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Weighted sharing of three values

by meromorphic functions
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Abstract. Using the notion of weighted sharing of values we prove some uniqueness

theorems for meromorphic functions which improve some existing results.
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1. Introduction and Definitions

Let f and g be two nonconstant meromorphic functions defined in the
open complex plane C. If for some a ∈ C ∪ {∞} f and g have the same
set of a-points with the same multiplicity, we say that f , g share the value
a CM (counting multiplicities) and if we do not take the multiplicities into
account f , g are said to share the value a IM (ignoring multiplicities). We
denote by E a set of nonnegative real numbers of finite Lebesgue measure
which is not necessarily the same in each of its occurrences.

Though for the standard definitions and notations of the value distri-
bution theory we refer to [3], in the following definition we explain some
notations.

Definition 1.1 ([4, 8]) We denote by N(r, a; f |≤ 1) and N(r, a; f |≥ 2)
the counting functions of simple and multiple a-points of f respectively.
Also by N(r, a; f |≥ 2) we denote the reduced counting function of multiple
a-points of f , where each a-point is counted only once.

A number of authors viz., R. Nevanlinna [10], M. Ozawa [11], G.G.
Gundersen [2], H. Ueda [12, 13], G. Brosch [1], H.X. Yi et al. [14, 15, 16,
17], P.Li and C.C. Yang [9], Q.C. Zhang [18] worked on the problem of
uniqueness of meromorphic functions sharing three values.

M. Ozawa [11] proved the following result.
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Theorem A ([11]) Let f and g be two distinct nonconstant entire func-
tions of finite order sharing 0, 1 CM. If δ(0; f) > 1/2 then fg ≡ 1.

Removing the order restriction on the functions H. Ueda [12] proved
the following theorem.

Theorem B ([12]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM. If

lim sup
r→∞

N(r, ∞; f) + N(r, 0; f)
T (r, f)

<
1
2

then fg ≡ 1.

G. Brosch [1] further improved Theorem B and proved the following
result.

Theorem C ([1]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM. If

lim sup
r→∞

N(r, ∞; f) + N(r, 0; f) − (1/2)m(r, 1; g)
T (r, f)

<
1
2

then fg ≡ 1.

G. Brosch [1] also proved the following two results.

Theorem D ([1]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM. If

lim sup
r→∞, r 6∈E

N(r)
T (r, f)

>
2
3

then f is a bilinear transformation of g, where N(r) denotes the counting
function of those zeros of f −g which are not the zeros of f(f −1) and 1/f .

Theorem E ([1]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM. If

N(r, 0; f ′) + N(r, 0; g′) = S(r, f)

then f is a bilinear transformation of g.

Improving Theorem D and Theorem E, Q.C. Zhang [18] proved the
following two results.
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Theorem F ([18]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM. If

lim sup
r→∞, r 6∈E

N(r)
T (r, f)

>
1
2

then f and g satisfy one of the following relations: (i) f + g ≡ 1, (ii) (f −
1)(g − 1) ≡ 1 and (iii) fg ≡ 1.

Theorem G ([18]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM. If

N(r, 0; f ′) + N(r, 0; g′) < λ{T (r, f) + T (r, g)}

for a constant λ (0 < λ < 1/2), then f is a bilinear transformation of g.

Q.C. Zhang [18] also proved the following result which is a sort of com-
plement to Theorem F.

Theorem H ([18]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM. If

0 < lim sup
r→∞, r 6∈E

N(r)
T (r, f)

≤ 1
2

then N(r) = (1/p)T (r, f) + S(r, f) and f is not a bilinear transformation
of g and they assume one of the following forms:

( i ) f =
esγ − 1

e(p+1)γ − 1
, g =

e−sγ − 1
e−(p+1)γ − 1

;

( ii ) f =
e(p+1)γ − 1

e(p+1−s)γ − 1
, g =

e−(p+1)γ − 1
e−(p+1−s)γ − 1

;

(iii) f =
esγ − 1

e−(p+1−s)γ − 1
, g =

e−sγ − 1
e(p+1−s)γ − 1

;

where s and p are positive integers with 1 ≤ s ≤ p and s, p + 1 are
relatively prime and γ is a nonconstant entire function.

