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A formula for the ÃLojasiewicz exponent at infinity

in the real plane via real approximations
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Abstract. We compute the ÃLojasiewicz exponent of f = (f1, . . . , fn) : R2 → Rn via

the real approximation of Puiseux’s expansions at infinity of the curve f1 . . . fn = 0.

As a consequence we construct a collection of real meromorphic curves which provide

a testing set for properness of f as well as a condition, which is very easy to check, for

a local diffeomorphism to be a global one.

Key words: ÃLojasiewicz exponent at infinity, Puiseux expansion at infinity, Testing

sets for properness of polynomial mappings.

1. Introduction

Let M, N be finite dimensional real vector spaces and let f : M → N

be semi-algebraic mapping. For X ⊂ M , put

L∞(f |X) := sup
{
ν ∈ R : ∃C, R > 0,

∀x ∈ X(‖x‖ ≥ R ⇒ ‖f(x)‖ ≥ C‖x‖ν)
}

and

L̃∞(f |X) = inf
Φ

deg f ◦ Φ
deg Φ

,

where Φ runs over the set of meromorphic functions at infinity such that
deg Φ > 0 and Φ(τ) ∈ X, for all τ enough large.

According to [Sk, Theorem 2.1], we know that

L̃∞(f |X) = L∞(f |X).

The number L∞(f) := L∞(f |M ) is called the ÃLojasiewicz exponent at
infinity of the mapping f .

2000 Mathematics Subject Classification : Primary 14R25; Secondary 32A20, 32S05,
14R25.
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We refer the reader to the recent survey [K] for more information on the
ÃLojasiewicz exponent at infinity of mappings.

Remark 1.1 It is clear that the ÃLojasiewicz exponent does not change by
a linear transformation.

Following Jelonek [Je], X ⊂ M is called a testing set for properness of
the map f , if f |X : X → N is proper, then f is proper, too. It is clear that
if L∞(f |X) = L∞(f) then X ⊂ M is a testing set for properness of the map
f .

In this note we restrict our investigation to a very restrictive setting,
namely we consider polynomial mappings in two real variables. We give
a formula for the ÃLojasiewicz exponent in terms of real approximations of
Puiseux’s expansions at infinity. As a consequence we construct a collection
of real meromorphic curves which provide a testing set for properness of
polynomial maps as well as a condition, which is very easy to check, for a
local diffeomorphism to be a global one.

In [Je], Z. Jelonek has given various conditions for a given set to be a
testing set for properness of a polynomial mapping from a complex affine
variety to Cn. In particular, if f = (f1, . . . , fn) : Cm → Cn is polynomial
mapping then the set {f1f2 . . . fn = 0} is a testing set for properness of f .
The same result was also proven in [C-K2]. Moreover if m = n = 2, the
authors of [C-K2] have given a formula expressing the ÃLojasiewicz exponent
via Puiseux’s expansions at infinity of the curve f1f2 = 0 ([C-K1]). It is
not difficult to see that these results are not longer true for the case of real
variables (see Remark 2.5 bellow).

2. Main result

If ϕ(τ) is a series of the form

ϕ(τ) = a0τ
α + terms of lower degree,

where τ ∈ K (K = C or K = R), a0 ∈ Kn, n ∈ N, a0 6= 0, then the number
α is denoted by deg ϕ.

Let us consider a series x = λ(y) in the form:

x = λ(y) = a1y
α1 + a2y

α2 + · · ·+ as−1y
αs−1 + asy

αs + · · ·
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where α1 > α2 > · · · , ai ∈ C.
If a1, a2, . . . , as−1 ∈ R and as 6∈ R, we put

λR(y) := a1y
α1 + a2y

α2 + · · ·+ as−1y
αs−1 + cyαs ,

where c is a generic real number. We call λR(y) the real approximation of
λ(y).

The following theorem is the main result of the article.

Theorem 2.1 Let f = (f1, . . . , fn) : R2 → Rn be a real polynomial map-
ping, where deg fi = degx fi = di > 0.

Let x = xj(y) be the Puiseux expansions at infinity of f1 . . . fn = 0 and
let xRj (y) be the real approximations of xj(y), for j = 1, 2, . . . , D, where
D = d1 · · · dn. Then

L∞(f) = min
j

{
deg f(xRj (y), y)

}
.

