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Endpoint estimates for commutators
of a class of Littlewood-Paley operators
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Abstract. In this paper, the weak L log L estimates for the commutators of a class of
Littlewood-Paley operators with real parameter are established by using a technique of
the sharp function.
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1. Introduction

Let b be a locally integrable function on R™ and let T" be a bounded lin-
ear (or sublinear) operator on LP(R") for 1 < p < co. Then the commutator
[b, T'] is defined by

[b, TI(f)(2) = b(2)T(f)(x) = T(bf) ().

The commutators connect closely with the problem of the second order lin-
ear elliptic equations. A famous result of Coifman, Rochberg and Weiss
[CRW] states that if b € BMO(R™) and T is the Calderén-Zygmund sin-
gular integral operator, then the commutator [b, T] is bounded operator
on LP(R™) for 1 < p < oo. For the endpoint case, a simple example (see
[P]) shows that [b, T] is not weak type (1, 1) for b € BMO(R"™). As its
replacement, in 1995, Perez gave the following result:

Theorem A ([P]) Let m =0,1,2,.... If b € BMO(R") and T is the
Calderon-Zygmund singular integral operator, then there exists C' > 0 such
that for any B > 0 and smooth function with compact support f,

{y eR™: [T (£) ()] > B} < Clppje Rn‘f(ﬂy)‘ <1+10g+ (Wﬂy)')) w
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where ||b||s denotes the BMO norm of b and T = T, T/* = [b, T)" ']
denotes m order commutator of T'.

On the other hand, it is well known that Littlewood-Paley operators,
such as the Littlewood-Paley g-function, the Lusin area integral and Little-
wood-Paley g} function play very important roles in harmonic analysis and
PDE (for example, see [St3], [K] and [CWW]). Therefore, it is a very
interesting problem to discuss the boundedness of the commutators for the
Littlewood-Paley operators. The first result about the commutators of the
Marcinkiewicz integral pq appeared in the paper [TW] by Torchinsky and
Wang in 1990. The Marcinkiewicz integral operator ugq of higher dimension
was defined first by Stein [St1], which is a generalized Littlewood-Paley g-
function. We refer to see [St1], [BCP], [DFP1], [DFP2| and [FSa] for the
properties of pq. Torchinsky and Wang [TW] proved that if b € BMO(R"™),
then the commutator [b, ug] is bounded operator on the weighted space
LP(R™, w) for 1 < p < oo and w € A, (see Definition 3 below). In 2002,
Ding, Lu and Yabuta [DLY] gave the weighted LP-boundedness of the higher
order commutator pgy, for rough Marcinkiewicz integral p1. Recently, Ding,
Lu and Zhang [DLZ]7 gave the endpoint weighted estimates for the higher
order commutator jy,, which is similar to the conclusion of Theorem A.

Naturally, it is an important and interesting problem to study the
endpoint properties for the commutators of the Lusin area integral and
Littlewood-Paley g} function. The purpose of this paper is to provide
an endpoint estimates for these commutators of a class of Parameterized
Littlewood-Paley operators. Because in the proofs of the main theorems
in this paper, we will view these Parameterized Littlewood-Paley operators
as Hilbert space valued operators, we therefore give the definitions of some
Hilbert spaces.

Definition 1 Suppose that u(y, t) is a measurable function on R’r’l =
R™x (0, 00) (n > 2), then the Hilbert spaces H; and Hz on R”™ are defined

by
dydt\ '/?
= {us e = ([ 1t 0Pxgmen @™ ) <o,
R*

and
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o tor={ . () o0 e )

respectively.

Take ¢(x) = Q(m)\az|_(”_p)x{|m|<1}, where 0 < p < n and Q always
satisfies the following conditions in this paper:
(a) Q(A\z) = Q(x) for all A > 0;
Jior Qa")do(a) = 0
(¢) Qe LS.
Here S™~! denotes the unit sphere of R” equipped with Lebesgue measure
do(x'). Let

Ff)o 0= [ oo

- y) f(z)dz. (1.1)

Then the Parameterized area integral s and the Parameterized Littlewood-
Paley g} function p)” are defined by

pe(H)(w) == F) (@, -5 )l

Qy —2) 2dydt>1/2
d
<//F($) /y z|<t Iy—z\” Pf( ) o 1 )
where I'(z) = {(y, t) € Riﬂ: o — y| < £}, and
n () (@) = IF(f )\|H2
(//R”‘H <t + |z — y)

Qy —2) 2 dydt\ /2
X‘ ly—z|<t Wf(z)dz t”+1> J

respectively. In 1990, Torchinsky and Wang [TW] gave the weighted L?(R")
boundedness of p% and py” for p =1 and Q € Lip,(S"!) (0 < a < 1). For
general p, in 1999, Sakamoto and Yabuta [SY] gave L? boundedness for ;%
and ,u:’p . Recently, we extended Torchinsky and Wang’s weighted results
with general p and p under a more weaker condition, which will be applied
to prove the main theorem in this paper. Before stating some results, let
us recall the definitions of integral modulus of continuity and the L9-Dini
condition.
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Definition 2 Suppose that Q(z') € LI(S" 1), ¢ > 1. Then the integral
modulus wq(0) of continuity of order q of Q is defined by

) = o ([ 1000 - o)taote))

where v denotes a rotation on S"! and ||v|| = supgcgn-1 |y2' — 2'|. The
function 2 is said to satisfy the L9-Dini condition, if

/1wq<5)d5<oo
o 0 '

Definition 3 A nonnegative locally integrable function w(z) on R™ is said
to be in A, (1 < p < 00), if there exists a constant C' > 0 such that for
every cube Q C R”

() i ) <

for 1 < p < o0,

and for a.e., r € R" and ) > =
1/ w(y)dy < Cw(zx), forp=1.
Q] Jg

Recently, we obtained the following weighted results and weak (1, 1)
estimates about p% and p)”:

Theorem B ([DX2]) Suppose that p > n/2, X > 2 and Q € L*(S" 1)
satisfies

1

1)

/ w“’é )1 4 |10g8)7d6 < 00, > 1. (1.2)
0

If1 <p<ooandw € A, then both of ug and ;L:’p are bounded operators

on the weighted space LP(R™, w).

Theorem C ([DX1]) Let Q € L2(S"1) satisfies (1.2). Then for p > n/2
and X > 2, both of p and p\* are of weak type (1, 1).

Remark 1.1 The condition (1.2) is weaker than the Lip, (5" 1) (0 < a <
1) condition, see Remark 2 in [DLX] for the details. On the other hand, the
LP (1 < p < o0) and the weak (1, 1) boundedness of ) ¢ and py” don’t
hold for 0 < p <n/2 and n > 2.
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Now let us turn to the definition of commutators of p/ and ,u:’p . For
b € BMO(R") and m = 1, 2, ..., the higher order commutators ug}," of
Parameterized area integral ug are defined by

,U'g,b(f)( ) b :uS )( )_Hb( ) ( )(m7'7')_F(bf)(x7'7')”7'(1

<// I'(z) |t /y 2|<t ’22(—2_\"@”

x (b(z) — b(2)) f(2)dz

2dydt 1/2
tn—l—l

and

Gy (F)(@) = b Wy () (=)

<//F(z tP /y 2l<t |y(—z\" )”

x (b(x) = b(2))" f(2)dz

Zdydt 1/2
tn+1 :

We denote simply ,up’l (f) = ,ug »(f) and p ’O(f) = we(f), respectively. Sim-
ilarly, the higher order commutators ,u/\’p "™ of the operator p\* are defined
as follows.