Using the results of Zhang [18] recently H.X. Yi and W.R. Lü [17]
proved the following results, the first of which extends Theorem C and the
second extends Theorem B.

Theorem I ([17]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM. If there exists a set I of infinite linear mea-



44 I. Lahiri

sure such that

lim sup
r→∞, r∈I

N(r, ∞; f |≤ 1) + N(r, 0; f |≤ 1) − m(r, 1; g)
T (r, f)

< 1

then f and g satisfy one one of the following relations:

( i ) f =
esγ − 1

e−(p+1−s)γ − 1
, g =

e−sγ − 1
e(p+1−s)γ − 1

;

( ii ) f =
e(p+1)γ − 1

esγ − 1
, g =

e−(p+1)γ − 1
e−sγ − 1

;

(iii) f =
esγ − 1

e(p+1)γ − 1
, g =

e−sγ − 1
e−(p+1)γ − 1

;

where s and p are positive integers with 1 ≤ s ≤ p and s, p + 1 are
relatively prime and γ is a nonconstant entire function. Also

N(r, ∞; f |≤ 1) + N(r, 0; f |≤ 1) − m(r, 1; g)

=
(
1 − 1

p

)
T (r, f) + S(r, f).

Theorem J ([17]) Let f and g be two distinct nonconstant meromorphic
functions sharing 0, 1, ∞ CM. If there exists a set I of infinite linear mea-
sure such that

lim sup
r→∞, r∈I

N(r, ∞; f |≤ 1) + N(r, 0; f |≤ 1)
T (r, f)

< 1,

then f and g assume the following form:

f =
esγ − 1

e−(p+1−s)γ − 1
, g =

e−sγ − 1
e(p+1−s)γ − 1

,

where s, p are positive integers with 1 ≤ s ≤ p, and s, p + 1 are relatively
prime and γ is a nonconstant entire function. Also

N(r, ∞; f |≤ 1) + N(r, 0; f |≤ 1) =
(
1 − 1

p

)
T (r, f) + S(r, f).

The purpose of the paper is to show that the supposition of sharing
the values 0, 1, ∞ CM is in fact redundant and it is possible to achieve
the same conclusion under a remarkable relaxation on the nature of sharing
the values. To this end we use the notion of weighted sharing of values as
introduced in [4, 5], which measures how close a shared value is to being
shared CM or to being shared IM.
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Definition 1.2 ([4, 5]) Let k be a nonnegative integer or infinity. For
a ∈ C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f where an
a-point of multiplicity m is counted m times if m ≤ k and k + 1 times if
m > k. If Ek(a; f) = Ek(a; g), we say that f, g share the value a with
weight k.

The definition implies that if f , g share a value a with weight k then
zo is a zero of f − a with multiplicity m(≤ k) if and only if it is a zero of
g − a with multiplicity m(≤ k) and zo is a zero of f − a with multiplicity
m(> k) if and only if it is a zero of g − a with multiplicity n(> k) where m

is not necessarily equal to n.
We write f, g share (a, k) to mean that f, g share the value a with

weight k. Clearly if f, g share (a, k) then f, g share (a, p) for all integers
p, 0 ≤ p < k. Also we note that f, g share a value a IM or CM if and only
if f, g share (a, 0) or (a, ∞) respectively.

Definition 1.3 ([8]) Let f and g share a value a IM. Let z be an a-point
of f and g with multiplicities pf (z) and pg(z) respectively.

We put

νf (z) = 1 if pf (z) > pg(z)

= 0 if pf (z) ≤ pg(z)

and

µf (z) = 1 if pf (z) < pg(z)

= 0 if pf (z) ≥ pg(z).

