Riesz decomposition for superbiharmonic functions in the unit ball

T. Futamura, K. Kitaura and Y. Mizuta

(Received September 10, 2008; Revised April 14, 2009)

Abstract

For a superbiharmonic function u in the unit ball with the growth condition of spherical means, we show that u is represented as the sum of a generalized Riesz potential and a biharmonic function. This representation is referred to as Riesz decomposition for superbiharmonic functions.

The superharmonic case is treated similarly.

Key words: superbiharmonic functions, spherical means, Riesz decomposition.

1. Introduction

A superharmonic function on \mathbf{R}^{n} is represented locally as the sum of a Riesz potential and a harmonic function. This representation is referred to as Riesz decomposition (see e.g. Armitage-Gardiner [2], Heyman-Kennedy [8] and Mizuta [12]). Our aim in this paper is to establish Riesz decomposition for superbiharmonic functions on the unit ball \mathbf{B}.

A function u on an open set $\Omega \subset \mathbf{R}^{n}$ is called biharmonic if $u \in C^{4}(\Omega)$ and $(-\Delta)^{2} u=0$ on Ω, where Δ denotes the Laplacian and $(-\Delta)^{2} u=$ $-\Delta(-\Delta u)$. We say that a locally integrable function u on Ω is superbiharmonic in Ω if
(1) $\mu=(-\Delta)^{2} u$ is a nonnegative measure on Ω, that is,

$$
\int_{\Omega} u(x)(-\Delta)^{2} \varphi(x) d x \geq 0 \quad \text { for all nonnegative } \varphi \in C_{0}^{\infty}(\Omega)
$$

(2) u is lower semicontinuous on Ω;
(3) every point of Ω is a Lebesgue point for u, that is,

$$
u(x)=\lim _{r \rightarrow 0} \frac{1}{\omega_{n} r^{n-1}} \int_{S(x, r)} u(y) d S(y)
$$

for every $x \in \Omega$, where ω_{n} is the surface area of a unit sphere and $S(x, r)$ is the sphere centered at x with radius r.

If $(-\Delta)^{2} T \geq 0$ on \mathbf{R}^{n} in the sense of distribution, then one can find a superbiharmonic function u on \mathbf{R}^{n} such that

$$
T=u \quad \text { in the sense of distribution. }
$$

This is an easy consequence of Riesz decomposition theorem (see expression (2.1) below).

We denote by $\mathcal{H}^{2}(\Omega)$ and $\mathcal{S H}^{2}(\Omega)$ the space of biharmonic functions on Ω and the space of superbiharmonic functions on Ω. For fundamental properties of biharmonic functions, we refer the reader to Nicolesco [15] and Aronszajn, Creese and Lipkin [3].

Consider the Riesz kernel of order 4 defined by

$$
\mathcal{R}_{4}(x)= \begin{cases}\frac{|x|^{4-n}}{2(4-n)(2-n) \omega_{n}} & \text { if } n \neq 2,4 \\ \frac{(-1)^{n / 2}}{4 \omega_{n}}|x|^{4-n} \log \left(\frac{1}{|x|}\right) & \text { if } n=2 \text { or } 4\end{cases}
$$

Then we know (see Hayman and Korenblum [9]) that

$$
(-\Delta)^{2} \mathcal{R}_{4}=\delta_{0}
$$

where δ_{y} denotes the Dirac measure at y, so that \mathcal{R}_{4} is superbiharmonic in \mathbf{R}^{n}.

We denote by $B(x, r)$ the open ball centered at x with radius r, whose boundary is written as $S(x, r)=\partial B(x, r)$. We use the notation \mathbf{B} to denote the unit ball $B(0,1)$. For a Borel measurable function u on \mathbf{R}^{n}, we define the spherical mean by

$$
M(u, x, r)=\frac{1}{\omega_{n} r^{n-1}} \int_{S(x, r)} u d S
$$

If $x=0$, then we write simply $B(r)=B(0, r), S(r)=S(0, r)$ and $M(u, r)=$ $M(u, 0, r)$.

Recently, the second and the third authors studied the Riesz decomposi-
tion for superbiharmonic functions u on \mathbf{R}^{n} such that $M(u, 2 r)-4 M(u, r)$ is bounded for $r>1$. In fact, they showed the following result ([11, Theorems 1.1, 1.2]).

Theorem A Let u be a superbiharmonic function on \mathbf{R}^{n} such that $M(u, 2 r)-4 M(u, r)$ is bounded for $r>1$. Set $\mu=(-\Delta)^{2} u$.
(1) If $n \leq 4$, then u is biharmonic in \mathbf{R}^{n}.
(2) If $n \geq 5$, then

$$
u(x)=\int_{\mathbf{R}^{n}} \mathcal{R}_{4}(x-y) d \mu(y)+h(x) \quad \text { for } x \in \mathbf{R}^{n}
$$

where h is a biharmonic function on \mathbf{R}^{n}.
Our aim in this paper is to extend Theorem A to the unit ball B. For this purpose, we introduce a generalized kernel function $K_{2, L}(x, y)$ such that

