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Riesz decomposition for superbiharmonic functions

in the unit ball

T. Futamura, K. Kitaura and Y. Mizuta
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Abstract. For a superbiharmonic function u in the unit ball with the growth con-

dition of spherical means, we show that u is represented as the sum of a generalized

Riesz potential and a biharmonic function. This representation is referred to as Riesz

decomposition for superbiharmonic functions.

The superharmonic case is treated similarly.
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1. Introduction

A superharmonic function on Rn is represented locally as the sum of a
Riesz potential and a harmonic function. This representation is referred to as
Riesz decomposition (see e.g. Armitage-Gardiner [2], Heyman-Kennedy [8]
and Mizuta [12]). Our aim in this paper is to establish Riesz decomposition
for superbiharmonic functions on the unit ball B.

A function u on an open set Ω ⊂ Rn is called biharmonic if u ∈ C4(Ω)
and (−∆)2u = 0 on Ω, where ∆ denotes the Laplacian and (−∆)2u =
−∆(−∆u). We say that a locally integrable function u on Ω is superbihar-
monic in Ω if

(1) µ = (−∆)2u is a nonnegative measure on Ω, that is,

∫

Ω

u(x)(−∆)2ϕ(x)dx ≥ 0 for all nonnegative ϕ ∈ C∞0 (Ω);

(2) u is lower semicontinuous on Ω;
(3) every point of Ω is a Lebesgue point for u, that is,

u(x) = lim
r→0

1
ωnrn−1

∫

S(x,r)

u(y) dS(y)
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for every x ∈ Ω, where ωn is the surface area of a unit sphere and S(x, r)
is the sphere centered at x with radius r.

If (−∆)2T ≥ 0 on Rn in the sense of distribution, then one can find a
superbiharmonic function u on Rn such that

T = u in the sense of distribution.

This is an easy consequence of Riesz decomposition theorem (see expression
(2.1) below).

We denote by H2(Ω) and SH2(Ω) the space of biharmonic functions
on Ω and the space of superbiharmonic functions on Ω. For fundamental
properties of biharmonic functions, we refer the reader to Nicolesco [15] and
Aronszajn, Creese and Lipkin [3].

Consider the Riesz kernel of order 4 defined by

R4(x) =





|x|4−n

2(4− n)(2− n)ωn
if n 6= 2, 4,

(−1)n/2

4ωn
|x|4−n log

(
1
|x|

)
if n = 2 or 4.

Then we know (see Hayman and Korenblum [9]) that

(−∆)2R4 = δ0,

where δy denotes the Dirac measure at y, so that R4 is superbiharmonic in
Rn.

We denote by B(x, r) the open ball centered at x with radius r, whose
boundary is written as S(x, r) = ∂B(x, r). We use the notation B to denote
the unit ball B(0, 1). For a Borel measurable function u on Rn, we define
the spherical mean by

M(u, x, r) =
1

ωnrn−1

∫

S(x,r)

u dS.

If x = 0, then we write simply B(r) = B(0, r), S(r) = S(0, r) and M(u, r) =
M(u, 0, r).

Recently, the second and the third authors studied the Riesz decomposi-
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tion for superbiharmonic functions u on Rn such that M(u, 2r)−4M(u, r) is
bounded for r > 1. In fact, they showed the following result ([11, Theorems
1.1, 1.2]).

Theorem A Let u be a superbiharmonic function on Rn such that
M(u, 2r)− 4M(u, r) is bounded for r > 1. Set µ = (−∆)2u.

(1) If n ≤ 4, then u is biharmonic in Rn.
(2) If n ≥ 5, then

u(x) =
∫

Rn

R4(x− y)dµ(y) + h(x) for x ∈ Rn,

where h is a biharmonic function on Rn.

Our aim in this paper is to extend Theorem A to the unit ball B. For
this purpose, we introduce a generalized kernel function K2,L(x, y) such that

(−∆)2K2,L(·, y) = δy

for fixed y ∈ B and

u(x) =
∫

B

K2,L(x, y)dµ(y) + hL(x)

for all x ∈ B, when u is a superbiharmonic function on B satisfying a growth
condition near the boundary ∂B, where µ = (−∆)2u ≥ 0, L is an integer
determined by the growth condition on u and hL is biharmonic in B. Riesz
decomposition for superbiharmonic functions on the unit disk was studied
by Abkar-Hedenmalm [1]. They showed that under certain condition near
the unit circle, superbiharmonic function is represented as the sum of a
biharmonic Green potential and a biharmonic function. For related results,
we also refer to the papers by Futamura, Kishi and Mizuta [4], Ishikawa,
Nakai and Tada [10] and Nakai and Tada [13], [14].

