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Abstract. We show that if a connected closed orientable manifold M admits a codi-

mension one locally free smooth action φ of a connected nilpotent Lie group such that

any orbit of φ is non-compact, then M is homeomorphic to a nilmanifold. And as an

example of such an action, we study also a homogeneous action.
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1. Introduction

Let φ : G × M → M be a smooth action of a connected Lie group G

on a connected manifold M . If φ is locally free (i.e., the isotropy subgroup
Gx at each point x ∈ M is discrete in G), then the set Fφ of all orbits of φ

determines a foliated structure on M . We call Fφ the orbit foliation of φ.
And φ is called a codimension one action if any orbit of φ has codimension
one. Therefore the study of codimension one locally free actions is closely
connected with the study of codimension one foliations. And moreover it
is connected with the study of discrete subgroups of Lie groups. As well in
this paper, we will work in these fields.

In case that φ is a codimension one locally free smooth action of a nilpo-
tent Lie group, dynamical properties of Fφ and some topological properties
of M are obtained in [3] and [5]. For the topological properties of M , we
have the following theorem which is a finer version of Theorem (2.7) of [3]
and a general version of Theorem (2.5) of [5].

Theorem 1.1 Suppose that a conncted closed orientable manifold M ad-
mits a codimension one locally free smooth action φ of a connected nilpotent
Lie group such that any orbit of φ is non-compact. Then M is homeomorphic
to a nilmanifold.
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To give the proof of this theorem is the purpose of this paper.
Unless otherwise specified, we consider in the smooth (C∞) category.

Therefore all maps and all actions are smooth.

2. Homogeneous actions

In this section we introduce an example of codimension one locally free
actions of nilpotent Lie groups, which suggests our result, Theorem 1.1.

Let G̃ be a connected and simply connected Lie group of dimension n+1.
Let G be a connected Lie subgroup of G̃ and let Γ be a discrete subgroup
of G̃. Then the left action φ of G on the homogeneous space M = G̃/Γ is
defined by

φ(g, aΓ ) = gaΓ (g ∈ G, aΓ ∈ G̃/Γ ).

This φ is called a homogeneous action. Since clearly φ is locally free, we
obtain the orbit foliation Fφ. In this case, Fφ is called a homogeneous
foliation.

Now we assume that Γ is a uniform subgroup, i.e., G̃/Γ is compact.
Then we have the following theorem.

Theorem 2.1 Let φ : G×G̃/Γ → G̃/Γ be a codimension one homogeneous
action of a nilpotent Lie subgroup G. Assume that Fφ has no compact leaves.
Then G̃/Γ is a nilmanifold.

We need a lemma for the proof. First notice that dim(G) = n and G̃ is
unimodular.

Lemma 2.2 Let g be the subalgebra of a unimodular Lie algebra g̃ (i.e.,
tr(ad(X)) = 0 for all X ∈ g̃). If g is of codimension one and unimodular,
then g is an ideal of g̃.

Proof. Let g̃ = g⊕ l denote the direct sum decomposition as a vector space
and let p : g̃ → l be the projection to the second term. Choose a basis L of
l.

Suppose that g is not an ideal. Then there exist an element X ∈ g̃ and
a real number α(6= 0) such that X is contained in g and p(ad(X)(L)) = αL.
It follows that

tr(ad(X)) = tr(ad(X)|g) + α = 0 + α = α 6= 0.
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This contradicts the assumption that g̃ is unimodular. Therefore g is an
ideal. ¤

Proof of Theorem 2.1. Let g̃ be the Lie algebra of G̃ and let g be the Lie
algebra of G. Since g is nilpotent, it is unimodular. From Lemma 2.2, it
follows that g is an ideal of g̃. Therefore G is a normal subgroup of G̃.
Furthermore, since G̃/G is one dimensional, it is abelian and therefore G̃ is
solvable.

Now suppose that G̃ is not nilpotent. Since G is of codimension one in G̃,
G is the maximal connected normal nilpotent subgroup of G̃. Hence G/(G∩
Γ ) is compact (cf., [7, Theorem 3.3]). This contradicts the assumption
that Fφ has no compact leaves. Therefore G̃ is nilpotent and so M is a
nilmanifold. ¤

Theorem 2.1 is a stronger version of Theorem 1.1 for homogeneous foli-
ations.

