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Rank-one commutators on invariant subspaces
of the Hardy space on the bidisk III
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Abstract. We study a special type of invariant subspaces M on the bidisk which
are studied in the previous papers. We determine the rank of cross commutators on
H?28 M, and study when M is generated by M& (zM+wM) as an invariant subspace
of HZ.

Key words: invariant subspaces, backward shift invariant subspaces, rank-one com-
mutators.

1. Introduction

Let D and I' be the open unit disk and the unit circle in the complex
plane C, respectively. We denote by H? = H?(I'?) the Hardy space over the
torus I'?, and we denote two variables by z and w. For ¢ € L>® = L*(I'?),
we define the Toeplitz operator on H? by Ty, f = P21 f, where Pg2 is the
orthogonal projection from L? = L?(I'?) onto H?. A closed subspace M of
H? with M # {0} and M # H? is said to be invariant if M is invariant
under 7T, and T,,. In one variable case, Beurling [Beu| represented a well
known theorem that an invariant subspace M has a form M = qH?*(T),
where ¢ is an inner function. But in two variables case, the structure of
invariant subspaces of H? is very complicated; see [CG], [DY], [Rud], [Yal],
[Ya2], [Ya3].

For a fixed invariant subspace M of H?, let R, and R,, be the com-
pression operators on M defined by R, = PyT.|y and Ry = PyTw|m,
respectively, where Pp; is the orthogonal projection from L? onto M.
Write N = H?2 © M. Then N is a backward shift invariant subspace,
that is, T/ N € N and T;,N C N. Let S, and S, be the compression
operators on N defined by S, = PyT,|ny and S, = PnTy|n, respec-
tively. We denote the cross commutators by [R., R}]| = R,R) — R, R,
and [S;,S%] = 5,5 — S!S., where R} and S} are the adjoint operators
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of R, and S, on M and N, respectively. We note that S¥ = 77|y and
i f = (f — £(0,w))/=.

In 1988, Mandrekar [Man| showed that an invariant subspace M has a
form M = gH?, where ¢ is an inner function, if and only if [R,, R}] = 0. On
the other hand, in [INS1] Izuchi, Nakazi, and Seto proved that [S,, S;] =0
if and only if M has one of the following forms:

M =q(2)H?* M =qgw)H?* M =q(2)H?+ q(w)H?

for some mnon-constant inner functions ¢;(z) and g¢o(w). We write
rank [R., R}| = dim[R,, R}, ]M and rank[S,S}] = dim[S,,S:]N.

In [IT4], Tzuchi and the author proved that rank [S,, Sk] = 1 if and only
if M has one of the following forms:

(i) M = ¢H?, where ¢ is a non-constant inner function and is not a one
variable function,

(ii) M = qi(2)q2(2) H? +q2(2)q3(w) H? + g3(w) qa(w) H?, where q1, 2, g3, 4
satisfy one of the following:
() q1,92,q3,q4 are one variable non-constant inner functions,
(6) ¢1 =0, and g, g3, g4 are one variable non-constant inner functions,
(7) g4 =0, and ¢, g2, g3 are one variable non-constant inner functions.

Since [R,, R})] = 0 on wM, generally a cross commutator [R,, R} ] is
small. In [Ya3, Theorem 2.3], Yang showed that the operator [R., R} is
Hilbert-Schmidt under a mild condition on M; see also [Yal]. In [II1], [II3],
Izuchi and the author studied M under the condition that rank [R,, R}] = 1,
and found an interesting example of M satisfying rank [R,, R})] = 1. We
denote by ball H*(I") the closed unit ball of H*°(I") with the supremum
norm. [Gar|, [Hof] are nice references for the study of H>°(I'). We denote
by H?(T',) the Hardy space in variable z.

Let G(z), H(z) € ball H*(T',) satisfying the following conditions:

a) G(z) is a non-extreme point in ball H>*(T",),
) |H(2)|?> =1-|G(2)|]*> a.e. on T,

c) Hy(z) is an outer function with |Hy(2)|*> =1 —|G(2)|* a.e. on T',.
d) ¢ is an inner function with

©Ho(2)

O\ 2
oo <1
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It is known that f(z) is an extreme point in ball H>*(T',) if and only if

do

27
i0 = —00:
| st = 1) 5 = —ocs

see [Hof, pp. 138-139]. In [I13], it is proved that

or? 1 PHE) gy

w—G(z)
We write
2w PHE) o
M=pH EBw—G(z)H (T,). (1.1)

It is also proved that M is an invariant subspace with rank [R,, R] = 1. In
this paper, we study M more exactly. In this moment, there are no complete
descriptions of M satisfying rank [R,, RY] = 1. We write N'= H? © M.