B @) =[b. 1371 @) = [b@) P, ) = POz, -l

<//Rn+1<t+:c y >M

|
Q z 2y 1\ 112
: tp/y—z|<t\y(—?JZV‘)/’(b(x)_b(z))f(Z)dz tijﬂt)
and
R ) = o @
An
<//R"+1<t—|—‘x_y|>
2y —= m 2d d 1/2
“ /Iy_z<tw(b($)b(z)) f(z)dz tij)

We denote simply u)\’p 1(f) = puyh(f) and py ’po(f) = "’ (f), respectively.
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In this paper, we will show that the higher order commutators ug’zl
and p)?"™ have the same endpoint estimates as the conmmutator 7} of

the Calderén-Zygmund singular integral operator T' shown in Theorem A.

Theorem 1 Suppose that p > n/2, X > 2 and Q € L*(S"1) satisfying
(1.2) for o > 2. If b € BMO(R") and m = 1, 2, ..., then there exists a
constant C > 0, such that for any 8 > 0 and each smooth function f with
compact support,

() |wers w7 (D>} <Cue [ L (1r0g (L1

3 &
@) [weR 157 (1)) >0} <Cppe | P (1108t (L))

Using the method of proving Theorem 1 and combining with some idea
in [P], we may get the following weighted endpoint estimates for the com-
mutators pg;" and gy, Here we omit the details of the proof of the

following Theorem 2.

Theorem 2 Ifw € Ai, then under the same conditions as one in Theo-
rem 1, the following inequalities hold:

(1) w({z eR": pgy'(f)(x) > B})

< Clopr /R |ff;)| (Hlog+ (W;)'» w(@)dz;
(i) w({eeR": 15" (f)(@) > HY)

< Cijp|e /Rn f(;)’ (1 + log+<|fg)|>>mw(az)dx,

where B > 0 and f is smooth function with compact support. Moreover,
the constant C' > 0 is independent of 3 and f.

In the proofs of Theorems 1 and 2, we need the weighted LP bound-
*p,m

edness (1 < p < 00) of the commutators ug’zl(f)(x) and pyy"(f)(x). Of
course, these results are also of interest independently.

Theorem 3 Suppose that p > n/2, X > 2 and Q € L*(S"1) satisfying
(1.2) for o > 2. If b € BMO(R") and m =0, 1, 2, ..., then for 1 <p < oo
and w € A, there exists a constant C > 0 such that for any f € LP(R", w)
(1) gy (Dllzrw) < ClF o)

() [ey™ (e < ClFI Lo w)-
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Remark 1.2 Note that the commutators discussed in [TW] and [DLZ] are
only formed by the Marcinkiewicz integral pq, so the results in this paper
can be regarded as an extension of the conclusions in [TW] and [DLZ]. On
the other hand, in [TW] and [DLZ] the kernel function €2 needs to satisfy
Lip, (8™ 1) condition for 0 < o < 1. However, in the conclusions of this
paper the conditions (1.2) assumed on § are weaker than the Lip, (S™1)
condition (see Remark 1.1). Therefore, our results in this paper are also an
improvement of the conclusions in [TW] and [DLZ].

Remark 1.3 It is easy to check that Mg:?(f)(:n) < QA";L:”g’m(f)(a:) for
m = 0,1, 2, ..., (see the proof of (19) in [St2, p. 89|, for example), we
therefore give only the proofs of Theorem 1 and Theorem 3 for py9™,

respectively.

Remark 1.4 The L? condition assumed on €2 in Theorem 1-3 comes from
the Minkowski inequality we used, and can’t be replaced by any L4(1 < ¢ <
2) if one use this inequality.

2. Proof of Theorem 3

By Remark 1.3, we only prove that the following inequality holds under
the conditions of Theorem 3,

[ i in@re@de<c [ i@l (2.1)
The idea of proving (2.1) is taken from [DLY]. The proof will be finished
by induction on m. For m = 0, it is just the conclusion of Theorem B.
For m > 1, we assume (2.1) holds for m — 1, and we need to prove that
(2.1) holds also for m. Replace the operator u"{;;l and the weight class
Ay in [DLY, pp. 65-66] by ,uj{”ﬁ’mfl and A, respectively. Follow the same
steps of proving Theorem 1 in [DLY], by Theorem B and the Stein-Weiss
interpolation theorem with change of measure we may prove that for any
6 € [0, 2n1] and any ¢ € LP(weP<os9),

e -1
Hﬂi,gm (qb)"p,wepb(z) coso < CquHp,wePb(I)COSO’ (22)

where C' depends on n, p, b, w, but not on 6 and ¢. (See [DLY, pp. 65—
66] for the detail). Now denote F(y) = e¥(*(®)=()) 4 ¢ C. Then by the
analyticity of F'(y) on C and the Cauchy integration formula, we have
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1 F(y)

o)~ bz =5 |
2 .
=L 7 0w b it gy (2.3)
27T 0

By (2.3) and the Minkowski inequality we have

1" () ()

<[@wlt+w—yﬂm

1 Qy — 2) m
A ———fww—wnf@w

0 Jyy—zi<t ly — 2777

Y T
R’+L+1 t+|x_y| 2m ly—z|<t ’y_Z’n r

X

2dydt 1/2
tn—i—l

; , 1/2
% (b(l’) - b(z))m—leew (b(x)fb(Z)) 677,9.]3( )d do ;l ff)
27 n B
<5 | ( [ Gl ) s
21 Jo R t+ |z —y| tP ly—z|<t ly — z|"r
) 2 1/2
« (b(l’) _ b(z))m—le—ezeb(z)f(z)dz f}jﬁf) 6b(a:) cosé'de

1 o om—1/ 0 b(x) cos 6
=5 [ e @ =,

where f9(z) = f(z)e_ewb(z) for 6 € [0, 2x]. Then by the Minkowski inequal-
ity and inequality (2.2), we obtain

x5 ™ (D)o )

27 P 1/p
(/ o / bm L(FO) (@) eb@ eos g w(m)dx)
n 0

1 D b(z) cos @ r
% < - u/\ 1 ( ) (@)]Pw(z)e d:):) do

1 0 p b(z) cos 6 e
< 2/‘ @) Pua)e =0dz ) a0 = Ol e
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The last step we used the fact f¢ € LP(weP?<°%) and ||f0||Lp(wepr059) =
£l Lo (w)- Thus we complete the proof of Theorem 3.
3. Some preliminary lemmas

Let us begin by recalling the Kolmogorov Lemma (see [GR, p. 485]).

Lemma 3.1 Let 0 <r < { < oo. For each function f, define
Ifllwre = iggtl{fﬂi |f(@)] > t}*

and

Ng (f):SU ||fXE||7“ ]—_1 1

g olxels’ s v O
where the supremum is taken over all the measurable sets E with 0 < |E| <
0o. Then

14

1/r
I lwre < New() < (7=) * I lwe.

To state the following lemmas, let us give some definitions and nota-
tions. For 6 > 0, we define Ms(f) = [M(\f|5)]1/5, and M(?(f) = [M*(|f]9)] 1/{
where M and M* denote the Hardy-Littlewood maximal operator and the
Fefferman-Stein’s sharp function, respectively, the latter is defined by

¢ — auninf el s N
MA(f)(x) Supmf|Q|/Q!f(y) c|dy Zgg|Q|A?|f(y) faldy,

Q32 ¢

where fo = (1/]Q|)fQ f(y)dy. The corresponding dyadic mazximal opera-

tors are denoted by M (SA and Mg’A, respectively. For simpleness, we will
denote M7, Mf, MIA, Mf’A by M, M*!, M2, M%2 respectively. A func-
tion A: [0, co) — [0, 00) is said to be a Young function if it is continuous,
convex and increasing satisfying A(0) = 0 and A(¢) — oo as t — oo. The
complementary Young function A(t) of the Young function A(t) is defined
by

A(s) = sup [st —A(t)], 0<s < oo.
0<t<o0o

As an example, ®,,(t) = t(1 +log™¢)™ (1 < m < o) is a Young function
with it’s complementary ®,,(t) ~ et (see [P]). If A is a Young function,
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then the Luxemburg norm of f on a cube () C R” is defined by

. o1 |f(y)]
1l = mf{A >0 g [ a( )y < 1}.

