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Abstract. We shall give some remarks on a theorem of Benard.
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Introduction

To state the theorem in the title, we need some notations.
Let k be a field of characterictic 0 and let k̄ be an algebraic closure

of k. Let χ be an irreducible character of a finite group G over k̄ such
that χ(g) ∈ k for all g ∈ G. Let A = A(χ, k) be the simple component of
the group algebra k[G] of G over k corresponding to χ, i.e. χ(A) 6= {0},
where χ is extended by linearlity to a character of k[G]. When k is a finite
algebraic extension of the field Q of rational numbers, for a place v of k (or,
equivalently, a valuation of k), kv denotes the completion of k at v (see (1.4)
below). Then the theorem in the title is the following:

Theorem 1 (M. Benard [Be, Theorem 1]) Assume that k is a finite abelian
extension of Q, i.e., a subfield of a finite cyclotomic extension of Q. Let p

be a place of Q (possibly p is infinite), and let v, w be any two places of k

lying above p. Then kv ⊗k A and kw ⊗k A have the same index.

By the following theorem, we see that the conclusion of Theorem 1 also
holds when k is a finite Galois extension of Q.

Theorem 2 (Benard-Schacher Theorem [BS]; see Curtis and Reiner [CR II,
(74.20), pp. 746–747]) Assume that k is a finite algebraic extension of Q.
Let m be the index of A, and let εm ∈ k̄ be a primitive m-th root of 1. Then

( i ) k contains εm.
( ii ) For each place v of k and each σ ∈ AutQ k, we have:

2000 Mathematics Subject Classification : 20C05, 16G10.



174 J. Ohmori

invkv
[kv ⊗k A] = r · invkvσ

[
kvσ ⊗k A

]
,

where σ(εm) = εr
m and vσ is the conjugate place of v under σ (see below).

Consequently, kv ⊗k A and kvσ ⊗k A have the same index.

Here, if the place v is determined by a completion (λ,K) of k, where K

is a local field and λ is an embedding (an injective homomorophism) of k

into K such that λ(k) is dense in K, vσ is the place of k determined by the
completion (λ ◦ σ−1,K) of k (see (1.4) below), [kv ⊗k A] (resp. [kvσ ⊗k A])
denotes the class of kv ⊗k A (resp. kvσ ⊗k A) in the Brauer group B(kv) of
kv (resp. B(kvσ ) of kvσ ), and invkv

[kv ⊗k A] (resp. invkvσ [kvσ ⊗ A] denotes
the Hasse invariant of [kv ⊗k A] (resp. [kvσ ⊗k A]) (see (1.5) below).

Let us consider the folowing problem:

(P ) Assume that k is a finite albegraic extension of Q. Then, does the
conclusion of Theorem 1 hold for k?

The first purpose of this paper is to show that generally the problem
(P ) has a negative answer.

The problem (P ) is the one in algebraic number-theory and in the theory
of compositions of fields.

The motivation for considering the problem (P ) is as follows.
On page 377 of [Be], after proving Theorem 1, M. Benard is stating as

follows:

“Let K be an algebraic number field. Then, for some prime p of K

dividing p, Kp = KQp. Thus we have also proved the follwing theorem.

Theorem 1′ Let K be an algebraic number field and let χ be an irreducible
character. Then for a rational prime p, mKp(χ) = mKQp(χ) for all primes
p of K dividing p.”

Here mKp(χ) denotes “the Schur index of χ with respect to Kp”.
By our result, we see that Benard’s “Theorem 1′” does not hold gener-

ally. But after the publication of [Be], it seems that some people (including
myself) had been believing that Benard’s “Theorem 1′” holds. For example,
on page 113 of [Sch], the author is stating as follows:

“Application 5 (Benard) Suppose v, w are non-archimedean valuations
of K lying over the same prime. Then mKv

(χ) = mKw
(χ),”
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Here K is an algebraic number field and χ is a complex irreducible
character of a finite group.

The error in the “proof” of Benard’s “Theorem 1′” lies in the fact that
“the composition KQp” cannot be defined canonically. Thus, since there
may still exist some people who are believing that “Theorem 1′” holds, it
will have some meaning to publish such a paper.

The second theme of this paper is related to the previous paper [Oh]
where we justified W. Feit’s definition of the Schur index in his book, Char-
acters of finite groups, Benjamin, 1967.

Let the notation be as in the beginning of this introduction. Let r be an
integer such that (r, |G|) = 1. Let Ψr(χ) be the irreducible character of G

over k̄ defined by Ψr(χ)(g) = χ(gr), g ∈ G. Let A(Ψr(χ), k) be the simple
component of k[G] corresponding to Ψ(χ). In [Oh], we quoted from [De] the
following result as a theorem of Deligne:

Theorem 3 In the Brauer group B(k) of k, we have

[
A(Ψr(χ), k)

]
= [A(χ, k)]r.

After publishing [Oh], the author found that in [Sch], P. Schmid had
already stated Theorem 3 at least when k is a finite algebraic extension of its
prime field Q(k). It should be remarked that the general case of Theorem 3
follows from the case where [k : Q(k)] < ∞ by using the restriction morphism
B(Q(k)(χ)) → B(k), where Q(k)(χ) = Q(k)({χ(g) | g ∈ G}).

Deligne’s proof of Theorem 3 in [De] is the one by using properties of
Adam’s operators and Schur functions. But it is difficult to understand it.
It is also difficult to understand the arguments in [Sch]. Instead we present
a proof of Theorem 3 by using T . Yamada’s version of the Brauer-Witt
theorem in [Y, pp. 31–32].

The following fact follows from Theorem 3:

Theorem 4 (see [Oh, Propositiln 1]) A(Ψr(χ), k) and A(χ, k) have the
same index.

As we have remarked in [Oh, Section 1], in a special case, Theorem
4 (or its corollary [Oh, Theorem 1]) is equivalent to Theorem 1 in this
introduction.
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1. Preliminaries

1.1.
Let K be a (commutative) field. By a central simple algebra over K,

we mean a finite-dimentional simple algebra over K with cntre K. If A is
a central simple algebra over K, then there exists a division algebra D over
K with centre K and n ∈ N such that A is isomorphic over K to the full
matrix algebra Mn(D) of degree n over D (see [Bour I, Chap. 10, Section 5,
n04, Corollary 2 to Proposition 12] or [W, Chap. IX, Section 1, Proposition
2, p. 163]); D is uniquely determined by A up to isomorphisms over K and
n is also uniquely determined (see [W, Chap. IX, Section 1, Theorem 1,
p. 164]).

For two central simple algebras A, A′ over K, if A (resp. A′) is isomor-
phic to Mn(D) (resp. Mn′(D′)) where D (resp. D′) is a division algebra over
K with centre K and n ∈ N (resp. n′ ∈ N), then we say that A and A′

are similar if D and D′ are isomorphic over K. For a central simple algebra
A over K, we denote by [A] the class of all central simple algebras over K

that are similar to A. The class B(K) of all such classes [A] becomes a set
and with respect to the multiplication [A][B] = [A⊗K B] B(K) is an abelian
group, which is called the Brauer group of K.

Let L be a finite Galois extension of K with the Galois group G over K.
Let f : G × G → L× be a 2-cocycle of G with values in the multiplicative
group L× of L, i.e.

f(σ, τ)f(στ, ρ) = σ(f(τ, ρ))f(σ, τρ) (σ, τ, ρ ∈ G).

Let (L/K, f) be the left vector space over L with a basis {uσ, σ ∈ G} and
with the multiplication given by

( ∑

σ∈G

xσuσ

)( ∑

τ∈G

yτuτ

)
=

∑

σ,τ∈G

xσσ(yτ )f(σ, τ)uστ (xσ, yτ ∈ L).

Then (L/K, f) is a central simple algebra over K (see [R, (29.6), p. 243]).
Let Ksep be the separable closure of K in an algebraic closure K̄ of K.
When L ranges over all subfields of Ksep that are finite Galois extensions of
K, f 7→ (L/K, f) induces an isomorphism

H2
(
Gal(Ksep/K), (Ksep)×

) ∼→ B(K)
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(see [R, (29.12), p. 246]).
Assume that K is of characteristic 0. Let ε be a root of 1 in K̄, and let

f : Gal(K(ε)/K) × Gal(K(ε)/K) → 〈ε〉 be a 2-cocycle of the Galois group
Gal(K(ε)/K) of K(ε) over K with values in the multiplicative subgroup 〈ε〉
of K(ε)×. Then (K(ε)/K, f) will be called a cyclotomic algebra over K (see
[Y]). Such an algebra is similar to a simple component of the group algebra
K[H] for some finite group H, and conversely (see [Y, Proposition 2.1, p. 15,
and Corollary 3.10, pp. 32–33]).

1.2.
Let Q be the field of rational numbers. For x ∈ Q, let |x| = |x|∞ be

the ordinary absolute value of x : |x| = x (resp. −x) if x ≥ 0 (resp. x < 0).
Then the mapping (x, y) 7→ |x − y| (x, y ∈ Q) is a distance function on Q.
We denote by R or Q∞ the completion of Q with respect to this distance
function.

We denote by C the filed R[X]/(X2 + 1)R[X], where X is a variable.
Let p be a prime number. Let x ∈ Q×. Then there exist n, a, b ∈ Z

with ab 6= 0 and (p, ab) = 1 such that x = pn(b/a). We put |x|p = p−n. And
we put |0|p = 0. Then the mapping (x, y) 7→ |x−y|p (x, y ∈ Q) is a distance
function on Q. We denote by Qp the completion of Q with respect to this
distance function.

