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A formula for the Lojasiewicz exponent at infinity

in the real plane via real approximations
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Abstract. We compute the Lojasiewicz exponent of f = (f1,..., fn): RZ> = R" via
the real approximation of Puiseux’s expansions at infinity of the curve f; ... f, = 0.
As a consequence we construct a collection of real meromorphic curves which provide
a testing set for properness of f as well as a condition, which is very easy to check, for
a local diffeomorphism to be a global one.
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1. Introduction

Let M, N be finite dimensional real vector spaces and let f: M — N
be semi-algebraic mapping. For X C M, put

Loo(flx):=sup{v eR:3C, R>0,
Vo€ X(Jzll = R= | f(=)l| = Cll=]")}

and

~ . .degfod
Loo =inf ————
(f]x) n deg ®
where ® runs over the set of meromorphic functions at infinity such that
deg® > 0 and ®(7) € X, for all 7 enough large.
According to [Sk, Theorem 2.1], we know that

EOO(f|X) = 'COO(f|X)'

The number L (f) := Loo(f|am) is called the Lojasiewicz exponent at
nfinity of the mapping f.
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We refer the reader to the recent survey [K] for more information on the
Lojasiewicz exponent at infinity of mappings.

Remark 1.1 It is clear that the Lojasiewicz exponent does not change by
a linear transformation.

Following Jelonek [Je], X C M is called a testing set for properness of
the map f,if flx: X — N is proper, then f is proper, too. It is clear that
if Loo(f|x) = Loo(f) then X C M is a testing set for properness of the map
f.

In this note we restrict our investigation to a very restrictive setting,
namely we consider polynomial mappings in two real variables. We give
a formula for the Lojasiewicz exponent in terms of real approximations of
Puiseux’s expansions at infinity. As a consequence we construct a collection
of real meromorphic curves which provide a testing set for properness of
polynomial maps as well as a condition, which is very easy to check, for a
local diffeomorphism to be a global one.

In [Je|, Z. Jelonek has given various conditions for a given set to be a
testing set for properness of a polynomial mapping from a complex affine
variety to C™. In particular, if f = (f1,..., fn): C™ — C" is polynomial
mapping then the set {fif2... f, = 0} is a testing set for properness of f.
The same result was also proven in [C-K2]. Moreover if m = n = 2, the
authors of [C-K2] have given a formula expressing the Lojasiewicz exponent
via Puiseux’s expansions at infinity of the curve fifo = 0 ([C-K1]). It is
not difficult to see that these results are not longer true for the case of real
variables (see Remark 2.5 bellow).

2. Main result
If p(7) is a series of the form

o(1T) = ap™ + terms of lower degree,

where 7 € K (K = C or K =R), ap € K", n € N, ag # 0, then the number
« is denoted by deg ¢.
Let us consider a series x = A(y) in the form:

xTr = )\(y) = alyOél + a2ya2 + .o+ as_lyas—l + asyas 4.
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where a; > ag > -+, a; € C.
If a1,a0,...,as_1 € R and as € R, we put

N (y) == a1y™ + agy® + -+ as 1yt + ey,

where ¢ is a generic real number. We call A®(y) the real approzimation of

Ay)-
The following theorem is the main result of the article.

Theorem 2.1 Let f = (f1,..., fn): R2 — R" be a real polynomial map-
ping, where deg f; = deg, fi = d; > 0.
Let x = xj(y) be the Puiseux expansions at infinity of fi ... f, =0 and

let :):ﬂf(y) be the real approzimations of x;(y), for j = 1,2,...,D, where
D=d; --d,. Then

Loo(f) = min { deg f(x7(y),9)}-

Let f(z,y) € Clx,y] such that deg f = deg, f = d > 0. Let I" denote
the zero set of f. Let © = z;(y), ¢ = 1,2,...,d, be the Puiseux expansions
at infinity of f(z,y) = 0 and let 2% (y) be the real approximations of z;(y).
Put

k.= Ule{(:n,y) €eR?: |y| >R,z = a:IlR(y)}
and call it the real approximation of I.

Corollary 2.2 Let f = (f1,...,fn): R2 — R™ be a real polynomial
mapping such that deg f; = deg, fi = d;, for all i = 1,2,...,n. Let
I = {(z,y) € C?: fi(x,y)... fu(z,y) = 0} and let T® denote the real
approzimation of I'. Then 'R is a testing set for properness of the map f.

Corollary 2.3  With the notation as above, a local polynomial diffeo-

mophism f = (f1,f2): R?2 — R? is a global diffeomorphism if and only

if one of three equivalent conditions hold

(i) f is proper.

(ii) The restriction of f on I'® is proper.

(iii) The degree of f(:nﬂf(y),y) s positive for every 7 = 1,2,...,D, where
D=dy---dy.

Remark 2.4

(i) It is well known that a local polynomial diffeomorphism might not be
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a global diffemorphism [P].
(ii) Some sufficient conditions for a local diffeomorphism to be a global
diffeomorphism were given in [C-G], [R], [S].