If A(t) = ®1(t), we denote || fl|L1og .0 = | flloy,@; [Ifllexo 2. = I f[l5, o and
Mg f(7) = supgs, | fllL10g .- For the Luxemburg norm, there is the
following generalized Holder’s inequality:

@ /Q F@)e@)ldy < Iflallgl 10 (3.1)

Now we state some known-results which will be used in the proofs of theo-
rems in this paper.

Lemma 3.2 ([FSt]) For the dyadic mazimal operators M® and M**, the
following results hold:

(i) HyeR™: MA(f)(y) > A, MAH(f)(y) < Al
< Cel{y € R™: MA(f)(y) > A2},
where A > 0, € > 0 and C is independent of \, € and f.
(i1) Let ¢: (0, 00) — (0, 00) be a doubling function. then there exists a
positive constant C, such that

ii;ﬂ)go(A)l{y €R": M{(f)(y) > A}

< Osup(A){y € R MPH(f)(y) > A}

for all function f such that the left side is finite.
If denote M2 = M o M, then (see [P, p.170])

M(f)(z) < Mpiogr(f)(x) and  M?(f) ~ Mpiogr(f)- (3-2)
Moreover, Pérez [P] gave the following weak type estimate for M?:
Lemma 3.3 ([P]) There exists C > 0 such that for any 8 > 0 and f €
Llog' L(R")

{z € R™: M2(f)(z) > B} < c/Rn |f(;)| <1 +log+(|f(;)|))daz.
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Lemma 3.4 ([DL]) Suppose that 0 < p < n, Q is homogeneous of degree
zero and satisfies the L?-Dini condition. If there exists a constant 0 < 6 <
1/2 such that |z| < R, then we have the following inequality

a7~ 5 )

ly —zrr Jylre
z|/R
< CRn/2—<n—p>{’~’”| +/ / “’2(5)d5},
R Jigjjer 0

where the constant C' > 0 is independent of R and x.

Using Lemma 3.4, one can obtain the following lemma, which shows
that the sharp function of the commutator ug’b( f) can be controlled by
the maximal function of p%(f) and the Hardy-Littlewood maximal function

M2(f).

Lemma 3.5 Suppose that n/2 < p <n, A > 2 and Q € L?>(S"Y) satisfy-
ing (1.2) with o > 2. If b € BMO and 0 < 6 < £ < 1, then for any smooth
function f with compact support set, there exists 0 < C = Cy such that

M, (1)) < Clb|L [MluG ()] () + M(f)()] (3-3)

and

M35 (N)(@) < Clbll [Meluy” (D)) + MP(f)(@)]- (3-4)

Proof. For any x € R™, Let B = B(xq, r9) be an arbitrary ball containing x
with center at 2y and radius 7. Since 0 < ¢ < 1, then ||a|‘S - |d|5‘ <la—d°
for any a, d € R. Denote B* = B(xq, 8r¢) and decompose f = f1 + fo with
f1 = fxpB+. Then we have

b(x)F(f)(x, y, t) = F(bf)(x, y, 1)
= [b(z) — bp-|F(f)(x, y, t) = F[(b — bp+) fi](z, y, )
= F[(b—bp+) fo](x, y, ).
where F'(f)(x, y, t) is defined in (1.1).
First, we give the proof of (3.3). Take

cp = ‘;, | 15106~ b) el

then it is easy to check that cp < oo by the conclusion of Theorem 3 with
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w = 1. Hence

(i)
< (g [ o o encal'an)
oy o)

N
+C<w/B‘Ng«b_bB*)fZ)(u)_CB‘ du) =T+ 11 + ITI

To estimate I, we choose 1 < v < £/6 and by Holder’s inequality,

) o)
1< [ = vwae) (g [ W)
< Ol M, (W5)) (&) < Il My 1)), 85

Note that % is of weak type (1,1) (by Theorem C) and 0 < 6 < 1. Applying
Kolmogorov’s inequality (Lemma 3.1), weak (1,1) boundedness of p and
the generalized Holder’s inequality (3.1), we get

II< / bB* f1 du / — bp+||f1(u)|du
< Clb(x bB*”eXpLB*HfHLIOgLB* < OJp||« MLlogL(f)( ).

In the last step above, we used John-Nirenberg inequality (see [P, p. 169])
and the definition of M 1os 1. Note that M?f(z) ~ Mp g f(z) (by (3.2)),
we have

I1 < C|b]l.M? f(x). (3.6)

Finally, let us give the estimate of III. By Theorem B with w = 1, we know
that ui’p is bounded on LP under the conditions of Lemma 3.5. Thus

/ 2 fo) ()P < 2 / (o) () P
B B
<c / 137 (f2) ()P du
m(wm<c/ ) Pdu.
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Hence

[ adn <2 [ () )
< ( [ mrwra)”
<cip ([ 1) "

This shows that both of p%(f2)(z) and py”(f2)(z) are bounded a.e. on B.
Thus, by Jensen’s inequality we have

I < é /B (b — b ) f2) () — (W (b — bp-) f2)) | dua

< |BCQ /B /B (5 — bpe) f2) () — (b — =) f2)) (v) | dvdu

= |BCQ/B\E /B\E |G ((b— bp+) f2)(u)
— (1 ((b = bp+) f2)) (v)|dvdu,

where E C B with |E| = 0 and p(f2)(u) < oo for any u € B\ E. Therefore,
we have the following fact for any u, v € B\ E, which will be proved in
Lemma 3.6:

|15 (b = bp=) f2) (u) — p((b — bp=) f2) (v)]
[ UGG bl
<Cr /(SB*)C d

2 — a|rte

+ Crpn/Z/ |f(Z)Hb(Z) - bB*|dZ
(8B*)°

|z — x|ptn/2
|f(2)]|b(2) — bp-|
C
I,

B)e |z — x\”(log(]z — :B\/r))
= L1+ Lo+ Lg, (37)

2+¢

where € < min{1/2, (A —2)n/2, p—n/2, o0 — 1}. Next we show
L; < C|b||« M*(f)(z) for i=1,2,3.

In fact, if we denote bp, = {z: |z —zo| < 2710}, then |bgi+1 —bp+| < 25|
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By (3.2) we get

neeey [ JE)) b

. . e
Jr<|z—z|<2it1r |Z_‘T|n+

dz

Jj=3

> 2)||b(z) —bp.
SC;;</BMW )H(;j:)n Ba+1’dz+|ij+1—bB*|M(f)(x)>

<O S (b, lexp 0,1 g3, 20 [ M) )
j=3

<O o (Il Mriog () () + 2 [ M (1) )
j=3

< Clblle(Mriog () (2) + M(£) () SCIb M (f) ).

Take ¢ = p — n/2 in the above inequality, we get Lo < C|[b|l«M2(f)(z).
Using the same way in estimating L, to deal with L3, we obtain

ey | F()Ib() b

2r<|z—az|<2F1r |z — x!”(log |z — $\/T))2+E

Jj=3

! f(2)]b(2) — bp«|
=¢ / dz

J;% T Joir<izal<aiiy |z — a|"

<O e (Mg (1)) + 2410 M1(D(2))

j=3
< bl M?(£) ().
Thus we get 111 < C||b||«M?(f)(x) from the estimates of L1, Ly and L3, and
(3.3) follows. Let us now consider (3.4). For any u, v € B\E, and p > n/2,

A > 2, the following inequality holds: (Once again, this fact will be proved
in Lemma 3.6.)

