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Modelling minimal foliated spaces

with positive entropy

Andrzej Bís∗, Hiromichi Nakayama† and PaweÃl Walczak‡
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Abstract. Using methods and results of decomposition theory we construct minimal

actions of groups of homeomorphisms of some classical fractals (the Sierpiński carpet and

its generalizations, and the Menger curve) with positive entropy. Suspending these group

actions we get minimal foliated spaces which have positive geometric entropy and are

modelled on these fractals.
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1. Introduction

A foliated space or lamination (see, for instance, [4], Chapter 11) is,
roughly speaking, a locally compact, separable, metrizable space M which
is locally homeomorphic to the product D × V , where V is an open subset
of another locally compact, separable, metrizable space Z while D is an
open ball in Rp. The local homeomorphisms should be organized to form a
foliated atlas A, i.e. in such a way that for any two of them ϕi : Ui → Di ×
Vi, i = 1, 2, the composition ϕ12 = ϕ2 ◦ ϕ−1

1 is of the form

ϕ12(x, z) = (f(x, z), h(z)). (1)

The elements of the foliated atlas are called foliated charts, sets of the form
ϕ−1(D × {z}), where z ∈ Z and ϕ is a foliated chart, are called plaques
and the connected components of M equipped with the (new) topology
generated by all the plaques are called leaves. The family F of all the leaves
forms a foliation of M and the pair (M, F) becomes our foliated space.
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Usually, one assumes that leaves have structures of smooth manifolds which
varies continuously in the transverse direction. That is, the maps f and h

in (1) are continuous with respect to both variables, f is C∞ differentiable
with respect to x and all its partial derivatives are continuous (with respect
to both variables, again).

We shall assume that our atlas A is maximal, i.e. that any chart ϕ2

satisfying (1) (with some f and h fulfilling the smoothness conditions above)
for all charts ϕ1 ∈ A belongs to A. Also, we assume that our space Z

contains no superfluous points, i.e. that any z ∈ Z satisfies (x, z) = ϕ(y)
for some y ∈ M , ϕ ∈ A and x ∈ Rp. In this situation, we shall say that
(M, F) is modelled transversely on Z.

All the local homeomorphisms h of Z which appear in (1) for arbi-
trary foliated charts ϕ1 and ϕ2 ∈ A generate a pseudogroup H called the
holonomy pseudogroup of F .

The foliation F (or, a foliated space (M,F)) is called minimal whenever
M itself is the only non-empty closed set saturated by the leaves of F ;
equivalently, whenever all the leaves of F (resp., all the H-orbits of points
of Z) are dense in M (resp., in Z).

Certainly, standard foliations of differentiable manifolds as well as
closed saturated subsets of foliated manifolds provide most natural exam-
ples of foliated spaces. However, there exist many foliated spaces which
arise from different constructions. Some of them cannot be embedded into
foliated manifolds. One of the constructions providing foliated spaces is that
of suspending homomorphisms of fundamental groups of manifolds into the
group Homeo(Z) of homeomorphisms of Z. More precisely, if B is a man-
ifold and h : π1(B) → Homeo(Z) a group homomorphism, then π1(B) acts
in a natural way on B̃, the universal covering space of B, and one can put
M = (B̃ × Z)/ ≡h, where the equivalence relation ≡h is defined in the
following way: (x, z) ≡h (x′, z′) whenever there exists g ∈ π1(B) for which
g−1(x) = x′ and h(g)(z) = z′. The space M fibres over B with fibre Z
and can be equipped with a foliation F which consists of the leaves of the
form L = π(B̃ × {z}), where z ∈ Z and π : B̃ × Z → M is the canonical
projection. The foliated space (M,F) is called the suspension of h.

In [12], the geometric entropy of a foliation was defined in the case
of regular foliations. One of its equivalent definitions there was given in
terms of points separated by elements of a holonomy pseudogroup and (as
was observed in [4]) can be generalized to arbitrary foliated spaces (see
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Section 2.1 below). Therefore, given Z, one can ask for examples of foliated
spaces which are modelled on Z and have positive entropy. Such a problem
is relatively easy if without any restriction on M and F . Therefore, we shall
formulate and discuss here the following, a bit more restrictive, problem.

Problem 1 Given a compact metrizable space Z, find a compact minimal
foliated space (M, F) which is modelled on Z and has positive entropy.

This article is organized as follows.
In Section 2, we recall the notion of geometric entropy for foliations and

foliated spaces and, for the convenience of the reader, provide some results
of the decomposition theory (see [8]) which will be used in our constructions.
In Section 3, we show that our problem has an affirmative solution when
Z is either the Sierpiński carpet or one of its generalizations (called here
Sierpiński sets). First, using the classical Smale horseshoe we construct a
homeomorphism of the Sierpiński carpet which has positive entropy. Then,
on several Sierpiński sets, we construct finitely generated groups of global
homeomorphisms which have all the orbits dense. These two constructions
produce a group of homeomorphisms of the Sierpiński carpet with positive
entropy and all the orbits dense. Suspending such a group action we obtain a
foliated space as wanted. Also, we observe that the situation becomes quite
different when one replaces the Sierpiński carpet by the Sierpiński gasket:
the suspension construction cannot provide solutions to Problem 1 for Z =
S, the Sierpiński gasket in the plane. In last two sections (Sections 4 and
5) we get some related results for Menger curves and list some appropriate
questions.

2. Preliminaries

In this Section, we recall the notion of entropy for groups, pseudogroups
and foliated spaces, and provide (after [8]) some results of decomposition
theory to be used later.

2.1. Entropy
Let us take a topological space X and denote by HomeoLoc(X) the fam-

ily of all homeomorphisms between open subsets ofX. If g ∈ HomeoLoc(X),
then Dg is its domain and Rg = g(Dg).
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Definition 1 A subfamily G of HomeoLoc(X) is said to be a pseudogroup
if it is closed under composition, inversion, restriction to open subdomains
and amalgamation. More precisely, G should satisfy the following condi-
tions:
( i ) g ◦ h ∈ G whenever g and h ∈ G,
( ii ) g−1 ∈ G whenever g ∈ G,
(iii) g|U ∈ G whenever g ∈ G and U ⊂ Dg is open,
(iv) if g ∈ HomeoLoc(X), U is an open cover of Dg and g|U ∈ G for any

U ∈ U , then g ∈ G.
Moreover, we shall always assume that
( v ) idX ∈ G (or, equivalently, ∪{Dg; g ∈ G} = X).

Now, let G be a pseudogroup on X and G1 be a good, finite, symmetric
set generating G. This means that idX ∈ G1, G−1

1 ⊂ G1, any element g ∈ G1

can be extended to g̃ ∈ G in such a way that the domain of g̃ contains the
closure of the domain of g which is assumed to be compact, and for any
h ∈ G and x in the domain of h there exist generators g1, . . . , gk ∈ G1 such
that h = g1◦· · ·◦gk in a neighbourhood of x. The set of all the compositions
g1 ◦ · · · ◦ gn with gi ∈ G1 is denoted here by Gn.

