinder. We shall also show that a positive superharmonic
function on a cylinder behaves regularly outside a rarefied set in a cylinder.
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1. Introduction

Lelong-Ferrand [14] investigates the regularity of value distribution of a
positive superharmonic function on the half-space T,, through introducing
the notion of a set “effilé at co” which is defind by a criterion of Wiener
type.

Essén and Jackson [7] observed that a subset E of T, is effilé at oo
if and only if F is minimally thin at co, and led later developments to
a different direction. Their investigation was motivated by Ahlfors and
Heins [1], Hayman [11], Usakova [18] and Azarin [4], who are concerned
with regularity of value distribution of a subharmonic function defined on
the half plane T5, the half-space T,, or cone, outside a exceptional set
covered by a sequence of balls. By introducing a new type of exceptional
set in T,, defined by another criterion of Wiener type, which is called a
rarefied set, Essén and Jackson [8] gave a detailed covering theorem for it
and sharpend their results by proving the regurality of value distribution
outside the exceptional set, of a positive superharmonic function on 7}, in
place of a subharmonic function.

Essén and Jackson’s concern is limited to a positive superharmonic
function on T,, which is a special cone, while Azarin [4] treats subharmonic
functions defined on general cones. Lelong-Ferrand [15] also refered to a set
effilé at oo in a cone without giving explicitely a criterion of Wiener type
and extended her results in [14] for a positive superharmonic function on
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a cone. In these senses, it seemed important to extend their results to a
positive superharmonic functions on a cone and to try obtaining a result
sharpening Azarin’s result in a true sense. In the previous paper [16], we
gave some results to this direction, including two criteria of Wiener types.
In our recent paper [17], we obtained a result sharpening Azarin’s result in
a true sense by giving a covering theorem for a rarefied set in a cone.

On the other hand, Lelong-Ferrand [15] refered to a set effilé at oo
in a cylinder without giving a criterion of Wiener type, and said that her
results in [14] were also extended for a positive superharmonic function on
a cylinder. Since a cylinder is a domain of completly different type from
a cone in the sense that oo is a cusp of domain when it is changed into
a bounded domain by a Kelvin transformation, it also seems valuable to
observe how a series of results obtained with a cone follows when a cylinder
is considered in place of a cone.

In this paper we shall first prove that a minimally thin set at oo in a
cylinder is also defined by a criterion of Wiener type (Theorem 1). Next we
shall define a rarefied set in a cylinder and show that it is also judged by
another criterion of Wiener type (Theorem 2). We shall prove the regularity
of boundary behavior of a positive superharmonic function on a cylinder
outside a rarefied set (Theorem 3). Finally we shall give some connection
between a minimally thin set and a rarefied set in a cylinder (Theorem 4).

2. Preliminaries

Let D be a bounded domain on R"~!(n > 2) with smooth boundary.
Consider the Dirichlet problem

(Ap+7)f=0 onD

f=0 onodD. (21)

We denote the least positive eigenvalue of (2.1) by 7p and the normal-
ized positive eigenfunction corresponding to 7p by fp(X);

/ (X)X =1,
D

where dX is the (n — 1)-dimensional volume element. By I',,(D), we denote
the set {P = (X, y) e R"; X € D, —00o <y < +oo}. We call it a cylinder.
It is known that the Martin boundary of I',, (D) is the set 'y, (D)U{co, —oo}
(Yoshida [19, p. 285]). When we denote the Martin kernel by K (P, Q) (P €
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(D), Q € o', (D) U {00, —o0}), we know

K(P, ) = eV™PYfp(X), K(P, —0) = ke VY fp(X)
(P = (X, y) € I'n(D)),
where k is a positive constant.
A subset E of I',(D) is called to be minimally thin at oo in I'),(D)

(Brelot [5, p. 122] and Doob [6, p. 208]), if there exists a point P € I',,(D)
such that

where Rﬁ( OO)(P) is the regulalized reduced function of K( -, co) relative
to £ (Helms [12, p. 134]).
When we set

[y (D;—00,b) ={P=(X,y) e R"; X € D, y < b}
(=00 < b < +00)
and F is a subset of I',,(D) such that there exists a real number b satisfying

E C T'y(D;—o0, b), E is called to be bounded above. If E C I',(D) is
bounded above, then R%A s0) 15 bounded on I',(D) and hence the greatest

harmonic minorant of Rf{(-,oo is zero. When we denote by G(P, Q) (P €
I'h(D), Q € T, (D)) the Green function of I'y, (D), we see from the Riesz de-
composition theorem (Helms [12, p. 116]) that there exists a unique positive
measure A\g on I',, (D) such that

R (P)=GAp(P) (2.2)
for any P € I';,(D) and Ag is concentrated on Bp, where
Bp = {P € I',(D); E is not thin at P}
(see Brelot [5, Theorem VIII, 11] and Doob [6, Theorem XI. 14(d)]).
The (Green) energy v(E) of Ag is defined by
WB)= [ (Gawire
I'n(D)

(see [12, p. 223]).
In the following, we put the strong assumption relative to D on R" !
If n > 3, then D is a C*“domain (0 < a < 1) on R"! surrounded by
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a finite number of mutually disjoint closed hypersurfaces (e.g. see [9, pp.
88-89) for the definition of C? ®-domain). Then fp(X) is twice continuously
differentiable on D ([9, Theorem 6.15]).

