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An example of a solid von Neumann algebra

Narutaka Ozawa

(Received June 24, 2008)

Abstract. We prove that the group-measure-space von Neumann algebra L∞(T2)o
SL(2,Z) is solid. The proof uses topological amenability of the action of SL(2,Z) on

the Higson corona of Z2.
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1. Introduction

Let SL(2,Z) =
{[

a b
c d

]
: a, b, c, d ∈ Z, ad − bc = 1

}
act by linear trans-

formations on the 2-torus T2 with the Haar measure, and L∞(T2)oSL(2,Z)
be the crossed product von Neumann algebra. Recall that a finite von Neu-
mann algebra is called solid if every diffuse subalgebra has an amenable
relative commutant. The main result of this paper is the following, which
strengthens a result in [Oz1], [Oz2]. See [CI] for some application of this
result to ergodic theory.

Theorem The von Neumann algebra L∞(T2)o SL(2,Z) is solid.

For the proof of Theorem, we take L∞(T2) o SL(2,Z) as the group
von Neumann algebra of the semidirect product Z2 o SL(2,Z) of Z2 by the
linear action of SL(2,Z), and study the behavior of the action at infinity.
This involves the notion of amenability for a group action on a topological
space, which we recall briefly. We refer the reader to [AR1, AR2, BO] for
detailed accounts of amenable actions. For a discrete group Γ, we denote by

P(Γ) = {µ ∈ `1(Γ) : µ ≥ 0, ‖µ‖ = 1}

the space of probability measures on Γ, equipped with the norm topology
(which coincides with the pointwise-convergence topology). The group Γ
acts on P(Γ) by left translations: (gµ)(h) = µ(g−1h) for g, h ∈ Γ and
µ ∈ P(Γ).
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Definition Let Γ be a countable discrete group and X be a compact
topological space on which Γ acts as homeomorphisms. We say the Γ-action
(or the Γ-space X) is amenable if there is a sequence of continuous maps
µn : X → P(Γ) such that

∀g ∈ Γ, lim
n→∞

sup
x∈X

‖µn(gx)− gµn(x)‖ = 0.

We consider the linear action of SL(2,Z) on Z2. Since the stabilizer sub-
groups of non-zero elements are all cyclic (amenable), it is easy to show the
action of SL(2,Z) on the Stone-Čech remainder βZ2 \Z2 of Z2 is amenable.
We will prove a stronger proposition. The Higson corona ∂Z2 is defined to
be the maximal quotient of βZ2 \ Z2, on which Z2 acts trivially:

C(∂Z2) =
{

f ∈ `∞(Z2) : ∀a ∈ Z2, lim
x→∞

|f(x + a)− f(x)| = 0
}

/c0(Z2).

The SL(2,Z)-action on Z2 naturally gives rise to an SL(2,Z)-action on ∂Z2.

Proposition The SL(2,Z)-action on ∂Z2 is amenable.

2. Proof of Proposition

We consider the group SL(2,R) =
{[

a b
c d

]
: a, b, c, d ∈ R, ad − bc =

1
}

acting on the real projective line R̂ = R ∪ {∞} by linear fractional
transformations:

[
a b
c d

]
: t 7→ at + b

ct + d
.

The stabilizer of the point ∞ ∈ R̂ is the subgroup P of upper triangular
matrices. Since P is a closed amenable subgroup of SL(2,R), the linear
fractional action of SL(2,Z) on R̂ ∼= SL(2,R)/P is amenable. For the proof
of this fact, see Example 3.9 in [AR1] or Section 5.4 in [BO]. Now, we
observe that the map ϕ : Z2\{0} → R̂, defined by ϕ

(
m
n

)
= m/n, is SL(2,Z)-

equivariant and satisfies

lim
x→∞

d(ϕ(x + a), ϕ(x)) = 0
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for every a ∈ Z2, where d is a fixed metric on R̂ which agrees with the
topology. By considering ϕ∗ : C(R̂) → `∞(Z2), one sees that ϕ gives rise to
an SL(2,Z)-equivariant continuous map ϕ̃ : ∂Z2 → R̂. It is clear from the
definition that amenability of R̂ implies that of ∂Z2. ¤

3. Proof of Theorem

The proof of Theorem is almost a verbatim translation of Section 4 of
[Oz2], and we give it rather sketchily. For another approach, we refer the
reader to Chapter 15 of [BO].