In the following, we assume (X, d) is a compact metric space.

Definition 2 Points x and y of X are (n, ε)-separated (n ∈ N, ε > 0) if
there exists g ∈ Gn such that

{x, y} ⊂ Dg and d(g(x), g(y)) ≥ ε.

A set A ⊂ X is (n, ε)-separated when any two points x and y of A, x 6= y,
have this property.

Since X is compact, any (n, ε)-separated set is finite and we may put

s(n, ε, G1) = max{]A; A ⊂ X is (n, ε)-separated}.
Next, let

s(ε, G1) = lim sup
n→∞

1
n

log s(n, ε, G1) (2)

and

h(G,G1) = lim
ε→0

s(ε,G1). (3)

Obviously, the limit (either finite or infinite) in (3) exists.
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Definition 3 The number h(G, G1) is called the (topological) entropy of
G with respect to G1.

It is easy to see that if G′1 is another good, finite, symmetric set gen-
erating G, then either both entropies h(G, G1) and h(G, G′1) are positive
or vanish simultaneously. Therefore, one can talk about pseudogroups of
vanishing (or, positive) entropy without referring to a particular generating
set.

Now, if (M, F) is a compact foliated space, A is a finite foliated atlas on
(M, F), H1 is a finite set of holonomy maps h (see (1)) corresponding to all
pairs of overlapping charts ϕ1 and ϕ2 ∈ A, then – restricting the domains of
the charts ofA if necessary – we can observe thatH1 is finite, symmetric and
good, and generates a pseudogroup HA, the holonomy pseudogroup of F .
Finally, the smoothness conditions posed on foliated charts in Introduction
allow to equip the leaves of F with a collection g of Riemannian structures
varying continuously all over M and to calculate diameters of plaques of
charts ϕ ∈ A with respect to these metrics. Let ∆(A) be the smallest
upper bound for these diameters.

Definition 4 The geometric entropy h(F , g) of a foliated space (M, F)
(with respect to a continuous family g of Riemannian structures on the
leaves) is defined by

h(F , g) = sup
A

h(HA, H1)
∆(A)

,

where A ranges over all finite foliated atlases on (M, F).

As in the case of pseudogroups and groups, the property of having
positive (or, zero) geometric entropy is independent of the choice of the
family g of Riemannian structures on (M, F).

2.2. From decomposition theory
Let us recall that a decomposition D of a topological space S is just a

partition of S, that is, a family of pairwise disjoint nonempty sets that cover
S. With any decomposition D of a space S we associate a decomposition
space S/D. The map π : S → S/D sending each s ∈ S to the unique element
of D containing s determines the topology of S/D, the richest topology for
which π is continuous. A subset X of S is saturated (or, D-saturated) if
π−1(π(X)) = X. For any decomposition D of a space S let us put
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HD = {A ∈ D;A contains more than one point}
and

ND =
⋃

A∈HD

A.

A decomposition D of a space S is said to be upper semicontinuous
(usc) if
1) each A ∈ D is compact in S,
2) for each A ∈ D and each open subset U of S containing A, there exists

another open subset V of S containing A such that every A′ ∈ D
intersecting V is contained in U .

An upper semicontinuous decomposition D of a space S is said to be
shrinkable if and only if for each D-saturated open cover U of S and each
arbitrary open cover V of S, there is a homeomorphism h : S → S satisfying
a) for each s ∈ S there exists U ∈ U such that s, h(s) ∈ U , and
b) for each A ∈ D there exists V ∈ V such that h(A) ⊂ V .

Such a D is strongly shrinkable if, for every open set W containing ND,
D is shrinkable fixing S rW , that is a homeomorphism h in the previous
definition can be chosen in such a way that h(x) = x whenever x /∈ W .
Obviously, every strongly shrinkable decomposition is shrinkable.

Let f : S → X be a surjective map and W an open cover of X. Then
a map F : S → X is said to be W-close to f if for each s ∈ S there exists
W ∈ W such that f(s), F (s) ∈W . The map f is said to be a near homeo-
morphism if for each open cover W of X there exists a homeomorphism F

of S onto X that is W-close to f .
Finally, recall that a countable collection {Ai} of subsets of a metric

space is said to form a null sequence if, for each ε > 0, only finitely many
of sets Ai have diameter greater than ε.

Now, let us formulate the result which will be used later.

Theorem 1 If (Dn) is a null sequence of mutually disjoint closed discs in
a compact manifold M , and M ′ = M/ ≡, where x ≡ y ⇐⇒ either x = y or
there exists n ∈ N such that {x, y} ⊂ Dn, then M ′ is homeomorphic to M .

Here, by a closed disc in M we mean the inverse image ϕ−1(B), where
B is a closed ball in the Euclidean space while ϕ is a chart on M .

Let us provide a proof of Theorem 1 for the convenience of the reader.
The proof is based on a number of results extracted from [8].
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Proof. Let Mn be a compact manifold with a metric d, and (Dk, k ∈ N) a
null sequence of closed discs on M .

Fix k0 ∈ N and ε > 0. Choose a chart ϕ : U → Rn such that Dk0 ⊂ U

and D′
k0

= ϕ(Dk0) is a Euclidean ball. Without loosing generality we may
assume that U is compact and ϕ can be extended to another open subset
V of M for which U ⊂ V . Let D′

k = ϕ(Dk) whenever Dk ⊂ U . All the
sets D′

k form a null sequence and are compact, therefore the decomposition
of Rn determined by these sets is usc (by [8], Proposition 3, p. 14). Since
ϕ−1 : W = ϕ(U) → M is uniformly continuous, there exists δ > 0 such
that N(D′

k0
, δ), where N(A, δ) denotes the δ-neighbourhood of a set A, is

contained in ϕ(U) and

d(z1, z2) < δ =⇒ d(ϕ−1(z1), ϕ−1(z2)) < ε

for all z1 and z2 ∈ W . Now, since D′
k0

is convex (therefore, starlike), there
exists a homeomorphism F : Rn → Rn such that F |Rn r N(D′

k0
, δ) = id,

diamF (D′
k0

) < δ and for all k either diamF (D′
k) < δ or F (D′

k) = D′
k (by

[8], Lemma 5, p. 55).
Let δ0 be the distance between ∂U and Dk0 while δ1 the minimum

distance between Dk0 and these discs Dk for which diam(Dk) > δ0/3. If
ε < min{δ0, δ1}/3, then no disc Dk meets both ∂U and N(Dk0 , ε). Assume
that our ε is such small and define a homeomorphism h : M →M by h|U =
ϕ−1 ◦ F ◦ ϕ and h|M r U = id. Then, diamh(Dk0) < ε, h = id outside
N(Dk0 , ε) and, for all k, either diamh(Dk) < ε or h(Dk) ⊂ N(Dk, ε).
Again, the decomposition D of M determined by our null sequence (Dk) is
countable and usc, therefore it is (strongly) shrinkable (by [8], Theorem 5,
p. 47).