55((b — b ) fo) () — (5((b = bpe) f2)) (V)]
) F()Ib(z) — |,
<Cr /(SB*)C |z—l"n+€ d

L Ol / f()IIb(z) = ba-|
(885 |z — |t/
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£)5(:) = b
¢ 3.8
oo 2 = al" (log(|= — al /)" )

Based on the inequality (3.8), and repeating the same steps as done in esti-
mating /%, we can obtain (3.4). Hence we complete the proof of Lemma 3.5.
([l

Below we give the proofs of (3.7) and (3.8).

Lemma 3.6 Let B and E are the same as in the proof of Lemma 3.5,
u, v € B\E, p>n/2 and X\ > 2, then the inequalities (3.7) and (3.8) hold.

Proof. The proof is similar to the proof in [DX2, Theorem 1], here we only
give the main steps and show the difference from there. First we consider
(3.7). Note that

1% ((b—bpe) f2) () — P (b= bp=) f2) (v)]

=1 ((b=bp+) f2) (u, -, )ty = [F((0=bpe) f2) (v, -, )1 |
<[[F((b=bp=)f2)(u, -, -) = F((b—=bp=) f2) (v, -, )l

([ [l fr (el -0 -o )

2 1/2
% (b(z) — bp+) fa(2)dz dljf”)
(U Z
(/ /y|<1 /(1; j%ﬁ 5||<1t ¢( t y)
2 1/2
X (b(2) —bp=) f2(2)dz didt>
o —n v—Zz _
+(/° /yl<1 /lEi_iﬁfi_ZEit ¢( t y)
2 1/2
% (b(z) — bp+) fa(2)dz dy;“)

(L

/(5 =)/t y|<1t_n ((b(u;z —y) _¢<U;Z —y))

z)/t—y|<

2
X (b(2) —bp+) f2(2)dz| ——

Let (u, v, y, 2) = Qy—2)/ly— 2" — Qv —u+y—2)/Jo—uty—2"",
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from (3.9), we have

|15 ((b = bp+) f2) (u) — p((b — bp+) f2) ()]

/ / / Qy — 2)
0 Jju—yl<e | JvElst ly — 2"
()

0 lu—y|<t

x (b(2) — bp+) f2(2)dz 2o+l

/ Qv—-—ut+y—=2)
e lv—u+y—znr

[v—uty—z|<t

2 1/2
dydt
x (b(z) — bp+) fa(2)dz t”+2f’+1>
“([7] / (u, v, y, 2
lu—y[<t |/, Jyl< <t
2 1/2
dydt
X (b(Z) — bB*)fQ(Z)dZ tn"!‘2ﬂ+1>
=1+ Ir + Is. (310)

By the estimates in the proof of Theorem 1 in [DX2], if we replace fa(z)
with (b(z) — bp+) fa(2) then for i = 1, 2, the following inequality holds,

nsor [ bEIlrial,,
(8B*)e ‘Z - U/’n €

copn [ bl 1)
(8B*)

‘Z — u’p+n/2

To prove (3.7), it remains to estimate I3. Apply the Minkowski inequality
to I3 and divide the region by |y — z| > 8r and |y — z| < 8r, we get

I3<C |b(2) — bp-||f(2)]
(8B*)¢
- 5 dydt )1/2
), Jly—z|<t Q » Uy Yy Tn+2o0+1 d
(//uyil(i?, fU;I‘Ly+y—‘§|<t‘ (u, v,y Z)l 2o+l :
ly—z|<8r
+C [b(2) — b1 f(2)]

(8B*)e
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- o dydt 2
- <//| v, i< |[Qu, v, 9, 2)] tn+2p+1> 4

y—u|<t, |[v—uty—z|<t
ly—z|>8r

= 1371 + 1372. (3.12)

It is easy to see that when z € (8B*)¢ and |y —z| < 8r, [v —u+y — z| <
|[v —u| 4+ 8r < 9r and |y — u| ~ |z — u|. Thus

I3 <C [b(2) = bp-|1.f(2)]
(8B*)°

" / (\Q(.U—Z)PJr IQ(v—u+y—Z)!2)
yE(2B*)C, |y—z|<8r |y_z|2n—2p ”U —u+y— Z|2n—2p

[v—uty—z|<9r

00 dt 1/2
X /y_m Wdy) dz

b(2) — b+ || f(2)|
(8Br)c |z —uln/Ee
1Qy — 2)|? Qv —u+y—2)|? 1/2
d d
% (/ye(zB*)C, ly-s|<sr <|y — z|2n—2p - lv—u—+y— z|2n72p) Y Z

lo—uFy—z|<

< Crp—n/z/ ) bB*||f(Z)|dZ. (3.13)
o (8B*)c

|Z _ u|n/2+p

<C

Let us turn to I3 2. Note that |z —u| < [u—y|+|y—2z| < 2t,s0t > |z —ul/2.
Since |y — z|/r > 8 and 2p — n > 0, we get

o 442
(log(t/r)) = . _ - [log(ly — =|/r
| t2p—n+1 — ’y _ Z’Qp—n

)] 4+2¢

(3.14)

y—2|
By (3.14) and using Lemma 3.4, we have

|b(2) — bp-[1£(2)|
57y |z~ ul" (log(|2 —ul r))***

4+2¢ 1/2
~ 2 (log(t/r) dt
. (// veere, y—si<e [u, v, y, 2))| ( t2pn)+1 dy | dz

y—u|<t, [v—uty—z|<t
ly—z>8r, t>]z—ul/2

|b(2) —bp-||f(2)]

(8B*) |z — u]"(log(\z — u]/r))ﬂe

I3 <C

<C
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v,y, 2)|

ly— z|>87" ’y -

(/
/ z) — bp-||f(2)] -
(2

4+2¢ 1/2
1 _
2 (og(y = 21/7) dy> o
z|?p—n

8B*) \z—u! log(|z—u\/7"))
e 0 — )TN Y
> s, vy, 2 AT )

_ Z|2p—n

—3 v/ 2Ir<|y—z|<2it1r ’y

/ 2) —bp-|If ()] i (log(27+1r/r))***

\z—u| (log(lz —ul/m)*** = (2r)r/2
Oy —=2)

ly —=["°

Qu—u+y—2z) |? 1/2

— d d
lv—u+y—z"=r Y :

|b(2) — bp+||f(2)] — (j+1)**
<C .
- /(SB*)C |2 — u|? (log (|2 — ul /r)) > ; (27)p—n/2

, _ lv—ul/(277) (6)
odpyn/2—(n—p) f [V =l / wa
X (277) 57y + | 5 do pdz

v—ul/(2717)

( 20r<|y—z|<2i+1ly

b(2) = bp-|lF(2)] =, voge
<C - i+
(384 |2 — ul" (log(|z — u| /r))** Z; !