R, C and any finite algebraic extension of Qp are locally compact topo-
logical fields. In this paper, by a local field, we mean a locally compact
topological field which is isomorphic (as topological fields) to R or C or a
finite algebraic extension of Qp for some prime number p. (We need not a
local field of positive characteristic; cf. [W].)

Let K be a local field. Let α be a Haar measure on K (see [Bour II,
Chap. 7, Section 1, n02]). For a ∈ K, we define

modK(a) =
α(aX)
α(X)

,

where X is a measurable subset of K such that α(X) > 0 (see [Bour II,
Chap. 7, Section 1, n04, (32)]). As to properties of modK , see [W, Chap. I,
Sections 2, 3].

1.3.
Let p be a prime number. Let Zp = lim

←−
Z/pnZ, and let K be the
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quotient field of Zp. Let x ∈ K×. Then we have x = pnu with n ∈ Z and
u ∈ Z×

p = {invertible elements in Zp}. We put |x|p = p−n. And we put
|0|p = 0. Then (x, y) 7→ |x− y|p is a distance function on K, K is complete
with respect to this distance function and Q is dense in K. Therefore the
natural embedding Q ↪→ K induces an isomorpsm (as topological fields) of
Qp onto K. (see [Serre III, Chap. 2, Section 1].) We shall identify Qp with
K.

Zp is a compact subset of Qp and Zp/pZp
∼= Z/pZ, so that (Zp :

pZp) = p. Thus, if α is a Haar measure on Qp, we have

modQp(p) =
α(pZp)
α(Zp)

=
1
p
.

As modQp
(ab) = modQp

(a)modQp
(b) (see [W, Chap. I, Section 2, Proposi-

tion 1, p. 4]), we see that

modQp(a) = |a|p, a ∈ Qp.

And we have

Zp =
{
x ∈ Qp | modQp

(x) ≤ 1
}
,

Z×
p =

{
x ∈ Qp | modQp(x) = 1

}

and

pZp =
{
x ∈ Qp | modQp(x) < 1

}
.

Let M× be the multiplicative subgroup of Q×
p of roots of 1 in Qp of

order prime to p. Then M× is a cyclic group of order p− 1 and M× ∪ {0}
is a full set of representatives of Zp modulo pZp (see [W, Chap. I, Section
4, Theorem 7, p. 16]). Therefore we see that

Z×
p = M× × (1 + pZp).

Lemma 1 (see [W, Chap. II, Section 3, Proposition 8, p. 32]) Let n ∈ Z

be such that (p, n) = 1. Then x 7→ xn induces an automorphism of the group
1 + pZp. Thus, if (p(p − 1), n) = 1, then x 7→ xn induces an automorpism
of Z×

p .
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1.4.
Let K be a finite algebraic extension of Q, i.e. an algebraic number

field. We recall about the plaes of k (see [W, Chap. III]).
By a completion of k, we mean a pair (λ,K) where K is a local field and

λ is an embedding (an injective homomorphism) of k into K such that λ(k)
is dense in K. Two completions (λ,K), (λ′,K ′) of k are said to be equivalent
if there exists an isomorphism ρ of K onto K ′ (as topological fields) such
that λ′ = ρ ◦ λ. For a completion (λ,K) of k, the class of completions of
k that are equivalent to (λ,K) will be called the place of k determined by
(λ,K). A place of k is the place of k determined by some completion of k.

Let v be a place of K. Let (λ,K) ∈ v. We define a function | |v on
k by |x|v = modK(λ(x)), x ∈ k. Then | |v is independent of the choice of
(λ,K), and (x, y) 7→ |x − y|dv (x, y ∈ k, d = 1/2 or 1 according as K ∼= C

or not) is a distance function on k. We denote by kv the completion of k

with respect to this distance function, and we call kv the completion of k

at v. For (λ,K) ∈ v, λ induces a canonical isomorphism of kv onto K (as
topological fields).

The natural embedding Q ↪→ R determines the infinite place ∞ of Q

and, for a prime number p, the natural embedding Q ↪→ Qp determines a
place of Q which will be denoted as p again. The place of Q are in one-to-one
correspondence with ∞ and the prime numbers (see [W, p. 44]).

Let k′ be a finite algebraic extension of k. Let w′ be a place of k′.
Then the pair (λ′, k′w′) where λ′ is the nutural embedding k′ ↪→ k′w′ is a
completion of k′ which determines w′. Let K be the closure of λ′(k) in k′w′
and let λ be the restriction of λ′ to k. Then (λ,K) is a completion of k. Let
w be the place of k determined by (λ,K). Then we say that w′ lies above w

and that w lies below w′. In this case we often identify kw with the closure
of k in k′w′ .

Let v be a place of k. Let k′ = k(θ) with θ ∈ k′, and let f(X) be the
minimal polynomial of θ in X over k. Let f1(X), f2(X), . . . , fr(X) be the
irreducible polynomials in kv[X] such that f(X) = f1(X) · f2(X) · · · fr(X).
Then we have the following canonical isomorphisms over kv:

kv ⊗k k′ ∼→ kv ⊗k k[X]/f(X)k[X] ∼→ kv[X]/f(X)kv[X]

∼→
r⊕

i=i

kv[X]/fi(X)kv[X] =
r⊕

i=i

K ′
i,
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K ′
i = kv[X]/fi(X)kv[X], 1 ≤ i ≤ r.

For j ∈ N , 1 ≤ j ≤ r, let λ′j be the composition of the canonial injection

k′ ↪→ kv ⊗k k′ : x′ 7→ 1 ⊗ x′, the isomorphism kv ⊗k k′ ∼→ ⊕r
i=1 K ′

i and
the canonical projection

⊕r
i=1 K ′

i → K ′
j . Then, for 1 ≤ j ≤ r, (λ′j ,K

′
j) is

a completion of k′. Let w1, w2, . . . , wr be the places of k′ determined by
(λ′1,K

′
1), (λ

′
2,K

′
2), . . . , (λ

′
r,K

′
r) respectively. Then w1, w2, . . . , wr are all the

distinct places of k′ lying above v (see [W, Chap. III, Section 4, Theorem 4,
p. 56]).

Let v be a place of k. If kv is isomorphic to R (resp. C), then we call
v a real (resp. an imaginary) place of k. If v is real or imaginary, then we
call v an infinite place of k. If v is not infinite, then we say that v is finite.

Let Ok denote the integer ring of k, that is, the integral closure of Z in
k. Then there is a canonical one-to-one correspondence between the set of
prime ideals of Ok other than (0) and the set of finite places of k.

In fact, let P be a prime ideal of Ok 6= (0). Let x ∈ k. Then there exist
ideals A, B of Ok such that P +A = P +B = Ok and (x) = xOk = PnAB−1

for some n ∈ Z, where

B−1 = {y ∈ k | yB ⊂ Ok}.

Fix c ∈ R with 0 < c < 1. Put |x|P = cn. Put |0|P = 0. Then | |P :
k → R≥0 is a non-archimedean absolute value of k. Let kP denote the
completion of k with respect to the distance function (x, y) 7→ |x − y|P on
k, and let λ : k ↪→ kP the natural embedding. Then (λ, kP ) is a completion
of k. Let v be the place of k which is determined by (λ, kP ). Then kv is
isomorphic to kP and v is a finite place of k. Let

Rv =
{
x ∈ kv | modkv (x) ≤ 1

}

and

Pv =
{
x ∈ kv | modkv (x) < 1

}
.

Then Pv is the unique maximal ideal of Rv and P = Pv ∩Ok.
Conversely, let v′ be a finite place of k, and let Rv′ and Pv′ be as above.

Put P ′ = Pv′ ∩O′k. Then P ′ is a prime ideal of Ok 6= (0).
The place of k which is obtained by the above procedure is just v′.
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1.5.
Let K be a local field. We recall the definition of “the” Hasse invariant

of an element of B(K).
If K is isomorphic to C, then B(K) = {[K]} (see, e.g., [W, Chap. IX,

Section 1, Corollary 2 to Proposition 3, p. 165]), and we set invK [K] =
0mod 1 (∈ Q/Z).

If K is isomorphic to R, then B(K) = {[K], [HK ]}, where HK denotes
the quaternion algebra over K (see, e.g., [W, Chap. IX, Section 4, p. 184]),
and we set invK [K] = 0 mod 1 and invK [HK ] = 1

2 mod 1 (∈ Q/Z).
Assume that K is a finite algebraic extension of Qp for some prime

number p. Let D be a finite-demensional division algebra over K with
centre K. Let [D : K] = m2 with m ∈ N (cf. [W, Chap. IX, Section
1, Corollary 3 to Proposition 3, p. 165]); m is called the (Schur) index of
D. Then D contains a maximal commutative subfield L ⊃ K such that
[L : K] = m and L is unramified over K (see, e.g., [W, Chap. I, Section 4,
Proposition 5, pp. 20–21]). (If we set R = {x ∈ K | modK(x) ≤ 1} and
P = {x ∈ K | modK(x) < 1}, then R/P is the residual field of K, and if
we put q = |R/P |, then L = K(ω), where ω is a primitive (qm − 1)-th root
of 1 in D (see [W, Chap. I, Section 4, Corollary 3 to Theorem 7, pp. 19]).)
Let σ = σL/K be the Frobenius automorphism of L over K : σ(ω) = ωq.
Then, by a theorem of Skolem and Noether (see [Bour I, Chap. 8, Section 10,
no1, Theorem 1] or [R, (7.21), p. 103]), we see that there exists an element
u ∈ D× such that

uxu−1 = σ(x), x ∈ L. (1.5.1)

We see that 1, u, u2, . . . , um−1 are linearly independent over L and c = um ∈
K. Therefore D is the cyclic algebra (L/K, σ, c) over K (cf. [R, Section 30]).
Let vK : K× → Z be the normalized valuation of K. Then we set

invK [D] =
vK(c)

m
mod 1 (∈ Q/Z). (1.5.2)

This definition of invK [D] is due to Reiner [R, p. 266]. We see that this
definition coincides with Serre’s description of the invariant of [D] on page
138 of [Serre I], where it is not so hard to verify the statements there by
using statements on page 130 of [Serre I].