3. Statement of results

Let E be a subset of 'y, (D) and E(k) = E N I}, where
Io={(X,y)elw(D): k<y<k+1}.

First, for a minimally thin set at oo with respect to I'y, (D) we shall give
not only a criterion of Wiener type, but also another definition which is
parallel to the difinition for a rarefied set at co with respect to I',,(D) (this
definition can be state in more general form as in Armitage and Gardiner
[3, Theorem 9.2.6]).

Theorem 1 For a subset E of 'y (D), the following statements are equiv-
alent:

(1) FE is minimally thin at oo with respect to Ty (D).

(1) Y50 (E(k)e 2/F < oo,

(III) There exists a positive superharmonic function v(P) on T'y(D) such

that
v(P)
inf —~4t—=
per,(D) K (P, o0)
and
E cC M,, (3.1)
where

M, = {P = (X, y) € To(D); u(P) > K(P, )}

A subset E of 'y, (D) is said to be rarefied at oo with respect to I',,(D),
if there exists a positive superharmonic function v(P) on I'y, (D) such that

inf 71](13)
Pery (D) K (P, 00)

and

E C H,,
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where
H, ={P = (X, y) € Ty(D);v(P) > eV™V}

(for the definition of rarefied sets at oo with respect to the half-space, see
Aikawa and Essén [2, DEFINITION 12.4 in p. 74] and Hayman [10, p. 474]).

Theorem 2 A subset E of 'y, (D) is rarefied at oo with respect to I'y (D)
if and only if

2 ¢V A @y (Ta(D)) < +oo.
k=0

Theorem 3 Let v(P) be a positive superharmonic function on I'y, (D) and
Co(V) be a constant defined by

inf v(P)

pera(n) K (P, 00) oo ().

Then there exists a rarefied set E at oo with respect to T'y (D) such that
v(P)e=VDY uniformly converges to coo(v)fp(X) on T'n(D) — E as y —
+oo (P = (X, y) €Tn(D)).

Remark We observe the following fact from the definition of a rarefied
set. Given any rarefied set £ at oo with respect to I', (D), there exists a
positive superharmonic function v(P) on I',(D) such that v(P)e V™PY¥>1
on E and

v(P)

S VA — )
P=(X.5)erm(D) K (P, 00)

Coo(V) =
Hence v(P)e~ V™Y does not converge to coo(v)fp(X) = 0 at any point P =
(X, y) of T',(D) — FE as y — +o0.

A cylinder T, (D') is called a subcylinder of I, (D), if D’ C D (D’ is
the closure of D’). As in T,, (Essén and Jackson [8, Remark 3.2]), we have

Theorem 4 Let E be a subset of 'y (D). If E is rarefied at oo with respect
to I'n (D), then E is minimally thin at oo with respect to I'y(D). If E is
contained in a subcylinder of T'y(D) and E is minimally thin at oo with
respect to I',,(D), then E is rarefied at oo with respect to I'y (D).
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4. Lemmas
In the following we set
In(Dsa, b) ={P=(X,y) eR" X €D, a<y<b}
(—o00 < a < b< 400).
First of all, we remark that
CreVPYe TV fi(X) fp(X') < G(P, Q)
< CoeV™PYe VIOV [ (X) fp(X') (4.1)

for any P = (X, y) € T'n(D) and any Q = (X', ¢) € T'y(D) satisfying
y <y’ — 1, where C} and C3 are two positive constants (Yoshida [19]).

Lemma 1 Let p be a positive measure on I'y(D) such that there is a
sequence of points P; = (X, y;) € I'n(D), y; — 400 (i — +00) satisfying

Gu(P) = /F 1, (P (@) < o0

Then for a real number [,

/ e VY (X )dp(X', i) < +o0 (4.2)
'y (Djsl, 4+00)
and
lim e~2V7DL / VTPV (X dp(X', y) = 0. (4.3)
L—o0 T'n(D;—o00, L)

Proof. Take a real number [ satisfying P, = (X1, y1)€l'n(D), y1 +1 < L.
Then from (4.1), we have

CleﬁylfD(Xl)/ ( )e_ﬁy/fD(X/)dM(X/, y/)
'y (D;l, 00

<[ G Q@ <+
n(D)

which gives (4.2). For any positive number ¢, from (4.2) we can take a large
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number A such that