Recently in [II5], Izuchi and the author showed that for invariant sub-
spaces M of H? with rank R}, R,][R:, R.] < oo,

rank [R,, R;| — 1 < rank|S,,S;] < rank[R., R} + 1.

We will study rank [S,, S} for M.

About fifteen years ago, Hedenmalm [Hed] gave a very exciting theorem
on the Bergman space L2 (D) over the unit disk . He proved that there is an
invariant subspace I of L2 (D) satisfying dim (I©zI) = 2. In [ARS], Aleman,
Richter, and Sundberg proved that [I © zI| = I for every invariant subspace
I of L2(D), where [I & zI] is the invariant subspace of L2(D) generated by
I & zI; see also [DS], [HKZ].

In H?, we can consider similar issues. Let M be an invariant subspace of
H?. The space M ©(zM +wM) is naturally considered as the corresponding
space to I © zI. The space M © (zM + wM) is one of the most important
spaces for studying the structure of M. For a subset E of H?, let [E] denote
the invariant subspace generated by all functions in E. In [Nak], Nakazi
showed that for f € H?dim([f] © (z[f] + w[f])) = 1, and posed a problem
whether [f] = [[f] © (2[f] + w[f])] holds or not. Here our question is; when
does M = [M & (zM + wM)] hold? We will answer this question for M.

In Section 2, we treat the case that G(z) is a constant. It is proved
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that if G(0) # 0 and H(0) # 0, then dim (M & (zM + wM)) = 1 and
M#ME M+ wM)).

In Section 3, we study the case that G(z) is non-constant. It is proved
that if G(0) # 0 and H(0) # 0, then dim (M & (z2M + wM)) = 1, and
M = [M6S (zM + wM)] for some cases. In the first glance, one thinks
that M given by (1.1) is not a singly generated invariant subspace, but this
is not true. We give an equivalent condition on G(z) and H(z) for which

M=Me (=EM+wM).

2. The case that G(z) is constant

Let M be an invariant subspace given in (1.1) with conditions (a), (b),
(c), and (d). In this section, we study the case that G(z) is a constant
function. Let G(z) = a € D. Then

o . pH(2)

M=pH?*® Z=—""H*(T,).
w—a

By (b), we can write H(z) = bI(z), where b € C with |b]> = 1 — |a|? and
I(z) is inner. We note that

w—a

o=

- 1—611)@1

for some inner function ;. Thus we have

WA e D H(Z)HQ(FZ)>

1—aw 1 —aw

M:Sﬁ(

_ w( L P I(Z)HQ)
1—aw

- 901M17

where

w—a

My = H? +1(2)H?.

1 —aw
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Proposition 2.1 Let

w—a

MZQD1M1:<,01< H2+I(2)H2>

1 —aw

for some inner function ¢1, a € D, and one variable inner function 1(z).
Then we have the following:

(i) If p1 is constant, then [S,,Sk] = 0.

(ii) Suppose that 1 is non-constant and 1(z) is constant. If oy is one vari-
able, then [S.,S%] = 0. If 1 is not one variable, then rank [S,, S| =
1.

(iii) Suppose that p1 and I(z) are non-constant. If v1 is one variable, then
rank [S.,Sk] = 1. If 1 is not one variable, then rank [S,, Sk] = 2.

To prove Proposition 2.1, we need the following lemma due to Yang
[Yad, p.179].

Lemma 2.2 rank|S,,S}] < rank R}, Ry,][R:, R.].

It is easy to see that
[Ryy, Rul[RZ, R.] = (I — RyR,)(I — R:R}) = PrcwmPrezm.

Proof of Proposition 2.1. (i): By [INS1], we have that if ¢; is constant,
then [S.,S%] = 0.

(ii): Suppose that ¢; is non-constant and I(z) is constant. Then M; =
H? and M = ¢ H?. By [INS1], we know that if ¢ is one variable inner,
then [S,,S;] = 0. Yang [Ya4] pointed out that if ¢; is not one variable,
then rank [S,, S;] = 1.

(iii): Suppose that ¢; and I(z) are non-constant inner functions. By
[I14], if ¢1 is one variable, then rank[S.,S%] = 1, and if ¢; is not one
variable, then rank [S,, S| > 2. We have

pH(z)

w—a

MG M= pH*T,)®C-

Hence

pH(z)

ProwmPrme:mM CCopa C-
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By Lemma 2.2, we have rank[S., S}] < 2. So, ¢; is not one variable and

rank[S,,Sk] = 2. O

In the following theorem, we study [M & (z2M + wM)]. To study our
problem, an inner factor (; is not essential, so we may assume that ¢ = 1.
If I(z) is constant, then M = H?. Hence M & (2M +wM) = C -1 and
ME (z2M + wM)] = M. So, we assume that I(z) is non-constant.