$$
(-\Delta)^{2} K_{2, L}(\cdot, y)=\delta_{y}
$$

for fixed $y \in \mathbf{B}$ and

$$
u(x)=\int_{\mathbf{B}} K_{2, L}(x, y) d \mu(y)+h_{L}(x)
$$

for all $x \in \mathbf{B}$, when u is a superbiharmonic function on \mathbf{B} satisfying a growth condition near the boundary $\partial \mathbf{B}$, where $\mu=(-\Delta)^{2} u \geq 0, L$ is an integer determined by the growth condition on u and h_{L} is biharmonic in \mathbf{B}. Riesz decomposition for superbiharmonic functions on the unit disk was studied by Abkar-Hedenmalm [1]. They showed that under certain condition near the unit circle, superbiharmonic function is represented as the sum of a biharmonic Green potential and a biharmonic function. For related results, we also refer to the papers by Futamura, Kishi and Mizuta [4], Ishikawa, Nakai and Tada [10] and Nakai and Tada [13], [14].

We would like to express our hearty thanks to referee for his valuable comments.

2. Preliminaries and statement of result

Throughout this paper, let C denote various constants independent of the variables in question.

We denote a point of the n-dimensional Euclidean space \mathbf{R}^{n} by $x=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. We write

$$
x \cdot y=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

for the inner product of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
For a multi-index $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and a point $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ \mathbf{R}^{n}, we set

$$
\begin{gathered}
|\lambda|=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}, \\
\lambda!=\lambda_{1}!\lambda_{2}!\cdots \lambda_{n}!, \\
x^{\lambda}=x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} \cdots x_{n}{ }^{\lambda_{n}}
\end{gathered}
$$

and

$$
D^{\lambda}=\left(\frac{\partial}{\partial x}\right)^{\lambda}=\left(\frac{\partial}{\partial x_{1}}\right)^{\lambda_{1}}\left(\frac{\partial}{\partial x_{2}}\right)^{\lambda_{2}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\lambda_{n}}
$$

Following the book by Hayman-Kennedy [8], we consider the remainder term in the Taylor expansion of $\mathcal{R}_{4}(\cdot-y)$ given by

$$
\mathcal{R}_{4, L}(x, y)= \begin{cases}\mathcal{R}_{4}(x-y)-\sum_{|\lambda| \leq L} \frac{x^{\lambda}}{\lambda!}\left(D^{\lambda} \mathcal{R}_{4}\right)(-y) & \text { when }|y| \geq 1 / 2 \\ \mathcal{R}_{4}(x-y) & \text { when }|y|<1 / 2\end{cases}
$$

where L is an integer; if $L \leq-1$, then we set $\mathcal{R}_{4, L}(x, y)=\mathcal{R}_{4}(x-y)$. Here note that

$$
(-\Delta)^{2} \mathcal{R}_{4, L}(\cdot, y)=\delta_{y}
$$

Then, if u is superbiharmonic in a neighborhood of $\overline{B(R)}$, then Riesz decomposition theorem implies that

$$
\begin{equation*}
u(x)=\int_{B(R)} \mathcal{R}_{4, L}(x, y) d \mu(y)+h_{R, L}(x) \tag{2.1}
\end{equation*}
$$

for every $x \in B(R)$, where $\mu=(-\Delta)^{2} u, L$ is an integer and $h_{R, L} \in$ $\mathcal{H}^{2}(B(R))$. This implies that superbiharmonic functions are continuous if $n=2,3$.

For $x \in \mathbf{B}$ and $y \in \mathbf{B} \backslash\{0\}$, we have

$$
|x-y|^{2}=|x-\tilde{y}+t \tilde{y}|^{2}=|x-\tilde{y}|^{2}+s=|x-\tilde{y}|^{2}\left(1+s /|x-\tilde{y}|^{2}\right)
$$

where $\tilde{y}=y /|y|, t=1-|y|$ and $s=t^{2}+2 t(x-\tilde{y}) \cdot \tilde{y}$. For a real number γ, consider the binomial expansion of $(1+a+b)^{\gamma}$, that is,

$$
(1+a+b)^{\gamma}=\sum_{m=0}^{\infty}\binom{\gamma}{m}(a+b)^{m}=\sum_{m=0}^{\infty} \sum_{k=0}^{m}\binom{\gamma}{m}\binom{m}{k} a^{k} b^{m-k} .
$$

The double series converges absolutely for $|a|+|b|<1$. Hence we have the following result.