Finally, by Theorem 6 in [8] (p. 28), π : M → M/D is a near homeo-
morphism and can be approximated by homeomorphisms. In particular, M
and M/D are homeomorphic. ¤

3. Sierpiński sets

Recall that the Sierpiński carpet is obtained from a rectangle by re-
moving infinitely many open subrectangles with pairwise disjoint closures
(see Fig. 2 below). In 1958, Whyburn [29] showed that it is homeomor-
phic to any subset of S2 obtained by removing the interiors of mutually
disjoint closed discs {Di}i=1, 2, ... such that

⋃
i=1Di is dense in S2 and {Di}
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is a null sequence. Kato ([17]) and Aarts-Oversteegen ([1]) showed that the
Sierpiński carpet does not admit an expansive homeomorphism. However,
there exist its homeomorphisms with positive entropy.

Theorem 2 The Sierpiński carpet admits a homeomorphism with positive
topological entropy.

Proof. First, let us recall the Smale’s construction of a horseshoe f on the
2-dimensional sphere S2 (Fig. 1). In the following, S2 is regarded as R2 ∪
{∞}.

Let R be a rectangle in S2, and ∆1 and ∆2 be two half discs attached to
the opposite edges of R respectively. Then the image of R by f has the shape
of a horseshoe intersecting R in two rectangles. Let A denote the union ∆1∪
R∪∆2. We assume that f(A) contains A in its interior, and fn(f(A)rA)
converges uniformly to infinity as n → ∞. Furthermore, f is assumed to
be linear near R ∩ f(R). In particular, f expands horizontally and shrinks
vertically near R ∩ f(R). In ∆1, f is assumed to be expanding from a
repellor p. Then, the sets

⋂
n50 f

n(R) and
⋂

n=0 f
n(R) are homeomorphic

to the product of the Cantor set and a closed interval and their intersection⋂
n∈Z f

n(R) is a closed invariant set homeomorphic to the Cantor set.
In the following, starting from a horseshoe, we will construct a homeo-

∆1

∆2

f(∆1)

f(∆2)

R

∞

f(R)

Fig. 1. A horseshoe
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morphism f of the Sierpiński carpet by removing interiors of a suitable null
sequence of mutually disjoint closed discs such that their union is dense in S2

and disjoint from the closed invariant set
⋂

n∈Z f
n(R). Then the restriction

of f to the Cantor set
⋂

n∈Z f
n(R) becomes topologically conjugate to the

shift with two symbols. As it is well known from symbolic dynamics that
this shift has positive topological entropy (see, for instance, [28], p. 177),
the resulting homeomorphism of the Sierpiński carpet has positive entropy
too.

LetRC be a rectangle in which the typical Sierpiński carpet is contained.
Let {Hi}i=1, 2, ... denote the subrectangles (holes) in RC such that RC r⋃

i=1 intHi is the Sierpiński carpet. Then {Hi} are mutually disjoint closed
topological discs whose union is dense in RC . Certainly, they form a null
sequence.

The set int f(A) r (A ∪ f(R)) consists of three components B1, B2

and B3 homeomorphic to open discs. Let ϕj : RC → Bj (j = 1, 2, 3) be a
homeomorphism. Then {ϕj(Hi)}i=1, 2, ..., j=1, 2, 3 are mutually disjoint closed
discs whose union is dense in B1∪B2∪B3 (Fig. 2). Since fn(f(A)rA) tends
towards ∞ as n→∞, the sets fn(ϕj(Hi)) also tend towards infinity as n→
∞. In particular, diam fn(ϕj(Hi)) converges to 0 as n→∞. On the other
hand, f−1(ϕj(Hi)) is contained in A r R, and, in particular, in ∆1 ∪ ∆2.

∆1

∆2

f(A)

R

⋂

n>0

fn(R)

Sierpiński carpet

RC

Fig. 2. Removing mutually disjoint closed discs
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∆1

∆2

f−1(∆1) f−1(∆2)

R

repellor p

f−1(R)

f−2(R)

Fig. 3. The set
⋂

n50 f
n(A) is nowhere dense.

Since f−1(∆1 ∪∆2) is contained in ∆1 (Fig. 3), the sets f−n(ϕj(Hi)) tend
towards the repellor p as n→∞, and diam f−n(ϕj(Hi)) → 0 as n→∞.

Next we insert countably many Sierpiński carpets into (int f(R)rR)r⋂
n>0 f

n(R) (see Fig. 2 again). Let {Uj}j=1, 2, ... denote all the components
of (int f(R)rR)r

⋂
n>0 f

n(R). Then Uj are mutually disjoint closed discs
because, in each component of int f(R)rR, the subset

⋂
n>0 f

n(R) is home-
omorphic to the product of the Cantor set and an open interval. How-
ever diam f−n(Uj) does not converge to 0 as n → ∞ because Uj intersects⋂

n>0 f
n(R) and, for some point z of Uj , f−n(z) converges to p. Thus

we have to insert a Sierpiński carpet into each such component Uj . Let
ψj : RC → Uj be a homeomorphism. Then {ψj(Hi)}i, j=1, 2, ... are mutually
disjoint closed discs whose union is dense in (int f(R) r R) r

⋂
n>0 f

n(R).
Furthermore, the union is also dense in int f(R)rR because the restriction
of

⋂
n>0 f

n(R) to each component of int f(R)r R is homeomorphic to the
product of the Cantor set and an open interval.

By the same argument as for {ϕj(Hi)}, we obtain that all the sets
fn(ψj(Hi)) tend uniformly to infinity as n→∞.

Let Cn = int f(R) r (R ∪ fn(R)). Then {Cn}n>0 are increasing sets
converging to

⋃
n>0Cn = (int f(R) r R) r

⋂
n>0 f

n(R). Thus, for any i

and j, the hole ψj(Hi) is contained in some Cn (n > 0). By definition of
Cn, ψj(Hi) is disjoint from fn(R). In particular, f−n(ψj(Hi))∩R = ∅. On
the other hand, f−n(ψj(Hi)) is contained in A (just because ψj(Hi) itself
is contained in A). Thus f−n(ψj(Hi)) is contained either in ∆1 or in ∆2,



Modelling minimal foliated spaces with positive entropy 293

and hence f−n−1(ψj(Hi)) is contained in ∆1.
Let a = max{‖df−1(x)‖, x ∈ S2}. (Certainly, a > 1.) Since Sierpiński

carpets can be obtained by removing from RC arbitrary null sequences of
open discs with mutually disjoint closures and dense union, we may assume
without loss of generality that each ψj(Hi) is disjoint from the union of
boundaries of Cn and furthermore, if ψj(Hi) ⊂ Cn r Cn−1, then

diamψj(Hi) ≤ 1
i2 + j2 + n2

· a−(n+1)

for any n. Then,

diam f−(n+1)(ψj(Hi)) ≤ 1
i2 + j2 + n2

and f−n−1(ψj(Hi)) is contained in ∆1 as above. Moreover, since f−1 : ∆1 →
∆1 is a contraction with a constant λ, 0 < λ < 1, diam f−1(D) ≤ λ ·diamD

for any disc D ⊂ ∆1 and

diam f−m(ψj(Hi)) ≤ 1
i2 + j2 + n2

· λm−n−1

when m > n. From these inequalities and similar ones for diam fn(ψj(Hi)),
n > 0, it follows that all the discs fn(ϕk(Hi)) and fn(ψj(Hi)), where k =
1, 2, 3, i, j ∈ N and n ∈ Z, form a null sequence.