We would like to express our hearty thanks to referee for his valuable
comments.
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2. Preliminaries and statement of result

Throughout this paper, let C denote various constants independent of
the variables in question.

We denote a point of the n-dimensional Euclidean space Rn by x =
(x1, x2, . . . , xn). We write

x · y = x1y1 + x2y2 + · · ·+ xnyn

for the inner product of x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
For a multi-index λ = (λ1, λ2, . . . , λn) and a point x = (x1, x2, . . . , xn) ∈

Rn, we set

|λ| = λ1 + λ2 + · · ·+ λn,

λ! = λ1!λ2! · · ·λn!,

xλ = x1
λ1x2

λ2 · · ·xn
λn

and

Dλ =
(

∂

∂x

)λ

=
(

∂

∂x1

)λ1
(

∂

∂x2

)λ2

· · ·
(

∂

∂xn

)λn

.

Following the book by Hayman-Kennedy [8], we consider the remainder term
in the Taylor expansion of R4(· − y) given by

R4,L(x, y) =




R4(x− y)−

∑

|λ|≤L

xλ

λ!
(
DλR4

)
(−y) when |y| ≥ 1/2,

R4(x− y) when |y| < 1/2,

where L is an integer; if L ≤ −1, then we set R4,L(x, y) = R4(x− y). Here
note that

(−∆)2R4,L(·, y) = δy.

Then, if u is superbiharmonic in a neighborhood of B(R), then Riesz de-
composition theorem implies that
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u(x) =
∫

B(R)

R4,L(x, y)dµ(y) + hR,L(x) (2.1)

for every x ∈ B(R), where µ = (−∆)2u, L is an integer and hR,L ∈
H2(B(R)). This implies that superbiharmonic functions are continuous if
n = 2, 3.

For x ∈ B and y ∈ B \ {0}, we have

|x− y|2 = |x− ỹ + tỹ|2 = |x− ỹ|2 + s = |x− ỹ|2(1 + s/|x− ỹ|2)

where ỹ = y/|y|, t = 1− |y| and s = t2 + 2t(x− ỹ) · ỹ. For a real number γ,
consider the binomial expansion of (1 + a + b)γ , that is,

(1 + a + b)γ =
∞∑

m=0

(
γ

m

)
(a + b)m =

∞∑
m=0

m∑

k=0

(
γ

m

)(
m

k

)
akbm−k.

The double series converges absolutely for |a|+ |b| < 1. Hence we have the
following result.

Lemma 2.1 Let γ be as above. If
√

2(1− |y|) < |x− y| < √
2|x− ỹ|, then

|x− y|2γ =
∑

`

( ∑

{m:`/2≤m≤`}
am,`|x− ỹ|2γ−2m(x · ỹ − 1)2m−`

)
t`,

where am,` = am,`;γ =
(

γ
m

)(
m

`−m

)
22m−`.

Now we define a generalized kernel function K2,L(x, y). First, if n 6= 2, 4,
then we set

K2,L(x, y) =





1
2(4− n)(2− n)ωn

|x− y|4−n for y ∈ B(1/2),

1
2(4− n)(2− n)ωn

{
|x− y|4−n −

L∑

`=0

ϕ`(x, ỹ)(1− |y|)`

}

for y ∈ B \B(1/2),

where
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ϕ`(x, ỹ) =
∑

{m:`/2≤m≤`}
am,`|x− ỹ|4−n−2m(x · ỹ − 1)2m−`

with am,` = am,`;(4−n)/2. Note that ϕ`(·, ỹ) is biharmonic in B in this case.
Next, we deal with the case n = 2 or 4. We have

log
1

|x− y| = log
1

|x− ỹ| −
1
2

log
(

1 +
s

|x− ỹ|2
)