1 1 lo—ul/(277) (8)
— 1+1logd)?ds pdz (3.15
X{QJ+(1+.j10g2)0~/|v—u|/(27+1) d (1+1og?) } = (3.15)
cof bl
(88°)° |2 —u|" (log(|z — ul /7))
Add up from (3.10), (3.11), (3.13) and (3.15), we get the desired estimate
(3.7). Now we show the inequality (3.8) holds.
For any u, v € B\E, we denote J := [y ((b — bp+) f2)(u) — 3" ((b —
bB*)fg)(U)| Since
T=[IF((b=bp)f2)(w, - )l = [F((0 = bp) f2) (v, -, )t
<[[E((b = bp=) fo)(u, -, ) = F((b = bp=) f2) (v, -, )|,

we have



Endpoint estimates for commutators 263

§</ooo/|y<1(1+1|y|y o5 ) o ()
() = b pa2)az| )
+ ( s /| (=) [¢( ~u)- (

1/2
C(0() — b fa(2)z| 2 )
i (3.16)

o)

Since (1/(1 + |y\))>\n < 1, then J; < I) + Iy + I3, by (3.11), (3.13) and
(3.15), we get

J1 < C?“E/ 1b(=) = bB*Jrf(Z)dz
(8B*) |z — |
cown [ Wb,
8By |z — alptn/?
(8B7) |z — x| (log(|2 — | /7))
On the other hand, for Js, we have
& 1 An U
([ iy oo
o Sy () st ( )
2 1/2
dydt
< (b(2) — bg)| fo(2)dz yt)

" (/ooo/lylzl(“rl y >A

n 4 (U*Z )
/(a—z)/t—y>1 ¢ 4

[(v=2)/t—y|<1
2 1/2
dydt
< (b(z) = b ) fa()dz| U )

t

—n

[(u—z)/t—y|<1

o 1 A
N (/ / <1 + | I)
0 ‘y|21 Y [(v—2)/t—y|<1

" [¢(u7 —y) - o(* —y)](bw b fal2)dz 2dydt>1/2'

t

Using a transform, we have
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= </ /|u yl>t t+|u—y|)

Qy —2) 2 dydt \'?
X/ i<t W(b( 2) = bp) f2(2)dz| Sy
lv—uty—z|>t
o0 t An
([ Tt
< 0 |u—y|2t<t+‘u_y’)
Qv—ut+y—=2) 2 dydt \Y?
X‘/ D A i e
lv—uty—z|<t
o0 t An
+ -
(A /|uy|>t(t + |u - y|>
2 1/2
S dydt
X / ezl <t Q(u; v, Y, Z)(b(Z) — bB*)fQ(Z)dZ tn+2p+1>
lv—uty—z|<t
=K1+ Ko+ K3 (3.18)

where Q(u, v, y, 2) = Qy—2)/|y—2|" P —Qv—u+y—2)/|v—uty—z|"°
is the same as before.

By the estimates in Theorem 1 of [DX2], we know that for i = 1, 2, K;
satisfies the following estimates.

K; < crf/ 10(z) = be- IS (3.19)
(8B*)c ’Z - u|”+5

Finally, we deal with K3. By the Minskowski inequality

. B An
5 < / B+1|f(2) (// VE@BY), [y—z|<t t<t+|u y\)

Zyl>t foiuty—z|<
o dydt \Y? J
2ol z

t An
<c/| |b(z)—bp A
- /(SB*’)C(Z) 5 11(2) (/ﬁuyigi \)v’—éztyljkt <t+|U*y‘)

ly—=z|<
5 dydt \“? ;
tn+2p+1 z

o b t An
N : ST e
/ sl () <//f Etest \eru—y

[y—=|

x ‘Q(’LL, U, Y, Z)‘

x |Qu, v, y, 2)]
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dydt \'/?
2 4y ) dz

x |Q(u, v, y, 2)| prasyes)

=K31+ K3, (3.20)

For K31, note that when |y — z| < 8r, then |[v —u+y — z| < 9r, so

Ksa<C [ o) —biellf)]
(8B*)c
(/] ()
WS A\t fu—y]
ly—z| <87

N2 _ N2 1/2
X(!ﬂ(y AP |0 —uty—2) ) dydt) .

‘y_2’2n—2p |,U_u_|_y_z|2n—2p {n+2p+1
<C |b(2) — be+|| £ (2)]

8B*)c

// )" [y —2)* _dydt '
”\i‘iﬁﬁt t+|u yl/ ly— 2?20 trt2ett
|ly—z|<8r

+C [b(2) — b1 f(2)|

SB*)C

// t )/\n Qv —u+y—2)> dydt 1/2
z
yli(zfp)t 75_’_|u_y| |U_u+y_z|2n72p tn+2p+1

|lv—u+t+y—z|<9r

= K31+ K3,
Also by the proof in Theorem 1 of [DX2], for i =1, 2, we get

; b(z) — bp=
Kj, <Cr* / oz) — berllf(2) g,
(8B*)e |Z - .’E‘

+ CTP—W/Q/ b(=) = bi- [l /(2)] dz (3.21)
(857

|z — x|nte/2

Let us give the estimate of K35. As before, we divide the region by 2|y —
z| > |z — u| and 2|y — z| < |z — u|. Hence

K32 <C !f(2)|

1/2
~ 2 dydt
<// ye|12;Bu2:y |Z|<Zt|<t ‘Q(u7 v, Y, Z)| tn+2p+1) dz

ly—z|>8r, 2|ly—z|>|z—u|
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o (// t n
: S
(8B*)e WS o e Nt [u— g

ly—z|>87, 2|ly—z|<|z—u|
1/2
~ o dydt
X ‘Q(U, v, Y, Z)| W dz

= K3, + K3,

Since t > |y — z| > |z — u|/2, we have

dydt \*/?
Kl <C // e |Qu, v, y, 2) dz
52 SB*)c < 5‘1@ v 2)] tn+2p+1

t>|z—ul/2

<
<o f N[ 10

ly—z|>8r

o0 dt 1/2
—— |d d
8 </max{y—z|7 |z—u|/2} tn+2p+1> y) :

<C [N [ 00

(SB*)C ly—z|>8r

y (/OO - (log(t/r))4+2€dt )4+2€>dy> 1/C2lz

max{|y—2|, [2—ul/2} 12"+ |z — | (log(|z — ul/r)
|f(2)]
< ¢ n 24-¢
(8B*) |z — ul (log(|z — u\/r))

0o 4+4-2¢ 1/2
~ 2 (log(t/r))" “dt
X (/ye(w*)c Qu, v, y, z)‘ (/| 2ol dy dz.

ly—z|>8r y7z|

2
(’LL, v, Y, Z)‘

By the estimate of I3 (see (3.15)), we get
[b(2) — bs=[1f(2)]

K3, <C
(8B*)c |z — u]”(log(|z — u\/r))QJrs

(3.22)

Now we consider K2,. Denote C(e) = e+29)/¢. By 2|y — 2| < |z — u|, we

get |lu—y| > |z —u|—|y—z| > |z —u|/2. Hence

K2 C <// ¢ An
< B*)C. |u < )
52 SB*)C vee ly )z\>‘87 vzt t+ \u - y\

lu—y|>|z—ul/2, |ly—z|<t
1/2
~ 2 dydt
X ‘Q(U, v, Y, Z)| tn+2p+1> dz
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1 g (LHu+80() 4422
SC/ ‘f(Z)’(// y€(2B*)C, |lu—y|>t ( ,\nCQn ) 2n
(8B*)° |ly—z|>8r (t+ |U—y|) |Z —U|

lu—y|>|z—u|/2, |y—z|<t
dydt \'/?
2 %y ) dz

1 ~
X X‘Q(U, v, Y, Z)‘ W

(10g t+\u—y7[+80(e) )4+26

|f(2)]
C
= /(BB*)c (lz — u])”(log %)2%

_ (] t+|u—y|+8C(g) \4+2¢e 1/2
><< 2" (log ) dydt) dz

Q
ye(2B*)E (U, v, Y, Z)‘ (t + ‘u _ y’))\nf2ntn+2p+1
lu—y|>t, |y—z|>8r
ly—z|<t

Notice that the function G(s) = (logs)*t?¢ /s is decreasing when s >
e(4+2)/¢ and the fact that

/“—y 1 (log HHumulSCEIny 42y,
ly—=| (t + |u — y|)In—2n n+2p+1

(log |y—z|+80(6))4+2s
< C T
- ly — 22"
Using the estimate in (3.15), we get
b(z) — bp=
K35 <C |b(2) — bp+|| f(2), (3.23)

(8B*) |z — u|”(log(\z — u]/r))z+€

From (3.17)-(3.23), we obtain the estimate (3.8) and the proof of this
Lemma is finished. O

The following result is also needed in the proof of Theorem 1.

