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Finite element schemes

based on energy-stable approximation

for two-fluid flow problems with surface tension
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Abstract. For two-fluid flow problems with surface tension we present finite element

schemes based on energy-stable approximation. In the case of no surface tension, those

schemes are unconditionally stable in the energy-sense. When there exists surface tension,

they are proved to be stable if a quantity remains bounded in the computation. Some

numerical results of rising bubble problems show the robustness and applicability of these

schemes.

Key words: finite element method, two-fluid flow problems, energy-stability, Navier-Stokes

equations, surface tension.

1. Introduction

Multifluid and multiphase flows occur in many scientific and engineer-
ing problems. Two key issues in analyzing those flows are to find the po-
sition of interfaces separating fluids and to handle the surface tension on
the interfaces. Many numerical schemes have been developed and applied
to those flow problems, see e.g., [3, 10, 11] and references therein. It is,
however, not an easy task to construct numerical schemes, stable and con-
vergent. To the best of our knowledge, there are no numerical schemes
whose solutions are proved to converge to the exact one. There are very
little discussion even for the stability of schemes. When there is no sur-
face tension, we have developed energy stable finite element schemes from
the approach of the density-dependent Navier-Stokes equations and applied
them to the Rayleigh-Taylor problem [7, 8]. These schemes are proved to be
unconditionally stable in the energy sense. In this formulation the density
is treated as a field function solved in the whole domain, and it also works
as a level set function.

Here we extend the energy-stable finite element schemes to two-fluid
flow problems with surface tension. We consider two-dimensional problems.

2000 Mathematics Subject Classification : 65M12, 76M10, 76D45.



876 M. Tabata

The interface curve is represented by a vector-valued function in one pa-
rameter, which is approximated by a piecewise linear function, that is, the
interface curve is approximated by a polygon. The function is updated
by solving numerically ordinary differential equations, an interface-tracking
method. The Navier-Stokes equations written in the weak formulation in-
cluding the surface tension, expressed also in a weak form, are solved in the
fixed finite element mesh. We employ the P2/P1 finite element to get the
velocity and the pressure, whose convergence theory has been well estab-
lished [1, 2]. When there exists surface tension, they are proved to be stable
if a quantity corresponding to L2-norm of the curvature is bounded in the
computation. In this paper we mainly consider the non-slip boundary con-
ditions. Some preliminary numerical results subject to the slip boundary
conditions have been reported in [6].

The contents of this paper are as follows. In Section 2 we formulate
two-fluid flow problems with surface tension. In Section 3 finite element
schemes for the problems are described. We discuss the stability in the
energy sense in Section 4. In Section 5 we show numerical results for bubble
rising problems.

Throughout the paper c represents a positive constant independent of
the discretization parameters, which may take a different value at each
appearance.

2. Two-fluid flow problems with surface tension

Let Ω be a bounded domain in R2 with piecewise smooth boundary Γ,
and T be a positive number. At the initial time t = 0 the domain Ω is
occupied by two immiscible incompressible viscous fluids; each domain is
denoted by Ω0

k, k = 1, 2, whose interface ∂Ω0
1 ∩ ∂Ω0

2 is denoted by Γ0
12. We

assume that Γ0
12 is a closed curve, which means that one fluid, say, fluid 1,

is in the interior of the other fluid 2. At t ∈ (0, T ) the two fluids occupy
domains Ωk(t), k = 1, 2, and the interface curve is denoted by Γ12(t). Let
ρk and μk, k = 1, 2, be the densities and the viscosities of the two fluids.
Let

u : Ω × (0, T ) → R2, p : Ω × (0, T ) → R

be the velocity and the pressure to be found. The Navier-Stokes equations
are satisfied in each domain Ωk(t), k = 1, 2, t ∈ (0, T ),



Finite element schemes for two-fluid flow problems 877

ρk

{∂u

∂t
+ (u · ∇)u

}
−∇

[
2μkD(u)

]
+ ∇p = ρkf, (1)

∇ · u = 0, (2)

where f : Ω × (0, T ) → R2 is a given function and D(u) is the strain-rate
tensor defined by

Dij(u) =
1
2

(∂ui

∂xj
+

∂uj

∂xi

)
.