= log
1

|x− ỹ| −
1
2

∞∑
m=1

(−1)m+1

m

(
s

|x− ỹ|2
)m

= log
1

|x− ỹ| +
∞∑

`=1

{ ∑

`/2≤m≤`

bm,`|x− ỹ|−2m(x · ỹ − 1)2m−`

}
t`,

where bm,` = (−1)m

m

(
m

`−m

)
22m−`−1. Then we set

K2,L(x, y) =





(−1)n/2

4ωn
|x− y|4−n log

1
|x− y| for y ∈ B(1/2),

(−1)n/2

4ωn
|x− y|4−n

{
log

|x− ỹ|
|x− y| −

L∑

`=1

ϕ`(x, ỹ)(1− |y|)`

}

for y ∈ B \B(1/2),

where

ϕ`(x, ỹ) =
∑

`/2≤m≤`

bm,`|x− ỹ|−2m(x · ỹ − 1)2m−`.

Lemma 2.2 Let L ≥ 0 and 0 < r < r′ < 1. Then

|K2,L(x, y)| ≤ C(1− |y|)L+1

whenever x ∈ B(0, r) and y ∈ D(r′) = {z ∈ B : |z| > (
√

2− 1)(
√

2 + r′)}.
Proof. To show this when n 6= 2, 4, for fixed x ∈ B and ξ ∈ ∂B consider

f1(t) = |x− ξ + tξ|2−n
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and

f2(t) = |x− ξ + tξ|4−n.

Here note that

ϕ`(x, ξ) =
f

(`)
2 (0)
`!

=
4− n

`

{
f

(`−1)
1 (0)
(`− 1)!

(x− ξ) · ξ +
f

(`−2)
1 (0)
(`− 2)!

}
.

For t < |x− ξ|, we see from [8, Lemma 4.1 of chapter 4] that

∣∣∣∣
f

(`)
1 (0)
`!

∣∣∣∣ ≤ A`|x− ξ|2−n−`,

so that

|ϕ`(x, ξ)| ≤ B`|x− ξ|4−n−`,

where A` = (n + `− 3)(n + `− 4) · · · (` + 1)/(n− 3)! and B` = 2|n− 4|(n +
`− 4)(n+ `− 5) · · · (`+1)/(n− 3)!. Applying Taylor’s theorem, we have for
t < (

√
2− 1)|x− ξ|

∣∣∣∣f2(t)−
L∑

`=0

f
(`)
2 (0)
`!

t`
∣∣∣∣ =

∣∣∣∣
∞∑

`=L+1

f
(`)
2 (0)
`!

t`
∣∣∣∣

≤
∞∑

`=L+1

B`|x− ξ|4−n−`t`

= |x− ξ|3−n−LtL+1
∞∑

k=0

BL+k+1

(
t

|x− ξ|
)k

≤ |x− ξ|3−n−LtL+1
∞∑

k=0

BL+k+1

(√
2− 1

)k

≤ C|x− ξ|3−n−LtL+1.

Thus the present lemma with n 6= 2, 4 follows.
In the same way as above, we give a proof in case n = 4. ¤
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Remark 2.3 In view of Hayman-Korenblum [9], biharmonic Green’s func-
tion of B is given by

G2(x, y) =
1

2(4− n)(2− n)ωn

{
|x− y|4−n − (|x||x∗ − y|)4−n

− n− 4
2

(|x||x∗ − y|)2−n(1− |x|2)(1− |y|2)
}

when n ≥ 5, where x∗ = x/|x|2. Noting that |x− y|2 = (|x||x∗ − y|)2 − (1−
|x|2)(1− |y|2), we have the expansion

|x− y|4−n =

(|x||x∗ − y|)4−n −
∑
m

(n−4
2

m

)
(|x||x∗ − y|)4−n−2m(1− |x|2)m(1− |y|2)m.

Unfortunately, each term on the right sum might not be biharmonic in B
as a function of x (except for m = 1).

Now we are ready to state our main theorem.

Theorem 2.4 Let u ∈ SH2(B) and µ = (−∆)2u.

(1) If limr→1 M(u, r) < ∞, then

u(x) =
∫

B

K2,2(x, y) dµ(y) + h(x) for x ∈ B, (2.2)

where h ∈ H2(B).
(2) If lim supr→1(1− r)sM(u, r) < ∞ for some s > 0, then

u(x) =
∫

B

K2,L(x, y) dµ(y) + hL(x) for x ∈ B, (2.3)

where hL ∈ H2(B) and L > s + 2.