Let n(r, a; f > g) =
∑

|z|≤r νf (z) and n(r, a; f < g) =
∑

|z|≤r µf (z). We
now denote by N(r, a; f > g) and N(r, a; f < g) the integrated counting
functions obtained from n(r, a; f > g) and n(r, a; f < g) respectively.

2. Lemmas

In this section we present some lemmas which will be needed in the
sequel.

Lemma 2.1 ([18]) Let f1 and f2 be nonconstant meromorphic functions
satisfying N(r, 0; fi) + N(r, ∞; fi) = S0(r) for i = 1, 2. Then either
N0(r, 1; f1, f2) = S0(r) or there exist two integers s, t (|s| + |t| > 0) such
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that fs
1f t

2 ≡ 1, where N0(r, 1; f1, f2) denotes the reduced counting function
of f1 and f2 related to the common 1-points and T (r) = T (r, f1)+T (r, f2),
S0(r) = o(T (r)) as r → ∞ (r 6∈ E).

Lemma 2.2 ([2]) If f , g share (0, 0), (1, 0), (∞, 0) then (i) T (r, f) ≤
3T (r, g) + S(r, f), (ii) T (r, g) ≤ 3T (r, f) + S(r, g).

This shows that S(r, f) = S(r, g) and we denote them by S(r).

Lemma 2.3 ([6]) Let f , g share (0, 1), (1, m), (∞, k) and f 6≡ g, where
(m− 1)(mk − 1) > (1 + m)2. Then N(r, a; f |≥ 2) = S(r) and N(r, a; g |≥
2) = S(r) for a = 0, 1, ∞.

Lemma 2.4 ([7]) Let f, g share (0, 0), (1, 0), (∞, 0) and f 6≡ g. If α =
f/g and β = (f − 1)/(g − 1) then
( i ) N(r, 0; α) = N(r, ∞; f < g) + N(r, 0; f > g),
( ii ) N(r, ∞; α) = N(r, ∞; f > g) + N(r, 0; f < g),
(iii) N(r, 0; β) = N(r, ∞; f < g) + N(r, 1; f > g),
(iv) N(r, ∞; β) = N(r, ∞; f > g) + N(r, 1; f < g).

Lemma 2.5 Let f, g share (0, 1), (1, m), (∞, k) and f 6≡ g, where (m−
1)(mk − 1) > (1 + m)2. If α and β are defined as in Lemma 2.4 then
N(r, a; α) = S(r) and N(r, a; β) = S(r) for a = 0, ∞.

Proof. The lemma follows from Lemmas 2.3 and 2.4 because N(r, a; f >

g) ≤ N(r, a; f |≥ 2) and N(r, a; f < g) ≤ N(r, a; g |≥ 2) for a = 0, 1, ∞.
¤

Lemma 2.6 Let f and g be two nonconstant meromorphic functions shar-
ing (0, 0), (1, 0) and (∞, 0). If f is a bilinear transformation of g then f

and g satisfy exactly one of the following:
( i ) f ≡ g,
( ii ) f + g ≡ 1 with N(r) = N(r, 1/2; f) = T (r, f) + S(r, f);
( iii ) (f − 1)(g − 1) ≡ 1 with N(r) = N(r, 2; f) = T (r, f) + S(r, f);
( iv ) fg ≡ 1 with N(r) = N(r, −1; f) = T (r, f) + S(r, f);
( v ) f ≡ Ag + 1 − A with N(r) = 0;
(vi ) f ≡ Ag with N(r) = 0;
(vii) f(g + A − 1) ≡ Ag with N(r) = 0;
where A ( 6= 0, 1) is a finite constant.

We omit the proof as it can be carried out in the line of Lemma 6 [7]
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and Lemma 7 [18].

Lemma 2.7 Let α and β be two meromorphic functions such that αsβt ≡
1, where s, t are relatively prime integers and s 6= 0. If h is a function
defined by hs ≡ β then h is a single valued meromorphic function.