The interface Γ12 is assumed to move with the velocity u at that position,
that is, any fluid particle on Γ0

12 remains on the interface Γ12(t) at any time
t. On Γ12(t), t ∈ (0, T ), interface conditions

[u] = 0, [−pn + 2μD(u)n] = σ0κn (3)

are imposed, where [ · ] means the difference of the values approached from
both sides to the interface, κ is the curvature of the interface, σ0 is the
coefficient of surface tension, and n is the unit normal vector. On the
boundary Γ, t ∈ (0, T ), the non-slip conditions

u = 0 (4)

are imposed. Initial conditions at t = 0 for the velocity

u = u0 (5)

are given.
Our purpose is to construct numerical schemes for this problem. In or-

der to derive a scheme we reformulate the problem as follows: find functions

χ : [0, 1] × (0, T ) → R2, (u, p) : Ω × (0, T ) → R2 × R

satisfying for any t ∈ (0, T ),

∂χ

∂t
= u(χ, t), (s ∈ [0, 1]) (6)

and (1) and (2) in Ωk(t), k = 1, 2, with interface conditions (3), boundary
conditions (4), and initial conditions (5) and

χ( · , 0) = χ0, (7)

where χ0 : [0, 1] → R2 is an initial closed curve in Ω. For any t, χ(1, t) =
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χ(0, t) and

C(t) = {χ(s, t); s ∈ [0, 1]}

is a closed curve in Ω. C(t) is nothing but the interface curve at t, and Ωk(t),
k = 1, 2, are defined as the interior and the exterior of C(t), respectively.

Remark 2.1 (4) can be replaced by the slip boundary conditions,

u · n = 0, D(u)n × n = 0. (8)

The following discussion is still valid in this case with a little modification.
See Remark 4.5.

3. Energy-stable finite element approximation

We now present two finite element schemes based on the energy-stable
approximation [8] for the problem described in the previous section. We
prepare function spaces,

X = {χ ∈ H1(0, 1)2; χ(1) = χ(0)}, V = H1
0 (Ω)2, Q = L2

0(Ω).

We find a set of functions

(χ, u, p) : (0, T ) → X × V × Q.

Let Xh, Vh, and Qh be finite-dimensional approximation spaces of X, V ,
and Q. Let Δt be a time increment and NT = �T/Δt�. We seek approxi-
mate solutions χn

h, un
h, and pn

h at t = nΔt in Xh, Vh, and Qh, respectively.
More precisely, these approximate function spaces are constructed as fol-
lows. Dividing the domain Ω into a union of triangles, we use P2 and P1
finite element spaces for Vh and Qh, respectively. They are fixed for all time
steps n. On the other hand, Xh is composed of functions obtained by the pa-
rameterization of polygons. We denote by {sn

i ∈ [0, 1]; i = 0, . . . , Nn
x } the

set of parameter values such that sn
0 = 0 and sn

Nn
x

= 1 and that {χn
h(sn

i ); i =
0, . . . , Nn

x − 1} are vertices of a polygon. The number Nn
x may change

depending on n. We also introduce an auxiliary function space Φh con-
sisting of piecewise constant functions on elements. We denote by D̄Δt the
backward difference operator, i.e.,

D̄Δtu
n
h =

un
h − un−1

h

Δt
.
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Scheme I Find {(χn
h, un

h, pn
h) ∈ Xh × Vh ×Qh; n = 1, . . . , NT } satisfying

D̄Δtχ
n
h =

3
2
un−1

h (χn−1
h )− 1

2
un−2

h (χn−1
h −Δtun−1

h (χn−1
h )), ∀sn−1

i (9)(
ρn−1

h D̄Δtu
n
h +

1
2
un

hD̄Δtρ
n
h, vh

)
+a1(ρn

h, un−1
h , un

h, vh)

+a0(ρn
h, un

h, vh)+ b(vh, pn
h)