3. Fibrations of M by the orbit foliations

We assume that G is a conncted simply connected nilpotent Lie group of
dimension n and M is a connected orientable closed manifold of dimension
n + 1.

And assume that Fφ contains no compact leaves, i.e., φ has no compact
orbits. Denote by Ĝx the Malcev closure of the isotropy subgroup Gx in
G (i.e., Ĝx is the unique connected closed subgroup of G containing Gx so
that Ĝx/Gx is compact). Some dynamical properties of Fφ and the results
with respect to Ĝx are described in [3]. We quote some results.

Lemma 3.1 With the notation and hypotheses above

(1) All leaves of Fφ are dense in M and have trivial holonomy groups.
(2) Ĝx is a fixed normal subgroup of G which is independent of the choice

of x, and contains the commutator [G,G].

Now let N = Ĝx. By restricting φ to N ×M , we obtain a locally free
action φN of N

φN : N ×M → M

and its orbit foliation FφN
. All leaves of FφN

are compact and have trivial
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holonomy groups. Therefore we can define a fiber bundle p1 : M → M1

whose fibers are leaves of FφN
. Since N is a normal subgroup of G, φ

induces a codimension one locally free action φ1 of the abelian Lie group
G1 = G/N on M1 such that the following diagram is commutative

G×M
φ //

π1×p1

²²

M

p1

²²
G1 ×M1

φ1 // M1

where π1 : G → G1(= G/N) is the canonical homomorphism (see [3, Section
2.5 and Section 2.6]).

Furthermore, the above fact can be generalized to a closed subgroup
K of N which satisfies some appropriate conditions. Denote by φK the
restriction of φ to K ×M .

Lemma 3.2 Assume that the connected closed subgroup K of N is normal
in G and Gx0 ∩K is a uniform subgroup of K for some x0 ∈ M . Then, for
any x ∈ M , Gx ∩K is a uniform subgroup of K and the orbit foliation FφK

of φK defines a bundle structure on M .

Proof. We give only a short sketch of the proof.
First, on the tangent bundle of Fφ, induce the Riemanian metric through

φ from the right invariant Riemanian metric of G and extend it to the
tangent bundle of M .

Next, let Lx0 be the leaf of FφK
through x0. Consider the volume of

each leaf of FφK
. Since K is normal in the nilpotent Lie Group G, the

adjoint representation of G on the Lie algebra of K is unipotent and FφK
is

invariant under the action φ of G. Therefore the volume of each leaf of FφK

is invariant under the action φ of G. It follows that the union of compact
leaves which is deffeomorphic to Lx0 and have the same volume as Lx0 is
dense in M . By this fact, we can see the holonomy group of Lx0 is trivial.
Therefore, from the stability theorem of compact leaves (cf., [2]), we have a
regular neighborhood V of Lx0 such that FφK

|V is a product foliation.
Again from invariance of FφK

under φ and denseness of the orbit of φ,
we can conclude that FφK

defines a bundle structure on M . ¤

By Lemma 3.2, we see the following proposition.
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Proposition 3.3 Assume that there is a connected closed subgroup K of
N such that K is normal in G and homogeneous space F1 = K/(Gx0 ∩K)
is compact for some x0 ∈ M . Then, there exist a fiber bundle structure
p1 : M → M1 whose fibers are diffeomorphic to F1 such that φ induces a
codimension one locally free action φ1 of the nilpotent Lie group G1 = G/K

on M1 and the following diagram is commutative

G×M
φ //

π1×p1

²²

M

p1

²²
G1 ×M1

φ1 // M1

where π1 : G → G1 is the canonical homomorphism.

As an example of such K which satisfies the assumption of Proposition
3.3, we can take the center C of N . In fact, it follows from the result for the
uniform subgroups of nilpotent Lie groups (see [7, Corollary 1 to Theorem
2.3]) that C/(Gx ∩ C) is compact.