/ e VY (X )dp(X, o) < <.
I'n(D;A, 00) 2

If we take a point P; = (X;, v;) € I'n(D), yi > A+ 1, then we have from
(4.1)

T'n(D;—o0, A)

< / G(P:, Q)du(Q) < +oo.
n(D)

If L (L > A) is sufficiently large, then

e_QﬁL/ VY fp (X (X', o)
'y (D;—o0, L)
_ o2/l / VY fp (XN du(X', o)
'y (D;—o0, A)
+eet / V™Y fp(X')dp(X', o)
Fn(D;A, L)
= e_QﬁL/ VoY fp (X dp(X', o)
'y (Dj;—o0, A)

+/ e_ﬁy/fD(X')d,u(X’, y) <e,
' (D;A, 00)

which gives (4.3). O

Lemma 2 Let v(P) be a positive superharmonic function on 'y (D) such
that

in ﬂ =0.
pPel,(D) K (P, 00)
Then for any positive number B the set
{P=(X,y) en(D);v(P) =2 BK(P, o)}

is minimally thin at oo with respect to T'y (D).
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Proof. Apply a result in Doob [6, p. 213] to the positive superharmonic
function v(P). Then

mf lim 70(13) = in —v(P) =
y—o0, Pl (D) K(P, 00) ~ pely(D) K(P, 00)

I

where “mf limit” means minimal-fine limit. This gives the conclusion. O

In the following we put

Sn(Dia, b) = {P = (X, y) €ER"; X € 9D, a <y < b}
(—0 < a<b< 400)

and

Sn(D;—00,b) ={P=(X,y) e R"; X € 0D, —00 < y < b}
(—o00 < b < +00).

Hence S,,(D; —00, +00) denoted simply by S, (D) is 9, (D).

Lemma 3 Let v(P) be a positive superharmonic function on I'p(D) and
put
v(P)

: v(P)
inf ——2—,
pel, (D) K(P, 00)

i ———. (44
PelFI}L(D) K(P, —0) (44)

Coo(V) = C—oo(v) =

Then there are a unique positive measure p on I'y (D) and a unique positive
measure v on Sp(D) such that

V(P) = oo (V) K(P, 00) + oo (v) K (P, —00)
9C(P.Q)
w [, P @@+ [ )

where 0/0ng denotes the differentiation at Q@ along the inward normal into
(D).

Proof. By the Riesz decomposition theorem, we have a unique measure p
on I', (D) such that

o(P) = / G(P, Q)du(Q) + h(P) (P € Ty(D)), (4.5)
n(D)

where h is the greatest harmonic minorant of v on I', (D). Further by
the Martin representation theorem we have another positive measure v’ on
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Il (D) U {oo, —o0}
h(P) = K(P, Q)dv'(Q)

Ol (D)U{o0, —oo}
= K(P, 00)v'({o0}) + K (P, —00)v/({—00})

+ [ K(P.Q/(Q (Peru(D))
Sn(D)
We see from (4.4) that v/({o0}) = coo(v) and v/ ({—o0}) = c_oo(v) (see
Yoshida [19, p. 292]). Since

B ' G(P,P)  9G(P, Q)/dng
K(P, Q) = P1—>Q,1113r1nern(D) G(P*, P)  0G(P*, Q)/0ng o

(P* is a fixed reference point of the Martin kernel), we also obtain

h(P) = coo(v)K (P, 0)

OG(P.
+ew(K(P -0+ [ 2D g
Sn(D) 8nQ
by taking
oG(P*, Q)"
@ = {2 @) @e s,
nQ
Finally this and (4.5) give the conclusion of this lemma. O

We remark the following inequality which follows from (4.1).

Cleﬁye_ﬁy/fD(X)%fD(X/) S %P’QQ)

9 /
S (X (4.7)

for any P = (X, y) € I',(D) and any Q = (X', ¢/) € Sp(D) satisfying
y <1y’ — 1, where C and Cy are two positive constants.

< CQe\/TT)yeﬂ/TT)y’fD(X)

Lemma 4 Let v be a positive measure on Sy (D) such that there is a se-
quence of points P; = (X5, y;) € Tn(D), y; — +o0 (i — +00) satisfying

/ 0P Q) @) < o0 (i=1,2,3,..).
Sn(D) ong
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Then for a real number [

/ e VY 0 fo(X")dv(X', y) < 0.
S (Dl o) Onx:

and

jim =25 [ v g (xXdv(X', o) = 0.
R—00 Sn(Di—c0, R) onx

Proof. If we use (4.7) in place of (4.1), we obtain this lemma in the com-
pletely paralleled way to the proof of Lemma 1. O

Lemma 5 Let E C I',(D) be bounded above and u(P) be a positive su-
perharmonic function on 'y (D) such that u(P) is represented as

w(P) = / G(P, Q)dpu(Q)
n(D)

s [ 6P Qi@ (PeT.(D)). (4.8)
Sp(D) ONQ

with two positive measures i, and v, on I'y(D) and S, (D), respectively,
and

u(P)>1
for any P € E. Then

A (0n(D) < & X (X )

+ / eVTDY’ aa (X dvu (X', ). (4.9)
Sn (D) nx:

When u(P) = RF(P) (P € T,,(D)), the equality holds in (4.9).