Proof. Let S = {sx + ty : x, y ∈ Z and sx + ty > 0}, where Z is the set
of all integers. Since s 6= 0, |s| = sx + t.0 is an element of S, where we
put x = 1 if s > 0 and x = −1 if s < 0. Therefore S is a nonempty set of
positive integers and so by well ordering principle S contains a least element
d, say. Hence d = su + tv for some integers u and v.

Now by division algorithm we get s = dq + r, where q, r are integers
and 0 ≤ r < d. Since r = s − dq = s(1 − uq) + t(−vq), it follows that if
r > 0 then r ∈ S, which is impossible because d is the least element of S.
Hence r = 0 and so s is divisible by d. Similarly we can show that t is also
divisible by d. So d is a common divisor of s and t.

If a is a common divisor of s and t then d = su + tv is divisible by a.
Therefore d = su + tv is the greatest common divisor of s and t. Since s

and t are relatively prime, d = 1 and so we get su + tv = 1 for two integers
u and v.

Since αsβt ≡ 1 and hs ≡ β, it follows that αht ≡ c, where c is a constant
satisfying cs = 1. This shows that ht is a single valued meromorphic function
because α is meromorphic and c is a constant. Therefore

h = hsu+tv = (hs)u(ht)v = βu(ht)v

is a single valued meromorphic function. This proves the lemma. ¤

Lemma 2.8 ([8]) Let f, g be two distinct nonconstant meromorphic func-
tions sharing (0, 1), (1, m) and (∞, k), where (m− 1)(mk− 1) > (1+m)2.
If f is not a bilinear transformation of g then each of the following holds:
( i ) T (r, f) + T (r, g) = N(r, 0; g |≤ 1) + N(r, 1; g |≤ 1)

+ N(r, ∞; g |≤ 1) + N0(r) + S(r),
( ii ) T (r, f) + T (r, g) = N(r, 0; f |≤ 1) + N(r, 1; f |≤ 1)

+ N(r, ∞; f |≤ 1) + N0(r) + S(r),
(iii) N1(r) = S(r),
(iv) T (r, f) = N(r, 0; g′ |≤ 1) + N0(r) + S(r),
( v ) T (r, g) = N(r, 0; f ′ |≤ 1) + N0(r) + S(r),
where N0(r)(N1(r)) denotes the counting function of those simple (multiple)
zeros of f − g which are not the zeros of g(g − 1), 1/g and so are not the
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zeros of f(f − 1), 1/f .

Lemma 2.9 ([16]) If f, g are two distinct meromorphic functions sharing
0, 1, ∞ CM then N(r, a; f |≥ 2) = S(r) and N(r, a; g |≥ 2) = S(r) for a =
0, 1, ∞.

3. Main results

In this section we present the main results of the paper.

Theorem 3.1 Let f and g be two distinct nonconstant meromorphic func-
tions sharing (0, 1), (1, m) and (∞, k), where (m− 1)(mk− 1) > (1+m)2.
If N(r) 6= S(r) then one of the following holds:
( i ) f is a bilinear transformation of g with N(r) = T (r, f) + S(r) =

T (r, g) + S(r);
(ii) f is not a bilinear transformation of g with T (r, f) = T (r, g) + S(r)

and N(r) ≤ (1/2)T (r, f) + S(r).

Proof. If f is a bilinear transformation of g then by Lemma 2.6 we see that
N(r) = T (r, f) + S(r) = T (r, g) + S(r), which is (i).

Now we suppose that f is not a bilinear transformation of g. We note in
view of Lemma 2.8(iii) that N(r) = N0(r) + N1(r) = N0(r) + S(r). Also α,
β (as defined in Lemma 2.4) and αβ are nonconstant. Since N0(r) 6= S(r)
and N0(r) ≤ N0(r, 1;α, β), it follows that N0(r, 1;α, β) 6= S(r). Also in
view of Lemma 2.2 we note that S(r) = S0(r). So by Lemma 2.1 there exist
two integers s and t (|s| + |t| > 0) such that

αsβt ≡ 1. (3.1)

Without loss of generality we may suppose that s > 0 and s, t are relatively
prime. From (3.1) it follows that

fs(f − 1)t ≡ gs(g − 1)t. (3.2)

and so

T (r, f) = T (r, g) + S(r). (3.3)

Since α, β are nonconstant, it follows from (3.1) that st 6= 0. We now
consider the following cases.