4. Actions of G on the spaces of lattices

We retain the notation of the previous section and fix a point x0 ∈ M .
Assume that K is contained in the center C of N and satisfies the

assumption of Proposition 3.3 for x0, i.e., K is a connected closed normal
subgroup of G which is contained in C and Gx0 ∩K is uniform in K. Since
K is simply connected, we can identify K with its Lie algebra k through
the exponential map. Furthermore, fixing an appropriate basis of k, we can
identify k with Rk and accordingly identify Gx0 ∩ K with an unimodular
lattice in Rk. Therefore, denoting by L(k) the space of unimodular lattices
in Rk, we have Gx0 ∩K ∈ L(k).

Now, there exists the natural action of SL(k,R) on L(k) and L(k) ∼=
SL(k,R)/SL(k,Z). We denote the natural action by ψ. On the other hand,
by restricting each Ad(g) to k for the adjoint representation Ad of G, we
obtain the homomorphism

Adk : G → SL(k,R).

Although G can act directly on L(k) by the adjoint representation, we will
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consider ψ(Adk(g), Λ) for Λ ∈ L(k) by way of Adk and ψ.
Next we define a map χ : M → L(k) by χ(x) = Gx∩K. By Proposition

3.3, it is clear that χ is well-defined and smooth. Then we obtain the
following lemma.

Lemma 4.1 With the notation and hypotheses above

(1) The diagram

G×M
φ //

Adk×χ

²²

M

χ

²²
SL(k,R)× L(k)

ψ // L(k)

is commutative.
(2) The image U of Adk is an abelian and unipotent subgroup of SL(k,R).

Proof. (1) is clear from the definition of χ.
(2) Let H be the kernel of Adk. Then H is the centralizer of K in G.

Hence H contains N and so [G,G]. Therefore U ∼= G/H is abelian.
Since G is nilpotent, it is clear that U is unipotent. ¤

5. The proof of the main theorem

We retain the notation of the preceding two sections.
Recall that K is a connected closed normal subgroup of G which is

contained in C and Gx0 ∩K is uniform in K. Clearly there is a minimal one
in the set of connected closed normal subgroups having same properties as
K. Therefore we may assume that K is minimal. First we will show that
K is contained in the center of G.

Let ψU : U × χ(M) → χ(M) denote the restriction of ψ to U × χ(M)
and let Γ = χ(x0)(= Gx0 ∩K). Then, since by Lemma 4.1 the diagram

G×M
φ //

Adk×χ

²²

M

χ

²²
U × χ(M)

ψU // χ(M)
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is commutative, it follows that each orbit of ψU is dense in χ(M). And
moreover the following is satisfied.

Claim 1 ψU is a free action.

Proof. Suppose that ψU is not free. Then, by denseness of the orbit and
abelianity of U , we may assume that u · Γ(= ψU (u, Γ0)) = Γ for some
u(6= E) ∈ U (where E is the identity matrix).

Since the linear transformation u of k maps Γ onto Γ, the nilpotent
transformation u − E maps Γ into Γ. Letting h be the real span of (u −
E)(Γ), it follows that dim(h) < dim(k). Moreover, since (u − E)(Γ) is a
lattice in h, Gx

∩ h = Γ ∩ h is a lattice in h.
Clearly h is a subalgebra of the Lie algebra c of C, but we claim that h

is an ideal of g. For the proof of this, it suffices to show that a(h) = h for
any a ∈ U .

Since U is abelian,

a(h) = a((u− E)(k)) = (u− E)(a(k)) = (u− E)(k) = h.

This shows that h is an ideal. Let H be the Lie subgroup corresponding to
h. Then H is strictly contained in K and satisfies the same conditions as
K. This contradicts minimality of K. ¤

Notice that dim(U) = 0 if and only if K is contained in the center of G,
and equivalently χ(M) consists of a single point.

Now we assume that dim(U) 6= 0. Then, Ratner’s orbit closure theo-
rem ([8, Theorem A]) says that there exists a closed connected subgroup
W ⊂ SL(k,R) such that W ⊃ U and W · Γ = U · Γ. Letting W0 de-
note the isotropy subgroup of W at Γ, it follows that χ(M) ∼= W/W0

= W/(W ∩ γ0SL(k,Z)γ−1
0 ), where γ0 ∈ SL(k,R) is a representative of

Γ ∈ SL(k,R)/SL(k,Z) = L(k). Therefore χ(M) is a connected closed
manifold and the action ψU : U × χ(M) → χ(M) is a homogeneous action.
By Claim 1, we see that ψU is also a codimension one action as φ. Thus,
from Theorem 2.1, it follows that χ(M) is a nilmanifold and W is a nilpotent
Lie group. Moreover we obtain the following strict result.