Proof. Since Ag is concentrated on Bg and u(P) > 1 for any P € Bg, we
see from (4.8) that

A (0(D) = | RO / PRGN

- /F RE (. o) @)dpn(Q)
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- /sn(D) </rn<D> %G(P’ Q)CME(PQ @) o

Now we have
RE () (@Q) < K(Q, o0) = VY fp(X')
(Q = (X", y) eTn(D)). (4.11)
Since

1
[ s aw aP) <tm’ [ G R
r,.(D) 9nQ p—0 P Jr,.(D)

for any Q € Sp(D) (P, = (X,, yp) = Q + png € I'y(D), ng is the inward
normal unit vector at @) and

/ G(P, P)dAp(P) = RE (. (P,
' (D)

< K(P,, ) = eﬁy"fD(Xp)a
we have

fo(X") (4.12)

0 By O
ooy B (P < T 5
for any Q = (X', ¢) € Sp(D). Thus from (4.10), (4.11) and (4.12) we
obtain (4.9).

When u(P) = RE(P), u(P) has the expression (4.8) by Lemma 3,
because Rf (P) is bounded on I', (D). Then we easily have the equalities
only in (4.10), because RF(P) = 1 for any P € By (see Brelot [5, p. 61]
and Doob [6, p. 169]). Hence if we can show that

pu({P € Tn(D); RE(. o) (P) < K(P, 00)}) =0 (4.13)

and

(4.14)



518 I. Miyamoto

then we can prove the equality in (4.9). To see (4.13), we remark that

{P € Tu(D): R, )(P) < K(P, 00)} C T (D) — Bg

and
tu(T'n(D) = Bg) =0

(see Brelot [5, Theorem VIII,11] and Doob [6, Theorem XI.14(d)]). To prove
(4.14), we set

B ={Q € S,,(D); E is not minimally thin at Q} (4.15)

and e = {P € F; Rf( -, o0) (P) < K(P, o0)}. Then e is a polar set (see Doob
[6, Theorem VI.3(b)]S and hence for any @ € S, (D)

HDE _ pE—e

(see Doob [6, Theorem VI.3(c)]). Thus at any Q € B, E — e is not also
minimally thin at () and hence

/ K(P, Q)dn(P) = lim / K(P,P")dn(P) (4.16)
n(D) P'—Q,P'€e¢E—e JTy (D)
for any positive measure 1 on I'), (D), where
G(P, P')
N > /
K(P, P") = i) (P €Tn(D), P eI'n(D))
(see Brelot [5, Theorem XV,6]). Now, take n = Ag in (4.16). Since
lim K(P, 00)
P—Q,Pern(D) G(P*, P)
;0 AG(P*, Q) !
= VDY fp(X) = (X", n(D
e L (@= (X', /) € 5,(D)

(for the existence of the limit in the left side, see Jerison and Kenig [13,
(7.9) in p. 87]), we obtain from (4.6)

9G(P, Q)
/ o g e(P)

r 0 . G(p, P')
VDY X' 1 / . d g (P).
(& 1m

onx Il )P’—>Q,P’€E—e (D) K (P, 00) =(F)
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for any Q = (X', y') € B. Since

G(P, P') _ 1 AL N _
/I‘n(D) K(P', oo)d)\E(P) = K(P, OO)RK(',OO)(P) =1

for any P’ € E — e, we have

0CP.Q) o s D,
/rn(m ong ) =T g I

for any Q = (X', y') € B}, which shows

{Q — (X', /) € Su(D);

0 ;0
TDY !
/MD) —%QG(P’ Q)d\g(P) < eV T fp(X )}

C Sp(D) — Bly.  (4.17)

Let h be the greatest harmonic minorant of u(P) = RF(P) and v/, be the
Martin representing measure of h. If we can prove that

RE=h (4.18)

on I'y (D), then v},(S,(D) — B) = 0 (see Essén and Jackson (8, pp. 240
241], Brelot [5, Theorem XV,11] and, Aikawa and Essén [2, Part II, p. 188]).
Since

0

dy;(Q) = %G(Pg, Q)dyu(Q) (Q € Sn(D))

from (4.6), we also have v, (S, (D)—B);) = 0, which gives (4.14) from (4.17).
To prove (4.18), set u* = R¥ — h. Then

u* +h=RF=RE,, <RE +RF
(see Brelot [5, VI, 10. d)] and Helms [12, THEOREM 7.12 (iv)]), and hence
Rf —h>u*—REL >0,

from which (4.18) follows. O

5. Proof of Theorem 1

Proof of (I) = (II). Apply the Riesz decomposition theorem to the super-

harmonic function Rg( s0) 01 I',(D). Then we have a positive measure g

T
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on I',, (D) satisfying
Gu(P) < oo
for any P € I';,(D) and a non-negative greatest harmonic minorant H of