Remark 2.5 Let u be a biharmonic function on B. By the Almansi
expansion, there exist harmonic functions u1 and u2 on B such that u(x) =
u1(x) + |x|2u2(x). Then we see that M(u, r) = u1(0) + u2(0)r2, so that
M(u, r) is bounded.
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Remark 2.6 In view of the paper by Futamura-Mizuta [6], we see that if
u is a superbiharmonic function on B such that

lim inf
r→1

(1− r)−1M(|u|, r) < ∞,

then

u(x) =
∫

B

G2(x, y) dµ(y) + (1− |x|2)h(x) for x ∈ B,

where h is harmonic in B.

Remark 2.7 One sees from [1, Proposition 2.3] and [6, Lemma 4.2] that
the limit

lim
r→1

M(u, r)

exists in (−∞,+∞], when u is a superbiharmonic function on B.

3. Spherical means for superbiharmonic functions

First we collect some fundamental properties of K2,L(x, y).

Lemma 3.1 The following hold :

(1) K2,L(·, y) is biharmonic in B \ {y} for each fixed y ∈ B.
(2) K2,L(·, y) is superbiharmonic in B and (−∆)2K2,L(·, y) = δy for each

fixed y ∈ B.
(3) K2,L(x, y) = O((1− |y|)L+1) as |y| → 1 for fixed x ∈ B.

Lemma 3.1 gives the following Lemma.

Lemma 3.2 Let u ∈ SH2(B) and µ = (−∆)2u. Suppose

∫

B

(1− |y|)L+1dµ(y) < ∞

for some integer L. Then u is of the form

u(x) =
∫

B

K2,L(x, y)dµ(y) + hL(x),
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where hL ∈ H2(B).

For 0 < t ≤ r, set

g(t, r) = R4(re1)−R4(te1) +
1
2n

(
t2∆R4(re1)− r2∆R4(te1)

)
,

where e1 = (1, 0, . . . , 0) ∈ ∂B, that is,

g(t, r) =





− 1
4ω2

{
r2 log

1
r
− t2 log

1
t

+ t2
(

log
1
r
− 1

)
− r2

(
log

1
t
− 1

)}

if n = 2,

1
4ω4

{
log

1
r
− log

1
t
− 1

4

(
t2r−2 − r2t−2

)}
if n = 4,

1
2(4− n)(2− n)ωn

{
r4−n − t4−n +

4− n

n

(
t2r2−n − r2t2−n

)}

otherwise.

Note that g(t, r) is strictly decreasing as a function of t for fixed r > 0 (cf.
[5, Lemma 4.4]).

Lemma 3.3 Let u ∈ SH2(B) and µ = (−∆)2u. Then there exist positive
constants a, b such that

M(u, r) =
∫

B(r)\B(1/2)

g(|y|, r) dµ(y) + H(r) + a + br2

for 1/2 < r < 1, where

H(r) = R4(re1)µ(B(1/2)) +
1
2n

∆R4(re1)
∫

B(1/2)

|y|2dµ(y).

Proof. For 0 < r1 < r2 < 1, expression (2.1) implies that

u(x) =
∫

B(rj)

R4,2(x, y)dµ(y) + hj(x) (x ∈ B(rj)),

where hj ∈ H2(B(rj)), j = 1, 2. Then, by use of [5, Lemma 4.4], we find
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M(u, r) =
1

ωnrn−1

∫

S(r)

( ∫

B(rj)

R4,2(x, y)dµ(y)
)

dS(x) + M(hj , r)

=
∫

B(r)\B(1/2)

g(|y|, r)dµ(y) + H(r) + aj + bjr
2

for 1/2 < r < r1. Hence it follows that

a1 + b1r
2 = a2 + b2r

2 for 0 < r < r1

which implies a1 = a2 and b1 = b2. Hence the proof is completed. ¤

Lemma 3.4 There exists a constant C1 ≥ 1 such that

C−1
1 (r − t)3 ≤ g(t, r) ≤ C1(r − t)3 for

1
2
≤ t ≤ r < 1.

Proof. Fix r such that 1/2 ≤ r < 1. Note that

(
tn−1g′(t, r)

)′ =





t

ω2
(log(1/t)− log(1/r)) if n = 2,

tn−1

(n− 2)ωn
(t2−n − r2−n) if n 6= 2.

Then we see that

(
tn−1g′(t, r)

)′ ≈ r − t for
1
2
≤ t ≤ r.