Lemma 2.1 Let γ be as above. If $\sqrt{2}(1-|y|)<|x-y|<\sqrt{2}|x-\tilde{y}|$, then

$$
|x-y|^{2 \gamma}=\sum_{\ell}\left(\sum_{\{m: \ell / 2 \leq m \leq \ell\}} a_{m, \ell}|x-\tilde{y}|^{2 \gamma-2 m}(x \cdot \tilde{y}-1)^{2 m-\ell}\right) t^{\ell}
$$

where $a_{m, \ell}=a_{m, \ell ; \gamma}=\binom{\gamma}{m}\binom{m}{\ell-m} 2^{2 m-\ell}$.
Now we define a generalized kernel function $K_{2, L}(x, y)$. First, if $n \neq 2,4$, then we set

$$
K_{2, L}(x, y)=\left\{\begin{array}{lc}
\frac{1}{2(4-n)(2-n) \omega_{n}}|x-y|^{4-n} & \text { for } y \in B(1 / 2) \\
\frac{1}{2(4-n)(2-n) \omega_{n}}\left\{|x-y|^{4-n}-\sum_{\ell=0}^{L} \varphi_{\ell}(x, \tilde{y})(1-|y|)^{\ell}\right\} \\
& \text { for } y \in \mathbf{B} \backslash B(1 / 2)
\end{array}\right.
$$

where

$$
\varphi_{\ell}(x, \tilde{y})=\sum_{\{m: \ell / 2 \leq m \leq \ell\}} a_{m, \ell}|x-\tilde{y}|^{4-n-2 m}(x \cdot \tilde{y}-1)^{2 m-\ell}
$$

with $a_{m, \ell}=a_{m, \ell ;(4-n) / 2}$. Note that $\varphi_{\ell}(\cdot, \tilde{y})$ is biharmonic in \mathbf{B} in this case.
Next, we deal with the case $n=2$ or 4 . We have

$$
\begin{aligned}
\log \frac{1}{|x-y|} & =\log \frac{1}{|x-\tilde{y}|}-\frac{1}{2} \log \left(1+\frac{s}{|x-\tilde{y}|^{2}}\right) \\
& =\log \frac{1}{|x-\tilde{y}|}-\frac{1}{2} \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m}\left(\frac{s}{|x-\tilde{y}|^{2}}\right)^{m} \\
& =\log \frac{1}{|x-\tilde{y}|}+\sum_{\ell=1}^{\infty}\left\{\sum_{\ell / 2 \leq m \leq \ell} b_{m, \ell}|x-\tilde{y}|^{-2 m}(x \cdot \tilde{y}-1)^{2 m-\ell}\right\} t^{\ell}
\end{aligned}
$$

where $b_{m, \ell}=\frac{(-1)^{m}}{m}\binom{m}{\ell-m} 2^{2 m-\ell-1}$. Then we set
$K_{2, L}(x, y)= \begin{cases}\frac{(-1)^{n / 2}}{4 \omega_{n}}|x-y|^{4-n} \log \frac{1}{|x-y|} & \text { for } y \in B(1 / 2), \\ \frac{(-1)^{n / 2}}{4 \omega_{n}}|x-y|^{4-n}\left\{\log \frac{|x-\tilde{y}|}{|x-y|}-\sum_{\ell=1}^{L} \varphi_{\ell}(x, \tilde{y})(1-|y|)^{\ell}\right\} \\ & \text { for } y \in \mathbf{B} \backslash B(1 / 2),\end{cases}$
where

$$
\varphi_{\ell}(x, \tilde{y})=\sum_{\ell / 2 \leq m \leq \ell} b_{m, \ell}|x-\tilde{y}|^{-2 m}(x \cdot \tilde{y}-1)^{2 m-\ell}
$$

Lemma 2.2 Let $L \geq 0$ and $0<r<r^{\prime}<1$. Then

$$
\left|K_{2, L}(x, y)\right| \leq C(1-|y|)^{L+1}
$$

whenever $x \in B(0, r)$ and $y \in D\left(r^{\prime}\right)=\left\{z \in \mathbf{B}:|z|>(\sqrt{2}-1)\left(\sqrt{2}+r^{\prime}\right)\right\}$.
Proof. To show this when $n \neq 2,4$, for fixed $x \in \mathbf{B}$ and $\xi \in \partial \mathbf{B}$ consider

$$
f_{1}(t)=|x-\xi+t \xi|^{2-n}
$$

and

$$
f_{2}(t)=|x-\xi+t \xi|^{4-n}
$$

Here note that

$$
\varphi_{\ell}(x, \xi)=\frac{f_{2}^{(\ell)}(0)}{\ell!}=\frac{4-n}{\ell}\left\{\frac{f_{1}^{(\ell-1)}(0)}{(\ell-1)!}(x-\xi) \cdot \xi+\frac{f_{1}^{(\ell-2)}(0)}{(\ell-2)!}\right\} .
$$

For $t<|x-\xi|$, we see from [8, Lemma 4.1 of chapter 4] that

$$
\left|\frac{f_{1}^{(\ell)}(0)}{\ell!}\right| \leq A_{\ell}|x-\xi|^{2-n-\ell}
$$

so that

$$
\left|\varphi_{\ell}(x, \xi)\right| \leq B_{\ell}|x-\xi|^{4-n-\ell}
$$

where $A_{\ell}=(n+\ell-3)(n+\ell-4) \cdots(\ell+1) /(n-3)$! and $B_{\ell}=2|n-4|(n+$ $\ell-4)(n+\ell-5) \cdots(\ell+1) /(n-3)$!. Applying Taylor's theorem, we have for $t<(\sqrt{2}-1)|x-\xi|$