RILE( 00) such that

RE( oy =Gu+H. (5.1)

We remark that K (P, oo) (P € ', (D) is a minimal function at oc.
Let E be a minimally thin set at oo with respect to I'y (D). Then

ﬁﬁ(. o) 18 a potential (see Doob [6, p. 208]) and hence H = 0 on I',,(D).

Since

for any P € Bg (Brelot [5, p. 61] and Doob [6, p. 169]), we see from (5.1)
Gu(P) = K(P, ) (53)

for any P € Bg. Take a sufficiently large integer L from Lemma 1 such
that

Y

Cge_QﬁL/ eﬁy/fD(X')d,u(X/, y) <
'y (D;—o0, L)

o |

where Cy is the constant in (4.1). Then from (4.1)
1
/ G(P, Q@) < (K (P, %)
I'n(D;—o0, L)
for any P = (X, y) € I'n(D), y > L + 1, and hence from (5.3)
3
/ G(P, Q@) > SK (P, ) (5.4)
Ly (D;L, +00)

for any P = (X, y) € Bg, y > L+ 1. Now, divide Gu into three parts:
k k k
Gu(P) = AP (P) + AL (P) + APV (P) (PeTw(D)),  (55)

where

AP (P) = / G(P, Q)du(Q),
Tp(Dik—1, k+2)

AP (P) = / G(P, Q)du(Q),
I'n(D;—o0,k—1)
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AP (p) = / G(P, Q)du(Q).
T (D;k+2, +00)

Then we shall show that there exists an integer N such that

BpNnIy C {P = (X, y) e Tn(D); AP (P) > iK(P, oo)}
(k> N). (5.6)

Take any P = (X,y) € I N T,(D). When by Lemma 1 we choose a
sufficiently large integer N7 such that

e | Y i (X)X, o) < = (k> M)
T (D;—o00, k—1) 4C,
and

/ Y f(XNdp(X', o) < 7 (k= ),

I'n(D;k+2, 00) 2
we have from (4.1) that
1

AP(P) < K(P o) (k= V) (5.7)
and

AP(P) < TK(P, o) (k> W) (5.8)
Put

N = max{Ny, L+ 1}.
If P=(X,y) € BenI (k> N), then we have from (5.4), (5.5), (5.7) and
(5.8) that

A= [ G(P, Qu(Q) — AP (P) — 4 (P)
n(D§L7 +OO)
> LK (P, o),
which gives (5.6).
Since the measure Agy) is concentrated on B ) and B, CE,NT,(D),
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we finally obtain by (5.6) that
V(E(k)) :/ (G)‘E(k))d)‘E(k)
n(D)
S/ eVTPY fip (X )dA g (X, )
Bg (1)

<4 / AP (P)dA gy (P)
Bg 1)

/ { / G(P. Q)dAE<k><P>}du(Q>
Tn(Dik—1,k+2) LT, (D)

Il
W

= 4/ V™Y (X )du(X', ) (k> N)
Tn(Dsk—1,k+2)
and hence
> A (B(k))e2Vok
k=N
AN/ Tn(Dik—1,k+2)
< 12607 / VBV (X" dp(X', o)
n(D;N—1,00)
< 0

from Lemma 1. This gives (II).
Proof of (II) = (III). Since

R (@) = K(Q, %)

for any Q € By, as in (5.2), we have

1 (B) = [ K@ oohiAes(@

> eVDk / S (X )dA (X', o)
Bg(x)

and hence from (4.1)
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HE(k)
Ry, o0)

< Cbeﬁny(X) / e_ﬁy,fD(X,>d/\E(k) (X, y/)
Bg (k)

(P)

< CoeVTPY (X )e 2Pk~ (B(k)) (5.9)

for any P = (X, y) € I',(D) and any integer k satisfying k — 1 > y. If we
define a measure p on I',, (D) by

n= An
k=0

then from (I) and (5.9)

Gu(P) = | 1y G Q@ = AP (P

k=0

is a finite-valued superharmonic function on I',,(D) and

Gup) > [ 1, G Q@) = B (P) = K(P, )

for any P = (X, y) € Bg), and from (4.1)
Gu(P) > C'K(P, )
for any P = (X, y) € I',(D; —o0, 0), where

¢ =c / VY [ (X' )du(X', o).
(D1, +00)
It is evident from (5.4) that C” is positive. If we set

E(-1)=ENT,(D;—o0,0), E' = | By
k=—1

and B = min(C’, 1), then
E'C{P=(X,y) € Tw(D); Gu(P) > BK(P, 00)}.