It remains to show that the union of all the discs removed is dense in
S2. However we have already shown that their union is dense in f(A) r
A. Thus we have only to show that the set A∞ =

⋃
n∈Z f

n(f(A) r A)
is dense in S2. Since {fn(A)} is a sequence increasing with n, the com-
plement of

⋃
n=k f

n(f(A) r A) =
⋃

n=k(fn+1(A) r fn(A)) coincides with
fk(A)∪{∞} for any k ∈ Z. Hence the complement of

⋃
n∈Z f

n(f(A)rA) =⋃
k50(

⋃
n=k f

n(f(A)rA)) is equal to {∞}∪⋂
n50 f

n(A). By construction,⋂
n50 f

n(A) is nowhere dense (Fig. 3 again). This implies that our set A∞
is dense in S2 indeed. ¤

Aarts and Oversteegen [1] showed also that the Sierpiński carpet does
not admit a minimal homeomorphism. Thus, a fortiori, there are no min-
imal homeomorphisms of the Sierpiński carpet with positive topological
entropy. However there exists a minimal group action on the Sierpiński
carpet with positive entropy. To establish this fact we shall show first that
minimal group actions exist on several more general spaces called Sierpiński
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sets hereafter.
Let M , dimM = m, be a compact differentiable manifold and S a

subspace of M obtained by removing a null sequence of open balls Bi, i =
1, 2, . . ., with pairwise disjoint closures Bi (being closed balls) and

⋃
Bi =

M . (By a ball in M we mean the inverse image ϕ−1(B) of an Euclidean ball
B ⊂ Rm obtained via a chart ϕ on M . Saying ”a null sequence” we mean
that diam(Bi) → 0 as i→∞ where ”diam” is calculated with the distance
function on M coming from an arbitrary but fixed Riemannian metric.)
In case when M is 2-dimensional, Whyburn [29] showed that sets S and S′

obtained from M and M ′, a metric space homeomorphic to M , by removing
two different null sequences with pairwise disjoint closures and dense union
are homeomorphic. If M = S2, S becomes the classical Sierpiński carpet,
therefore we call such a set S a Sierpiński M -set here.

Theorem 3 Let G be a finitely generated group of diffeomorphisms of M
such that for any x ∈M the orbit G(x) is dense and G acts freely on G(x0)
for some point x0. Then there exists a group Ĝ of homeomorphisms of M
which is isomorphic to G and admits a Sierpiński M -set as a minimal set.

Our proof is analogous to the construction of Aarts and Oversteegen in
[1]. They used foliations emanating from the orbit. In order to generalize
their results to groups, we use the derivatives of diffeomorphisms.

Proof. Fix a finite symmetric set G1 of generators of G (i.e., e ∈ G1 and
G−1

1 = G1), equip G with the word metric determined by G1 and denote by
Gn, n ∈ N, the ball in G of radius n and centre e. Set also G0 = {e}.

First we construct an inverse limit M̂ by inserting a family of balls at
points h(x0) for h ∈ G. Then the complement of the interiors of the inserted
balls will become homeomorphic to a Sierpiński M -set. Let expz : TzM →
M denote the exponential map at z (z ∈ M). For an integer n (n =
0), we choose εn > 0 such that, for any h ∈ Gn, the exponential map
exph(x0) |B(0, εn) is injective and {exph(x0)(B(0, εn))}h∈Gn is pairwise dis-
joint. Let Dh = {w ∈ Th(x0)M ; |w| < 1 + εn} for h ∈ Gn. We take the
disjoint union of M r Gn(x0) and {Dh}h∈Gn , and identify a point w in
{w ∈ Dh; 1 < |w| < 1 + εn} with exph(x0)

(
(|w| − 1)/|w|)w in M r Gn(x0)

(see Fig. 4). We equip the given set, Mn, with an arbitrary metric dn so that
(Mn, dn) is homeomorphic to M . Here we remark that Mn is independent
of the choice of εn if εn is small enough. Let Bh = {w ∈ Dh; |w| 5 1}. Then
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εn

h(x0)

εn

Dh

exp
1

Fig. 4. Mn =
(
(M rGn(x0)) ∪ (

⊔
h∈Gn

Dh)
)
/ ∼

the inverse system ψkl : Ml → Mk (k < l) is defined by collapsing each Bh

(h ∈ Gl r Gk) to a point. Let M̂ denote the inverse limit (Mn, ψkl), i. e.
M̂ = {(zn) ∈ ∏

n=0Mn;ψkl(zl) = zk (k < l)}, where the topology is given
by the product metric

d
(
(zn), (z′n)

)
=

∑

n=0

1
2n

dn(zn, z′n)
1 + dn(zn, z′n)

of
∏

n=0Mn. In particular, M̂ is compact.
Let πn : Mn → M denote the projection obtained by collapsing each

Bh (h ∈ Gn) to a point and let πM : M̂ →M denote the projection defined
by πM ((zn)) = z0. For h ∈ G, π−1

M (h(x0)) is denoted by B′h. Then it is
homeomorphic to Bh in Mj (j = k) if h ∈ Gk. Thus π−1

M (G(x0)) consists
of pairwise disjoint closed discs. Now {B′h} is a null sequence because,
if (zn) and (z′n) are contained in π−1

M (h(x0)) for h ∈ Gk, then zj = z′j
for j = 0, 1, . . . , k − 1, and hence d((zn), (z′n)) 5

∑
n=k 1/2n = 1/2k−1.

Therefore the decomposition {B′h; h ∈ G} is shrinkable, and hence πM is a
near homeomorphism ([8]). In particular, M̂ is homeomorphic to M (see
[8] and Section 2.2 of this paper).