$$
\begin{aligned}
\left|f_{2}(t)-\sum_{\ell=0}^{L} \frac{f_{2}^{(\ell)}(0)}{\ell!} t^{\ell}\right| & =\left|\sum_{\ell=L+1}^{\infty} \frac{f_{2}^{(\ell)}(0)}{\ell!} t^{\ell}\right| \\
& \leq \sum_{\ell=L+1}^{\infty} B_{\ell}|x-\xi|^{4-n-\ell} t^{\ell} \\
& =|x-\xi|^{3-n-L} t^{L+1} \sum_{k=0}^{\infty} B_{L+k+1}\left(\frac{t}{|x-\xi|}\right)^{k} \\
& \leq|x-\xi|^{3-n-L} t^{L+1} \sum_{k=0}^{\infty} B_{L+k+1}(\sqrt{2}-1)^{k} \\
& \leq C|x-\xi|^{3-n-L} t^{L+1}
\end{aligned}
$$

Thus the present lemma with $n \neq 2,4$ follows.
In the same way as above, we give a proof in case $n=4$.

Remark 2.3 In view of Hayman-Korenblum [9], biharmonic Green's function of \mathbf{B} is given by

$$
\begin{aligned}
G_{2}(x, y)=\frac{1}{2(4-n)(2-n) \omega_{n}}\{ & |x-y|^{4-n}-\left(|x|\left|x^{*}-y\right|\right)^{4-n} \\
& \left.-\frac{n-4}{2}\left(|x|\left|x^{*}-y\right|\right)^{2-n}\left(1-|x|^{2}\right)\left(1-|y|^{2}\right)\right\}
\end{aligned}
$$

when $n \geq 5$, where $x^{*}=x /|x|^{2}$. Noting that $|x-y|^{2}=\left(|x|\left|x^{*}-y\right|\right)^{2}-(1-$ $\left.|x|^{2}\right)\left(1-|y|^{2}\right)$, we have the expansion

$$
\begin{aligned}
& |x-y|^{4-n}= \\
& \quad\left(|x|\left|x^{*}-y\right|\right)^{4-n}-\sum_{m}\binom{\frac{n-4}{2}}{m}\left(|x|\left|x^{*}-y\right|\right)^{4-n-2 m}\left(1-|x|^{2}\right)^{m}\left(1-|y|^{2}\right)^{m} .
\end{aligned}
$$

Unfortunately, each term on the right sum might not be biharmonic in \mathbf{B} as a function of x (except for $m=1$).

Now we are ready to state our main theorem.
Theorem 2.4 Let $u \in \mathcal{S H}^{2}(\mathbf{B})$ and $\mu=(-\Delta)^{2} u$.
(1) If $\lim _{r \rightarrow 1} M(u, r)<\infty$, then

$$
\begin{equation*}
u(x)=\int_{\mathbf{B}} K_{2,2}(x, y) d \mu(y)+h(x) \quad \text { for } x \in \mathbf{B} \tag{2.2}
\end{equation*}
$$

where $h \in \mathcal{H}^{2}(\mathbf{B})$.
(2) If limsup $\operatorname{sum}_{r \rightarrow 1}(1-r)^{s} M(u, r)<\infty$ for some $s>0$, then

$$
\begin{equation*}
u(x)=\int_{\mathbf{B}} K_{2, L}(x, y) d \mu(y)+h_{L}(x) \quad \text { for } x \in \mathbf{B} \tag{2.3}
\end{equation*}
$$

where $h_{L} \in \mathcal{H}^{2}(\mathbf{B})$ and $L>s+2$.
Remark 2.5 Let u be a biharmonic function on B. By the Almansi expansion, there exist harmonic functions u_{1} and u_{2} on \mathbf{B} such that $u(x)=$ $u_{1}(x)+|x|^{2} u_{2}(x)$. Then we see that $M(u, r)=u_{1}(0)+u_{2}(0) r^{2}$, so that $M(u, r)$ is bounded.

Remark 2.6 In view of the paper by Futamura-Mizuta [6], we see that if u is a superbiharmonic function on \mathbf{B} such that

$$
\liminf _{r \rightarrow 1}(1-r)^{-1} M(|u|, r)<\infty
$$

then

$$
u(x)=\int_{\mathbf{B}} G_{2}(x, y) d \mu(y)+\left(1-|x|^{2}\right) h(x) \quad \text { for } x \in \mathbf{B}
$$

where h is harmonic in \mathbf{B}.
Remark 2.7 One sees from [1, Proposition 2.3] and [6, Lemma 4.2] that the limit

$$
\lim _{r \rightarrow 1} M(u, r)
$$

exists in $(-\infty,+\infty]$, when u is a superbiharmonic function on \mathbf{B}.

3. Spherical means for superbiharmonic functions

First we collect some fundamental properties of $K_{2, L}(x, y)$.
Lemma 3.1 The following hold:
(1) $K_{2, L}(\cdot, y)$ is biharmonic in $\mathbf{B} \backslash\{y\}$ for each fixed $y \in \mathbf{B}$.
(2) $K_{2, L}(\cdot, y)$ is superbiharmonic in \mathbf{B} and $(-\Delta)^{2} K_{2, L}(\cdot, y)=\delta_{y}$ for each fixed $y \in \mathbf{B}$.
(3) $K_{2, L}(x, y)=O\left((1-|y|)^{L+1}\right)$ as $|y| \rightarrow 1$ for fixed $x \in \mathbf{B}$.