In [W], instead of u in (1.5.1), an element v ∈ D× is chosen so that
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v−1xv = σ(x), x ∈ L,

and the elements 1, v, v2, . . . , vm−1 are used as basis of D over L (cf. [W,
Chap. IX, Section 4, Proposition 11, P. 183]). So if h(D) denotes the Hasse
invariant of D in the sense of Weil in [W, p. 224], we see that

h(D) = exp
(− 2π

√−1 · invK [D]
)
.

Similarly if d−invK D denotes the invariant of D in the sense of M. Deur-
ing in [Deu, p. 113], we see that

d− invK D = − invK [D].

Another definition of invariant of D on page 148 of [R] is different from
invK [D]. (If invK [D] = r

m mod 1 with (r,m) = 1, then the invariant of [D]
there is s

m mod 1, where s is an integer such that rs ≡ 1 (modm).)
The description of invariants on page 742 of [CR II] is incorrect.
We have an isomorphism

invK : B(K) ∼→ Q/Z

(see [R, (31.8), p. 266] or [Serre I, Section 1, Theorem 1 and Corollary to
Theorem 2, p. 130]). If K ′ is a finite algebraic extension of K of degree n,
then

invK′ [K ′ ⊗K D] = n · invK [D] (1.5.3)

(see [R, (31.9), p. 267] or [Serre I, Section 1, (1.1), Theorem 3, p. 131] or [W,
Chap.XII, Section 2, Corollary 2 to Theorem 2, p. 225]).

1.6.
Let k be a finite algebraic extension of Q, and let P (k) denote the set

of places of k. For [A] ∈ B(k) and v ∈ P (k), let Av = kv ⊗k A and set
invv[A] = invkv [Av]. For v ∈ P (k), there is a homomorphism

resv;B(k) → B(kv) : [A] 7→ [Av]

(cf. [Bour I, Chap. 8, Section 10, no5, Proposition 6]). For [A] ∈ B(k), we
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have that [Av] = [kv] for almost all v ∈ P (k) (see [W, Chap. XI, Section 1,
Theorem 1, p. 202]). Therefore the family (resv)v∈P (k) defines a homomor-
phism

r : B(k) →
⊕

v∈P (k)

B(kv),

which is injective (see [W, Chap.XI, Section 2, Theorem 2, p. 206]). Let

inv :
⊕

v∈P (k)

B(kv) → Q/Z

be the homomorphism which is given by

inv
(
([Bv])v∈P (k)

)
=

∑

v∈P (k)

invkv
[Bv].

Then inv is subjective and its kernel coincides with the image of r (see [W,
Chap.XIII, Section 3, Theorem 2, p. 255, and Section 6, Theorem 4, p. 264]).
Thus we have the following exact sequence of abelian groups:

1 → B(k) r−→
⊕

v∈P (k)

B(kv) inv−→ Q/Z → 0. (1.6.1)

Let K be a field. Let A be a central simple alegebra over K, and assume
that A as isomorphic over K to Mn(D), where D is a finite-dimenshonal
division algebra over K with centre K and n ∈ N . Let [D : K] = m2 with
m ∈ N . m is called the (Schur) index of A. Call e the order of [A] = [D] in
B(K). Then e divides m (see [R, (29.22), p. 253]) and, for a prime number
p, p divides m if and only if p divides e (see [R, (29.24), p. 254]).

Assume that K = k. Then, for v ∈ P (k), the index mv of Dv = kv⊗k D

is equal to the order of [Dv] in B(kv) and to the order of invkv [Dv] in Q/Z

(see [R, (31.4), p. 265]). We have that m = e (see [R, (32.19), p. 280]) and m

is equal to the least common multiple of the mv, v ∈ P (k) (see [R, (32.17),
p. 279]).

1.7.
Let k be a field of characteristic 0. Let G be a finite group, and let χ



184 J. Ohmori

be an (absolutely) irreducible character of G over an algebraic closure k̄ of
k. We set

k(χ) = k({χ(g) | g ∈ G}).

We denoted by A(χ, k) the simple component of k[G] corresponding to χ.
For an irreducible character ζ of G over k̄, set

e(ζ) =
ζ(1)
|G|

∑

g∈G

ζ(g−1)g (∈ k̄[G]).

Set

a(χ) =
∑

σ∈Gal(k(χ)/k)

e(σ ◦ χ) (∈ k[G]).

Then a(χ) is a central primitive idempotent of k[G] and we have that

A(χ, k) = k[G]a(χ)

(see [Y, Proposition 1.1, pp. 4–5]).
Assume that k(χ) = k. Let k′ be a field which is an extension of k.

Let k̄′ be an algebraic closure of k′. Then the natural embedding k ↪→ k′

can be extended to an embedding ρ : k̄ ↪→ k̄′. Let U : G → GL(d, k̄)
(d = χ(1)) be a matrix representation of G over k̄ whose character is χ. ρ

induces an injective homomorphism ρ̃ of GL(d, k̄) into GL(d, k̄′) given by
ρ̃([aij ]) = [ρ(aij)] for [aij ] ∈ GL(d, k̄). Then ρ̃ ◦ U : G → GL(d, k̄′) is a
representation of G over k̄′ whose character is χ so that we can consider χ

as a character of G over k̄′. Thus we can say about the simple component
A(χ, k′) of k′[G] corresponding to χ. There is a canonical isomorphism f of
k′ ⊗k k[G] onto k′[G] and we see easily that f induces an isomorphism of
the simple algebra k′ ⊗k A(χ, k) onto A(χ, k′).

2. Counter Examples

In this section we shall present examples which show that the problem
(P ) in the introduction generally has a negative answer.
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2.1.
The Brauer-Speiser Theorem (see [Y, Corollary 1.8, p. 9] or [CR II,

(74.27), p. 750]). Let χ be a real-valued absolutely irreducible character of a
finite group, then the Schur index mQ(χ) of χ with respect to Q is 1 or 2.

Proposition 1 Let χ be a rational-valued absolutely irreducible character
of a finite group, and let A = A(χ,Q). Then, for v ∈ P (Q), invv[Av] is
0mod 1 or 1

2 mod 1.

As mQ(χ) is equal to the index of A and the index of A is equal to the
order of [A] in B(Q), the assertion follows from the Brauer-Speiser theorem.

Proposition 2 (M. Benard, K. L. Fields) Let S = {v1, v2, . . . , v2n} be a
subset of P (Q) whose cardinality is even. Then there exist a finite group G

and a rational-valued absolutely irreducible character χ of G such that, for
v ∈ P (Q), invv[A(χ,Q)] is 1

2 mod 1 or 0mod 1 according as v ∈ S or v /∈ S

respectively.

For the sake of completeness, we shall give two proofs.

(1) Let p be a prime number and let F̄p be an algebraic closure of
Fp = Z/pZ. For a power q of p, let Fq denote the subfield of F̄p with q

elements. Let q be a power of p, and let Gp be the special unitary group
SU(3, q2) of degree 3 with respect to the quadratic extension Fq2/Fq. Then
Gp has a rational-valued complex irreducible character χp of degree q2 − q

such that, for v ∈ P (Q), invv[A(χp,Q)] = 1
2 mod 1 if v = ∞ or p, and

invv[A(χp,Q)] = 0 mod 1 if v 6= ∞, p (see Gow [G, Theorem 6, p. 114]
or Lusztig [Lu, (7.6), p. 153]). Let S − {∞} = {p1, p2, . . . , pr}, and let
G = Gp1 ×Gp2 × · · · ×Gpr and χ = χp1 ⊗ χp2 ⊗ · · · ⊗ χpr . Then A(χ,Q) =
A(χp1 ,Q)⊗Q A(χp2 ,Q)⊗Q · · ·⊗Q A(χpr

,Q) has the desired distribution of
the invariants.

(2) Let Q̄ be the algebraic closure of Q in C.
Let

√−1 ∈ Q̄ and let A2 = (Q(
√−1)/Q, ι,−1), where 〈ι〉 =

Gal(Q(
√−1)/Q). Then R⊗QA2 is ismorphic over R to (C/R, ι̃,−1), where

〈ι̃〉 = Gal(C/R) (see [R, (30.8), p. 261]). Let NC/R : C× → R× be the norm
map. Then NC/R(C×) = R>O 63 −1. Therefore [R ⊗Q A2] 6= [R] (see
[R, (30.4)(iii), p. 260] or [W, Chap. IX, Section 4, Proposition 10, p. 182]).
Therefore inv∞[A] = 1

2 mod 1.
Let v be a finite place of Q. Let w be a place of Q(

√−1) which lies
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above v. We consider Qv as a subfield of Q(
√−1)w. Then in Q(

√−1)w we
have QvQ(

√−1) = Q(
√−1)w, so that we can write Q(

√−1)w = Qv(
√−1).

We have a canonical isomorphism h of Gal(Qv(
√−1)/Qv) onto the subgroup

〈ιs〉 of Gal(Q(
√−1)/Q) = 〈ι〉, where s is the smallest positive integer such

that ιs | Q(
√−1)∩Qv = 1. Let ιv = h−1(ιs). Then Qv ⊗Q A2 is similar to

the cyclic algebra (Qv(
√−1)/Qv, ιv,−1) over Qv (see [R, (30.8), p. 261]).