Theorem 2.3 Let

M=""2p 4 1(z)H”

1 —aw

for some a € D and a one variable non-constant inner function I(z). Then
we have the following:

(i) Ifa=0 and I(0) =0, then
Mo (tM+uwM)=C-w+C-I(z)
and
ME (zM + wM)] = M.
(ii) If a =0 and I(0) # 0, then
MO (M +wM) =C-1(z)
and
M S (zM +wM)] = I(2)H? # M.

(iii) If a # 0 and 1(0) =0, then

MEGEM+uwM)=C. L9
1 —aw
and
M S (zM +wM)] = ——L H2 £ M
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(iv) If a # 0 and I(0) # 0, then

M@(zM+wM):C-< —alw —a) f<0)l(z)>

a1 -aw) = 1—aw
and

MS (zM +wM)] # M.

To describe M © (2M + wM), we use Guo and Yang’s result given in
[GY]. Let M be an invariant subspace of H2, and K (), Z) be the reproduc-
ing kernel for M, A € T'?, and Z = (z,w) € D% Associated with M, Guo
and Yang defined the core operator C' on M by

D) = [ (1-32) (1= Raw) KA D) f O dm(N), ()
2
where dm()) is the normarized Lebesgue measure on I'?; and they showed

that

C=I-R,R,—R,(1—R,R.)R;,. (2.2)
So, C' is a bounded selfadjoint operator on M. Also they showed the follow-
ing.
Lemma 2.4 Let f € M. Then C(f) = f if and only if f € M © (zM +
wM).

Proof of Theorem 2.3. It is not difficult to show (i), (ii), and (iii), so we
shall show (iv). Write

By [Ya4, p. 176],
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Hence by (2.1) and Lemma 2.4,
MS (M +wM)CC-I(z)+C-q(w)+C-I(2)q(w).

Let F' = al(z) + bg(w) + cI(z)q(w) satisfying C(F) = F. It is not difficult
to see that

C(F) = (a +bI(0)g(0) + ¢(0))I(2) + (al(0)q(0) + b + cI(0)) q(w)

~ (ag(0) + bI(0) + ¢)I(2)q(w).
Hence we get

bI(0)q(0) 4+ cq(0) =0, alI(0)q(0)+ cI(0) =0, —aq(0)—>bI(0)=2c.

Since ¢(0) # 0 and 1(0) # 0, we have

— _ b
a(0) 1(0)
By Lemma 2.4, we have
1 1
—ﬁl(z) - ﬁq(w) +1(2)q(w) € MO (2M + wM).

Therefore

Mo (M +wM)

—C- <_z(o)1(z)+“1(“’_“) — aI(0)I(z) “’_a>

:c.( —a(w — a) +I<0>I<z>)

1 —la2)1—aw) " 1-aw

It remains to prove [M & (2M +wM)] # M. Let M; be the invariant
subspace of H? generated by the function

—a(w —a) I(0)I(z)
(1—lal?)(1—-aw) 1-—aw
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We note that (1 —aw)M; = M;. Then M, is generated by

1—aw —a(w —a) 1(0)I(2) _ —a(w—a)
T T s 1o ) -

Therefore it is enough to show that

—a(w — a) B w—a o N2
[I(O)(1|a|2)+l( )] 7&1—awH +1(z)H".

To prove this, we suppose that the equality holds. Since 1 — aw is an
invertible function in H*°(T',,), we have

—a(w —a) A = (w— a) B2 V2
[I(O)(l—\a|2) +1( )] (w — a)H? + I(z)H?.

Since I(z) is non-constant inner, I(D) is dense in D. Since the range of the
function

—a(w —a)

1(0)(1 — [af?)
contains small open disks with center 0, one sees that the common zero set
in D? of
—a(w — a)

— I (z
00—

has a nonempty connected component. On the other hand, the common
zero set in D? of (w — a)H? + I(2)H? is {(¢,a) € D?|I(¢) = 0} and this set
is either empty or a discrete set. This is a contradiction. This completes
the proof. O

3. The case that G(z) is non-constant

Write
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Then M = pH? + hoH?*(T',). By (3.1),

ho = pH(z Z w"tG (2
so for i#j we have

(hoz', ho2?) = Z<ZH )G™(2), 2/ H(2)G"(2))

- <|H<z>|2§% G,

P by condition (b)

= (1,
0.
Hence

hoZi 1L h()Zj, 275],

so we have M C H2. By (3.2), for i,5,k > 0

<gpziwj,hozk> = <ziwj z Z (”+1)G” > =0.