Since E' is equal to E except a polar set S (see Brelot [5, p. 57] and Doob
[6, p. 177]), we can take a positive measure n on I'y(D) such that Gn is
identically +oo on S (see Doob [6, p. 58]). If we define a measure v on
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I (D) by
V= %(u +1n),
then
Ec{P=(X,y) el (D); Gv(P) > K(P, >0)}. (5.10)

If we put v(P) = Gv(P), then (5.10) shows that v(P) is the function re-
quired in (IIT).

Proof of (III) = (I). Let v(P) be the function in (III). By Lemma 3, we
can find two positive measures p on I'y, (D) and v on S, (D) such that

wmzaawMR—w+/‘ G(P, Q)du(Q)

n(D)
06(P.Q)
) Ty Q) (P ETWD))
When we put
_ oG(P.Q)
we)= [ ew@an@s [ SR Eae),
we have
W(P)=v(P) — c—oo(v) K (P, —00)
> {eﬁy — c_m(v)ne_ﬁy}fD(X) > %K(P, 00)

for any P = (X, y) € M,, y > yo, with a sufficiently large yo, which gives
M, NI (D3 yo, 00)

C{P_(X, y) € To(D); W(P) > ~K (P, oo)}. (5.11)

DO | —

We easily see that

DO | =

{P — (X, y) € Tn(D);W(P) > ~K(P, oo)} cUUY, (5.12)

where

U {P — (X, y) € T(D): / G(P, Q)du(Q) >

1
_K(P7 OO)}
I'n(D) 4
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and

0G(P, Q)
(D) OnQ
By Lemma 2 applied to an(D) G(P,Q)du(Q) and fSn(D) IG(P,Q)/Ongdv(Q),

U and V are minimally thin sets at oo with respect to I',,(D), respectively.
When we observe

v—{r=cepenos [ Q) 2 [P ).

E C (M, Ny (D;yo, 00)) UTn(D; —00, yo),
we see from (3.1), (5.11) and (5.12) that E is a minimally thin set at oo
with respect to I',, (D). O
6. Proof of Theorem 2

Let E be a rarefied set at oo with respect to I',,(D). Then there exists
a positive superharmonic function v(P) on I'y, (D) such that

P
inf 70() =0

P=(X,y)el'n(D) K (P, c0)
and
EC H,. (6.1)

By Lemma 3, we can find two positive measures p on I'y, (D) and v on S, (D)
such that

mmzaMMKm—wH/‘ G(P, Q)d(Q)

n(D)

9GP, Q) )
o T @ (P eTuD))

Now we write
v(P) = c_oo(V)K(P, —00) + B¥(P) + B (P) + B (P), (6.2)

where

BWuw:/’ G(P. Q)du(Q)
T'n(D;—o0,k—1)

0G(P.
Sn(D;—o00,k—1) anQ
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B (P) = / G(P. Qdu(Q)

Tn(D;k—1, k+2)
0G(P.
Sn(D;k—1, k+2) ong

and
%sz/ G(P, Q)du(Q)
[ (D; k42, 00)

L / 0G(P, Q)
Sp(Dik+2,00)  ONQ

First we shall show the existence of an integer N such that

dv(Q) (PeT,(D);k=1,23,...).

1
mn@c{Pzwwwum$sz§wﬁ% (6.3)

for any integer k, k > N. Since v(P) is finite almost everywhere on I',, (D),
from Lemmas 1 and 4 applied to

9G(P, Q)
G(P, Q)d nd ——=dv
[, @ Q@ wa [ SR

respectively, we can take an integer NV such that for any &k, kK > N,

62\/516/ 6ﬁy/fD(X/)dlLL(X/7 y/) S , (64)
T (Di—o00,k—1) 12CyJp
VY f (XN dp(X, y) < ———— 6.5
€ D 1% YY) > ’
/Fn(D;k+2,+oo) )it ) 12C2Jp (65)
;0 1
e_Zﬁk/ VY (XN dv(X', o) < 6.6
Sp(Di—oo,k—1)  Onxs foX)dv( X, y) < 12C2Jp (6:6)
and
/ ey L (XX, ) < —— (67)
S (Dik+2, +00) Onx: 12CJp
where
Jp = sup fp(X).
XeD
Then for any P = (X, y) € Iy (k> N), we have
Bik) (P) < Cze_ﬁny(X)/ ( )eﬁy,fD(X’)du(X’, )
I'n(D;—o0,k—1
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- Coe VY [ (X)) / VY O (XN (X, o)
Sp (Di—o00, k—1) Onx

L _ 1
12C5Jp 6

from (4.1), (4.7), (6.4) and (6.6), and

< QCgefﬁprezﬁk

BE(P) < Coe 0o ) | VY (X' dp(X', o)
L (D;k+2, +00)