Here we write f1 ≈ f2 for two positive functions f1 and f2, if and only
if there exists a constant A ≥ 1 such that A−1f1 ≤ f2 ≤ Af1. Since
g(r, r) = g′(r, r) = 0, we have for 1/2 ≤ t ≤ r

g(t, r) =
∫ r

t

s1−n

( ∫ r

s

(
un−1g′(u, r)

)′
du

)
ds ≈

∫ r

t

s1−n

( ∫ r

s

(r − u) du

)
ds

=
∫ r

t

( ∫ u

t

s1−n ds

)
(r − u) du ≈

∫ r

t

(u− t)(r − u) du =
1
6
(r − t)3.

Thus Lemma 3.4 follows. ¤
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Lemma 3.5 Let u ∈ SH2(B) and µ = (−∆)2u.

(1) If limr→1 M(u, r) < ∞, then

∫

B

(1− |y|)3dµ(y) < ∞. (3.1)

(2) If lim supr→1(1− r)sM(u, r) < ∞ for some s > 0, then

∫

B

(1− |y|)s+3

(
log

(
e

1− |y|
))−γ

dµ(y) < ∞ (3.2)

for each γ > 1. In particular,
∫

B

(1− |y|)βdµ(y) < ∞

for each β > s + 3.

Proof. By lemmas 3.3 and 3.4, we obtain

M(u, r) ≥ C−1
1

∫

B(r)\B(1/2)

(r − |y|)3dµ(y) + O(1) as r → 1.

First we assume that limr→1 M(u, r) < ∞. Then we see that

lim
r→1

∫

B(r)\B(1/2)

(r − |y|)3dµ(y) < ∞,

which implies (3.1) by Fatou’s theorem.
Next we assume that lim supr→1(1 − r)sM(u, r) < ∞ for some s > 0.

Then we have

lim sup
r→1

(1− r)s

∫

B(r)\B(1/2)

(r − |y|)3dµ(y) < ∞,

which implies that

α = sup
r∈[5/6,1)

(1− r)s+3µ(A(r)) < ∞,
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where A(r) = {x : r − 2(1− r) ≤ |x| < r − (1− r)/2}. Hence we establish

∫

B\B(5/8)

(1− |y|)s+3

(
log

(
e

1− |y|
))−γ

dµ(y)

=
∞∑

j=3

∫

A(1−2−j)

(1− |y|)s+3

(
log

(
e

1− |y|
))−γ

dµ(y)

≤ 3s+3(log 2)−γ
∞∑

j=3

2−j(s+3)(j − 1)−γµ(A(1− 2−j))

≤ 3s+3(log 2)−γα

∞∑

j=3

(j − 1)−γ < ∞

for γ > 1. This gives (3.2) readily. ¤

4. Proof of Theorem 2.4

In this section we complete the proof of Theorem 2.4. First suppose
limr→1 M(u, r) < ∞. By Lemma 3.5,

∫

B

(1− |y|)3dµ(y) < ∞.

In view of Lemma 3.2 with L = 2, the conclusion follows.
Next suppose lim supr→1(1− r)sM(u, r) < ∞ for some s > 0. Then we

obtain by Lemma 3.5
∫

B

(1− |y|)βdµ(y) < ∞

for β > s + 3. Thus, by use of Lemma 3.2 with L > s + 2, we have the
required expression. ¤

5. The superharmonic case

In this section, along the same lines as in the preceding discussions, we
give a representation theorem for superharmonic functions, which is proved
easier than before.
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Recall that

R2,0(x, y) =

{R2(x− y)−R2(−y) if |y| ≥ 1/2,

R2(x− y) if |y| < 1/2,

where

R2(x) =





|x|2−n

(n− 2)ωn
if n 6= 2,

1
ω2

log
(

1
|x|

)
if n = 2.

Let u be a superharmonic function on B and set µ = (−∆)u. Then we
see that for 0 < r < R < 1,

u(x) =
∫

B(R)

R2,0(x, y) dµ(y) + hR(x) (x ∈ B(R)),

where hR is harmonic in B(R). As in Lemma 3.3, we find a constant a such
that

M(u, r) =
∫

B(r)

M(r,R2,0(·, y)) dµ(y) + a

=
∫

B(r)\B(1/2)

g(|y|, r) dµ(y) +R2(re1)µ(B(1/2)) + a

for 1/2 < r < 1, where g(t, r) = R2(re1)−R2(te1).