Claim 2 W is an abelian Lie group.

Proof. Since U is a simply connected abelian Lie group, by [9], the funda-
mental group of χ(M) is a free abelian group. Therefore the universal cover



64 Y. Moriyama

W̃ of W contains a uniform discrete subgroup which is abelian. From [7,
Theorem 2.3], it follows that W̃ is abelian and so W is abelian. ¤

By the fact that W is abelian and contains unipotent subgroup and
dim(W ) ≥ 2, we see that there is an element h ∈ W such that h · Γ = Γ

and the nilpotent part hn of the additive Jordan decomposition of h is
nontrivial. Selecting another basis of k if necessary, we may consider h to be
a integer matrix. Then hn is a matrix whose entries are all rational number
(cf., [1, Proposition 4.2]). Therefore we can choose an integer m(6= 0) such
that all entries of mhn are integers. It follows that {0} 6= mhn(Γ) ( Γ.
Let Γ ′ = mhn(Γ) and k′ = mhn(k). Clearly Γ ′ is a lattice in k′ and
0 < dim(k′) < dim(k). Moreover, we see the following.

Claim 3 k′ is an ideal of g

Proof. For the proof, it suffices to show that a(k′) = k′ for any a ∈ U . Since
W is abelian, it follows that hn is commutative with any a ∈ U . Therefore

a(k′) = a(mhn(k)) = mhn(a(k)) = mhn(k) = k′ ¤

By the same argument as the proof of Claim 1, nontriviality of k′ induce
a contradiction. Hence we conclude that dim(U) = 0. This proves the
following lemma.

Lemma 5.1 K is contained in the center of G.

Notice that dim(K) = 1. Applying Proposition 3.3 to K, we obtain
a fiber bundle p1 : M → M1 whose fibers are diffeomorphic to S1 and a
codimension one locally free action φ1 of G1 = G/K on M1 such that the
diagram

G×M
φ //

π1×p1

²²

M

p1

²²
G1 ×M1

φ1 // M1

is commutative, where π1 : G → G1 is the canonical homomorphism. Then,
since K is contained in the center G, the restricted action φK induce a S1

action on M . Therefore p1 : M → M1 is a principal S1-bundle. Continuing
the same arguments as above until the reduced action is free, we obtain the
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following lemma.

Lemma 5.2 There exisits a sequence of principal S1-bundles

M = M0
p1−→ M1

p2−→ M2
p3−→ · · · pr−→ Mr

such that each Mi admits a codimension one locally free action φi of a
connected nilpotent Lie group and φr is a free action.

For the free action φr on Mr, from the result of [4] and [9] it follows that
Mr is homeomorphic to a torus, therefore homeomorphic to a nilmanifold.

On the other hand, for Mi (i < r), we apply the following lemma which
is deduced from a result for the cohomology of a nilmanifold (cf., [6] and
[7]).

Lemma 5.3 Let p : E → B be a principal S1-bundle such that the base
space B is deffeomorphic (resp. homeomorphic) to a nilmanifold. Then the
total space E is deffeomorphic (resp. homeomorphic) to a nilmanifold.

By Lemma 5.2 and Lemma 5.3, we see that M is homeomorphic to a
nilmanifold. ¤

Remark 5.4 (1) By simple observation, we notice that a non-orientable
closed manifold does not admit a codimension one locally free action of a
nilpotent Lie group whose orbits are non-compact. Therefore the assump-
tion of orientability for M is unnecessary.

(2) For a codimension one action φ, it is easily shown that the set Fφ of
all orbits of φ is a foliation on M as well as for a locally free action. By this
fact and the similar argument as the proof of Lemma 3.1, φ can be reduced
to the case of a locally free action. Therefore we have the following.

Corollary 5.5 If a connected closed manifold M admits a codimension
one smooth action φ of a connected nilpotent Lie group such that any orbit
of φ is non-compact, then M is homeomorphic to a nilmanifold.
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