Let S = M̂ r (
⋃

h∈G IntB′h). Since G(x0) is dense in M and πM is
an open map, S has no interior points. Moreover, {B′h} is a null-sequence.
Thus we conclude that S is homeomorphic to a Sierpiński M -set.
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For h ∈ G, we will define a homeomorphism ĥ : M̂ → M̂ , where the
collection Ĝ of all ĥ is a group and will satisfy the condition of our Theorem.
We choose a positive integer l so that h is contained in Gl. Let (zn) be an
element of M̂ . If πM ((zn)) 6∈ G(x0), then h(πn(zn)) is not contained in
G(x0) either, and hence we can define ĥ((zn)) by ĥ((zn)) = (π−1

n hπn(zn)).
Next we consider the case when πM ((zn)) is contained in G(x0). We will
determine (wn) = ĥ((zn)). Let g be an element of some Gk such that
πM ((zn)) = g(x0). Then g and hg are contained in Gk+l. For j = k + l,
the element zj of Mj is contained in Bg (⊂ Mj), and thus we define an
element wj of Bhg (⊂ Mj) by wj = (|zj |/|Dh(zj)|)Dh(zj), where zj and
wj are regarded as elements of the tangent spaces Tg(x0)M and Thg(x0)M

respectively and Dh is the derivative of h. For j < k + l, we define wj by
wj = ψj,k+l(wk+l). Then (wn) is an element of M̂ and πM ĥ = hπM . If wj is
given for a sufficiently large j, then w0, w1, w2, . . . , wj−1 are automatically
determined by ψkl. Let h′ be another element of G. For a sufficiently large
j,

|zj |
|D(h′h)(zj)|D(h′h)(zj) =

|zj |
|Dh′(Dh(zj))|Dh

′(Dh(zj))

=
|zj |

|Dh′(wj)|Dh
′(wj)

=
|wj |

|Dh′(wj)|Dh
′(wj).

Thus h 7→ ĥ is a homomorphism (i.e. ĥ′ĥ = ĥ′h). Furthermore, h 7→ ĥ is an
isomorphism because πM ĥ = hπM . We define a continuous map

hn : (Mn r π−1
n (Gn+l(x0))) ∪ π−1

n (Gn−l(x0)) →Mn

by

hn(z) =




π−1

n hπn(z) if z 6∈ π−1
n (Gn+l(x0))

|z|
|Dh(z)|Dh(z) if z ∈ π−1

n (Gn−l(x0)).

When (wn) = ĥ((zn)), then wn = hn(zn) if zn ∈ (Mn r π−1
n (Gn+l(x0))) ∪

π−1
n (Gn−l(x0)).

Next we will show that ĥ is continuous at (zn). Let (wn) = ĥ((zn)).
For an arbitrary number ε > 0, we choose a positive number N > 0 so
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that
∑

n=N 1/2n < ε/2. Suppose first that πM ((zn)) 6∈ G(x0). For 0 5
n 5 N − 1, the map hn is continuous at zn in Mn. Thus, if (z′n) is suffi-
ciently near (zn), then w′n = hn(z′n) satisfies

∑N−1
n=0 (1/2n)

(
dn(wn, w

′
n)/(1 +

dn(wn, w
′
n))

)
< ε/2, and hence d((wn), (w′n)) < ε. Therefore ĥ is con-

tinuous at (zn). Assume now that πM ((zn)) ∈ G(x0). Then there is an
element g of some Gk such that πM ((zn)) = g(x0). We take an integer K
greater than k + l and N . Since πK(zK) = g(x0) and g ∈ Gk ⊂ GK−l,
the map hK is well defined and continuous at zK . For j < N , ψj,K is also
continuous. Thus w′j = ψjKhK(z′K) is near wj if (z′n) is near (zn). Since∑

n=N (1/2n)
(
dn(wn, w

′
n)/(1 + dn(wn, w

′
n))

)
< ε/2, ĥ is continuous at (zn).

Furthermore, ĥ is a homeomorphism because (̂h−1) is an inverse map
of ĥ.

Finally we will show that S is a minimal set. Let (zn) be a point of S
and let U be an open set such that U ∩ S 6= ∅. Since πM is an open map,
the open set πM (U) contains a point g(πM ((zn))) for some g ∈ Gk. Here
we can take an arbitrarily large k. Then π−1

M (gπM ((zn))) is small enough.
Thus the orbit passing through (zn) intersects U . This implies that S is a
minimal set. ¤

Now, let M = S2 be the unit sphere (equipped with the standard
Riemannian metric). Consider two rotations R1 and R2 with non-parallel
rotation axes l1 and l2 intersecting at the origin 0 and rotation angles 2πα1

and 2πα2 with α1 and α2 being irrational. The group H generated by
R1 and R2 satisfies assumptions of Theorem 3. In fact, all the orbits of
H are dense and, since any g ∈ H r {e} is a nontrivial rotation, the set
S2

g of points fixed by g consists of two points, so the union ∪g∈Gr{e}S2
g is

at most countable. Therefore, orbits with free action of H exist (and are
uncountably many).

By the Theorem mentioned above, H induces Ĥ, a group of homeomor-
phisms of S2 which admits a Sierpiński carpet C as a minimal set. Let f
be a diffeomorphism of S2 constructed in the proof of Theorem 2 and C ′ ⊂
S2 be the corresponding f -invariant Sierpiński carpet. Since C and C ′ are
homeomorphic, we can assume without loss of generality that C ′ = C. The
group Ĝ of homeomorphisms of C generated by f |C and the corresponding
to R1 and R2 homeomorphisms R̂1|C and R̂2|C has positive entropy and all
its orbits are dense in C. Denote by Σ3 a closed oriented surface of genus 3.
There exists a homomorphism h : π1(Σ3) → Homeo(C) which maps π1(Σ3)
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onto Ĝ. Indeed,

π(Σ3) = 〈a1, a2, a3, b1, b2, b3 | Π3
i=1aibia

−1
i b−1

i = e〉
and we may put h(a3) = f |C, h(aj) = R̂j |C and h(bi) = idC for j = 1, 2
and i = 1, 2, 3.

Suspending this homomorphism we get the following.

Corollary 1 There exists a minimal foliated space of positive entropy
modelled on a Sierpiński carpet.

Let us complete this section by a discussion of similar problems for the
Sierpiński gasket S which – as it is well known – can be defined as the
unique non-empty compact subset of the complex plane C that satisfies the
condition

S = f1(S) ∪ f2(S) ∪ f3(S),

where

fi(z) =
z − Pi

2
+ Pi for i = 1, 2, 3,

while {P1, P2, P3} is the set of vertices of an equilateral triangle in the
complex plane C (see Fig. 5). It is well known that the topology of S is
quite different from that of the Sierpiński carpet C even if both of the sets,
S and C, can be obtained from S2 by removing a null sequence of open discs
Dn. However, in the case of S, some intersections of closures of Dn’s are
not disjoint. The mentioned difference in topology may be seen easily with
the aid of ramification index defined (compare [11]) as follows. A metric
space X has ramification index m at a point x whenever
(1) for any number ε > 0 there exists an open neighbourhood of x in X

which has diameter less than ε and whose boundary has cardinality at
most m, and

(2) there exists ε0 > 0 such that the boundary of any open neighbourhood
of x in X whose diameter is less than ε0 has cardinality at least m.