Remark 2.5 It is easy to see that the restriction of the map f =
(f1, f2): B2 — R, where f1(z,y) = (zy—1)>+92, fa(z,y) = [(@y—1)*+y?)z,
on the set fifo = 0 is proper, nevertheless f is not proper. In fact
’n = (nv %) — 00 but f(zn) - (070)

Example 2.6 (a) We will compute the Lojasiewicz exponent at infinity
of the map in Remark 2.5. By the linear transformation x := x; y := x + v,
we get g = (g1, 92), where

gi(z,y) = (2" + 2y —1)* + (z +y)*,
go(2,y) = [(@* + 2y = 1)* + (2 + )] 2
It follows from Remark 1.1 that Lo (f) = Loo(g). Then

z1(y)=1+y~ +0( ),

z2(y —i+y +o( ),

(
(
z3(y Yy +o(y 2,
(

)
) =
) =
za(y) = iy +o(y™?)

and x5(y) = 0 are the Puiseux expansions at infinity of g;g2 = 0. Therefore

R R —2

i) =a5y)=c, a50)=z5(y)=—y—y " +cy

and x5 (y) = 0, where c is a generic real number. Hence by Theorem 2.1 we
have

Loo(f) = Loc(g) = —2.
(b) We consider the map f = (f1, f2): K? — K2, where
filz.y) = (2% + 2y — 1)* + (x +y)* and fo(z,y) = 2” + 1.

Then
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vi(y) =i+y ' +olyh),

wa(y) = —i+y " +oly™),

w3(y) = —y —y iy 2 +o(y?),

za(y) =~y —y " —iy 2 +oly?),
x5(y) =i and z¢(y) = —i are the Puiseux expansions at infinity of f; fo = 0.
Therefore

1 (y) = 25 (y) = 25 (y) = 6 (y) = ¢,

wi(y) =aiy) =—y -y~ ey,
where c is a generic real number. Thus, by the result of [C-K2]
Lo(f)=-1,if K=C

while by Theorem 2.1, we have

Loo(f) =2, if K=R.

3. Proof of the main result

Let f: K? — K be a polynomial. For a series
z=0@y) =cay™/N +eoyN +.. ) g eK e #£0

we put
1\ 1 inri /N
MXY)=f(X+¢(v) v :Z%XY .
27.]

For each ¢;; # 0, let us plot a dot at (i, j/N), called a Newton dot. The
set of Newton dots is called the Newton diagram. They generate a convex
hull, whose boundary is called the Newton polygon of f relative to ¢, to be
denoted by P(f,¢) or P(M).

Assume that = = ¢(y) is not a Puiseux root at infinity of f = 0. Then
the Y-axis contains at least one dot of M. Let (0, hps) be the lowest Newton
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dot. We see that hys = —deg f(p(y),y).

By “the highest Newton edge” Hpy; of M we mean the edge of P(M),
one of its extremities is (0, hys) and all of Newton dots of M are lying on
or above the line containing Hpys. Let 03y = tanp, here ¢ is the angle
between H)s and the X-axis. Note that if (7, j/N) is a Newton dot of M
then Opri + j/N > hy and (i,5/N) € Hyy if and only if Opi + /N = hyy.
If z = p(y) is a Puiseux root at infinity of f = 0, we set hys = +oo and
9M = +00.

We associate Hjys with the polynomial ep/(x) := e(z, 1), where

e(X,Y) = ¢ X'YI/N, with (i,j/N) € Hy.

Lemma 3.1 ([H-D, Lemma 2.1])  Let M(X,Y) = M(X + ¢Y?,Y), where

0 is a real number. We have

(a) If 0 > Opr, then hyy = har and O35 = Oy

(b) If 0 = 0O and c is a non-zero root of ep(x), then hyy > hy and
QM > 0.

(c) If 0 = 0pr and epr(c) # 0, then hgy = hay and 037 = O

If ¢ is a non-zero root of ey7(z), the series 1 (y) = @(y) + ey~ will
be called the sliding of ¢(y) along f. A recursive sliding ¢ — @3 — ---
produces a limit, ¢, where oo (y) = i(y) if f(vi(y),y) = 0. The series v
is a Puiseux expansion at infinity of f = 0 (see [H-P] for more information
about Puiseux expansions at infinity) and will be called a final result of
sliding ¢ along f.

Lemma 3.2 ([H-D, Lemma 2.3]) Let f,g: R> — R be polynomials. For a
series © = p(y), we put

o (xo(1)4)

N(X,Y) :g<X—i—cp(11/>,11/>.

Let ¥ = 0oo(y) be a final result of sliding ¢ along f and % (y) be the real
approzimation of Yoo (y). We have

and
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(a) If Oar > O, then deg g(v5, (), y) = deg g(2(y), )3
(b) If 0rr = O, then deg (45, (y), y) < degg(¢(y), y),
in particular with g = f, we have deg f(©% (y),y) < deg f(o(y), ).

Proof of Theorem 2.1.  We know that L (f) < max{deg f;}. Assume that
Loo(f) = max{deg f;}. From the hypothesis deg f;, = deg, fi,, we have
degz;(y) < 1 and therefore deg :rIJR(y) < 1. It follows that deg f(a;%%(y),y) <
deg f. Thus

Loo(f) = max{deg fi} 2 min { deg FESw),m)}-

Hence

since

Loo(f) < H}jin{degf(x?(y),y)}-

Assume now that Lo.(f) < max{deg f;}. Let = ¢(y) be a any series
satisfying the condition

deg f(»(y),y)

deg f;} = deg f;. .
deg(v(y),y) < max{deg fi} = deg fi

Then deg ¢ < 1, since deg f;, = deg,, fi,. Put
M;( X, V)= fi| X + L
1 9 - J SO Y ) Y .
Let 0, = max{fy, }, Lemma 3.2 yields that

deg fi (¢ (y), y) < deg filp(y),y), Vi=1,...,n

where = ¢ (y) is the final result of the sliding ¢ along f;,. Thus

Loo(f) > mjin{degf(x?(y),y)}.
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On the other hand, the inequality

Loo(f) < min { deg FER W)y}

is always satisfied. Hence

Loo(f) = min{deg f (=} (), y)}- O
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