Assume that v 6= 2. Then Qv(
√−1) is unramified over Qv (see [Serre II,

Chap. IV, Section 4, Proposition 16, pp. 84–85]). Therefore Z×
v is contained

in the image of the norm map NQv(
√−1)/Qv

from (Qv(
√−1))× into Q×

v

(see, e.g., [W, Chap. XII, Section 2, Corollary to Proposition 6, p. 226]),
and −1 ∈ Z×

v . Therefore [Qv ⊗Q A2] = [Qv] (see [R, (30.4)(iii), p. 260]),
and invv[A2] = 0 mod 1. As inv∞[A2] = 1

2 mod 1, by the exact sequence
(1.6.1) in (1.6), we must have that inv2[A2] = 1

2 mod 1. We note that A2 is
a cyclotomic algebra over Q.

Let p be an odd prime number. Let εp ∈ C be a primitive p-th root of
1 and let σp be a generator of Gal(Q(εp)/Q). Let Ap = (Q(εp)/Q, σp,−1).
This is a cyclotomic algebra over Q.

The natural embedding Q(εp) ↪→ C determines an imaginary place ∞′

of Q(εp) which is lying above the infinite place ∞ of Q; we may assume
that Q(εp)∞′ = C. Then in C we have that C = RQ(εp) = R(εp). We
have that Gal(R(εp)/R) = 〈ι̃〉, where ι̃(εp) = ε−1

p . We see that R⊗Q Ap is
similar to (R(εp)/R, ι̃,−1). Therefore inv∞[Ap] = 1

2 mod 1.
Let v′ be a finite place of Q, and let w′ be a place of Q(εp) which

lies above v′. We consider Qv′ , as a subfield of Q(εp)w′ . Then we have
that Q(εp)w′ = Qv′Q(εp) = Qv′(εp). We have a canonical isomorphism
h′ of Gal(Qv′(εp)/Qv′) onto a subgroup H of Gal(Q(εp)/Q) = 〈σp〉. Let
s′ be the smallest positive integer such that σs′

p | Q(εp) ∩ Qv′ = 1. Then
H = 〈σs′

p 〉. Put τp = h′−1(σs′
p ). Then Qv′ ⊗Q Ap is similar to the cyclic

algebra (Qv′(εp)/Qv′ , τp,−1) ([R, (30.8), p. 261]).
Assume thar v′ 6= p. Then Qv′(εp) is unramified over Qv′ . Therefore,

as −1 ∈ Z×
v′ , it lies in the image of the norm map NQv′ (εp)/Qv′ . Thus

invv′ [Ap] = 0 mod 1. As inv∞[Ap] = 1
2 mod 1, we must have that invp[Ap] =

1
2 mod 1.

Let {p1, p2, . . . , pr} be as in the proof (1). Then A = Ap1 ⊗Q Ap2 ⊗Q

· · · ⊗Q Apr
is similar to a cyclotomic algebra over Q which has the desired

distribution of invariants.
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2.2.
In this subsection, for a prime number p, Q̄p denotes an algebraic closure

of Qp, and for n ∈ N , εn denotes a primitive n-th root of 1 in Qp.

Proposition 3 Let p be a finite place of Q. Then there exists a finite
algebraic extension k of Q having at least two places v, w lying abolve p

such that [kv : Q
(v)
p ] = 1 and [kw : Q

(w)
w ] is even, where Q

(v)
p and Q

(w)
p are

the closure of Q in kv and kw respectively.

Case (a): (3, p(p− 1)) = 1.
Let r be a prime number 6= p, and let f(X) = X3 − r, where X is a

variable. Then, by Eisenstein’s criterion, we see that f(X) is an irreducible
polynomial in Q[X]. As (p, r) = 1, we have that modQp(r) = |r|p = 1, so
r ∈ Z×

p . Therefore, by Lemma 1 in (1.3), we see that there is an element α

in Z×
p such that α3 = r. We have

f(x) = (X − α)(X − ε3α)
(
X − ε2

3α
)

= (X − α)g(X),

g(x) = X2 + αX + α2 (∈ Qp[X]).

As (3, p− 1) = 1, ε3 /∈ M× (cf. (1.3)). Therefore ε3 /∈ Qp. Therefore we see
that g(X) is an irreducible polynomial in Qp[X]. Thus f(X) = (X−α)g(X)
is the irreducible docomposition of f(X) in Qp[X]. Thus, by (1.4), we see
that k = Q[X]/f(X)Q[X] has just two places, say, v, w lying above p. We
can arrange them so that [kv : Q

(v)
p ] = 1 and [kw : Q

(w)
p ] = 2.

Case (b): 3 | p− 1.
(b1) Assume that p + 1 is not a power of 2. Let q be an odd prime

number which divides p + 1. Then, as (p + 1, p − 1) = 2, q does not divide
p−1. Therefore 2 is equal to the smallest positive integer h such that ph ≡ 1
(mod q). Therefore we have that [Qp(εq) : Qp] = 2 (see [Serre II, Chap. IV,
Section 4, Corollary to Proposition 16, p. 85]).

Let r be a prime number 6= p, and let f(X) = Xq − r; f(X) is an
irreducible polynomial in Q[X]. Set k = Q[X]/f(X)Q[X]. We have that
r ∈ Z×

p , and as (q, p(p−1)) = 1, there is an element α ∈ Z×
p such that αq =

r. We have that Qp(εqα) = Qp(εq) so [Qp(εqα) : Qp] = [Qp(εq) : Qp] = 2.
Let g(X) be the minimal polynomial of εqα over Qp. Then we have

f(X) = (x− α)g(X)h1(X) · · ·hs(X),
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where h1(X), . . . , hs(X) are certain irreducible polynomials in Qp[X] other
than X − α and g(X) (possibly such polynomials do not exist). Thus we
can conclude that k has the places v, w, u1, . . . , us lying above p such that
[kv : Q

(v)
p ] = 1, [kw : Q

(w)
p ] = deg g(X) = 2, [kui : Q

(ui)
p ] = deg hi(X),

1 ≤ i ≤ s (possibly u1, . . . , us do not exist).

(b2) Assume that p + 1 is a power of 2. Then we see easily thet p2 + 1
is not a power of 2. Let q be an odd prime number which devides p2 + 1.
Then, as (p− 1, p2 + 1) = 2, q does not divide p− 1. We see easily that the
smallest positive integer h such that ph ≡ 1 (mod q) is equal to 4. Therefore
[Qp(εp) : Qp] = 4.

Let r be a prime number 6= p and let f(X) = Xq − r. Then f(X)
is irreducible in Q[X]. Set k = Q[X]/f(X)Q[X]. We have that r ∈ Z×

p

and (q, p(p − 1)) = 1. Let α ∈ Z×
p be such that αq = r. Then [Qp(εqα) :

Qp] = [Qp(εq) : Qp] = 4. Let g(X) be the minimal polynomial of εqα

over Qp. Then in Qp[X] we have f(X) = (X − α)g(X)h1(X) · · ·hs(X),
where h1(X), . . . , hs(X) are certain irreducible polynomials in Qp[X] other
than X − α and g(X) (possibly h1(X), . . . , hs(X) do not exist). Thus we
conclude that k has at least two places v, w such that [kv : Q

(v)
p ] = 1 and

[kw : Q
(w)
p ] = 4.

Case (C): p = 3.
Let r be a prime number 6= 3, and let f(X) = X5 − r. Then f(X) is

irreducible in Q[X]. Set k = Q[X]/f(X)Q[X]. We have that r ∈ Z×
3 . As

(5, 3(3− 1)) = 1, there is an element α ∈ Z×
3 such that α5 = r. We see that

[Q3(ε5) : Q3] = 4. Let g(X) be the minimal polynomial of ε5α over Q3.
Then we have f(X) = (X − α)g(X). Thus we can conclude that k has just
two places v, w such that [kv : Q

(v)
3 ] = 1 and [kw : Q

(w)
3 ] = 4.

This completes the proof of Proposition 3.

2.3.
Proposition 4 Let χ be a rational-valued absolutely irreducible character
of a finite group G such that [A(χ,Q)] 6= [Q] (cf. Proposition 2 in (2.1)).
Let p be a finite place of Q such that invp[A(χ,Q)] = 1

2 mod 1. Then there
exists a finite algebraic extension k of Q having at least two places v, w lying
above p such that invv[A(χ, k)] = 1

2 mod 1 and invw[A(χ, k)] = 0 mod 1.

In fact, let k, v, w be as in Proposition 3. We note that Q
(v)
p and Q

(w)
p
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are canonically isomorphic to Qp as topological fields. In (1.7), we observed
that k ⊗Q A(χ,Q) is canonically isomorphic to B = A(χ, k). Thus, by
(1.5.3) in (1.5), we have:

invv[B] =
[
kv : Q(v)

p

] · inv
Q

(v)
p

[
Q(v)

p ⊗Q A(χ,Q)
]

= 1 · invQp

[
Qp ⊗Q A(χ,Q)

]
=

1
2

mod 1

and

invw[B] =
[
kw : Q(w)

p

] · inv
Q

(w)
p

[
Q(w)

p ⊗Q A(χ,Q)
]

= (even number) · invQp

[
Qp ⊗Q A(χ,Q)

]

= (even number) ·
(

1
2

mod 1
)

= 0 mod 1.

This proves Proposition 4.

Proposition 5 Let χ be a rational-valued absolutely irreducible character
of a finite group such that inv∞[A(χ,Q)] = 1

2 mod 1. Then there exists a
finite algebraic extension k of Q having (at least) two infinite places ∞1,
∞2 such that inv∞1 [A(χ, k)] = 1

2 mod 1 and inv∞2 [A(χ, k)] = 0 mod 1.