Let f(x, y) ∈ C[x, y] such that deg f = degx f = d > 0. Let Γ denote
the zero set of f . Let x = xi(y), i = 1, 2, . . . , d, be the Puiseux expansions
at infinity of f(x, y) = 0 and let xRi (y) be the real approximations of xi(y).
Put

ΓR := ∪d
i=1

{
(x, y) ∈ R2 : |y| > R, x = xRi (y)

}

and call it the real approximation of Γ.

Corollary 2.2 Let f = (f1, . . . , fn) : R2 → Rn be a real polynomial
mapping such that deg fi = degx fi = di, for all i = 1, 2, . . . , n. Let
Γ := {(x, y) ∈ C2 : f1(x, y) . . . fn(x, y) = 0} and let ΓR denote the real
approximation of Γ. Then ΓR is a testing set for properness of the map f .

Corollary 2.3 With the notation as above, a local polynomial diffeo-
mophism f = (f1, f2) : R2 → R2 is a global diffeomorphism if and only
if one of three equivalent conditions hold
( i ) f is proper.
( ii ) The restriction of f on ΓR is proper.
(iii) The degree of f(xRj (y), y) is positive for every j = 1, 2, . . . , D, where

D = d1 · · · dn.

Remark 2.4
( i ) It is well known that a local polynomial diffeomorphism might not be
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a global diffemorphism [P].
( ii ) Some sufficient conditions for a local diffeomorphism to be a global

diffeomorphism were given in [C-G], [R], [S].

Remark 2.5 It is easy to see that the restriction of the map f =
(f1, f2) : R2 → R2, where f1(x, y) = (xy−1)2+y2, f2(x, y) = [(xy−1)2+y2]x,
on the set f1f2 = 0 is proper, nevertheless f is not proper. In fact
zn = (n, 1

n ) →∞ but f(zn) → (0, 0).

Example 2.6 (a) We will compute the ÃLojasiewicz exponent at infinity
of the map in Remark 2.5. By the linear transformation x := x; y := x + y,
we get g = (g1, g2), where

g1(x, y) = (x2 + xy − 1)2 + (x + y)2,

g2(x, y) =
[
(x2 + xy − 1)2 + (x + y)2

]
x2.

It follows from Remark 1.1 that L∞(f) = L∞(g). Then

x1(y) = i + y−1 + o(y−1),

x2(y) = −i + y−1 + o(y−1),

x3(y) = −y − y−1 + iy−2 + o(y−2),

x4(y) = −y − y−1 − iy−2 + o(y−2)

and x5(y) = 0 are the Puiseux expansions at infinity of g1g2 = 0. Therefore

xR1 (y) = xR2 (y) = c, xR3 (y) = xR4 (y) = −y − y−1 + cy−2

and xR5 (y) = 0, where c is a generic real number. Hence by Theorem 2.1 we
have

L∞(f) = L∞(g) = −2.

(b) We consider the map f = (f1, f2) : K2 → K2, where

f1(x, y) = (x2 + xy − 1)2 + (x + y)2 and f2(x, y) = x2 + 1.

Then
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x1(y) = i + y−1 + o(y−1),

x2(y) = −i + y−1 + o(y−1),

x3(y) = −y − y−1 + iy−2 + o(y−2),

x4(y) = −y − y−1 − iy−2 + o(y−2),

x5(y) = i and x6(y) = −i are the Puiseux expansions at infinity of f1f2 = 0.
Therefore

xR1 (y) = xR2 (y) = xR5 (y) = xR6 (y) = c,

xR3 (y) = xR4 (y) = −y − y−1 + cy−2,

where c is a generic real number. Thus, by the result of [C-K2]

L∞(f) = −1, if K = C

while by Theorem 2.1, we have

L∞(f) = 2, if K = R.

3. Proof of the main result

Let f : K2 → K be a polynomial. For a series

x = ϕ(y) = c1y
n1/N + c2y

n2/N + · · · , ci ∈ K, c1 6= 0

we put

M(X, Y ) = f

(
X + ϕ

(
1
Y

)
,

1
Y

)
=

∑

i,j

cijX
iY j/N .

For each cij 6= 0, let us plot a dot at (i, j/N), called a Newton dot. The
set of Newton dots is called the Newton diagram. They generate a convex
hull, whose boundary is called the Newton polygon of f relative to ϕ, to be
denoted by P(f, ϕ) or P(M).