Case I: Let t > 0. If s + t = 2 then s = t = 1 and so f becomes a bilinear
transformation of g, which is not the case. Hence s + t ≥ 3.
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Let h be a function defined by hs ≡ β. Then by Lemma 2.7 h is a single
valued meromorphic function. We put c = αht so that cs = 1 and α = ch−t.

Since g = (1 − β)/(α − β) and g − 1 = (1 − α)/(α − β), it follows that

g =
(hs − 1)ht

hs+t − c
(3.4)

and

g − 1 = − ht − c

hs+t − c
. (3.5)

By Lemma 2.5 we see that

N(r, 0;h) = N(r, 0;hs) = N(r, 0;β) = S(r)

and

N(r, ∞; h) = N(r, ∞; hs) = N(r, ∞; β) = S(r).

Let L = {exp(2ltπi/s) : l = 0, 1, 2, . . . , s−1}. If c 6∈ L then the numer-
ators and denominators (considered as polynomials in h) in (3.4) and (3.5)
have no common factor. So noting that S(r, h) = S(r) we get T (r, g) =
(s + t)T (r, h) + S(r), N(r, 0; g) = N(r, 1;hs) + S(r) = sT (r, h) + S(r),
N(r, ∞; g) = N(r, c; hs+t) + S(r) = (s + t)T (r, h) + S(r) and N(r, 1; g) =
N(r, c; ht) + S(r) = tT (r, h) + S(r).

So by Lemma 2.3, Lemma 2.8(i) and (3.3) we get N0(r) = S(r) and so
N(r) = S(r), which is not the case.

Therefore c ∈ L and so h − exp(2lπi/s) is the only common factor of
the numerators and denominators in (3.4) and (3.5). Hence T (r, g) = (s +
t − 1)T (r, h) + S(r), N(r, 0; g) = (s − 1)T (r, h) + S(r), N(r, ∞; g) = (s +
t − 1)T (r, h) + S(r) and N(r, 1; g) = (t − 1)T (r, h) + S(r).

So by Lemma 2.3, Lemma 2.8 (i) and (3.3) we get

N(r) = N0(r) + S(r) =
1

s + t − 1
T (r, g) + S(r)

=
1

s + t − 1
T (r, f) + S(r) (3.6)

and so N(r) ≤ (1/2)T (r, f) + S(r).

Case II: Let t < 0. If s + t = 0 then from (3.2) we see that f becomes
a bilinear transformation of g, which is not the case. We now consider the
following subcases.
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Subcase (i) Let s + t ≥ 1. If s = 2 then t = −1 and so from (3.2) we see
that f becomes a bilinear transformation of g, which is not the case. So
s ≥ 3. In this case we get

g =
hs − 1

h−t(hs+t − c)
(3.7)

and

g − 1 =
c(h−t − 1/c)
h−t(hs+t − c)

. (3.8)

Since N(r) 6= S(r), proceeding as Case I we see that c ∈ L. There-
fore T (r, g) = (s − 1)T (r, h) + S(r), N(r, 0; g) = (s − 1)T (r, h) + S(r),
N(r, 1; g) = (−t − 1)T (r, h) + S(r) and N(r, ∞; g) = (s + t − 1)T (r, h) +
S(r). So by Lemma 2.3, Lemma 2.8 (i) and (3.3) we get

N(r) = N0(r) + S(r) =
1

s − 1
T (r, f) + S(r) (3.9)

and so N(r) ≤ (1/2)T (r, f) + S(r).