Thus we have

©H? | hoH*(T,),

so M = oH? @® hoH?(T',). By condition (b) and (3.2), we have

T |H(e)? df
hol|? = ZHH )G ()| = /0 HEDE do

1—|G(e?)]? 27
Since M = pH? ® hoH?*(T,), by (3.3) we have

MS M = pH*T,) ®C - h.

(3.2)

(3.4)
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Proposition 3.1 If G(z) is non-constant, then rank [S, S| = 2.

Proof. By (3.5), we have
[RZ}’ Rw][R:7 RZ]M = Pmowm (M © ZM)
= Prmowm(pH?(Ty) © C - ho)
= Prowm(C- 9@ C- hy).

Therefore by Lemma 2.2, rank [S, S| < 2. By [INS1], we have [S,, S;;] # 0.
By [114], rank[S,, S;] # 1. Thus we get rank [S., S} = 2. O

zZy Mw

Next, we study [M & (2M 4+ wM)]. Recall that, by (2.2)
C=I1-R,R,—Ry,(I—-R.R})R,, = Pmo:m — RuPrmo:MmR,.
Now it is easy to see that C' = 0 on wpH?. We have
Mo wpH? = pH*(T,) ® hoH?(T,). (3.6)

Lemma 3.2 For f(2) € H%(T,), we have the following:

(') ( ( )) = f(0)p — (f(2), H(2))whe.
) = f(0)ho — (f(2), G(2))whe.

( )SO"‘G( )ho—who.

M):C ¢ +C - ho+C - who.

QSQ
£F
||

Proof.  (i): We have Ppe.mpf(2) = f(0)p. Since R: (pf(2)) L pH?, we

RuPrme:mRL(¢f (2) = w(RLef(2), ho)ho by (3.4) and (3.5)
= (pf(2), who)who

= < F(2),) w"G(z)"H(z)>wh0
= (f(2), H(z))who.

Thus we get (i).
(ii): We have Proaa(hof(2)) = f(0)ho. Since R (hof(2)) L pH?, we
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have
Ry Ppme=mRy, (hof(2))
= (Riho f(2), ho)who
= (hof(2),who)whg

S HEHECEM T, Y. HEGE T T Y

n=-—1

(f(2)H(2)G(2)", H(2)G (2)" " )who

Il
M

i
[en)

e Z|H G G(E) Yt

—~

f(2), G(2))whe.
(iii): Since who = @H(2) + hoG(z), by (i) and (i) we have
C(who) = H(0)p + G(0)ho — (||H | + [|G||*)who
= H(0)p + G(0)ho — why by condition (b).
(iv): This follows from (3.6), (i) and (ii). 0

Theorem 3.3  Suppose that G(z) is non-constant. Then we have the fol-
lowing:

(i) If G(0) = H(0) =0, then

Me(zM+wM)=c.<p@c-w@_

and

M=[Me (=M+wM).
(ii) If G(0) = 0 and H(0) # 0, then

_ . PH()
M@(ZM—F%UM)—C'my
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and M = [M & (zM+ wM)] if and only if H(z) = aHy(z) for some
a € C with |a|] = 1.
(iii) If G(0) # 0 and H(0) =0, then
Mo (zM+wM)=C- ¢
and

M # pH*(T?) = [M © (2M + wM)].

(iv) If G(0) # 0 and H(0) # 0, then

H(0)H(z)
Mo (M+wM)=C-p|1 - = ,
St " ) S0( G(O)(w—G(z)))
and M =M (zM + wM)] if and only if
H(0)H (z)

for every z € D.

Proof. By (3.5),
MS M = pH*T,) ®C - h.
Then we can get easily
{0} #Me (M +wM) CC-o&C- hy.

Let’s start to prove Theorem 3.3.
(i): Since G(0) = H(0) = 0, by Lemmas 2.4 and 3.2 we have

Mo M+ wM) =C- pdC - hy,

In this case, it is easy to see that M = [M & (zM + wM)].

(ii): By Lemmas 2.4 and 3.2, we have M & (zM + wM) = C - hy.
We can write H(z) = I(z)Hy(z) for some inner function I(z). Since Hy(z)
is outer, by [Gar, p.85] there exists a sequence of polynomials {p,(z)},
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such that |p,(z)Ho(z)] < 1 a.e. on I', and p,(2)Ho(z) — 1 a.e. on I',
as n — o0o. Since (w — G(z))hg = pH(z), by the Lebesgue dominated
convergence theorem

Pu(2)(w = G(2))ho = pu() Ho(2)pI(2) — 9I(z)  in H2.