Below, we list some observations which show in particular that the sets
S and C are different also from the point of view of dynamics.

Let f be any homeomorphism of S. First, notice that the set A =
{P13, P32, P12} consisting of the centres of the segments P1P3, P3P2 and
P1P2, is the unique subset of S such that it contains exactly three points
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Fig. 5. The Sierpiński gasket

while the complement SrA splits into three connected components. There-
fore, the set A is f -invariant. We may assume that any point of A is fixed
by f . Otherwise, we shall replace f by the homeomorphism f ′ = f ◦ I,
where I is the isometry of S such that (f ◦ I)(Pij) = Pij , i, j = 1, 2, 3.

Denote by S1, S2 and S3 the connected components of S r A. Since
f |A = id, f(Si) = Si. For each i, the closure S̄i of Si is homeomorphic (via
fi) to S. It follows that the sets Ai = fi(A) are f -invariant. Consequently,
f |A∪A1∪A2∪A3 = id. By induction, f = id on the set S0 of all the points
of the form (fi1 ◦ · · · ◦ fin)(Pj) where ik, j = 1, 2, 3 and n ∈ N. Since S0 is
dense in S, f = id on S.

This shows that

Observation 1 Any homeomorphism f of S is a periodic isometry (the
restriction to S of an isometry of the triangle 4P1P2P3), therefore any
group of global homeomorphisms of S has zero entropy.

Certainly, the system (f1, f2, f3) of homotheties defining S satisfies so
called Moran’s open set condition ([10], p. 160): There exists a non-empty
open subset U of S for which fi(U) ⊂ U and fi(U) ∩ fj(U) = ∅ whenever
i, j ∈ {1, 2, 3} and i 6= j. Moreover, the system (hi), hi = f2

i , satisfies the
following strong Moran’s open set condition: for all i 6= j, d(hi(U), hj(U)) >
0, where U is a certain non-empty open set such that hi(U) ⊂ U for all i’s.
Choose U like this and set ε0 = min{d(hi(U), hj(U)); i 6= j}. Fix x0 ∈ U

and put Bn = {(hi1 ◦ · · · ◦ hin)(x0); i1, . . . , in = 1, 2, 3}. If x = (hi1 ◦
· · · ◦ hin)(x0), y = (hj1 ◦ · · · ◦ hjn)(x0) ∈ Bn and x 6= y, then there exists
m < n such that il = jl for l ≤ m and im+1 6= jm+1. If f = hi1 ◦
· · · ◦ him , then d(f−1(x), f−1(y)) ≥ d(him+1(U), hjm+1(U)) ≥ ε0. In other
words, the set Bn is (2n, ε0)-separated with respect to the system G1 =
{id, f±1

1 , f±1
2 , f±1

3 } generating a pseudogroup G of local homeomorphisms
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of S. Since ]Bn = 3n, the entropy of G is positive. Clearly, G-orbits of all
points of S are dense. Therefore,

Observation 2 There exists a pseudo-group G on the Sierpiński gasket S
with all the orbits dense and positive entropy.

Certainly, most of the above argument can be applied to any system of
maps of compact metric spaces satisfying strong Moran’s open set condition.
Hence,

Observation 3 Any pseudogroup G on a compact metric space X which
is generated by a finite set G1 containing a subsystem G0 of cardinality > 1
and satisfying the strong Moran’s open set condition has positive entropy.

4. Menger curve

Let I denote the unit interval [0, 1]. Split I into three equal segments
and the cube I3 into 27 corresponding pieces. The Menger curve µ can
be obtained from I3 by removing the part which consists of 7 pieces: the
central one and six containing the centres of the faces of the cube, and
repeating this procedure infinitely many times in each of the remaining
cube of size (1/3)n. The restriction of the Menger curve to the face I2×{0}
is homeomorphic to the Sierpiński carpet.

Recall after Bestvina [2] that a subset A of µ is called a Z-set whenever
for any δ > 0 there exists a continuous map g : µ→ µrA which is uniformly
δ-close to identity. Given δ > 0 one can find ε ∈ (0, δ) such that the cross-
section I2×{ε}∩µ equals C, the Sierpiński carpet (see Fig. 6). Other cross-
sections of µ by planes parallel to the bottom face B of I3 are smaller than
C. Therefore, the map g : µ → µ r B defined by g(t1, t2, t3) = (t1, t2, ε)
when t3 ≤ ε and g(t1, t2, t3) = (t1, t2, t3) when t3 > ε is well defined and
— obviously — δ-close to id. That is, B is a Z-set.

By Corollary 3.1.5 of [2], every homeomorphism f of B onto itself ex-
tends to a homeomorphism f̃ of µ. If f has positive topological entropy,
its extension f̃ has positive entropy as well. Therefore, Theorem 2 yields
immediately the following.

Corollary 2 The Menger curve µ admits a homeomorphism with positive
topological entropy.

The question about the existence of a single minimal homeomorphism
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C

B

µ

Fig. 6. B is a Z-subset of µ

of µ with positive entropy remains, as far as we know, open. However, Stark
[23] constructed on µ a minimal action of a free group F2 generated by two
homeomorphisms f1 and f2. The action of G, the group generated by f1, f2

and f̃ , the homeomorphism considered above, is minimal and has positive
entropy. Suspending this action of G over Σ3 as in Section 3 we end up
with the following.

Corollary 3 There exists a minimal foliated space of positive geometric
entropy modelled on the Menger curve µ.

Since minimal actions of finitely generated groups exist ([23], Corol-
lary 4.2) on Menger sets µn of arbitrary dimension as well as on several
Menger manifolds, one should be able to generalize the above to these cases
too.

To complete this Section, let us recall that the Menger curve µ can
be also constructed as a Pasynkov [22] partial topological product which is
defined as follows.

Given X, a compact connected metric space equipped with the distance
function d, U = (Ui), a countable null basis for the topology of X (that is,
U is a basis such that diam(Ui) → 0 as i→∞) and A = (Ai), a countable
family of finite sets, each containing at least two elements, set P0 = X and,
for r ≥ 1,
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Pr =
(
X ×

r∏

i=1

Ai

) /
∼,

where the equivalence relation ”∼” is generated by

(x, a1, a2, . . . , ai, . . . , ar) ∼ (x, a1, a2, . . . , a
′
i, . . . , ar),

whenever x /∈ Ui and ai, a
′
i ∈ Ai. The natural projection

∏n+1
i=1 Ai →∏n

i=1Ai induces a projection ϕr+1 : Pr+1 → Pr (Fig. 7). The Pasynkov
partial product P of the (Ai) over X with respect to U equals the inverse
limit of the system (Pr, ϕr); the induced map π : P → P0 = X is called the
Pasynkov projection. For any r, one has also natural projections πr : P →
Pr and π̂r : Pr → X (such that π = π̂r ◦ πr).