Subcase (ii) Let s + t ≤ −1. If t = −2 then s = 1 and so from (3.2) we
see that f becomes a bilinear transformation of g, which is not the case. So
t ≤ −3. In this case we get

g = − hs − 1
chs(h−s−t − 1/c)

, (3.10)

and

g − 1 = − c(h−t − 1/c)
chs(h−s−t − 1/c)

. (3.11)

Since N(r) 6= S(r), proceeding as Case I we see that c ∈ L. There-
fore T (r, g) = (−t − 1)T (r, h) + S(r), N(r, 0; g) = (s − 1)T (r, h) + S(r),
N(r, 1; g) = (−t− 1)T (r, h) + S(r) and N(r, ∞; g) = (−t− s− 1)T (r, h) +
S(r). So by Lemma 2.3, Lemma 2.8(i) and (3.3) we get

N(r) = N0(r) + S(r) =
1

−t − 1
T (r, f) + S(r) (3.12)

and so N(r) ≤ (1/2)T (r, f) + S(r). This proves the theorem. ¤
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Remark 3.1 The condition (m − 1)(mk − 1) > (1 + m)2 of Theorem 3.1
is equivalent to (m − 1)(k − 1) > 4 and so it is symmetric in m and k.
Also we see that Theorem 3.1 and the subsequent theorems are valid for
the following pairs of least values of m and k: (i) m = 2, k = 6, (ii) m = 6,
k = 2, (iii) m = 3, k = 4 and (iv) m = 4, k = 3.

Remark 3.2 Considering f = (1− ez)3/(1− 3ez) and g = 4(1− ez)/(1−
3ez) we see that in Theorem 3.1 sharing (0, 1) cannot be relaxed to shar-
ing (0, 0) because N(r) = N(r, −1; ez) = T (r, ez) = (1/3)T (r, f) and
T (r, f) ∼ 3T (r, g) as r → ∞.

Remark 3.3 Replacing f , g by 1− f and 1− g we see that Theorem 3.1
holds good if f , g share (0, m), (1, 1) and (∞, k). Also replacing f , g by
1/f and 1/g we see that Theorem 3.1 holds good if f , g share (0, k), (1, m)
and (∞, 1).

Following theorem improves Theorem F.

Theorem 3.2 Let f and g be two distinct nonconstant meromorphic func-
tions sharing (0, 1), (1, m) and (∞, k), where (m− 1)(mk− 1) > (1+m)2.
If N(r) ≥ λT (r, f) + S(r) for some λ > 1/2 then f is a bilinear transfor-
mation of g and N(r) = T (r, f) + S(r) = T (r, g) + S(r). Further f and g

satisfy one of the following: (i) f +g ≡ 1, (ii) (f−1)(g−1) ≡ 1, (iii) fg ≡ 1.

Proof. Since N(r) ≥ λT (r, f) + S(r) for some λ > 1/2, by Theorem 3.1
we see that f is a bilinear transformation of g and N(r) = T (r, f)+S(r) =
T (r, g) + S(r). Also by Lemma 2.6 we see that f and g satisfy one of the
following: (i) f + g ≡ 1, (ii) (f − 1)(g − 1) ≡ 1, (iii) fg ≡ 1. This proves
the theorem. ¤

Following theorem improves Theorem H.

Theorem 3.3 Let f and g be two distinct nonconstant meromorphic func-
tions sharing (0, 1), (1, m) and (∞, k), where (m− 1)(mk− 1) > (1+m)2.
If N(r) ≤ λT (r, f) + S(r) for some λ (0 < λ < 1) and N(r) 6= S(r) then
f is not a bilinear transformation of g and N(r) = (1/p)T (r, f) + S(r),
T (r, f) = T (r, g) + S(r) and f , g satisfy one of the following:

( i ) f =
esγ − 1

e(p+1)γ − 1
, g =

e−sγ − 1
e−(p+1)γ − 1

;

( ii ) f =
e(p+1)γ − 1

e(p+1−s)γ − 1
, g =

e−(p+1)γ − 1
e−(p+1−s)γ − 1

;
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(iii) f =
esγ − 1

e−(p+1−s)γ − 1
, g =

e−sγ − 1
e(p+1−s)γ − 1

;

where s and p(≥ 2) are positive integers with 1 ≤ s ≤ p and s, p + 1 are
relatively prime and γ is a nonconstant entire function.