Assume that x = ϕ(y) is not a Puiseux root at infinity of f = 0. Then
the Y -axis contains at least one dot of M . Let (0, hM ) be the lowest Newton
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dot. We see that hM = −deg f(ϕ(y), y).
By “the highest Newton edge” HM of M we mean the edge of P(M),

one of its extremities is (0, hM ) and all of Newton dots of M are lying on
or above the line containing HM . Let θM = tanϕ, here ϕ is the angle
between HM and the X-axis. Note that if (i, j/N) is a Newton dot of M

then θM i + j/N ≥ hM and (i, j/N) ∈ HM if and only if θM i + j/N = hM .
If x = ϕ(y) is a Puiseux root at infinity of f = 0, we set hM = +∞ and
θM = +∞.

We associate HM with the polynomial εM (x) := ε(x, 1), where

ε(X, Y ) =
∑

cijX
iY j/N , with (i, j/N) ∈ HM .

Lemma 3.1 ([H-D, Lemma 2.1]) Let M̃(X, Y ) = M(X + cY θ, Y ), where
θ is a real number. We have
(a) If θ > θM , then hfM = hM and θfM = θM .
(b) If θ = θM and c is a non-zero root of εM (x), then hfM > hM and

θfM > θM .
(c) If θ = θM and εM (c) 6= 0, then hfM = hM and θfM = θM .

If c is a non-zero root of εM (x), the series ϕ1(y) = ϕ(y) + cy−θM will
be called the sliding of ϕ(y) along f . A recursive sliding ϕ → ϕ1 → · · ·
produces a limit, ϕ∞, where ϕ∞(y) = ϕi(y) if f(ϕi(y), y) = 0. The series ϕ∞
is a Puiseux expansion at infinity of f = 0 (see [H-P] for more information
about Puiseux expansions at infinity) and will be called a final result of
sliding ϕ along f .

Lemma 3.2 ([H-D, Lemma 2.3]) Let f, g : R2 → R be polynomials. For a
series x = ϕ(y), we put

M(X, Y ) = f

(
X + ϕ

(
1
Y

)
,

1
Y

)

and

N(X, Y ) = g

(
X + ϕ

(
1
Y

)
,

1
Y

)
.

Let x = ϕ∞(y) be a final result of sliding ϕ along f and ϕR∞(y) be the real
approximation of ϕ∞(y). We have
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(a) If θM > θN , then deg g(ϕR∞(y), y) = deg g(ϕ(y), y);

(b) If θM = θN , then deg g(ϕR∞(y), y) ≤ deg g(ϕ(y), y),

in particular with g = f , we have deg f(ϕR∞(y), y) ≤ deg f(ϕ(y), y).

Proof of Theorem 2.1. We know that L∞(f) ≤ max{deg fi}. Assume that
L∞(f) = max{deg fi}. From the hypothesis deg fi0 = degx fi0 , we have
deg xj(y) ≤ 1 and therefore deg xRj (y) ≤ 1. It follows that deg f(xRj (y), y) ≤
deg f . Thus

L∞(f) = max{deg fi} ≥ min
j

{
deg f(xRj (y), y)

}
.

Hence

L∞(f) = min
j

{
deg f(xRj (y), y)

}
,

since

L∞(f) ≤ min
j

{
deg f(xRj (y), y)

}
.

Assume now that L∞(f) < max{deg fi}. Let x = ϕ(y) be a any series
satisfying the condition

deg f(ϕ(y), y)
deg(ϕ(y), y)

< max{deg fi} = deg fi0 .

Then deg ϕ ≤ 1, since deg fi0 = degx fi0 . Put

Mi(X, Y ) = fi

(
X + ϕ

(
1
Y

)
,

1
Y

)
.

Let θMi0
= max{θMi

}, Lemma 3.2 yields that

deg fi

(
ϕR∞(y), y

) ≤ deg fi(ϕ(y), y), ∀i = 1, . . . , n

where x = ϕ∞(y) is the final result of the sliding ϕ along fi0 . Thus

L∞(f) ≥ min
j

{
deg f(xRj (y), y)

}
.
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On the other hand, the inequality

L∞(f) ≤ min
j

{
deg f(xRj (y), y)

}

is always satisfied. Hence

L∞(f) = min
j
{deg f(xRj (y), y)}. ¤
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