In fact, let f(X) = xq − r be as in the proof of Proposition 3 in (2.2).
We note that q is an odd prime number and r is an integer > 1. Let q

√
r be

the unique element in R such that ( q
√

r)q = r and let εq be a primitive q-th
root of 1 in an algebraic closure R̄ of R. Then in R̄[X] we have:

f(X) =
(
X − q

√
r
)(

X − εq
q
√

r
)(

x− ε2
q

q
√

r
) · · · (X − εq−1

q
q
√

r
)

=
(
X − q

√
r
)
g1(X)g2(X) · · · g(q−1)/2(X),

gi(X) = X2 − (
εi

q + ε−i
q

)
q
√

rX + q
√

r
2 (1 ≤ i ≤ (q − 1)/2).

As εq /∈ R and εi
q + ε−i

q ∈ R for 1 ≤ i ≤ (q − 1)/2, we see that the
gi(X) are irreducible polynomials in R[X]. Therefore, by (1.4), we find that
k = Q[X]/f(X)Q[X] has just one real place ∞1 and (q − 1)/2 imaginary
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places. Let ∞2 be any one of the imaginary places. Then the assertion is
clear (cf. [W, Chap.XII, Section 2, Corollary 2 to Theorem 2, p. 225]).

3. Proof of Theorem 3

In this section we give a proof of Theorem 3 in the introduction which
is based on the Brauer-Witt theorem.

3.1.
Let K be a field. Let D be a finite-dimensional division algebra over K

with centre K. Call m the index of D : m2 = [D : K]. Let

m = pe1
1 pe2

2 · · · pes
s ,

where p1, p2, . . . , ps are mutually different prime numbers and e1, e2, . . . , es ∈
N . Then there exist division algebras D1, D2, . . . , Ds over K with centre
K such that, for 1 ≤ i ≤ s, the index of Di is pei

i , and that D is isomorphic
over K to D1⊗K D2⊗K · · · ⊗K Ds (see, e.g., [R, p. 256] or [Deu, V, Section
3, Satz 3, p. 59]). For such D1, D2, . . . , Ds, we have

[D] = [D1][D2] · · · [Ds],

where, for 1 ≤ i ≤ s, the order of [Di] in B(K) (> 1) divides pei
i (see [R,

(29.22), p. 253]). Therefore [D1], [D2], . . . , [Ds] are uniquely determined by
[D]. For a prime number p, we set

[D]p =

{
[K] if p /∈ {p1, p2, . . . , ps},
[Di] if p = pi for some i.

3.2.
Let K be a field, L a finite Galois extension of K with Galois group G,

K ′ a subfield of L over K and H = Gal(L/K ′). Let f : G ×G → L× be a
2-cocycle of G with values in L×. Let res(f) : H×H → L× be the 2-cocycle
of H with values in L× which is defined by

(res(f))(σ, τ) = f(σ, τ), σ, τ ∈ H.

Then
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[K ′ ⊗K (L/K, f)] = [(L/K ′, res(f))]

in B(K ′) (see [R, (29.13), p. 248]). We can define:

res([L/K, f)] = [(L/K ′, res(f))].

Put t = (G : H) = [K ′ : K]. Assume that

G =
⋃

θ∈Σ

Hθ, Σ = {θ1, θ2, . . . , θt}, θ1, θ2, . . . , θt ∈ G.

For σ ∈ G and θ ∈ Σ, let

θσ = h(θ, σ)θσ

with h(θ, σ) ∈ H and θσ ∈ Σ. Let g : H × H → L× be a 2-cocycle of H

with values in L×. We define a map corΣ(g) : G×G → L× by

(corΣ(g))(σ, τ) =
∏

θ∈Σ

θ−1
(
g(h(θ, σ), h(θσ, τ))

)
, σ, τ ∈ G.

Then we see that corΣ(g) is a 2-cocycle of G with values in L×, and we can
define

cor([L/K ′, g]) =
[
(L/K, corΣ(g))

]
,

which is independent of the choice of Σ. We can verify:

(cor ◦ res)([L/K, f ]) = [(L/K, f)]t (3.2.1)

(cf. [Serre II, Chap. VII, Section 7, Proposition 6, p. 127]).
Assume that, in the situation L ⊃ K ′ ⊃ K as above, K ′ is a Galois

extension of K with Galois group Ḡ. π : σ 7→ σ | K ′ induces a canonical
isomorphism of G/H onto Ḡ. Let h : Ḡ × Ḡ → K ′× be a 2-cocycle of Ḡ

with values in K ′×(⊂ L×). We define the 2-cocycle inf(h) : G×G → L× by

(inf(h))(σ, τ) = h(π(σ), π(τ)), σ, τ ∈ G.

Then
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inf([(K ′/K, h)]) := [(L/K, inf(h))] = [(K ′/K, h)]

(see [R, (29.16), p. 249]).

3.3.
Let k be a field of characteristic 0. Let p be a prime number. Then we

say that a finite group H is k-elementary with respect to p if the following
two conditions are satisfied:

( i ) H is a semidirect product AP , where A is a cyclic, normal subgroup
of H whose order is relatively prime to p and P is a p-group.

( ii ) Let A = 〈a〉, and let ε be a primitive |A|-th root of 1 in an extension-
field of k. If ai and aj are conjugate in H (i, j ∈ Z), then there exists
σ ∈ Gal(k(ε)/k) such that σ(εi) = εj .

3.4.
We quote from [Y, pp. 31–32] the following theorem:
The Brauer-Witt Theorem. Let k be a field of characteristic 0 and k̄

an algebraic closure of k. Let G be a finite group of exponent n. Let ε be a
primitive n-th root of 1 in k̄. Let χ be an irreducible character of G over k̄

such that k(χ) = k. Let p be a prime number.
(I) Let Lp be the subfield of k(ε) which contains k such that [k(ε) : Lp]

is a power of p and tp = [Lp : k] is relatively prime to p. Then there is a
subgroup Fp of G which is Lp-elementary with respect to p and an irreducible
character θp of Fp over k̄ with Lp(θp) = Lp such that the inner product
(χ | Fp, θp)Fp

6≡ 0 (mod p), and the following statement (II) holds.
(II) There is a normal subgroup Np of Fp and a linear character ψp

of Np over k̄ such that (i) θp = ψ
Fp
p = IndFp

Np
(ψp) (the induced char-

acter), (ii) for f ∈ Fp, there exists τ(f) ∈ Gal(Lp(ψp)/Lp) such that
ψf

p = ψ
τ(f)
p = τ(f) ◦ ψp (ψf

p (x) = ψp(fxf−1), x ∈ Np), and by the mapping
f 7→ τ(f), Fp/Np

∼→ Gal(Lp(ψp)/Lp), (iii) A(θp, Lp) is isomorphic over Lp

to the cyclotomic algebra (Lp(ψp)/Lp, βp) over Lp, where, if Tp is a complete
set of coset representatives of Np in Fp (1 ∈ Tp), with ff ′ = n(f.f ′)f ′′ for
f , f ′, f ′′ ∈ Tp, n(f, f ′) ∈ Np, then βp(τ(f), τ(f ′)) = ψp(n(f, f ′)).

(III) [A(χ,Lp)] = [A(θp, Lp)] = [(Lp(ψp)/Lp, βp)] in B(Lp), and the p-
part of the Schur index mk(χ) of χ with respect to k (i.e. the heighest power
of p dividing mk(χ)) is equal to mLp

(θp).
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3.5.
Let us prove Theorem 3. We repeat the argument in the proof of Corol-

lary 3.10 of [Y, pp. 32–33] which shows that A(χ, k) is similar to a cycloto-
moic algebra over k. Let the notation be as in the Brauer-Witt theorem.

Consider the homomorphism

res : B(k) → B(Lp) : [B] 7→ [Lp ⊗k B]

(cf. [Bour I, Chap. 8, Section 10, n05, Proposition 6]). We show that

res([A(χ, k)]p) = [A(χ,Lp)]. (3.5.1)

In fact, we have

res([A(χ, k)]) =
[
Lp ⊗k A(χ, k)

]
= [A(χ,Lp)]

and

res([A(χ, k)]) = res
( ∏

q

[A(χ, k)]q

)
=

∏
q

res([A(χ, k)]q),

where q ranges over all prime numbers. For a prime number q, the order
of res([A(χ, k)]q) is a power of q so that res([A(χ, k)]q) = res([A(χ, k)])q =
[A(χ,Lp)]q. Therefore it sufficies to show that the index of A(χ,Lp) is a
power of p.

By a theorem of R. Brauer (see, e.g., [CR I, (41.1), p. 292]), we see that χ

is realizable in k(ε), that is, there is a matrix representation G → GL(d, k(ε))
(d = χ(1)) of G over k(ε) whose character is χ. Therefore k(ε) is a splitting
field of A(χ,Lp) (cf. [CR I, (70.11), p. 469]). Therefore the index mp of
A(χ,Lp) divides [k(ε) : Lp] (see, e.g., [CR I, (68.7), p. 457]), which is a
power of p.