Lemma 3.7 Suppose p > n/2, Q satisfies the condition (1.2) with o > 2
and 0 < 0 < 1. Then for all smooth functions with compact support f, there
exists a positive constant 0 < C = Cy such that

ME((1) () < CM(f)(a)
and  M{(u3"(f))(x) < CM(f)(x) for X > 2.
Proof. Because the proofs are similar for 4”(f) and p&(f), we only give

the proof for ug(f) Let f1, fo and B, B* be the same one as in Lemma 3.5.
Then the Kolmogorov inequality (Lemma 3.1) and the weak (1,1) bound-
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edness of (1 yields

1 s o
(|B‘ /B [u§<f1><y>]5dy) < 5] /B W)y < CM(f)(@).

By Lemma 3.5, there exists a measurable set £ C B with |E| = 0 such that
e (f2)(x) < oo holds for any u, v € B\E. Obviously,

|5 (f2)° (w) = 1 (f2)° (0)] < |HG(f2) (w) = p(f2) (V)]

for 0 <6 < 1.

Now we claim the following fact:

W5 (f2)(u) — ps(f2)(v)] < CM(f)(z)
holds for any u, v € B\E. (3.24)

In fact, by Lemma 3.5, we know that
‘/Js f2)(u Ms(f2)( v)|

< p—n/2 |f(Z)|
o / )e Z—$’”+adz+cr /(B*)c !z—x!p+"/2dz

|f(2)]
+C dz
/(B*)C |2 — x| (log(|z — x| /r)) ***

> [/ (2)
<COM(f)(z)+C °
(f) () J23/2jr<|zx|<2j+1 ’Z_x’n(log(\z—l‘\/r))%r

d
< +Z 2+6 |z— x|<23+1r 2JT z)

< CM(f)(2).
So take cg = (15(f2)) B then by (3.24)

1/6
MEE () (@ ‘i‘éS(rQ\/'“S f2)° (u) ug(fz))B!dU>

SCSUP<|B|/ | (f2)(w) — (1 f2))B|dU>

zeB

<ilellg<\3] /B\E /B\E (f2)(u Ns(f2)(v)|dvdu>
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<COM(f)(x).
]

Remark 3.1 From the proof of Lemma 3.5, with the same condition, the
following inequalities are also valid.

MPH(uE () (@) < ClIbll(ME (G () (x) + M*(f)(x))
and
M3 () (@) < ClBlL(ME (13’ (£))(x) + M2(£) ().
Similarly, by Lemma 3.7 we may obtain the following inequality:
M (G () (@) < CM(f)(x)) < CM*(f)()
and  MP (U3 (f)) () < CM(f)(x)) < CM2(f)(x).

For b € BMO(R"), let bi(z) = b(x) if |b(z)| < k, br(x) = k if b(z) > k
and by (z) = —kifb(x) < —kfor k=1, 2, 3, .... Then by, € L> and ||by||. <
[b]ls. The following main Lemma shows that u%, (f)(z) and uy; (f)(2)
can be controlled by maximal operators.

Lemma 3.8 Suppose that Q € L?(S™') satisfying (1.2) with o > 1. If
p>mn/2, A >2, and supp(f) C B(0, R), |z| > 2R, then

ey (N)(@) < CEM(f)(x) and pyh < CkM(f)(x). (3.25)
Proof.  First we show that p, (f)(z) < CEM(f)().

, i Ny —2)
Hp, (F)(@) = (//<y,t>er(:c> /y_z|<t ly —z["r

y€B(0,3/2R)
x (b() — bi(2)) f(2)dz

0 _
U e s
(y, t)er(x) ly—z|<t |y — Z|n 14

y€BE(0,3/2R)
2 1/2
dydt

2 dydt 1/2
nt2p+1

X (bk(x) - bk(z))f(z)dz

Since z € B(0, 2R), y € B(0, 3/2R) and z € B(0, R), so t > |z —y| >



270 Y. Ding and Q. Xue

|z| —|y| > |x|/4 > R/2 and |y — z| < 3R. By the Minkowski inequality

R lz/4 J|ly—z|<3R Iy — z]zn 2p gn+2p+1

, &t 1/2
SCI{/ f(z < R ”_”> dz
B(07R)| & j2]/4 trtzesl

1
<Chgnrs / [ R < CRM(1) ). (3.26)

On the other hand, we have
/ Qy — 2)
ly—z|<t |yiz|n7p

r= (/ﬁeéyc<5;f2R>
< (bi () — by(2)) (=)=

+ ly—a|<t T oin—p
¥€BC(0,3/2R) |J|y—z|<t ly — 2|

t>|y|+2R
2

x (br(x) — i (2)) f(2)dz

2 dydt 1/2
nt2p+1

dydt \ '/
tn+2p+1> = Tl + TQ.

For Ty, note that max{|y — z|, |y — z|} <t < |y| + 2R and = € B(0, 2R),
y € B0, 3/2R), z € B(0, R) we get
(a) |y —z[~lyl;
(b) yl =R <lyl =z <ly— 2] <t <[yl +2R;
(c) ol <lz—yl+[yl <t+lyl < 2ly[+2R < 4fy|.

Thus

1 1

(lyl = R)*20 (Jy| + 2R)"+2¢

By the Minkowski inequality

< CR
— ’y|n+2p+1 '

Ty <20k / 1)

B(0,R)

lyl+2R 4 Oy — 2)|2 1/2
(1 g, U ) 52)
|z|<4ly| yl—r tTET ly — z|2n=2r

y€BC(0,3/2R)
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R |Q(y _ Z)|2 1/2
<
B Ck/B(O,R) ‘f(Z)’ (/ |z| <4ly| |y’”+20+1 |y _ Z’Qn—2p dy dz

y€B€(0,3/2R)

1 Qy—2)2, \"?
e [ e( [ e
|z| B(0,R) yeB<(0,3/2R) |y — 2|

<Ok / £(2)|dz < CEM(f)(z). (3.27)
1z[™ JB(0,2/2))

Now we consider T, we divide it by the relationship between |z| and 2|y|.

Ty < 20k / £(2)]

B(0, R)

0 — )P _dyat >1/2 .

X
< max{|y—al, [y—z[}<t |y — z|2n—2p gnt2p+l
YEB(0,3/2R), t>|y|+2R

Ck
< /B o)

) // Qy— )2 _dydt \'*
maxq{|y—x —z Z
W=l o) < Ty — 2P e

t>]y|+2R, |z|<2]y]|

Ck
+ /B NCE!

. // Q-2 dydt \'*
max —x —Zz Z
vebe(o,san) | |y — 2|22 nt2l

t>|y|+2R, |z[>2]y|

= Ck(TQ’ 1+ T272).