Lemma 5.1 There exists a constant C2 ≥ 1 such that

C−1
2 (r − t) ≤ −g(t, r) ≤ C2(r − t) for

1
2
≤ t ≤ r < 1.

If u is superharmonic in B, then M(u, r) is nonincreasing on the interval
(0, 1), so that we consider a lower estimate for M(u, r).

Lemma 5.2 Let u be superharmonic in B and µ = (−∆)u.

(a) If limr→1 M(u, r) > −∞, then
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∫

B

(1− |y|)dµ(y) < ∞.

(b) If lim infr→1(1− r)sM(u, r) > −∞ for some s > 0, then

∫

B

(1− |y|)s+1

(
log

(
e

1− |y|
))−γ

dµ(y) < ∞

for each γ > 1. In particular,
∫

B

(1− |y|)βdµ(y) < ∞

for each β > s + 1.

We consider a new kernel K1,L(x, y). When n 6= 2, we set

K1,L(x, y) =





1
(n− 2)ωn

|x− y|2−n for y ∈ B(1/2),

1
(n− 2)ωn

{
|x− y|2−n −

L∑

`=0

ϕ`(x, ỹ)(1− |y|)`

}

for y ∈ B \B(1/2),

where

ϕ`(x, ỹ) =
∑

`/2≤m≤`

( 2−n
2

m

)(
m

`−m

)
22m−`|x− ỹ|2−n−2m(x · ỹ − 1)2m−`.

When n = 2, we set

K1,L(x, y) =





1
ω2

log
(

1
|x− y|

)
for y ∈ B(1/2),

1
ω2

{
log

( |x− ỹ|
|x− y|

)
−

L∑

`=1

ϕ`(x, ỹ)(1− |y|)`

}

for y ∈ B \B(1/2),

where
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ϕ`(x, ỹ) =
1
2

∑

`/2≤m≤`

(−1)m

m

(
m

`−m

)
22m−`|x− ỹ|−2m(x · ỹ − 1)2m−`.

As in Lemma 3.1, we have the next Lemma.

Lemma 5.3 The following hold :

(1) K1,L(·, y) is harmonic in B \ {y} for fixed y ∈ B.
(2) K1,L(·, y) is superharmonic in B and (−∆)K1,L(·, y) = δy for fixed

y ∈ B.
(3) K1,L(x, y) = O((1− |y|)L+1) as |y| → 1 for fixed x ∈ B.

Lemma 5.3 gives the following Lemma.

Lemma 5.4 Let u be superharmonic in B and µ = (−∆)u. If

∫

B

(1− |y|)L+1dµ(y) < ∞,

then u is of the form

u(x) =
∫

B

K1,L(x, y)dµ(y) + hL(x),

where hL is harmonic in B.

Now we give the Riesz decomposition theorem in the harmonic case.

Theorem 5.5 Let u be superharmonic in B and µ = (−∆)u.

(1) If limr→1 M(u, r) > −∞, then u is of the form

u(x) =
∫

B

K1,0(x, y) dµ(y) + h(x) for x ∈ B, (5.1)

where h is harmonic in B.
(2) If lim infr→1(1− r)sM(u, r) > −∞ for some s > 0, then

u(x) =
∫

B

K1,L(x, y) dµ(y) + hL(x) for x ∈ B,

where L > s and hL is harmonic in B.
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Remark 5.6 In (5.1), K1,0(x, y) can be replaced by Green’s function
G(x, y) for B. It is well-known that u is a superharmonic function on B
which is bounded below, then

u(x) =
∫

B

G(x, y) dµ(y) + h(x) for x ∈ B,

where h is harmonic in B. Theorem 5.5 gives a representation for a super-
harmonic function which is not bounded below.
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Norm Sup. 52 (1935), 183–220.

T. Futamura

Department of Mathematics

Daido University

Nagoya 457-8530, Japan

E-mail: futamura@daido-it.ac.jp

K. Kitaura

Department of Mathematics

Graduate School of Science

Hiroshima University

Higashi-Hiroshima 739-8526, Japan

E-mail: kitaura@mis.hiroshima-u.ac.jp

Y. Mizuta

Department of Mathematics

Hiroshima University

Higashi-Hiroshima 739-8521, Japan

E-mail: yomizuta@hiroshima-u.ac.jp