+02eﬁny(X)/ vy 9

fo(XNdv(X', y)
Sn(D;k+2,400) Onx

eVTDY

1
<
)
(4

from (4.1), (4.7), (6.5) and (6.7). Further we can assume that

6KC_oo(v)Jp < e2VTDY

for any P = (X, y) € I, (k > N), hence if P = (X, y) € Iy " H, (k> N),
then we obtain

1wy _ L vy _ L

1
By (P) 2 VPV — 2oV — 6 2

from (6.2), which gives (6.3).
Now we observe from (6.1) and (6.3) that

BI(P) > eV (k> N)

for any P € E(k). If we define a function ug(P) on I'),(D) by
up(P) = 2V Pk B (P),

then
w(P)>1 (PeB(k), k> N)

and

w(P) = [ 1y GO Q@) + / 9GP Q) 4, (@)

Sn(D) 8’0@
with two measures
26 VIBRAN(Q) (Q € Tu(Dsk — 1, k+2))
due(Q) =

0 (QETu(D;—o00, k1) UTu(Dik +2, )
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and
(@)= { 27VTHIQ) (QESuDik— 1 k+2)
% =
’ 0 (Q € Su(Di—o0, k— 1) USu(Dik+2, o).
Hence by applying Lemma 5 to u(P), we obtain
Ak (Tn(D)) < QG_ﬁk{ / VY fp (X )du(X', o)
Ty (Dik—1, k+2)

+/ eﬁy/ 9 fD(X/)dV(X/, y/)}
Sn(Dik—1, k+2) Onxr

(k > N). Finally we have

D e VPR ALy (Ta(D))
k=N

so{ | N o X (X )
I'n(D;N—1,00)

+ / vy 9 Fo(X"dv(X', y’)}.
Sn(D;N—1, 0) Onx

If we take a sufficiently large NV, then the integrals of the right side are finite
from Lemmas 1 and 4.
Suppose that a subset E of I',,(D) satisfies

k=0

Then from the second part of Lemma 5 applied to E(k), we have

Zemu VY fr (X )dp (X, o)
k=0 (D)

+/ eVTDY 9 fo(Xdvi (X', y')><oo, (6.8)
Sn(D) onxr

where pf and v} are two positive measures on I',,(D) and S,(D), respec-
tively, such that

AP0 (p) — / G(P, Q)dyii(Q)
n(D)
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0 .
+ /Sn(D) %G(R Q)dv(Q). (6.9)

Consider the function vy(P) on I'y,(D) defined by

w(P)= Y /PEHVRIN(P) (P eT, (D).
k=-1

Then vy(P) is a superharmonic function on I',(D) or identically co on
I (D). Take any positive integer ko and write

v (P) = vi(P) +va(P) (P €Tn(D)),

where
ko+1 o)
n(P)= Y VPEDREO(P) uy(P)= 3 VD REN (p).
k=—1 ko+2

Since pj, and v; are concentrated on Bgy C E(k) NIy (D) and B}J(k) C

E(k) N Sp(D) (see (4.15) for the notation BjE(k)), respectively (Brelot [5,
Theorem XV,11]), we have from (4.1) and (4.7) that

VB (k1) / G(Po, Q)dyi(Q)

I'n(D)

< Cze\/TTJke\/E(yoJrl)fD(XO)/ e_ﬁy/fD(X’)du};(X', y’)
I'n(D)

< Cze\/TTv(yoH)fD(Xo)e—\/TT)k/ eﬁy/fD(X’)du,‘;(X’, y’)
I'n(D)
and

0
e [ LG, Qr(Q)
Sn(D) 8nQ
< Czeﬁ(yoJrl)fD(XO)e\/ﬁk/ eﬁy/ifD(X’)dyg(X’, y’)
(D) a’I’LX/
for a point Py = (Xo, yo) € ['n(D), yo < ko+ 1, and any integer k > ko + 2.
Hence we know

vo(Pp) < CoeV™PWoth) £ (X))
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x> ﬂ{/ eV (X' dpi (X', o)
ko+2 [n(D)

+ / vy 9 Fo(X"dvi (X', y’)}. (6.10)
Sn(D) onx:

This and (6.8) show that v2(FPp) is finite and hence vo(P) is a positive
). To see

superharmonic function on Iy, (D

vo(P)

7 = A1
Pell“I}«L(D) K (P, o0) 0 (6.11)

Coo(V0) =

consider the representations of vo(P), vy (P) and v (P)
00(P) = canl00) K (P, 00) + oo (00) K (P, —00)
9G(P, Q)
G(P, Q)d — "
w [, P @a@ [ ZE
V1(P) = oo (v1) K (P, 00) + c—oo(v1) K (P, —00)
(@) +

0G(P, Q)
a oo &)
+ /n(D) (P, Q)dun)(Q) /Sn(D) g dv(1y(Q),

dV(O) (Q)?