Since [y—z| > |y|—|z| = |y| =R, so 1/|y—=z| < 1/(|ly|— R) < C/|z|, together
this and by the fact that ¢t > |y| + 2R > |z|/2 and n/2 < p < n, we get

T51 < / |f(2)]
B(0, R)

- [y —2)? da  \?
X max —z|, |ly—=z d dZ
</laf/2 </ y{el%C((‘L‘i%%R‘)}Q |ly — z|2n=2° 4 tnt2p+1
t>|y|+2R

lz|<2]y|

~ Qy —2)? dt O\ 2
SC/ e </ (/ | dy dz
B(OvR>| ) jl/2 \Jy—z<t  |[*"72P 2o+l




272 Y. Ding and Q. Xue

HQHLQ(SM)/ ( o gt \ Y2
<C—F-—"— f(z / > dz
|| B(O,R)‘ )] |2 121

<c L / F(2)]d= < CM(f)(x). (3.28)
[z[™ /B0, ]2))

As for Th o, note that R/2 < |y —z| < |y| + R < |z|/24+ R < |z|, t > |y —
x| > |z| — |y| > |z|/2. So by the method of rotation, we have

= Qy —2)[? ar \/?
Toz s / us </ (/ dy dz
. B(OvR>| ) l2l/2 \Jjy—z|<|z| [y — 227207 ) gt 2o+l

< da \?
<C f(z (/ x _"> dz
I

<Cin [ Gl <)) (3.29)
1z[™ /B0, 2))

Thus, by (3.26)—(3.29), we finish the proof of Lemma 3.8 for by
Now let us turn to ,uip p,- Denote

<//I:c yl>t M \ﬂ? - y)m

/— |<t\y(—zn)"(b () — b(2)) f(2)dz

X tn+2p+1

2 dydt >1/2

By (t/(t+ |z — y|))m < 1and p, (f)(z) < CEM(f)(x), we have

i (@) < py, (F)(@) + A < CEM(f)(z) + A, (3.30)
It remains to show A < Ck‘M(f)(x) We divide A into two parts.

n
A < // )
le—y| >t t—i— \x—y\

yeB(0,3/2R)

0y — 2) 2 dydt 2
x /y ZKtW(bk( z) — b(2)) f(2)dz tn+2p+1>
(//EB:CC e t + |1: — y|>

Q(y — Z) 2 dydt 1/2
X /|y—z|<t W(bk(l‘) —bi(2))f(2)dz tn+2p+1>
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= Ay + As.

First we consider A;. Since z € B0, 2R), y € B(0, 3/2R) and z €
B(0, R), we have [z —y| > [z| —[y| > |2[/4 = R/2, |y — 2| <|y| +]2| <3R
and 1/t < 1/]y — z|. Hence, if we take 0 < ¢ < min{1, (A —2)n/2}, then by
the Minkowski inequality we get

Algzck/“ £(2)]

B(0,R)

AJ] t oy Ry dydt Y2
) dz
yeB(O 3/2R) t + |z —y| |y — Z|2n—2p fn+2p+1

ly—z|<

<C?/om”@”

// 1 t2n+2a |Q(y _ z)|2 dydt 1/2
g z
y€|]3(0y3/2R) |l‘ _ y|2n+s |$ _ y|€ |y _ Z|2n72p tn+2p+1

ly—z|<

<ck [ s
B(0,R)
1 1 1Qy—2)2 [ [l==vl 1/2
<( s ([ )
ly—z|<3r [P |z —yl® |y —z|"= \ o e

N2 1/2
ng/ |f(Z)|2 (/ 1Q(y 2| dy) &
B, R) [["T/2\Jjy—zj<sr |y —2|"¢

1
<Ol /B(O,m) f(2)|dz < CEM(f)(2). (3.31)

As for Ay, we have

A t An
2S //yeBycg;/tm) t+ \a:—y‘>

t<ly|+

Qy — z) 2 dydt 1/2
Uy W“k( 2) = WNI)| e
(// t )/\n

yef?c(S'%R) t+ |z —yl

Qy — 2) 2 dydt 1/2

« /|y_z|<t T bele) = S ()| i
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= Ao + Az,

We further divide Ay into two parts as 2|y| > |z| and 2|y| < |z|.

A t An
N/ ——
21 (//yegé(o ‘3/t2R) t+ ‘:L’ — y[

t<|y|+
2Iyl>\ \

2y —z) 2 dydt |V
x /|yz<t W(bk(l’) —bi(2))f(2)dz P
t n
* (//yEByC((izaz/gR) <m)
t<|y|+2R
2|y|<|z|
2y — 2) 2 dydt \V*
X /|y—z<t W(bk($) —br(2))f(2)dz pre s,

For A}, since 2 € B(0, 2R), y € B%(0, 3/2R) and z € B(0, R), we have
ly =zl ~ Jyl, [yl = R < |yl = |2] < ly — 2] <t < |yl +2R. Note (t/(t +

|z — y\))m < 1 and |z| < 2|y|, then by the Minkowski inequality and the
estimate for 77 (3.27), we get

Ay <20k [ 1)

B(0,R)

ly+2R 4 Qy — 2)? 1/2
% (/ 2| <2]y| (/IyI—R tn+2p+1dt> \y—z]Q"—Qde> dz

yE€BC(0,3/2R)

< CEM(f)().

(3.32)
By the Minkowski inequality and the fact that | — y| > |z| — |y| > |z|/2

A3 <Ck:/ OR)|f(z:)|

// Ly Ry —2) _dydt
@ 2
yeLI?yCm 3>/t2R) t+|x —y| ly — z|2n—2p nt2p+1
\y z\<t
2|y|<|=z|

Ck
< /B o)
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2N |y — 2)[2 [ [WH2R 1/2
([ (Y )
yee32R\ 121/ Yy =272\ Sy _p 7

< CkM(f)(x). (3.33)

Similarly, we divide As 5 into two parts as following:

A22<C/<5/ |f(2)]

// t )xn Qy —2)|2  dydt 1/2d
x z
yej‘wé";/m) t+lz—y|/) |y— 22 gnr2et

t>|y|+2R, |y—z|<t

<ok [ i)
// t )An Q0 —2)P _dydt \'*
T z
yeJ‘BC(é}I;/tzR) t+ |z — vyl ly — z|2n—2p tnt2p+1
t
ly— Z\><|ZJ lz|<2|y|
ok [ 1)
// t )xn 1Qy — 2)[2 dydt 1/2dz
yel‘Bxc(OyI;/tQR) t+ |z — vy ly — 2’2"—2/7 tn+2p+1
\y72\><|tyyl lz|>2]y|
1= Ck(Agy + A3,).

For Aé’z, it is easy to see that |y — z| ~ |y| and 1/|y — z| < C/|z|. Note
t > |y| + 2R > |z|/2 and using the same steps as deal Th; (see (3.28)), we
may get A%g < CkM(f)(z). We now consider A%Q. Since R/2 < |y — z| <
g+ R < |al/2+ R < la] and £+ |y — 2| > £+ || — |y| > ¢ + |2l/2 > |12,
if take 0 < e < min{1/2, (A — 2)n/2, p — n/2}, we have

A2, < 2Ck / 1£(2)]

B(0, R)

// t >2n+2a 1Qy — 2)2 dydt 1/3
x yA
yEI‘BC(g 5>/t2R) t+ |z —y| ly — z|?n—2p tnt2p+1

t>|y|
ly—z|<t, Iw\>2\y\

conf U
BO,R) |T|"
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1/2
X // w—y|>t L0y~ Z)|2 dydt / dz
Bt o JalP? [y — P2 oI
t>|y|+2R

ly—zl<t, |z|>2]y]
conf e
Bo,R) ||

L |y —2)P ([~ dt 1/2
" (/ly—z|<|x| !WE ly — 2|2 /| |mdt dy ) dz
r n— 1/2
conf MO [ o)
- B(0, R) |$| gno1 |x|2e gn—2e

1
< C’kn/ |f(2)|dz < CEM(f)(z). (3.34)
™ JB(0,12)
From (3.30)-(3.34), we finish the proof of Lemma 3.8 for uy} . O

4. Proof of Theorem 1

As shown in Remark 1.3, we give only the proof of the conclusion (ii)
of Theorem 1 here. First let us consider the case where m = 1. The proof
depends on the following lemma.