=(ρn
hΠhfn, vh)−dh(χn

h, vh;Cn
h ), ∀vh∈Vh (10)

b(un
h, qh)=0, ∀qh∈Qh (11)

subject to the initial conditions

χ0
h = Πhχ0, u0

h = Πhu0. (12)

Here Πh is the interpolation operator to the corresponding finite-dimension-
al space, ( · , · ) shows the inner product in L2(Ω)2, and

a1(ρ, w, u, v) =
∫

Ω

1
2
ρ
{
[(∇ · w)u] · v − [(∇ · w)v] · u

}
dx,

a0(ρ, u, v) =
∫

Ω
2μ(ρ)D(u) : D(v)dx,

b(v, q) =−
∫

Ω
(∇ · v)qdx,

dh(χ, v; Ch) =
Nx∑
i=1

σ0D̄Δsχi · D̄Δsvi
(si − si−1)2

|χi − χi−1|
,

μ(ρ) = μ1
ρ2 − ρ

ρ2 − ρ1
+ μ2

ρ − ρ1

ρ2 − ρ1
.

Cn
h is a polygon obtained from χn

h. (9) is the Adams-Bashforth approxi-
mation of (6). The number of particles on the interface at time step n is
denoted by Nn

x . We control Nn
x so that the particles may be distributed

quasi-uniformly, i.e., we add or delete particles by judging distances of neigh-
boring particles. A more precise description of (9) is as follows. We denote
Xh at time step n by Xh(Nn

x ). Let χ
n−1/2
h ∈ Xh(Nn−1

x ) be an intermediate
function such that for i = 0, . . . , Nn−1

x at sn−1
i ,

χ
n−1/2
h −χn−1

h

Δt
=

3
2
un−1

h (χn−1
h )− 1

2
un−2

h (χn−1
h −Δtun−1

h (χn−1
h )). (13)
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Adding and deleting particles to χ
n−1/2
h , we get χn

h ∈ Xh(Nn
x ). Once χn

h is
known, we can define Ωn

hk, k = 1, 2, as the interior and the exterior of the
polygon Cn

h , respectively. In (10) ρn
h ∈ Φh is an auxiliary function defined

by

ρn
h(K) = ρk

for the element K included in Ωn
hk. For the element K intersecting with Cn

h ,
ρn

h(K) is defined as the density averaged by the areas occupied by ρk. Equa-
tions (10) and (11) are approximations of the corresponding weak forms,
which are derived as follows. Let ρ : Ω× (0, T ) → R be a function governed
by the convection equation,

∂ρ

∂t
+ u · ∇ρ = 0. (14)

Although the density of our problem is discontinuous, we suppose that it is
approximated by a function having the first order derivatives. We multiply
(14) by u/2, and add it to (1). Multiplying the equation by a test function
v ∈ V , integrating by parts, and incorporating the interface conditions (3)
and the boundary conditions (4), we obtain

(
ρ
∂u

∂t
+

1
2
u

∂ρ

∂t
, v

)
+ a1(ρ, u, u, v) + a0(ρ, u, v) + b(v, p)

= (ρf, v) − d(χ, v; C), (15)

where

d(χ, v; C) ≡
∫
C
σ0

∂χ

∂�
· ∂v

∂�
d�

is a bilinear form derived from the surface tension, and � is the arclength
of the interface curve C. Here we have used the fact that κn is equal to the
second derivative of χ with respect to � and the integration by parts on the
closed curve C. The weak formulation of (2) is nothing but

b(u, q) = 0,

where q ∈ Q is a test function. (10) and (11) consist of an energy-stable
finite element scheme developed in [8] when there is no term dh. The bilinear
form dh is an approximation of d.
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Scheme II We add the term

Δt dh(un
h, vh; Cn

h )

to the left-hand side of (10). The other parts are same as Scheme I.

Since the fluids are incompressible, each area Ωk(t) remains constant.
In order to keep this property we correct χ

n−1/2
h after (13) by expanding or

shrinking Cn−1/2
h from the centroid. Thus our schemes keep the property

meas Ωn
hk = meas Ω0

hk for all n.