and
V2(P) = Coo(v2) K (P, 00) + oo (v2) K (P, —00)
oG (P, Q)
+ 1 GP Qi (@) + [

(D) 871@
by Lemma 3. It is evident from (6.9) that coo(v1) = 0 for any k. Since

- v2(P) v2(Po)
= <
coo(v2) Pell“I}zf(D) K(P, ©) = K(Py, o)

dV(2) (Q)

<oy Y el [ g ()
ko+2 I'n(D)

+/ eV’ 9 fD(X’)dl/};(X’,y’)} —0 (ko — +00)
Sn (D) onx
from (6.8) and (6.10), we know co(v2) = 0 and hence ¢ (v9) = 0, which is
(6.11).

Since f?f(k) =1 on By, Beg) C E(k) N, (D) (Brelot [5, p. 61] and
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Doob [6, p. 169]), we see
vo(P) > eVTD(k+1) > oV/TDY

for any P = (X, y) € Bp) (k= —1,0,1,2,...). If weset £/ = U2 _ | By,
then

E' C H,y,. (6.12)

Since E' is equal to E except a polar set S, we can take another positive
superharmonic function vz on I', (D) such that v = Gn with a positive
measure 7 on I', (D) and vs is identically +00 on S (see Doob [6, p. 58]).
Finally, define a positive superharmonic function v on I';,(D) by

v = Vg + V3.

Since ¢ (v3) = 0, it is easy to see from (6.11) that co(v) = 0. Also we see
from (5.12) that £ C H,. Thus we complete to prove that E is a rarefied
set at oo with respect to I',, (D). O

7. Proofs of Theorems 3 and 4

Proof of Theorem 3. By Lemma 3 we have

V(P) = oo (V) K (P, 00) + oo (v) K (P, —00)
96(P.Q)
+ /F P Q@)+ /S oy g W@

for two positive measures p and v on I'y, (D) and S, (D), respectively. Then
v1(P) = v(P) = coo(0) K (P, 00) = ¢ o0 (v) K (P, —00)
(P = (X,y) e I'n(D))
also is a positive superharmonic function on I',,(D) such that

Ul(P)

.
P=(X,y)el'n(D) K (P, 00)

We shall prove the existence of a rarefied set E at oo with respect to I',,(D)
such that

v (P)e V™Y (P =(X,y) € [n(D))
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uniformly converges to 0 on I',,(D) — E as y — +oo. Let {¢;} be a sequence
of positive numbers ¢; satisfying &; — 0 (i — +00). Put

Fi={P=(X,y) €Tn(D);vi(P)>eieV™¥} (i=1,2,3,...).
Then F; (i =1, 2, 3, ...) is rarefied at oo with respect to I',,(D) and hence

> e VPR AR (Tn(D)) <00 (i=1,2,3,..)
k=0

by Theorem 2. Take a sequence {g¢;} such that

Z VRN ) (Tn(D)) <5 (=123,
k=q;
and set
E=J U FE®)
Zilk:qi
Then

Mooy (Tn(D)) <373 Mpannn, (Ta(D)) (m=1,2,3,...),

i=1 k=g

because A is a countably sub-additive set function as in Aikawa and Essén
[2, Lemma 2.4 (iii)] and in Essén and Jakson [8, p. 241]. Since

S Ay (T(D)) V™
m=1
= Z Z Z )‘Fzﬂlkﬂlm (Fn(D))e_ DM

DD DR L) e P SN
i=1 k=q; i—1

we know by Theorem 2 that E is a rarefied set at oo with respect to I'y, (D).
It is easy to see that

v1(P)e V™Y (P = (X, y) eln(D)

uniformly converges to 0 on I',,(D) — FE as y — oo. O
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Proof of Theorem 4. Since Agy) is concentrated on By, C E (k)N (D),
we see

HE(k)

V(E(k)) = R ooy (P)dAE ) (P)

n(D)

K (P, 00)dApx)(P) < JpeV™H D\ (Tn(D))

IN
— S—

n(D)
and hence
o0 o0
Z e 2VTPhy(E(k)) < JpeV™P Z e VP N gy (Tn(D)),
k=0 k=0

which gives the conclusion in the first part from Theorems 1 and 2.
To prove the second part, put Jj, = miny 5 fp(X). Since

K(P, c0) = eV™PY fp(X) > JpeVTPY > JpeVTok
(P = (X, y) € E(k)),
and
Ryl ooy (P) = K(P, )

for any P € Bpy), we have

1(E®) = [ ) B o (PIAs0 (P) 2 eV ™A (D).

Since
(o)
JDZe \/_k)\E ) (T Ze 2Vky (B(K)) < 400
k=0 k=0
from Theorem 1, it follows from Theorem 2 that F is rarefied at oo with
respect to I'y (D). O
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