Lemma 4.1 Let ®(t) = t(1+1log™ t), then there exists a positive constant
C, such that for any smooth function with compact support f,

[{v e R™: pyh(f)(v) > t}!

1
sup
>0 ®(1/t)

< Cly, sup {veR™: M?*(f)(v) > t}|.

wi7p)

Proof. Obviously, if ||b]|. = 0 (4.1) holds, we therefore may assume ||b|. >
0. Denote

1

v e R MR (i () (v)

then it is easy to see that

b B i/t [{v e R": p35(H)(0) > 1} < Ls()- (4.1)

We will prove that for arbitrary 0 < 6 < 1,y > 0, the operator uy}(f)
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satisfies the following inequality

Ls(f) < CyLs(f)

+ 05 7, 1161« sup {U e R"™: MQ(f)(’U) > t}| (4.2)

(1/t)‘
To do this, by Lemma 3.2 (i) we get for ¢ > 0 and ¢ > 0,
‘{U € R"™: M6 (NAb(f))( > t}‘
= [{v e R™: M2([uy5(N)]°)(v) > £}
< [{v e R™: MA([uy5(H)0)(0) > 0, MAF([u3 5()])°) (v) < 4t}
+ [{v e R™: MOH([uy 5 ())°) () > 1t}
<orlfo e Mpussnw > 55 |
+[{v € R MGy h()(w) > 701}, (43)

Since 0 < § < 1, we may choose 0 < § < £ < 1. If denote £ = rd, then
1 <r<1/6. By Remark 3.1, we know that

My f(f) (@) < ClblL (ME (1 P () (@) + MP(f)(x)).  (4.4)
Since ||b||« > 0, by (4.4) we have

[{v e R™: MP Py h(f)) (v) > 71t} ]

<|[{oer mpusrirno > 201”/23 b

e )

Note that ®(ab) < ®(a)®(b) for a, b > 0 and ® is increasing and doubling,
the above inequality together with (4.3) and (4.5) yields

S 0 € R ML) > 1)

< @(C;;t) Hv e R"™: My (uyy(f))(v) > 2175/5}‘

{veR”: ME (P (£))(v) > 2(]1||/Z|t| }'

_l’_

o(1/t)
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+<1><1/t>H“ER AN > 3E5T H
< CsvLs(f)

w020 ) sup g o e R MEGS ()0 > 1)

el .
+<I>< ,y|1|/5H >§1>1%)q) a7 ‘{UG]R M2(f)(v)>t}|

SCwLa(f)JrCM,HbH*SUP 1/t ’{UGR ME (3 () (v) > t}]

+ 05 ¥, 116+ Sup ’{’U eR"™: M2(f)(v) > t}’ (4.6)

1
d(1/t)
By (4.6) and applying Lemma 3.2 (ii) and Remark 3.1, we have

Ls(f) < CsyLs(f)

+ G0l 399 Sy 735 \{v ER™: MP (3P (f))(v) > t}|

1/t

+ C(g ¥, |16« sup ‘{’U cR": Mz(f)(v) > t}‘

1
B(1/t)

< CsvLs(f) + Cs, b SUP F A 7y [{v €eR™: M?(f)(v) > t}].

1
o(1/t)
Thus, for any v > 0, we have

Ls(f) < CsvLs(f)

+ 05 ¥, 1161+ Sup {U e R"™: MQ(f)(’U) > t}‘ (47)

1
(1/t)|

Now we show that

L (f) C||bH sup ‘{U c R"™: M2(f)(v) > t}l (4.8)

1

d(1/t)
To do this, for any b € BMO, let by (k = 1, 2, ...) be the same as in the
Lemma 3.8. Thus, ||bk||z < k and ||bg||« < ||b]|«. We first show that the
above inequality (4.8) holds for by with constant C' is independent of k.
Since f is smooth and with compact support, we may assume supp(f) C
B(0, R) (R > 0). Now, we fix k, by Lemma 3.8, we have ui’;k(f)(:n) <
CEM(f)(x) for |z| > 2R. Since t®(1/t) > 1fort > 0and 0 < § < 1, we get



Endpoint estimates for commutators 279

<I>(i/t) [{v e R™: Mg (uy, (F)(v) > t}]
< d(1/t) Hv c R": M(XB(0,2R)M§’,Zk(f))(v) > ;H
+ @(i/t) Hv S M(XR"\B(O,QR)/L::gk(f))(v) > ;}‘

2 .
Sl N Ao

4 {veRn:M2(f)(v)>CtkH

1
(10
1/2

< CIB(0, 2R>|1/2< / A ><v>|2dv>

Jor (0 )

1/2
< C|B(0, 2R)| 1/2</ ]2dv>
B(0
(

+Ck./ O(|f(v )])dv<oo
B(0,2R)

+

The last inequality we use the L?-boundedness of ,u::gk (f) (see Theorem 3
with w = 1) and the submultiplicative property of ®. Since f is smooth
with compact support, the last expression is finite for fixed k. Then we can
choose a v > 0 with v < 1/Cs. Applying (4.7) for by, we get

(1= Cs7)Lsp, (f) < Cs,, oyl SUD 1) \{U eR": M*(f)(v) > t}]

1/t

<G, bl SUP F g 7y [{v e R™: M?(f)(v) > t}|.

1
d(1/t)
That is,

Lie(F) < Cpo. sup s o € B A2(N)(0) (4.9)

where C is independent of k. Thus we get (4.8) by letting £ — oo in (4.9),
and Lemma 4.1 follows from (4.1) and (4.8). O

Now let us return to the proof of the conclusion (ii) of Theorem 1.
By homogeneity, it suffices to prove the conclusion (ii) holds for 5 = 1.
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Applying Lemma 4.1 and Lemma 3.3, we obtain
[{z e R": IM*’p(f)(fU)l > 1}

<o g (1 5 \{x eR™: |y h(f)(@)] > BY]

< Cy. S0 51/3) {z e R™: M*(f)(z) > B}]

0177
<A gy [ L5 (s (50 )

Thus we complete the proof of Theorem 1 (ii) for m = 1.
Finally, we show how to prove the conclusion (ii) of Theorem 1 for m >
1. In fact, the conclusion can be obtained by using the same idea as we

used above and combining with the following lemmas, whose proofs will be
omitted here.

Lemma 4.2 ([P, p. 179]) There exists a positive constant C' such that for
any function f and for all B >0,

{z € R": M (f)(2) > B}

<C - Lf(;” <1 + log™ (W))mdx

Lemma 4.3 Let b € BMO, 0 < 6 < £ < 1, then there exists a positive
constant C such that for all smooth function f with compact support,

M§<ni’,€m<f>><x>

3

< C Y bl Moy s (F)) (@) + ClBI MM (f) (),

Mﬁ(Sé,bmm)(x)

I
=)

3

< C 2 lIbllMe 6.5 (F)(@) + ClBIIT M™(f) (),

where M(f) = M(|f|)"/*.

I\
=)

Lemma 4.4 Let ®,,(t) = t(1 +log™ t)™ Then there exists a positive con-
stant C, such that for any smooth function with compact support f,
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1 n. *,
sup g7y e ER™ G35, (M)(@)] > 8
< Cjpjm igg%(ll/@!{fv e R™: M™H(f)(z) > t}.
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