Lemma 3.1 gives the following Lemma.
Lemma 3.2 Let $u \in \mathcal{S H}^{2}(\mathbf{B})$ and $\mu=(-\Delta)^{2} u$. Suppose

$$
\int_{\mathbf{B}}(1-|y|)^{L+1} d \mu(y)<\infty
$$

for some integer L. Then u is of the form

$$
u(x)=\int_{\mathbf{B}} K_{2, L}(x, y) d \mu(y)+h_{L}(x)
$$

where $h_{L} \in \mathcal{H}^{2}(\mathbf{B})$.
For $0<t \leq r$, set

$$
g(t, r)=\mathcal{R}_{4}\left(r e_{1}\right)-\mathcal{R}_{4}\left(t e_{1}\right)+\frac{1}{2 n}\left(t^{2} \Delta \mathcal{R}_{4}\left(r e_{1}\right)-r^{2} \Delta \mathcal{R}_{4}\left(t e_{1}\right)\right)
$$

where $e_{1}=(1,0, \ldots, 0) \in \partial \mathbf{B}$, that is,

$$
g(t, r)=\left\{\begin{array}{lr}
-\frac{1}{4 \omega_{2}}\left\{r^{2} \log \frac{1}{r}-t^{2} \log \frac{1}{t}+t^{2}\left(\log \frac{1}{r}-1\right)-r^{2}\left(\log \frac{1}{t}-1\right)\right\} \\
\frac{1}{4 \omega_{4}}\left\{\log \frac{1}{r}-\log \frac{1}{t}-\frac{1}{4}\left(t^{2} r^{-2}-r^{2} t^{-2}\right)\right\} & \text { if } n=4 \\
\frac{1}{2(4-n)(2-n) \omega_{n}}\left\{r^{4-n}-t^{4-n}+\frac{4-n}{n}\left(t^{2} r^{2-n}-r^{2} t^{2-n}\right)\right\}
\end{array}\right.
$$

Note that $g(t, r)$ is strictly decreasing as a function of t for fixed $r>0$ (cf. [5, Lemma 4.4]).
Lemma 3.3 Let $u \in \mathcal{S H}^{2}(\mathbf{B})$ and $\mu=(-\Delta)^{2} u$. Then there exist positive constants a, b such that

$$
M(u, r)=\int_{B(r) \backslash B(1 / 2)} g(|y|, r) d \mu(y)+H(r)+a+b r^{2}
$$

for $1 / 2<r<1$, where

$$
H(r)=\mathcal{R}_{4}\left(r e_{1}\right) \mu(B(1 / 2))+\frac{1}{2 n} \Delta \mathcal{R}_{4}\left(r e_{1}\right) \int_{B(1 / 2)}|y|^{2} d \mu(y)
$$

Proof. For $0<r_{1}<r_{2}<1$, expression (2.1) implies that

$$
u(x)=\int_{B\left(r_{j}\right)} \mathcal{R}_{4,2}(x, y) d \mu(y)+h_{j}(x) \quad\left(x \in B\left(r_{j}\right)\right)
$$

where $h_{j} \in \mathcal{H}^{2}\left(B\left(r_{j}\right)\right), j=1,2$. Then, by use of [5, Lemma 4.4], we find

$$
\begin{aligned}
M(u, r) & =\frac{1}{\omega_{n} r^{n-1}} \int_{S(r)}\left(\int_{B\left(r_{j}\right)} \mathcal{R}_{4,2}(x, y) d \mu(y)\right) d S(x)+M\left(h_{j}, r\right) \\
& =\int_{B(r) \backslash B(1 / 2)} g(|y|, r) d \mu(y)+H(r)+a_{j}+b_{j} r^{2}
\end{aligned}
$$

for $1 / 2<r<r_{1}$. Hence it follows that

$$
a_{1}+b_{1} r^{2}=a_{2}+b_{2} r^{2} \quad \text { for } \quad 0<r<r_{1}
$$

which implies $a_{1}=a_{2}$ and $b_{1}=b_{2}$. Hence the proof is completed.
Lemma 3.4 There exists a constant $C_{1} \geq 1$ such that

$$
C_{1}^{-1}(r-t)^{3} \leq g(t, r) \leq C_{1}(r-t)^{3} \quad \text { for } \quad \frac{1}{2} \leq t \leq r<1
$$

Proof. Fix r such that $1 / 2 \leq r<1$. Note that

$$
\left(t^{n-1} g^{\prime}(t, r)\right)^{\prime}= \begin{cases}\frac{t}{\omega_{2}}(\log (1 / t)-\log (1 / r)) & \text { if } n=2 \\ \frac{t^{n-1}}{(n-2) \omega_{n}}\left(t^{2-n}-r^{2-n}\right) & \text { if } n \neq 2\end{cases}
$$