Remark 3.1 (i) In deriving the weak form (15), we have assumed that
ρ had the first order derivatives. In the scheme (10), however, we do not
need any regularity on ρh, which enables us to use ρh ∈ Φh.
(ii) Scheme II is obtained when the curvature of the interface is computed
implicitly from χn+1

h , which is approximated by

χn
h + Δtun

h.

For the idea of the introduction of this term we refer to [9]. Scheme II
is more stable than Scheme I, which is recognized by numerical results in
Section 5.
(iii) For the first step n = 1 we replace (9) by the Euler method.

4. Stability in energy

Now we consider the stability in energy of Schemes I and II. We equip
the function spaces Vh, and Qh with the norms H1(Ω)2 and L2(Ω), respec-
tively. They are denoted simply by || · ||1 and || · ||0. In (10) the functions
ρn−1

h , ρn
h, un−1

h , and χn
h are all known. The system of (10) and (11) is a

generalized Stokes problem in un
h and pn

h. Since the P2/P1 element satisfies
the inf-sup condition, the problem is uniquely solvable.

For a series of functions φh = {φn
h}

NT
n=0 in a Banach space W we prepare

norms defined by

||φh||�∞(W ) ≡max{||φn
h||W ; 0 ≤ n ≤ NT },

||φh||�2(W ) ≡
{

Δt

NT∑
n=0

||φn
h||2W

}1/2
.
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For a closed curve C we denote the L2-norm of a function v on the curve by

||v||0,C =

√∫
C
|v|2d�.

Since Cn
h is a polygon, we can apply the trace theorem; there exists a positive

constant c such that for any v ∈ H1(Ω) it holds that

||v||0,Cn
h
≤ c||v||1.

In general, the constant c depends on the length and the smoothness of the
curve. We assume that it does not depend on h and n and that the curve
is not self-intersecting for simplicity.

Hypothesis 4.1 (i) Cn
h is not self-intersecting.

(ii) There exists a positive constant c0 independent of h and n such that

||v||0,Cn
h
≤ c0||v||1 (∀v ∈ H1(Ω)). (16)

Remark 4.2 (i) If u is continuous and satisfies the Lipschitz condition
with respect to x, the ordinary differential equation (6) has a unique solution
χ(s) for each s, which implies that C(t) is not self-intersecting. On the other
hand, the approximation Cn

h , constructed from the solution χn
h of (9), may

be self-intersecting, especially when Δt is large.
(ii) If Cn

h is divided into a number (independent of h and n) of parts and
if the gradients ∇χn

h are uniformly (in h and n) bounded on each part,
then assumption (16) is satisfied. Although (16) looks like a rather mild
assumption, it seems not so easy to give a sufficient condition for it on our
schemes I and II.

Let χh ∈ Xh and {si ∈ [0, 1]; i = 0, . . . , Nx} be the set of parameters,
s0 = 0, sNx = 1, χh(1) = χh(0). We define the quantity ||χh||H2

0,h(Ch) by

||χh||H2
0,h(Ch) =

{Nx−1∑
i=0

|(D2
Δ�χh)(si)|2�i

}1/2
, (17)

where

�i =
1
2
(�i+1/2 + �i−1/2), �i+1/2 = |χh(si+1) − χh(si)|,

(D2
Δ�χh)(si) =

(χh(si+1) − χh(si)
�i+1/2

− χh(si) − χh(si−1)
�i−1/2

) /
�i.
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Proposition 4.2 Suppose that Schemes I or II has a solution (ρn
h, un

h, pn
h)

∈ Φh × Vh ×Qh, n = 0, . . . , NT , and that Hypothesis 4.1 is satisfied. Then
there exists a positive constant c independent of h and Δt such that

||√ρhuh||�∞(L2), ||
√

μhD(uh)||�2(L2)

≤ c
{
||
√

ρ0
hu0

h||0 + ||√ρh Πhf ||�2(L2) +
c0σ0√
μmin

||χh||�2(H2
0,h(Ch))

}
,(18)

where μmin = min(μ1, μ2).