We follow the notations used in Section 4 of [Oz2] and plug C∗λ(Z2) into
A and SL(2,Z) into Γ. We note that Γ is virtually-free and hence Γ ∈ S, i.e.,
the left-and-right translation action of Γ × Γ on the Stone-Čech remainder
βΓ \ Γ of Γ is amenable. It is proved in [Oz2] that Γn Λ ∈ S if Γ ∈ S, Λ is
amenable, and there is a map ζ : Λ → P(Γ) such that

lim
y→∞

(‖gζ(y)− ζ(gy)‖+ ‖ζ(xyx′)− ζ(y)‖) = 0

for all g ∈ Γ and x, x′ ∈ Λ. Indeed, for Corollary 4.5 in [Oz2], the only
specific property we require of Λ = ∆Γ is the existence of ξ = ζ1/2 in the
proof of Proposition 4.4 in [Oz2]. From now on, let Γ = SL(2,Z) and Λ = Z2

and view them as abstract multiplicative groups. It is left to construct
ζ : Λ → P(Γ) satisfying the above condition. Although this can be done by
modifying Proposition 4.1 in [Oz2], we give an alternative proof here. By
(the proof of) Proposition, there is a sequence of maps ζn : Λ → P(Γ) such
that

lim sup
y→∞

(‖ζn(gy)− gζn(y)‖+ ‖ζn(xyx′)− ζn(y)‖) < 1/n

for all n ∈ N, g ∈ Γ and x, x′ ∈ Λ. (Indeed, let ζn(x) = µn(ϕ(x)) for a
suitable µn : R̂ → P(SL(2,Z)) that verifies amenability of R̂.) For g ∈ Γ,
x, x′ ∈ Λ, we define finite subsets Dn(g;x, x′) ⊂ Λ by

Dn(g;x, x′) = {y ∈ Λ : ‖ζn(gy)− gζn(y)‖+ ‖ζn(xyx′)− ζn(y)‖ ≥ 1/n}.

Take an increasing sequence {1} = E0 ⊂ E1 ⊂ · · · ⊂ Γ of finite symmetric
subsets such that

⋃
En = Γ and likewise for {1} = F0 ⊂ F1 ⊂ · · · ⊂ Λ. We
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define finite subsets {1} = Ω0 ⊂ Ω1 · · · of Λ inductively by

Ωn =
⋃

g∈En, x, x′∈Fn, y∈Ωn−1

(
Dn(g;x, x′) ∪ {gy, xyx′})

for n ≥ 1. We define l(y) = min{n : y ∈ Ωn} and define ζ : Λ → P(Γ) by

ζ(y) =
1

l(y)

l(y)−1∑
n=0

ζn(y).

(The value of ζ at the unit 1 does not matter.) Let g ∈ Γ and x, x′ ∈ Λ be
given arbitrary and take k such that g ∈ Ek and x, x′ ∈ Fk. We observe
that |l(gy) − l(y)| ≤ 1 and |l(xyx′) − l(y)| ≤ 1 for every y with l(y) > k;
and that ‖ζn(gy) − gζn(y)‖ + ‖ζn(xyx′) − ζn(y)‖ < 1/n for every n with
k ≤ n < l(y). It follows that

lim
l(y)→∞

(‖gζ(y)− ζ(gy)‖+ ‖ζ(xyx′)− ζ(y)‖) = 0,

which verifies the required condition. This proves Z2 o SL(2,Z) ∈ S, and
hence the von Neumann algebra L∞(T2) o SL(2,Z) ∼= L(Z2 o SL(2,Z)) is
solid by Theorem 6 in [Oz1]. ¤
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N. Ozawa 561

[BO] Brown N. and Ozawa N., C∗-algebras and finite-dimensional approxima-

tions. Grad. Stud. Math., 88. Amer. Math. Soc., Providence, RI, 2008.

[CI] Chifan I. and Ioana A., Ergodic Subequivalence Relations Induced by a

Bernoulli Action. Preprint arXiv:0802.2353.

[Oz1] Ozawa N., Solid von Neumann algebras. Acta Math. 192 (2004), 111–117.

[Oz2] Ozawa N., A Kurosh type theorem for type II1 factors. Int. Math. Res.

Not. 2006, Art. ID 97560, 21 pp.

Department of Mathematical Sciences

University of Tokyo

Tokyo 153-8914

E-mail: narutaka@ms.u-tokyo.ac.jp