Then we see that

$$
\left(t^{n-1} g^{\prime}(t, r)\right)^{\prime} \approx r-t \quad \text { for } \quad \frac{1}{2} \leq t \leq r
$$

Here we write $f_{1} \approx f_{2}$ for two positive functions f_{1} and f_{2}, if and only if there exists a constant $A \geq 1$ such that $A^{-1} f_{1} \leq f_{2} \leq A f_{1}$. Since $g(r, r)=g^{\prime}(r, r)=0$, we have for $1 / 2 \leq t \leq r$

$$
\begin{aligned}
g(t, r) & =\int_{t}^{r} s^{1-n}\left(\int_{s}^{r}\left(u^{n-1} g^{\prime}(u, r)\right)^{\prime} d u\right) d s \approx \int_{t}^{r} s^{1-n}\left(\int_{s}^{r}(r-u) d u\right) d s \\
& =\int_{t}^{r}\left(\int_{t}^{u} s^{1-n} d s\right)(r-u) d u \approx \int_{t}^{r}(u-t)(r-u) d u=\frac{1}{6}(r-t)^{3}
\end{aligned}
$$

Thus Lemma 3.4 follows.

Lemma 3.5 Let $u \in \mathcal{S H}^{2}(\mathbf{B})$ and $\mu=(-\Delta)^{2} u$.
(1) If $\lim _{r \rightarrow 1} M(u, r)<\infty$, then

$$
\begin{equation*}
\int_{\mathbf{B}}(1-|y|)^{3} d \mu(y)<\infty \tag{3.1}
\end{equation*}
$$

(2) If limsup $\operatorname{sum}_{r \rightarrow 1}(1-r)^{s} M(u, r)<\infty$ for some $s>0$, then

$$
\begin{equation*}
\int_{\mathbf{B}}(1-|y|)^{s+3}\left(\log \left(\frac{e}{1-|y|}\right)\right)^{-\gamma} d \mu(y)<\infty \tag{3.2}
\end{equation*}
$$

for each $\gamma>1$. In particular,

$$
\int_{\mathbf{B}}(1-|y|)^{\beta} d \mu(y)<\infty
$$

for each $\beta>s+3$.
Proof. By lemmas 3.3 and 3.4, we obtain

$$
M(u, r) \geq C_{1}^{-1} \int_{B(r) \backslash B(1 / 2)}(r-|y|)^{3} d \mu(y)+O(1) \quad \text { as } \quad r \rightarrow 1
$$

First we assume that $\lim _{r \rightarrow 1} M(u, r)<\infty$. Then we see that

$$
\lim _{r \rightarrow 1} \int_{B(r) \backslash B(1 / 2)}(r-|y|)^{3} d \mu(y)<\infty
$$

which implies (3.1) by Fatou's theorem.
Next we assume that $\limsup _{r \rightarrow 1}(1-r)^{s} M(u, r)<\infty$ for some $s>0$. Then we have

$$
\limsup _{r \rightarrow 1}(1-r)^{s} \int_{B(r) \backslash B(1 / 2)}(r-|y|)^{3} d \mu(y)<\infty
$$

which implies that

$$
\alpha=\sup _{r \in[5 / 6,1)}(1-r)^{s+3} \mu(A(r))<\infty,
$$

where $A(r)=\{x: r-2(1-r) \leq|x|<r-(1-r) / 2\}$. Hence we establish

$$
\begin{aligned}
& \int_{\mathbf{B} \backslash B(5 / 8)}(1-|y|)^{s+3}\left(\log \left(\frac{e}{1-|y|}\right)\right)^{-\gamma} d \mu(y) \\
& \quad=\sum_{j=3}^{\infty} \int_{A\left(1-2^{-j}\right)}(1-|y|)^{s+3}\left(\log \left(\frac{e}{1-|y|}\right)\right)^{-\gamma} d \mu(y) \\
& \quad \leq 3^{s+3}(\log 2)^{-\gamma} \sum_{j=3}^{\infty} 2^{-j(s+3)}(j-1)^{-\gamma} \mu\left(A\left(1-2^{-j}\right)\right) \\
& \quad \leq 3^{s+3}(\log 2)^{-\gamma} \alpha \sum_{j=3}^{\infty}(j-1)^{-\gamma}<\infty
\end{aligned}
$$

for $\gamma>1$. This gives (3.2) readily.

4. Proof of Theorem 2.4

In this section we complete the proof of Theorem 2.4. First suppose $\lim _{r \rightarrow 1} M(u, r)<\infty$. By Lemma 3.5,

$$
\int_{\mathbf{B}}(1-|y|)^{3} d \mu(y)<\infty
$$

In view of Lemma 3.2 with $L=2$, the conclusion follows.
Next suppose $\lim \sup _{r \rightarrow 1}(1-r)^{s} M(u, r)<\infty$ for some $s>0$. Then we obtain by Lemma 3.5

$$
\int_{\mathbf{B}}(1-|y|)^{\beta} d \mu(y)<\infty
$$

for $\beta>s+3$. Thus, by use of Lemma 3.2 with $L>s+2$, we have the required expression.