Proof. We substitute vh = un
h in (10). The first term is equal to

(
ρn−1

h D̄Δtu
n
h +

1
2
un

hD̄Δtρ
n
h, un

h

)
= D̄Δt

(1
2
||
√

ρn
hun

h||20
)

+
1
2
||
√

Δt
√

ρn−1
h D̄Δtu

n
h||20.

The second term vanishes. The third term is estimated as

a0(ρn
h, un

h, un
h)≥ 1

2
a0(ρn

h, un
h, un

h) + μmin||D(un
h)||20

≥ 1
2
a0(ρn

h, un
h, un

h) + c2
1μmin||un

h||21,

where c1 is a positive constant in the Korn inequality. The fourth term
vanishes from (11). The first term of the right-hand side is evaluated as

|(ρn
hΠhfn, un

h)| ≤ ε||
√

ρn
hun

h||20 +
1
4ε

||
√

ρn
hΠhfn||20

where ε is any positive constant. The second term of the right-hand side is
rewritten as

−dh(χn
h, un

h; Cn
h ) =

Nn
x −1∑
i=0

σ0(D2
Δ�χ

n
h)(sn

i )un
h(sn

i )�i

by means of summation by parts. The right-hand side is evaluated by

σ0||χn
h||H2

0,h(Ch)

{Nn
x −1∑
i=0

un
h(sn

i )2�i

}1/2

≤ cσ0||χn
h||H2

0,h(Ch)||un
h||0,Cn

h

≤ cc0σ0||χn
h||H2

0,h(Ch)||un
h||1
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≤ cc2
0σ

2
0

1
c2
1μmin

||χn
h||2H2

0,h(Ch) + c2
1μmin||un

h||21.

Combining these estimates and applying the discrete Gronwall inequality,
we get (18). In Scheme II we have another term Δtdh(un

n, un
h; Cn

H) in the
left-hand side, which increases the stability. �

Remark 4.4 (i) There are correspondences,

||√ρhuh||�∞(L2) ∼ max
{{∫

Ω
ρ(t)|u(t)|2dx

}1/2
; 0 ≤ t ≤ T

}
,

||χh||�2(H2
0,2(Ch)) ∼

{∫ T

0
dt

∫
C(t)

κ2d�
}1/2

.

Hence, (18) is a discrete version of the fact that the total energy remains
bounded if the curvature is bounded in L2-norm.
(ii) The result (18) is still valid in the case where σ0 = 0. If there is no
surface tension, the total energy remains bounded.

Remark 4.5 Proposition 4.2 is valid also in the case of the slip boundary
conditions (8). Then we impose the condition (vh · n)(P ) = 0 at nodes on
Γ for the function vh in Vh. When Ω is a circle, the Korn inequality does
not hold. In this case we have to impose another condition to Vh such that
Vh is orthogonal to the rigid movement. For the details we refer to [4].

5. Numerical results

We show numerical results of rising bubble problems. Let Ω ≡ (0, 1)×
(0, 2) and T = 10. We set

χ0(s) =
(1

2
+

1
5

cos 2πs,
2
5

+
1
5

sin 2πs
)
.

The initial domains Ω0
1 and Ω0

2 are shown in Fig. 1. We take the following
values,

(ρ1, μ1) = (0.1, 1), (ρ2, μ2) = (100, 2)

and the initial velocity and the gravity,

u0 = (0, 0)T , f = (0, −1)T .

Non-slip boundary conditions (4) are imposed. We use three meshes, T1/16,
T1/32, and T1/64. In T1/n the sides AB and CD are divided into n equal seg-



Finite element schemes for two-fluid flow problems 885

�1
0

�2
0

A �0,0� B�1,0�

C�1,2�D �0,2�

Fig. 1. Statement of the problem and a mesh T1/16.

ments, and the other sides are divided into 2n. The total element numbers
are 1,138, 4,580, and 18,444, respectively. In Fig. 1 mesh T1/16 is shown.
We use a simple notation K(Ch) defined by

K(Ch) = ||χh||�2(H2
0,h(Ch)).