By the assertion (III) of the Brauer-Witt theorem, we have [A(χ,Lp)] =
[Bp], where Bp = (Lp(ψp)/Lp, βp). In the situation k(ε) ⊃ Lp(ψp) ⊃ Lp, put
β̃p = inf(βp); β̃p is a 2-cocycle of Gal(k(ε)/Lp) whose values are in Lp(ψp)×

(⊂ k(ε)×). Put B̃p = (k(ε)/Lp, β̃p); B̃p is similar to Bp.
In the situation k(ε) ⊃ Lp ⊃ k, put γp = corΣ(β̃p), where Σ is a

complete set of coset representatives of Gal(k(ε)/Lp) in Gal(k(ε)/k). Put
Cp = (k(ε)/k, γp); [Cp] = cor([B̃p]) = cor([Bp]) = cor([A(χ,Lp)].
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Let Dp be a finite-dimensional division algebra over k with centre k such
that [A(χ, k)]p = [Dp]. We show that k(ε) is a splitting field of Dp.

In fact, we have [A(χ, k)] =
∏

q[A(χ, k)]q =
∏

q[Dq], where q ranges
over all prime numbers and, for a prime number q, Dq denotes a finite-
dimensional division algebra over k with centre k such that [A(χ, k)]q = [Dq].
We have

[k(ε)] = [k(ε)⊗k A(χ, k)] =
∏
q

[k(ε)⊗k Dq],

and, for each prime number q, the order of [k(ε)⊗k Dq] in B(k(ε)) is a power
of q. Thus, for each q, [k(ε)⊗k Dq] = [k(ε)]q = [k(ε)]. In particular, k(ε) is
a splitting field of Dp.

Therefore, we find that there exists a 2-cocycle f of Gal(k(ε)/k) with
values in k(ε) such that [Dp] = [(k(ε)/k, f)] (cf. Proof of (29.12) of [R,
pp. 246–247]). Thus, in the situation k(ε) ⊃ Lp ⊃ k, we have:

(cor ◦ res)([A(χ, k)]p) = (cor ◦ res)([Dp]) = (cor ◦ res)([k(ε)/k, f)])

= [(k(ε)/k, f)]tp = [A(χ, k)]tp
p (cf. (3.2.1)).

Let [k(ε) : Lp] = pa, where a is a non-negative integer. Let up be an
integer such that uptp ≡ 1 (mod pa). Then

[
(k(ε)k, γup

p )
]

= [(k(ε)/k, γp)]up = [Cp]up =
(
cor([B̃p])

)up = (cor([Bp]))up

= (cor(res([A(χ, k)]p)))up = ((cor ◦ res)([A(χ, k)]p))up

= ([A(χ, k)]p)uptp = [A(χ, k)]p.

Here the last equality follows from the following consideration.
The index mp of Dp ([A(χ, k)]p = [Dp]) is the p-part of the index of

m of A(χ, k). As k(ε) is a splitting field of A(χ, k), we see that m divides
[k(ε) : k] = patp, and (tp, p) = 1. As mp is a power of p, mp must divide pa.
Therefore the order of [Dp] = [A(χ, k)]p in B(k) divides pa. As tpup ≡ 1
(mod pa), we have that tpup = 1+pav from some v ∈ Z. Therefore we have:

([A(χ, k)]p)tpup = ([A(χ, k)]p)1+pav = [A(χ, k)]p.
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Thus we have:

[A(χ, k)] =
∏
q

[A(χ, k)]q =
∏
q

[
(k(ε)/k, γuq

q )
]

=
[(

k(ε)/k,
∏
q

γuq
q

)]

= [(k(ε)/k, γ)], γ =
∏
q

γuq
q ,

where q ranges over all prime numbers (note that if q does not divide [k(ε) :
k], then [A(χ, k)]q = [k] so that we may take as γq = 1). We note that γ is
a 2-cocycle of Gal(k(ε)/k) whose values are in 〈ε〉.

Let r be an integer such that (r, n) = 1. Then there is an automorphism
α of Q(k)(ε) such that α(ε) = εr where Q(k) denotes the prime field of k. We
have Ψr(χ) = χα =: α◦χ. Applying the Brauer-Witt theorem and the above
argument to Ψr(χ), we find that Lp, Fp, θp, Np, ψp, βp, β̃p, γp and γ will be
replaced with Lp, Fp, θ

α
p , Np, ψ

α
p , βα

p , β̃α
p , γα

p and γα respectively (θα
p = α◦θp,

ψα
p = α ◦ ψp, βp = α ◦ βp, β̃α

p = α ◦ β̃p, γα
p = α ◦ γp and γα = α ◦ γ).

In fact, in the statement (I) of the Brauer-Witt theorem, we have

(
χα | Fp, θ

α
p

)
Fp

= α
(
(χ | Fp, θp)Fp

)
=

(
χ | Fp, θp)Fp .

In the statement (II) of the Brauer-Witt theorem, we have θα
p = (ψα

p )Fp ,

for f ∈ Fp, we have (ψα
p )f = (ψf

p )α = (ψτ(f)
p )α = (ψα

p )τ(f), and
βα

p (τ(f), τ(f ′)) = α(βp(τ(f), τ(f ′))) = α(ψp(n(f, f ′)) = ψα
p (n(f.f ′)).

And inf(βα
p ) = (inf(βp))α = β̃α

p , corΣ(β̃α
p ) = (corΣ(β̃p))α = γα

p , and∏
q(γ

α
q )uq =

∏
q(γ

uq
q )α = γα.

Thus we have

[A(Ψr(χ), k)] = [(k(ε)/k, γα)] = [(k(ε)/k, γr)] = [(k(ε)/k, γ)]r = [A(χ, k)]r.

This completes the proof of Theorem 3.

3.6.
We show that the assertion in Theorem 3 follows from the assertion in

the case where k is a finite algebraic extension of its prime field Q(k).
In fact, assume that k is a field of characteristic 0 and let χ be an

absolutely irreducible character of a finite group G over an extension-field
of k such that χ(g) ∈ k for all g ∈ G. Then Q(k)(χ) is well-defined and
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is a subfield of k of a finite degree over Q(k). Applying the homomor-
phism res : B(Q(k)(χ)) → B(k) to the equalithy [A(Ψr(χ),Q(k)(χ))] =
[A(χ,Q(k)(χ))]r, we obtain:

[A(Ψr(χ), k)] =
[
k ⊗Q(k)(χ) A(Ψr(χ),Q(k)(χ))

]
= res

(
[A(Ψr(χ),Q(k)(χ))]

)

= res
(
[A(χ,Q(k)(χ))]r

)
=

(
res(A(χ,Q(k)(χ)])

)r = [A(χ, k)]r.

3.7.
We show that Theorem 4 follows from Theorem 3.
In fact, let k′ be a splitting field of A(χ, k) such that [k′ : k] is equal to

the index m of A(χ, k) (cf. [R, (7.15), p. 97]). Applying the homomorphism
res : B(k) → B(k′) to the equality [A(Ψr(χ), k)] = [A(χ, k)]r, we obtain:

[
k′ ⊗k A(Ψr(χ), k)

]
= res

(
[A(Ψr(χ), k)]

)
= res([A(χ, k)]r)

=
(
res([A(χ, k)])

)r = [k′ ⊗k A(χ, k)]r = [k′]r = [k′].

Therefore k′ is a splitting field of A(Ψr(χ), k) so that we see that m is di-
visible by the index mr of A(Ψr(χ), k). Conversely, we have χ = Ψs(Ψr(χ))
for an integer s such that rs ≡ 1 (mod |G|), so that we see that m divides
mr. Thus m = mr.

Remark In [Oh] Theorem 4 is proved directly by using the Brauer-Witt
theorem. Serre ([Serre V]) and Delingne ([De]) have an alternating proof
of Theorem 4 by using properties of Adams operators (cf. [Serre IV, 9, 9.1,
Exercices 3), a), p. 86] or [CR II, (12.7), p. 316]).

3.8.
(a) Usualy, by an algebraic number field, we mean a finite algebraic

extension of Q. Thus, for an algebraic number field k and a complex irre-
ducible character χ of a finite group G, “the field Q(χ)” cannot be defined
canonically, since generally there exist no fields containing both of k and
χ(g), g ∈ G. Similarly, if F is a field of characteristic 0, then, for a complex
irreducible character χ of a finite group, “F (χ)” cannot be defined canoni-
cally (cf. [Oh, Theorem 1]). In particular, when χ is a complex irreducible
character of a finite group, for a prime number p, we must be careful in
using the notation “Qp(χ)”.

Let v be a place of Q(χ) lying above p, and we identify Qp with the
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closure of Q in Q(χ)v. Then Q(χ)v = Qp ·Q(χ) = Qp(χ).
(b) Let p be a prime number and let k be an algebraic number field.

Then “k ·Qp” cannot be defined canonically.
Let v be a place of k lying above p. If we identify Qp with the closure

Q
(v)
p of Q in kv, then kv = k ·Qp. But, if w is another place of k lying above

p, then, as we have seen in Proposition 3 in (2.2), [kv : Q
(v)
p ] 6= [kw : Q

(w)
p ]

generally.
(c) As to “E · F” where E and F are extension-fields for some field,

there is some discussion in [W, pp. 49– ].

Appendix A

In this appendix we shall give another example which shows that the
problem (P ) in the introduction has a negative answer.