5. The superharmonic case

In this section, along the same lines as in the preceding discussions, we give a representation theorem for superharmonic functions, which is proved easier than before.

Recall that

$$
\mathcal{R}_{2,0}(x, y)= \begin{cases}\mathcal{R}_{2}(x-y)-\mathcal{R}_{2}(-y) & \text { if }|y| \geq 1 / 2 \\ \mathcal{R}_{2}(x-y) & \text { if }|y|<1 / 2\end{cases}
$$

where

$$
\mathcal{R}_{2}(x)= \begin{cases}\frac{|x|^{2-n}}{(n-2) \omega_{n}} & \text { if } n \neq 2 \\ \frac{1}{\omega_{2}} \log \left(\frac{1}{|x|}\right) & \text { if } n=2\end{cases}
$$

Let u be a superharmonic function on \mathbf{B} and set $\mu=(-\Delta) u$. Then we see that for $0<r<R<1$,

$$
u(x)=\int_{B(R)} \mathcal{R}_{2,0}(x, y) d \mu(y)+h_{R}(x) \quad(x \in B(R))
$$

where h_{R} is harmonic in $B(R)$. As in Lemma 3.3, we find a constant a such that

$$
\begin{aligned}
M(u, r) & =\int_{B(r)} M\left(r, \mathcal{R}_{2,0}(\cdot, y)\right) d \mu(y)+a \\
& =\int_{B(r) \backslash B(1 / 2)} g(|y|, r) d \mu(y)+\mathcal{R}_{2}\left(r e_{1}\right) \mu(B(1 / 2))+a
\end{aligned}
$$

for $1 / 2<r<1$, where $g(t, r)=\mathcal{R}_{2}\left(r e_{1}\right)-\mathcal{R}_{2}\left(t e_{1}\right)$.
Lemma 5.1 There exists a constant $C_{2} \geq 1$ such that

$$
C_{2}^{-1}(r-t) \leq-g(t, r) \leq C_{2}(r-t) \quad \text { for } \quad \frac{1}{2} \leq t \leq r<1
$$

If u is superharmonic in \mathbf{B}, then $M(u, r)$ is nonincreasing on the interval $(0,1)$, so that we consider a lower estimate for $M(u, r)$.

Lemma 5.2 Let u be superharmonic in \mathbf{B} and $\mu=(-\Delta) u$.
(a) If $\lim _{r \rightarrow 1} M(u, r)>-\infty$, then

$$
\int_{\mathbf{B}}(1-|y|) d \mu(y)<\infty
$$

(b) If $\lim \inf _{r \rightarrow 1}(1-r)^{s} M(u, r)>-\infty$ for some $s>0$, then

$$
\int_{\mathbf{B}}(1-|y|)^{s+1}\left(\log \left(\frac{e}{1-|y|}\right)\right)^{-\gamma} d \mu(y)<\infty
$$

for each $\gamma>1$. In particular,

$$
\int_{\mathbf{B}}(1-|y|)^{\beta} d \mu(y)<\infty
$$

for each $\beta>s+1$.
We consider a new kernel $K_{1, L}(x, y)$. When $n \neq 2$, we set

$$
K_{1, L}(x, y)=\left\{\begin{array}{lc}
\frac{1}{(n-2) \omega_{n}}|x-y|^{2-n} & \text { for } y \in B(1 / 2) \\
\frac{1}{(n-2) \omega_{n}}\left\{|x-y|^{2-n}-\sum_{\ell=0}^{L} \varphi_{\ell}(x, \tilde{y})(1-|y|)^{\ell}\right\} \\
& \text { for } y \in \mathbf{B} \backslash B(1 / 2)
\end{array}\right.
$$

where

$$
\varphi_{\ell}(x, \tilde{y})=\sum_{\ell / 2 \leq m \leq \ell}\binom{\frac{2-n}{2}}{m}\binom{m}{\ell-m} 2^{2 m-\ell}|x-\tilde{y}|^{2-n-2 m}(x \cdot \tilde{y}-1)^{2 m-\ell}
$$

When $n=2$, we set

$$
K_{1, L}(x, y)= \begin{cases}\frac{1}{\omega_{2}} \log \left(\frac{1}{|x-y|}\right) & \text { for } y \in B(1 / 2) \\ \frac{1}{\omega_{2}}\left\{\log \left(\frac{|x-\tilde{y}|}{|x-y|}\right)-\sum_{\ell=1}^{L} \varphi_{\ell}(x, \tilde{y})(1-|y|)^{\ell}\right\}\end{cases}
$$

where

$$
\varphi_{\ell}(x, \tilde{y})=\frac{1}{2} \sum_{\ell / 2 \leq m \leq \ell} \frac{(-1)^{m}}{m}\binom{m}{\ell-m} 2^{2 m-\ell}|x-\tilde{y}|^{-2 m}(x \cdot \tilde{y}-1)^{2 m-\ell}
$$

As in Lemma 3.1, we have the next Lemma.
Lemma 5.3 The following hold:
(1) $K_{1, L}(\cdot, y)$ is harmonic in $\mathbf{B} \backslash\{y\}$ for fixed $y \in \mathbf{B}$.
(2) $K_{1, L}(\cdot, y)$ is superharmonic in \mathbf{B} and $(-\Delta) K_{1, L}(\cdot, y)=\delta_{y}$ for fixed $y \in \mathbf{B}$.
(3) $K_{1, L}(x, y)=O\left((1-|y|)^{L+1}\right)$ as $|y| \rightarrow 1$ for fixed $x \in \mathbf{B}$.