Proof. Since N(r) ≤ λT (r, f) + S(r) and 0 < λ < 1, by Theorem 3.1 we
see that f is not a bilinear transformation of g and T (r, f) = T (r, g) +
S(r). Now we consider the following cases and subcases of the proof of
Theorem 3.1.

Case I: Let t > 0 and so s + t ≥ 3. Using (3.4) we see that

g =
(hs − 1)ht

hs+t − c
(3.13)

and

f = αg =
c(hs − 1)
hs+t − c

. (3.14)

From (3.13) and (3.14) we see that if z0 is a zero of h then g(z0) = 0
and f(z0) = 1. Since f , g share (0, 1) and (1, m), it follows that h has no
zero. Again if z1 is a pole of h then g(z1) = 1 and f(z1) = 0. Since f , g

share (0, 1) and (1, m), it follows that h has no pole.
Now we put p = s + t − 1 so that 1 ≤ s ≤ p and p ≥ 2. Since N(r) 6=

S(r), it follows that c = exp(2tlπi/s) for some l ∈ {0, 1, 2, . . . , s − 1}.
We now put h = aeγ , where γ is a nonconstant entire function and a =
exp(2lπi/s). Since as = 1 and ap+1 = c, it follows from (3.13) and (3.14)
that

f =
esγ − 1

e(p+1)γ − 1
and g =

e−sγ − 1
e−(p+1)γ − 1

.

Also from (3.6) we get N(r) = (1/p)T (r, f) + S(r).

Case II: Let t < 0. We now consider the following subcases.

Subcase (i) Let s + t ≥ 1 so that s ≥ 3. Using (3.7) we see that

g =
hs − 1

hs − ch−t
(3.15)

and

f = αg =
c(hs − 1)
hs+t − c

. (3.16)
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Since a zero of h is an 1-point of f and a pole of g and f , g share (1, m),
(∞, k), it follows that h has no zero. Also since a pole of h is a pole of f

and an 1-point of g, it follows that h has no pole.
We put p = s − 1 and t = −u so that p ≥ 2 and 1 ≤ u ≤ p. Since

N(r) 6= S(r), it follows that c = exp(2tlπi/s) for some l ∈ {0, 1, 2, . . . , s−
1}. We now put h = aeγ , where γ is a nonconstant entire function and
a = exp(2lπi/s).

Since ap+1 = 1 and ap+1−u = c, it follows from (3.15) and (3.16) that

f =
e(p+1)γ − 1

e(p+1−u)γ − 1
and g =

e−(p+1)γ − 1
e−(p+1−u)γ − 1

and now we rename u as s.
Also from (3.9) we get N(r) = (1/p)T (r, f) + S(r).

Subcase (ii) Let s + t ≤ −1 so that t ≤ −3. Using (3.10) we get

g = − hs − 1
chs(h−s−t − 1/c)

(3.17)

and

f = αg = − h−t(hs − 1)
hs(h−s−t − 1/c)

. (3.18)

Since a zero of h is a zero of f and a pole of g and f , g share (0, 1),
(∞, k), it follows that h has no zero. Again since a pole of h is a pole of f

and a zero of g, it follows that h has no pole.
We put p = −t − 1 so that p ≥ 2 and 1 ≤ s ≤ p. Since N(r) 6= S(r),

we see that c = exp(2tlπi/s) for some l ∈ {0, 1, 2, . . . , s − 1}. Now we put
h = aeγ , where γ is a nonconstant entire function and a = exp(2lπi/s).