Hence we get ¢I(z) € [ho).

Now we prove that M = [M&(zM+wM)] if and only if H(z) = aHy(z)
for some a € C with |a| = 1.
(<) If I(z) = a, then we have ¢ € [ho] and M = [p, hg] = [ho].
(=) To prove this by the contradiction, suppose that I(z) is non-constant.
Then T 1(z) # 0 and pTr1(z) € M. For every non-negative integers i, j,
we have

(pTF1(z), 2w ho) = ( T*.1(2), 2w I(z Zf(’fﬂ)gk >

<1, Z Zi+1w(k+1—j)H0(Z)Gk(Z)>
0

k=0

Hence we get T 1(z) L [ho], so that M # [ho]. Thus we get (ii).

(iii): By Lemmas 2.4 and 3.2, we have M & (zM +wM) = C- . Then
we easily get (iii).

(iv): Let F' = ap + bhy satisfying C(F') = F. By Lemma 3.2,

C(F) = ap — aH(0)whg + bho — bG(0)why.
Hence we get b= —H(0)a/G(0). By Lemma 2.4,
MS (M +wM) =C - (¢ + ahy),

where o = —H(0)/G(0). By (3.1),

© + ahg :go(l—i- H(z) >

w—G(2)

Since
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M = w(fﬂ = %H%Fz)),
we have
aH(z) o H(EZ) o
[1+w—G(z)}CH @w—G(z)H (T,), (3.7)
and it holds that
B aH(2)
A = el o
if and only if
aH(z) | o H(z) 2
[1+w—G(z)] =H @w—G(z)H (T,). (3.9)

First suppose that 1 < |G(z) — aH(z)| for every z € D. Then by [IY,
Corollary 2.7], we have

[w— (G(2) — aH(z))] = H2.

This shows that

aH(z) (s aH(z)
1+t > - aen[ie ]
= [w = (G(z) — aH(2))]
= H?.
Hence
H(z) aH(z)
e aa=ce]
Therefore
2, H(z) oH (z)
© T |1 e
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By (3.7), we have (3.9). So we get (3.8).
Finally we consider the case that |G(z9) —aH (z)| < 1 for some zy € D.
By [IY, Corollary 2.7],

[w— (G(2) — aH(2))|£H?. (3.10)

In this case, it is sufficient to prove that (3.9) does not hold. Suppose that
(3.9) holds. Then we have

(w— G(2)) [1 + u%] = (w— G(z))H? + H(z)H*T,).  (3.11)
Since
w61+ 225 | o (66) - ama),

by (3.11) we have
[w—G(2)] C [w—(G(2) — aH(2))].
Hence
{0} #H* & [w = (G(2) —aH(z))] by (3.10)
C H* s [w—G(2)).
By [IY, Theorem 2.5, Corollary 2.9 and its proof], we have
G(z) — aH(2) = G(2).

This contradicts that H(z) # 0. Therefore (3.9) does not hold. This com-
pletes the proof. O

In the case (iv) in Theorem 3.1, by (3.7) we have

aH(2)

w—G(z)] c M,

<p[1+

where a = —H(0)/G(0).
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Example 3.4 There are invariant subspaces M such that

aH(z)
14 ———| = 12
ol ] = 12
and
aH(z)
1+ ——| & 1
o) e 19
respectively.
Let G(z) = I(z)/2 for some non-constant inner function I(z) with

I(0) # 0. Then G(z) is a non-constant and non-extreme point in
ball H>(T,) with G(0) # 0.

First we give an example of (3.12). Let H(z) = v/3/2. Then |G(2)|?> +
|H(2)|* =1 a.e. on ', and H(0) # 0. For each 2z € D, we have

G(2) — aH(2)| = ‘I(;)Ufm)’ > ;<II(30)I 1> 1.

Thus by Theorem 3.3, we have (3.12).

Next we give an example of (3.13). Let H(z) = v/3I(z)/2. Then we have
|G(2)?+|H(2)|?> = 1ae. onT,, H(0) # 0 and G(z) —aH(z) = 21(z). Since
I(z) is non-constant inner, there exists zg € D such that |G(z0) —aH (z0)| <
1. Thus by Theorem 3.3, we get (3.13).

When G(z) is contained in the disk algebra, the space of functions f(z) €

C(D) which are analytic in D, the existence of inner function ¢ satisfying

aH(z)

G(z)

]CHQ
w

90[14-

is known, see [II3, Theorem 2.3].
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