5.1. The comparison of Schemes I and II
We compare the stability property of Schemes I and II. When σ0 = 0,

both schemes are identical and unconditionally energy-stable by Proposi-
tion 4.2, i.e., for any Δt > 0

max
{∫

Ω
ρn

h|un
h|2dx; n = 0, . . . , NT

}
≤ M0,

where M0 is a positive constant. In the case of σ0 > 0 we see Scheme II is
more stable than Scheme I. Letting σ0 = 1.0, we solve the problem on mesh
T1/32. We set Δt = 1/8. In Scheme I the computed interface becomes serrate
and the value ||χn

h||H2
0,h(Ch) grows up. We cannot simulate the phenomenon.

In Scheme II we can obtain the solution depicted in Fig. 2, where interface
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Fig. 2. Interfaces at t = 0, 2, . . . , 10 for Δt = 1/8 by Scheme II (left), and for
Δt = 1/16 by Scheme I (center) and by Scheme II (right). σ0 = 1.

curves are shown at t = 0, 2, 4, 6, 8, 10. K(Ch) is equal to 49.7. When
Δt = 1/16 we can get the solutions for both schemes. While small jags
are found in the interface curves obtained by Scheme I at t = 6, 8, 10, the
curves obtained by Scheme II are smooth. K(Ch) is equal to 88.16 and
45.52 for Schemes I and II, respectively. Since Scheme II is more stable
than Scheme I, we use Scheme II hereafter.

5.2. The dependence on the subdivision
Setting σ0 = 1, we compare numerical results obtained from meshes

T1/16, T1/32, and T1/64. Time increment Δt is chosen to be 1/16, 1/32, and
1/64, respectively. The results are shown in Fig. 3. From these figures
Hypothesis 4.1 seems to be satisfied. K(Ch) is equal to 34.09, 45.88 and
55.66, respectively.

5.3. The effect of the coefficient of surface tension
We use mesh T1/32 and set Δt = 1/32. We take σ0 = 0.0, 0.1, 1.0, 2.0.

Their interface curves are shown in Figs. 4 and Fig. 3 (σ0 = 1). As σ0

becomes larger, the shape of the interface becomes more round because of
larger surface tension. Fig. 5 shows the elevations of the pressure at t = 5.0.
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Fig. 3. Interfaces at t = 0, 2, . . . , 10 solved on T1/16 (left), T1/32 (center), and
T1/64 (right). σ0 = 1.

Fig. 4. Interfaces at t = 0, 2, . . . , 10. σ0 = 0 (left), σ0 = 0.1 (center), and σ0 = 2
(right).
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Fig. 5. Elevations of the pressure at t = 5.0. σ0 = 0.0 (left), 1.0 (center), 2.0
(right).

Fig. 6. Interfaces and streamlines at t = 2, 4, . . . , 10 subject to the non-slip
boundary conditions.

In these figures the front side is CD. When σ0 becomes large, the pressure
in Ω1 increases. In these four cases K(Ch) is equal to 80.21, 58.57, 45.88
and 43.00, respectively.

5.4. The effect of boundary conditions
We consider problems of non-slip and slip boundary conditions. We use

mesh T1/32 and set Δt = 1/32, and σ0 = 1.0. Figs. 6 and Fig. 7 show the
interfaces and the streamlines. The intervals of streamlines are same for
both figures. In the case of the slip boundary conditions the flow pattern
is larger and the bubble goes up faster, which induces the lower pressure in



Finite element schemes for two-fluid flow problems 889

Fig. 7. Interfaces and streamlines at t = 2, 4, . . . , 10 subject to the slip boundary
conditions.

the rear and the hollow in the lower part of the interface. The value K(Ch)
is equal to 46.44 in the slip boundary condition case. K(Ch) in the non-slip
boundary condition case is 45.88 as mentioned in the previous subsection.

6. Concluding remarks

We have developed finite element schemes for two-fluid flow problems
with surface tension based on energy-stable approximation and analysed
the stability. In the case of no surface tension, the schemes are stable
in the energy sense. When surface tension is present, we have shown a
numerical criterion for the schemes to be stable in the energy sense. We
have examined the criterion in bubble rising problems. These are robust
and mathematically sound schemes.
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