Assume also that the metric space X is nontrivial (i.e. contains more
than one point) and geodesic (i.e. any two points x and y ∈ X can be joined
by a curve (geodesic) γ : [0, 1] → X such that the length l(γ | [t1, t2]) of
γ | [t1, t2] equals d(γ(t1), γ(t2)) for all t1 and t2 in [0, 1]), and ∂Ui 6= ∅ for
all i ∈ N; also – just to simplify some estimates – that diamX = 1. Then,
all the spaces Pr are arcwise connected. Indeed, given r and two points
x = [(u, a1, . . . , ar)]∼ and y = [(w, b1, . . . , br)]∼ of Pr (u, w ∈ X, ai, bi ∈
Ai) one can join u to w by a curve γ : [0, 1] → X which intersects all the
boundaries ∂Ui, i ≤ r. Choose points ti ∈ [0, 1] for which γ(ti) ∈ ∂Ui and
define the curve γ̃ : [0, 1] → Pr by

γ̃(t) = [(γ(t), α1(t), . . . , αr(t))]∼,

where

αi(t) = ai when t ≤ ti and αi(t) = bi when t ≥ ti.

Certainly, γ̃ is well defined, continuous and connects x to y. Therefore, we
can consider the path metric dr on Pr, where the length of a curve γ in Pr is
defined as the length (in X) of its projection π̂r ◦γ. Certainly, dr is symmet-
ric and satisfies the triangle inequality. Also, if x = [(u, a1, . . . , ar)]∼ and
y = [(w, b1, . . . , br)]∼ are points of Pr and u 6= w, then any curve joining x
to y in Pr has length at least d(u, w) and dr(x, y) ≥ d(u, w) > 0; if w = u

but x 6= y, then the set Ir = {i ≤ r;u ∈ Ui} is nonempty and for any curve
γ joining x to y in Pr there exists i ∈ Ir for which π̂r ◦ γ quits Ui, therefore

dr(x, y) ≥ min{d(u, X r Ui); i ∈ Ir} > 0.
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Fig. 7. Pasynkov construction

Finally, put

d∞(x, y) =
∞∑

r=0

2−(r+1)dr(πr(x), πr(y)) (4)

for x, y ∈ P , where P0 = X, π0 = π and d0 = d. Clearly, d∞ is a metric on
P . In the special case, when X = S1 is a circle of radius r, say r = 1/2π,
and Ai = {0, 1} for each i ∈ N, P is homeomorphic to the Menger curve
µ (see [2]). Therefore, analogously to the classical result on entropies of
homeomorphisms of a circle, we can get – in a similar way – the following
fact which could evoke the reader’s impression that the negative answer to
the question on existence of minimal homeomorphisms of µ with positive
topological entropy is better-founded than the positive one.

Proposition 1 Let f be a homeomorphism of µ. If there exists a homeo-
morphism ϕ of S1 such that π ◦ f = ϕ ◦ π, then the topological entropy of f
equals 0.

To simplify redaction of the proof let us introduce some terminology
and notation.

An arc c : I = [0, 1] → µ is called horizontal (or, for short, an h-arc) if
and only if π◦c : I → S1 is monotone. Now, given a homeomorphism f of µ,
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we say that a subset E of µ is (n, ε)-horizontally spanning (h-spanning, for
short) if and only if for any x ∈ µ there exist y ∈ E and h-arcs ci : I → µ such
that ci(0) = f i(x), ci(1) = f i(y) and l(ci) ≤ ε for any i = 0, 1, . . . , n − 1.
We denote by r(n, ε) the minimum cardinality of (n, ε)-h-spanning subsets
of µ.

By classical results in dynamical systems (see, for example, [28], p. 174),
the topological entropy htop(f) of f can be defined by formulae analogous
to (2) and (3) with s(n, ε, G1) replaced by r(n, ε). That is,

htop(f) = lim
ε→0

lim sup
n→∞

1
n

log r(n, ε).

To begin the proof of our Proposition let us choose ε < 0.25 and such
small that the inequality d∞(x, y) < ε implies that

d∞(f(x), f(y)) < 0.25 and d∞(f−1(x), f−1(y)) < 0.25.

Also, let us choose r0 such that diam(Ur) < ε/2 for any r ≥ r0 and∑
r≥r0

2−r < ε/2. Let E be an (ε/2)-dense subset of S1 of cardinality
≤ [2/ε] + 1 and F = π̂−1

r0
(E). Certainly, ]F ≤ 2r0([2/ε] + 1). From (4), it

follows directly that the set F is (1, ε)-h-spanning.
Let now F be an (n− 1, ε)-h-spanning subset of µ with minimum car-

dinality r(n− 1, ε) and E an (1, ε)-h-spanning subset of µ with cardinality
≤ 2r0([2/ε] + 1). Put

F ′ = F ∪ f−(n−1)(E).

The statement of our Proposition results directly from the following.

Lemma 1 The set F ′ is (n, ε)-h-spanning.

Proof. Fix x ∈ µ. There exist y ∈ F ′ and h-arcs ci : I → µ such that
ci(0) = f i(x), ci(1) = f i(y) and l(ci) ≤ ε for any i = 0, 1, . . . , n− 2.

If there exists cn−1 : I → µ such that cn−1(0) = fn−1(x), cn−1(1) =
fn−1(y) and l(cn−1) ≤ ε, then our claim is proved.

If not, since E is (1, ε)-h-spanning, there exists a point v ∈ E and an
h-arc ξ : I → µ of length l(ξ) ≤ ε connecting fn−1(x) with v.

Put

z = f−(n−1)(v), η = f−(n−1)(ξ) and τ ′j = f j(c0)

where j = 0, 1, . . . , n− 1. Without loss of generality we may assume that
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the arcs π◦ξ and π◦τ ′n−1 have the same orientation in S1. Since l(τ ′n−1) > ε,
there exists a point u ∈ τ ′n−1 such that π(u) = π(v).

Let z′ = f−(n−1)(u); then f j(z′) ∈ τ ′j for all j = 0, 1, . . . , n− 1.
Observe that π(fn−1(z)) = π(fn−1(z′)). Denote by αj a subarc of τ ′j

which connects f j(x) with f j(z′). We shall show that l(αj) ≤ ε for all
j = 0, 1, . . . , n− 2.

For j = 0, this is clear because z′ ∈ c0 and l(c0) ≤ ε. Take now some
j ≥ 0 such that l(αj) ≤ ε. Then

l(αj+1) ≤ l(τ ′j+1) = l(cj+1) ≤ ε (5)

(for j + 1 ≤ n − 2) because the h-arcs τ ′j+1 and cj+1 have the same end
points and – by our choice of ε – lengths ≤ 0.25. Moreover,

π(v) = π(fn−1(z′))

and

l(αn−1) = l(ξ) ≤ ε.