Lemma 5.3 gives the following Lemma.
Lemma 5.4 Let u be superharmonic in \mathbf{B} and $\mu=(-\Delta) u$. If

$$
\int_{\mathbf{B}}(1-|y|)^{L+1} d \mu(y)<\infty
$$

then u is of the form

$$
u(x)=\int_{\mathbf{B}} K_{1, L}(x, y) d \mu(y)+h_{L}(x),
$$

where h_{L} is harmonic in \mathbf{B}.
Now we give the Riesz decomposition theorem in the harmonic case.
Theorem 5.5 Let u be superharmonic in \mathbf{B} and $\mu=(-\Delta) u$.
(1) If $\lim _{r \rightarrow 1} M(u, r)>-\infty$, then u is of the form

$$
\begin{equation*}
u(x)=\int_{\mathbf{B}} K_{1,0}(x, y) d \mu(y)+h(x) \quad \text { for } x \in \mathbf{B} \tag{5.1}
\end{equation*}
$$

where h is harmonic in \mathbf{B}.
(2) If $\liminf _{r \rightarrow 1}(1-r)^{s} M(u, r)>-\infty$ for some $s>0$, then

$$
u(x)=\int_{\mathbf{B}} K_{1, L}(x, y) d \mu(y)+h_{L}(x) \quad \text { for } \quad x \in \mathbf{B}
$$

where $L>s$ and h_{L} is harmonic in \mathbf{B}.

Remark 5.6 In (5.1), $K_{1,0}(x, y)$ can be replaced by Green's function $G(x, y)$ for \mathbf{B}. It is well-known that u is a superharmonic function on \mathbf{B} which is bounded below, then

$$
u(x)=\int_{\mathbf{B}} G(x, y) d \mu(y)+h(x) \quad \text { for } \quad x \in \mathbf{B}
$$

where h is harmonic in \mathbf{B}. Theorem 5.5 gives a representation for a superharmonic function which is not bounded below.

References

[1] Abkar A. and Hedenmalm H., A Riesz representation formula for superbiharmonic functions. Ann. Acad. Sci. Fenn. Math. 26 (2001), 305-324.
[2] Armitage D. H. and Gardiner S. J., Classical Potential Theory, Springer, 2000.
[3] Aronszajn N., Creese T. M. and Lipkin L. J., Polyharmonic functions, Clarendon Press, 1983.
[4] Futamura T., Kishi K. and Mizuta Y., A generalization of Bôcher's theorem for polyharmonic functions. Hiroshima Math. J. 31 (2001), 59-70.
[5] Futamura T. and Mizuta Y., Isolated singularities of super-polyharmonic functions. Hokkaido Math. J. 33 (2004), 675-695.
[6] Futamura T. and Mizuta Y., Growth properties of p-th means of biharmonic Green potentials in the unit ball. Osaka Math. J. 42 (2005), 85-99.
[7] Haußmann W. and Kounchev O., Definiteness of the Peano kernel associated with the polyharmonic mean value property. J. London Math. Soc. (2) 62 (2000), 149-160.
[8] Hayman W. K. and Kennedy P. B., Subharmonic functions, Vol. 1, Academic Press, London, 1976.
[9] Hayman W. K. and Korenblum B., Representation and uniqueness theorem for polyharmonic functions. J. Anal. Math. 60 (1993), 113-133.
[10] Ishikawa Y., Nakai M. and Tada T., A form of classical Picard principle. Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 6-7.
[11] Kitaura K. and Mizuta Y., Spherical means and Riesz decomposition for superbiharmonic functions. J. Math. Soc. Japan 58 (2006), 521-533.
[12] Mizuta Y., Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996.
[13] Nakai M. and Tada T., A form of classical Liouville theorem for polyharmonic functions. Hiroshima Math. J. 30 (2000), 205-213.
[14] Nakai M. and Tada T., Harmonic Liouville theorem for exterior domains. J. Math. Anal. Appl. 253 (2001), 269-273.
[15] Nicolesco M., Recherches sur les fonctions polyharmoniques. Ass. Sci. École Norm Sup. 52 (1935), 183-220.

T. Futamura
Department of Mathematics
Daido University
Nagoya 457-8530, Japan
E-mail: futamura@daido-it.ac.jp
K. Kitaura
Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan
E-mail: kitaura@mis.hiroshima-u.ac.jp
Y. Mizuta
Department of Mathematics
Hiroshima University
Higashi-Hiroshima 739-8521, Japan
E-mail: yomizuta@hiroshima-u.ac.jp