A.1.
First, following Isaacs ([Is, (10.16), p. 169]), we construct, for a given odd

prime number p, an irreducible character ζ of a finite group with mQ(ζ) = p.
Let p be an odd prime number and let q be a prime number such that

q ≡ 1 (mod p) and q 6≡ 1 (mod p2). By a theorem of Dirichlet, we see that
there exists infinite number of such q of the form

q = tp2 + p + 1, t ∈ N. (A.1.1)

Let 〈x〉 be a cyclic group of order p2, 〈y〉 a cyclic group of order q and
f : 〈x〉 → Aut〈y〉 a homomorphism of 〈x〉 into Aut〈y〉 ∼= Z/(q − 1)Z whose
image has order p. Let

G =
〈
x, y | xp2

= yq = 1, xyx−1 = (f(x))(y)
〉
. (A.1.2)

Assume that

xyx−1 = yr, r ∈ Z, (r, q) = 1, rp ≡ 1 (mod q). (A.1.3)

Then G is a finite group of order p2q and contains the normal subgroup
H = 〈xp, y〉 = 〈xp〉 × 〈y〉 of order pq. Let C be an algebraic closure of Q,
and let εp and εq be a primitive p-th root of 1 in C and a primitive q-th
root of 1 in C respectively. Let λ : H → C× be the linear character of H
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over C which is given by

λ((xp)iyj) = εi
pε

j
q, i, j ∈ Z, (A.1.4)

and put

ζ = λG = IndG
H(λ). (A.1.5)

Set

k = Q(ζ) = Q({ζ(g) | g ∈ G}). (A.1.6)

Lemma A.1.1 ζ is an irreducible character of G over C of degree p.

In fact, for g ∈ G, let λg be the linear character of H over C which is
defined by λg(h) = λ(ghg−1), h ∈ H. Then we have that

ζ | H =
p−1∑

i=0

λxi

(A.1.7)

and ζ | (G−H) = 0. For i, j ∈ Z, 0 ≤ i 6= j ≤ p− 1, we have that

λxi

(y) = λ(xiyx−i) = εri

q 6= εrj

q = λ(yrj

) = λxj

(y),

so that λxi 6= λxj

. Therefore, by Frobenius reciprocity law, we have that

(ζ, ζ)G = (ζ | H, λ)H =
( p−1∑

i=0

λxi

, λ

)

H

= 1.

Therefore ζ is absolutely irreducible.
Let σ be the element of Gal(Q(εp, εq)/Q(εp)) which is given by

σ(εq) = εr
q. (A.1.7)

Lemma A.1.2 We have that

Gal(Q(εp, εq)/k) = 〈σ〉 ∼= Z/pZ.
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Thus k = Q(εp, εq)〈σ〉 = {z ∈ Q(εp, εq) | σ(z) = z} contains εp.

In fact, for τ ∈ Gal(Q(εp, εq)/Q), let λτ = τ ◦ λ. Then λxi

= λσi

for
i ∈ Z, 0 ≤ i ≤ p− 1. As ζ | (G−H) = 0, we have that

k = Q

( p−1∑

i=0

λxi

)
= Q

( p−1∑

i=0

λσi

)
⊂ Q(εp, εq)〈σ〉.

Therefore the inclusion 〈σ〉 ⊂ Gal(Q(εp, εq)/k) is clear.
Conversely, let τ be any element of Gal(Q(εp, εq)/k). Then

p−1∑

i=0

λσi

= ζ | H = (ζ | H)τ =
p−1∑

i=0

λσiτ .

Therefore, by the linearly independence of the irreducible characters of H

over C, we see that we must have that λτ = λσi

for some i ∈ Z, 0 ≤ i ≤
p − 1. But, as Q(λ) = Q(εp, εq), we must have that τ = σi ∈ 〈σ〉. Thus
Gal(Q(εp, εq)/k) ⊂ 〈σ〉.
Lemma A.1.3 A(ζ, k) is isormorphic over k to the cyclic algebra
(Q(εp, εq)/k, σ, εp) over k.

Proof. We repeat the argument in the proof of Proposition 3.5 of [Y, p. 24].
Let ψ : G → C be the function on G with values in C which is defined

by

ψ(g) =

{
λ(g) if g ∈ H,

0 if g /∈ H.

For g ∈ G, let U(g) be the p × p matrix whose (i, j)-th entry is
ψ(xi−1gx−(j−1)), 1 ≤ i, j ≤ p. Then the mapping g 7→ U(g), g ∈ G, is
the representation of G over C which is induced by λ. As

k[G] =
p−1∑

i=0

k[H]xi,

we have
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envk(U) := U(k[G]) =
p−1∑

i=0

U(k[H])U(x)i,

where U is extended to a representation of k[G] by linearlity. For h ∈ H,
we have

U(h) = diag
(
λ(h), λ(xhx−1), λ(x2hx−2), . . . , λ(xp−1hx−(p−1)

)

= diag
(
λ(h), σ(λ(h)), σ2(λ(h)), . . . , σp−1(λ(h))

)
.

Put

Ξ =
{

diag(ξ, σ(ξ), σ2(ξ), . . . , σp−1(ξ)) | ξ ∈ k(λ)
}

= U(k[H]).

Then the mapping ρ : ξ 7→ diag(ξ, σ(ξ), σ2(ξ), . . . , σp−1(ξ)), ξ ∈ k(λ),
induces an isomorphism of k(λ) = Q(εp, εq) onto Ξ. We have that
envk(U) =

∑p−1
i=1 Ξ · U(x)i. Let

σ′ = ρ ◦ σ ◦ ρ−1 : Ξ → Ξ.

Then, for ξ = λ(h), h ∈ H, we have:

U(x)ρ(ξ)U(x)−1

=




0 1
0 1 O

· ·
· · 1

O ·
εp 0







ξ

σ(ξ) O

·
·

O ·
σp−1(ξ)







0 ε−1
p

1 0 O

1 ·
· ·

O · ·
1 0




= diag
(
σ(ξ), σ2(ξ), . . . , σp−1(ξ), ξ

)
= ρ

(
σ(ρ−1(ρ(ξ)))

)
= σ′(ρ(ξ)).

Therefore we see that, for all X ∈ Ξ, we have

U(x)XU(x)−1 = σ′(X).

Thus we see that the matrics U(1), U(x), U(x)2, . . . , U(x)p−1 are linearly
independent over the field Ξ. And we have
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U(x)p = diag(εp, εp, . . . , εp) = εp · 1p = ρ(εp).

Thus

A(ζ, k) ∼=
U

envk(U) = (k(λ) · 1p/k · 1p, σ
′, εp · 1p) ∼=

k
(k(λ)/k, σ, εp).

Lemma A.1.4 (see Proof of (10.16) of [Is]) We have that

εp 6∈ Nk(λ)/k(k(λ)×).

Proposition A.1.1 D = (k(λ)/k, σ, εp) is a division algebra over k with
the index p. Thus mk(ζ) = p.

Proof. By Lemma A.1.4, we see that the index m of D is > 1. But, as
[D : k] = p2 and [k(λ) : k] = p, we see that k(λ) is a maximal commutative
subfield of D. Therefore k(λ) is a splitting field of D. Therefore m divides
p = [k(λ) : k], and, as m > 1, we must have that m = p. And we see that
D is a division algebra over k with centre k.

Proposition A.1.2 Let v be a place of k and let Dv = kv ⊗k D. Then, if
v is not lying above q, the index of Dv is 1. If v lies above q, then the index
of Dv is equal to p.

Proof. If v is infinite, then v is imaginary so that the index of Dv is 1.
Assume that v is finite. If v is not lying above q, then, as Q(εp, εq) ⊃ k ⊃
Q(εp), v is unramified in k(λ) = Q(εp, εq) over k, so that the index of Dv

is 1. Assume that v lies above q. By Proposition A.1.1, the index of D is p,
so that, the index of Dv must be p for some v. Thus, by Benard’s theorem
(Theorem 1 in the introduction), the index of Dv must be p for all v.

A.2.
Let the notation be as in (A.1). We assume that q is of the form tp2+p+1

for some t ∈ N . We prove

Proposition A.2.1 Let v be a place of k lying above q. Then there exists
a finite algebraic extension k′ of k which has at least two places w, w′ lying
above v such that [k′w : k

(w)
v ] = 1 and [k′w′ : k

(w′)
v ] = p, where k

(w)
v and k

(w′)
v

are the closures of k in k′w and k′w′ respectively.
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Let v′ be a place of Q(εp, εq) lying above v and let C ′ be an algebraic
closure of Q(εp, εq)v′ . We identify kv with the closure of k in Q(εp, εq)v′ and
Qq with the closure of Q in Q(εp, εq)v′ . Thus Q(εp, εq)v′ = Qp(εp, εq) =
kv(εq). Put

n = (qp − 1)/(q − 1) = qp−1 + qp−2 + · · ·+ q + 1 (> q + 1 > p + 2).

Then (q− 1, n) = (q− 1, (qp−1− 1) + (qp−2− 1) + · · ·+ (q− 1) + p) = p and
n is odd. As q = p(tp + 1) + 1, we have:

qp − 1 = pp(tp + 1)p + p · pp−1(tp + 1)p−1 + · · ·+ (p(p− 1)/2) · p2(tp + 1)2

+ p · p(tp + 1) + 1− 1

= p2(tp + 1)(pa + 1),

where a is some positive integer. Therefore ordp(qp − 1) = 2. Therefore, as
ordp(q − 1) = 1, we have that ordp n = 1.

Let m be an odd prime number 6= p which divides n. We note that
(m, pq) = 1. Let s be a prime number 6= q, and let f(X) = Xm− s ∈ Q[X],
where X is a variable. Then f(X) is an irreducible polynomial in Q[X]. Let
εm be a primitive m-th root of 1 in C ′. As m divides n = (qp − 1)/(q − 1)
and as (n, q − 1) = p, we have that qp ≡ 1 (mod m) and q 6≡ 1 (mod m).
Let h0 be the smallest positive integer such that qh0 ≡ 1 (mod m). Then
we see that h0 divides p and h0 6= 1. Therefore h0 = p, and we see that
[Qq(εm) : Qq] = p. As Qq(εq) is totally ralified over Qq and Qq(εm) is
unramified over Qq, we have Qq(εq)∩Qq(εq) = Qq. Therefore we have that
[Qq(εq, εm) : Qq(εq)] = [Qq(εm) : Qq] = p.