Thus, inequality (5) holds for all j = 0, 1, . . . , n− 1.
The h-arcs f j(η), j = 0, 1, . . . , n− 1, join f j(x) with f j(z). We claim

that for any such j the inequality

l(f j(η)) ≤ ε (6)

holds. Indeed, if j = n− 1, then

l(fn−1(η)) = l(ξ) ≤ ε.

Consider the case j = n − 2. Both fn−2(η) and αn−2 are h-arcs with a
common origin fn−2(x) and such that π(fn−2(z)) = π(fn−2(z′)). Moreover,
again by our choice of ε, both have length ≤ 0.25. Thus,

l(fn−2(η)) = l(αn−2) ≤ ε.

Using the same argument inductively we can show that (6) holds for any j.
This completes the proof of the Lemma (and of the Proposition). ¤

5. Final remarks

First, in the final part of Section 3 we observed that any group of
homeomorphisms of the Sierpiński gasket S has zero entropy. It seems that
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the reason for the proof works is that S has finite ramification index. So,
one could consider the following.

Problem 2 Are the observations concerning the Sierpiński gasket valid
for any (planar) continuum with finite ramification index?

Next, Cantwell and Conlon defined in [5] an interesting class of pseu-
dogroups (called Markov pseudogroups) and have shown in [6] that any
minimal set of a Markov pseudogroup on the real line R can be realized by
a codimension-1 foliation on a compact 3-dimensional manifold (compare
[16] and [24] for other methods of construction of such foliations). The
pseudogroup on the Sierpiński gasket S which was constructed to get Ob-
servation 2 is not Markov: the images fi(S) are not disjoint in S. However,
it is not too far from being Markov: fi(S) ∩ fj(S) is just a singleton when
i 6= j. So, one could consider also the following.

Problem 3 Does there exist a foliation (or, a foliated space) of codimen-
sion 2 on a compact manifold with a minimal set which is transversely
locally homeomorphic to the Sierpiński gasket S?

The “global version” of this problem (“Does there exist minimal fo-
liated spaces modelled transversely on S ?”) makes no sense. The leaves
of any such foliated space which correspond to the vertices of the triangle
4P1P2P3 cannot be dense since – due to different ramification indexes –
no neighbourhoods of Pi are homeomorphic to neighbourhoods of points
P ∈ S \ {P1, P2, P3}.

By results of [19], there exists a diffeomorphism f of T 2 of class C3−ε

(where ε > 0 can be arbitrarily small) which leaves a Sierpiński T 2-set S
invariant and has all the orbits of points of S dense in S. Suspending this sin-
gle homeomorphism we will get a C3−ε-smooth 1-dimensional foliation F of
a compact 3-manifold M . Certainly, M contains a minimal set transversely
homeomorphic to S. The diffeomorphism f of [19] is semi-conjugated to a
translation τ : T 2 → T 2 which obviously has zero topological entropy. At
the moment, it is not clear for us what is the entropy of f . If the entropy
of f were positive, our foliation F would have positive entropy too. Mc-
Swiggen [20] performed similar constructions of diffeomorphisms preserving
Sierpiński sets on tori T k of arbitrary dimension k ≥ 1. All of that motivates
the following.
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Problem 4 Given k ≥ 2 and ε > 0, construct a codimension-k foliation
F of class Ck+1−ε on a closed manifold M with positive geometric entropy
and an exceptional minimal set homeomorphic transversely to a Sierpiński
T k-set.

Finally, let us recall that Kawamura [18] proved that every finitely
generated group G acts on the Menger curve µ. His proof consists in a
construction of a suitable µ-manifold X built from the thickened Cayley
graph Γ of G. Since the Freudenthal compactification X of X is known to
be homeomorphic to µ (see [7]) and G acts in a natural way on Γ, hence on
X and X as well, G acts on µ. On the other hand, if G is hyperbolic (in
the Gromov’s [13] sense), then G acts, again in a natural way, on the ideal
boundary ∂Γ of Γ. In many cases, this action has positive entropy (see [3]).
Therefore, one could compare these results to study the following.

Problem 5 Describe the class of all Gromov hyperbolic groups which act
on µ in such a way that the action is minimal and has positive entropy.

The argument proving our Corollary 3 shows that the free group F3

belongs to this class.
The positive answer to our Problem 3 can be derived from the following

example which was kindly brought to our attention by Takashi Tsuboi who
described a minimal action of PSL(2, Z) on an Apollonian gasket (see [26]).

The Apollonian gasket is a fractal which can be obtained by the follow-
ing procedure. Consider three mutually externally tangent balls with max-
imal radius on a unit 2-sphere and delete the interiors of the balls. Inscribe
in the remaining set, which consists of two spherical triangles, touching only
in vertex points, two balls and delete its interiors. Repeating the inscribing
and deleting procedure infinitely many times we get the Apollonian gasket
as a limit. It is easy to notice that the Apollonian gasket is homeomorphic
to two copies of Sierpiński gaskets inserted on a sphere and glued at vertex
points. It is known (see [21], p. 197) that the Apollonian gasket is a limit
set of a Schottky group made by pairing tangent circles. Notice that by the
following theorem (called sometimes [27] the Ping-Pong Lemma),

Theorem 4 (Klein’s Criterion (see [15], p. 130)) Let G be a group acting
on a set S, let Γ1, Γ2 be two subgroups of G and let Γ be the subgroup they
generate; assume that Γ1 contains at least three elements. Assume that there
exist two non empty subsets S1, S2 in S with S2 not included in S1 such
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that γ(S2) ⊂ S1 for all γ ∈ Γ1 − {1} and γ(S1) ⊂ S2 for all γ ∈ Γ2 − {1}.
Then Γ is isomorphic to the free product Γ1 ∗ Γ2.

we get that the group F generated by matrices

g =
(

1 2
0 1

)
and h =

(
1 0
2 1

)

is a free subgroup of PSL(2, Z). Therefore, the growth grow(F ) of F is
equal to log 3 (compare [3], p. 209, or [14], p. 70). By the results of [3] we
conclude that the topological entropies h(PSL(2, Z)), h(F ) of the hyper-
bolic group PSL(2, Z) and its subgroup F , acting on Apollonian gasket,
satisfy the following inequality

h(PSL(2, Z)) > h(F ) = log 3 > 0

Finally, suspending the natural action of PSL(2, Z) on the sphere S2 (re-
garded as the ideal boundary of the hyperbolic 3-space) over a compact
surface Σg of genus g ≥ 2 we get a codimension two foliation F . The total
space of the suspension is a fibration with fibre S2 such that the intersec-
tion of a minimal subset F0 of F with the transversal is the Apollonian
gasket. Therefore, the minimal subset F0 of F is a foliated space with pos-
itive geometric entropy and transversal which is locally homeomorphic to
the Sierpiński gasket.
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