Lemma A.2.1 We have that [Qq(εq) : kv] = p (note that εp ∈ Qq) and
there is a canonical isomorphism of Gal(Qq(εq)/kv) onto Gal(Q(εp, εq)/k).

For example, we can argue as follow.
Let ρ be the canonical homomorphism of Gal(Qq(εq)/kv) into

Gal(Q(εp, εq)/k) = 〈σ〉 given by ρ(τ) = τ | Q(εp, εq). Let u be the small-
est positive integer such that σu is a generator of the image of ρ, and put
σ̃ = ρ−1(σu). Then Dv = kv ⊗k D = kv ⊗k (Q(εp, εq)/k, σ, εp) is similar
to the cyclic algebra (Qq(εq)/kv, σ̃, εp) over kv. But, by Propisition A.1.2,
we see that Dv has the index p. Therefore we conclude that Qq(εq) 6= kv,
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hence [Qq(εq) : kv] = ρ and ρ is an isomorphism of Gal(Qq(εq)/kv) onto
Gal(Q(εp, εq)/k) (∼= Z/pZ).

As (s, q) = 1, we have that modQq
(s) = |s|q = 1, so s ∈ Z×

q . As
(m, q − 1) = 1, by Lemma 1 in (1.3), we see that there is an element α of
Z×

q such that αm = s. We have

f(X) = xm − s =
m−1∏

j=0

(X − εj
mα)

in C ′[X].

Lemma A.2.2 For j ∈ N , 1 ≤ j ≤ m − 1, we have that [Qq(εq, ε
j
mα) :

kv(εj
mα)] = [kv(εj

mα) : kv] = p.

In fact, put K = kv(εj
mα), and consider the following diagram

(∗)

By Lemma A.2.1, we have that [Qq(εq) : kv] = p, so that k0 = Qq(εq)
or K0 = kv. Suppose that K0 = Qq(εq). Then K ⊃ Qq(εq), so K =
Qq(εq, εm). Therefore we have:

p = [Qq(εm) : Qq] ≥ [kv(εm) : kv] (cf. (∗∗) below) = [K : kv]

= [Qq(εq, εm) : kv] =
[
Qq(εq, ε

j
m) : Qq(εq)

] · [Qq(εq) : kv] = p2,

which is a contradiction.
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(∗∗)

In view of the diagra (∗), we find:

[K : kv] =
[
Qq(εq, ε

j
mα) : Qv(εq)

]
=

[
Qq(εq, ε

j
m) : Qq(εq)

]

= [Qq(εq, εm) : Qq(εq)] = [Qq(εm) : Qq] = p.

This proves Lemma A.2.2.

We can consider k as a subfield of kv, and α ∈ Qq ⊂ kv.

Lemma A.2.3 We have that α /∈ k.

In fact, suppose, on the contrary that α ∈ k. As f(X) = xm − s

(=
∏m−1

j=0 (X − εj
mα)) is irreducible in Q[X], the conjugates of α over Q

are α, εmα, ε2
mα, . . . , εm−1

m α. For j ∈ N , 1 ≤ j ≤ m − 1, let τj be the
embedding of Q(α) into the algebraic closure k̄ of k in C ′ which is given by
τj(α) = εj

mα. Then τj can be extended to an embedding τ̃j of k into k̄. As
k is a Galois extension of Q, k is a normal extension of Q so that τ̃j(k) = k.
Therefore εj

mα ∈ k. This holds for all j, 1 ≤ j ≤ m − 1. But, by Lemma
A.2.2, we see that εj

mα /∈ kv for 1 ≤ j ≤ m − 1. Therefore εj
mα /∈ k for

1 ≤ j ≤ m− 1. This is a contradiction. Therefore α /∈ k.

Let f(X) = f1(X) · · · fu(X) be the irreducible decomposition of f(X) =
xm − s in k[X]. As f(α) = 0 in kv[X], we must have that fi(α) = 0
for some i, 1 ≤ i ≤ u. By Lemma A.2.3, we see that deg(fi(X)) > 1.
Therefore fi(εj

mα) = 0 for some j, 1 ≤ j ≤ m− 1. Let g(X) be the minimal
polynomial of εj

mα over kv. Then, in kv[X], X − α and g(X) divide fi(X).
By Lemma A.2.2, we see that deg(g(X)) = p. Therefore, by (1.4), we see
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that k′ := k[X]/fi(X)k[X] has (at least) two places w, w′ lying above v

such that [k′w : k
(w)
v ] = 1 and [k′w′ : k

(w′)
v ] = p.

This completes the proof of Proposition A.2.1.

Let A = A(ζ, k) and A′ = k(ζ, k′) (∼= k′⊗k A). Let v, k′, w, w′ be as in
Proposition A.2.1. Then, by (1.5.3) in (1.5), we have:

invw[A′] =
[
k′w : k(w)

v

] · invv[A] = 1 ·
(

i

p
mod 1

)
=

i

p
mod 1

for some interger i such that (i, p) = 1, and

invw′ [A′] =
[
k′w′ : k(w′)

v

] · invv[A] = p ·
(

i

p
mod 1

)
= 0 mod 1.

Thus we have obtained a new example which shows that the problem (P )
in the introduction has a negative answer.

Appendix B

Let the notation be as in Appendix A. In this opportunity, it will be
interesting to know the Hasse invariants of D. To do so, it will be convenient
to use the concept of a prime of an algebraic number field instead of a place.
For a prime P of an algebraic number field k′′, let k′′P denote the completion
of k′′ at P .

B.1.
Let a be an interger such that

ra
q−1

p ≡ 1 (mod q)

and a mod qZ has the order p in (Z/qZ)×. Z[εp] is the integral closure of
Z in Q(εp). Let

qi = (q, εp − ai) = qZ[εp] + (εp − ai)Z[εp], 1 ≤ i ≤ p− 1.

Then we see that q1, . . . , qp−1 are all the distinct prime ideals of Z[εp] lying
above qZ (cf., e.g., [La, p. 11]). Z[εp, εq] is the integral clousure of Z[εp] in
Q(εp, εq). Let
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Qi =
(
q, εp − ai, εq − 1

)

= qZ[εp, εq] + (εp − ai)Z[εp, εq] + (εq − 1)Z[εp, εq], 1 ≤ i ≤ p− 1.

Then we see that, for i ∈ N , 1 ≤ i ≤ p − 1, Qi is the unique prime ideal
of Z[εp, εq] lying above qi. Q1, . . . , Qp−1 are all the distinct prime ideals of
Z[εp, εq] lying above qZ.

Let Ok be the integral closure of Z in k, and let

q′i = Qi ∩Ok, 1 ≤ i ≤ p− 1.

Then q′1, . . . , q
′
p−1 are all the dinstinct prime ideals of Ok lying above qZ

and q′iZ[εp, εq] = Qp
i , 1 ≤ i ≤ p− 1.

B.2.
Recall that

A(ζ, k) ∼= D =
(
Q(εp, εq)/k, σ, εp

)
=

p−1∑

i=0

Q(εp, εq)ui,

uξu−1 = σ(ξ), ξ ∈ Q(εp, εq),

up = εp.

We note that any q′i is totally ramified in Q(εp, εq) over k.
Let k[u] be the subalgebra of D over k which is generated over k by u.

Then we see that k[u] is a maximal commutative subfield of D over k in
which any q′i is unramified over k. We may write as k[u] = k(u). Let τ be
the automorphism of k(u) over k which is given by

τ(u) = uq = ε(q−1)/p
p u.

Then we see that, for i ∈ N , 1 ≤ i ≤ p − 1, if Q′i denotes a prime of
k(u) lying above q′i, then τ can be canonically identified with the Frobenius
automorphism of k(u)Q′i over kq′i . Put

δ =
p−1∑

i=0

εi(q−1)/p
p εri

q .
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Then we see that δ 6= 0. Put

vτ =
p−1∑

i=0

δui (∈ D×).

Then we see that

vτξv−1
τ = τ(ξ), ξ ∈ k(u)

and

vp
τ = δpNK(u)/k

( p−1∑

i=0

ui

)
.

Therefore we have that

D =
(
k(u)/k, τ, vp

τ

)
,

which is similar to

D′ = (k(u)/k, τ, δp).

Let q′ = q′1 and Q = Q1. Let vQ : Q(εp, εq)×Q → Z be the normal-
ized valuation of Q(εp, εq)Q and by using the condition that r · aq−1/p ≡ 1
(mod q), we see, by a relatively long calculation, that

vQ(δ) = 1.

Let vq′ : k×q′ → Z be the normalized valation of kq′ . Then it follows that

vq′(δp) = 1.

Thus

invq′ [D] = invq′ [D′] =
vq′(δp)

p
mod 1 =

1
p

mod 1.

Let i ∈ Z, 1 ≤ i ≤ p − 1, and let i′ be an integer such that i′i ≡ 1
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(mod p). Then by Theorem 2 in the introduction, we see that

i′ · invq′i [D] = invq′ [D] =
1
p

mod 1.

Thus

invq′i [D] =
i

p
mod 1.

B.3.
Remark (a) If we use Fontaine’s describtion on page 131, lines 3–7, in
[F], we can obtain the same result as above more speedily.

(b) In [Is], Isaacs constructed the character ζ as an example which shows
that the Schur index may become large. In [Br], R. Brauer constructed, for
each n ∈ N , an irreducible character χ of a finite group whose Schur index
is n. By the above Fontaine’s method, we can calculate the Hasse invariants
of the simple algebra corresponding to χ.

Acknowledgement I wish to dedicate this paper to my daughter Fumiko.
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