Since as = 1 and as+t = c, it follows from (3.17) and (3.18) that

f =
esγ − 1

e−(p+1−s)γ − 1
and g =

e−sγ − 1
e(p+1−s)γ − 1

.

Also from (3.12) we get N(r) = (1/p)T (r, f) + S(r). This proves the theo-
rem. ¤

Following theorem improves Theorem G.
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Theorem 3.4 Let f and g be two distinct nonconstant meromorphic func-
tions sharing (0, 1), (1, m) and (∞, k), where (m− 1)(mk− 1) > (1+m)2.
If N(r, 0; f ′ |≤ 1) + N(r, 0; g′ |≤ 1) ≤ λ{T (r, f) + T (r, g)}+ S(r) for some
λ (0 < λ < 1/2) then f is a bilinear transformation of g.

Proof. If possible suppose that f is not a bilinear transformation of g.
Then by Lemma 2.8 (iv)–(v) we see that

T (r, f) + T (r, g)

= N(r, 0; f ′ |≤ 1) + N(r, 0; g′ |≤ 1) + 2N0(r) + S(r)

≤ λ{T (r, f) + T (r, g)} + 2N0(r) + S(r)

and so

2N0(r) ≥ (1 − λ){T (r, f) + T (r, g)} + S(r). (3.19)

This shows that N0(r) 6= S(r) and so N(r) 6= S(r). Hence by Theorem 3.1
we get T (r, f) = T (r, g) + S(r) and N(r) ≤ (1/2)T (r, f) + S(r). Since
N0(r) ≤ N(r), it follows from (3.19) that (1 − λ)T (r, f) ≤ (1/2)T (r, f) +
S(r), which is a contradiction. This proves the theorem. ¤

Remark 3.4 Considering f = e2z + ez + 1 and g = e−2z + e−z + 1 we see
that the condition λ < 1/2 in Theorem 3.4 is essential.

Next theorem improves Theorem I.

Theorem 3.5 Let f and g be two distinct nonconstant meromorphic func-
tions sharing (0, 1), (1, m) and (∞, k), where (m− 1)(mk− 1) > (1+m)2.
If

N(r, ∞; f |≤ 1) + N(r, 0; f |≤ 1) − m(r, 1; g) ≤ λT (r, f) + S(r)

for some λ (0 < λ < 1) then f and g assume one of the following forms:

( I ) f =
esγ − 1

e−(p+1−s)γ − 1
, g =

e−sγ − 1
e(p+1−s)γ − 1

;

( II ) f =
e(p+1)γ − 1

esγ − 1
, g =

e−(p+1)γ − 1
e−sγ − 1

;

(III) f =
esγ − 1

e(p+1)γ − 1
, g =

e−sγ − 1
e−(p+1)γ − 1

;

where s and p are positive integers with 1 ≤ s ≤ p and s, p+1 are relatively
prime and γ is a nonconstant entire function. Also
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N(r, ∞; f |≤ 1) + N(r, 0; f |≤ 1) − m(r, 1; g)

=
(
1 − 1

p

)
T (r, f) + S(r, f). (3.20)

Proof. We consider the following two cases.

Case I: Let f be a bilinear transformation of g. Then one of the possibil-
ities (ii)–(vii) of Lemma 2.6 will occur. If the possibility (v) occurs then 0
and 1−A are Picard exceptional values of f . So by the second fundamental
theorem, Lemma 2.3 and the given condition we get

2T (r, f)≤N(r, ∞; f |≤ 1) + N(r, 1; f |≤ 1) + S(r)

≤ λT (r, f) + m(r, 1; g) + N(r, 1; g) + S(r)

= λT (r, f) + T (r, g) + S(r)

= (λ + 1)T (r, f) + S(r),

which is a contradiction.
Similarly we can show that the possibilities (vi) and (vii) do not occur.
If f + g ≡ 1 then 0, 1 are Picard exceptional values of f and g. Hence

there exists a nonconstant entire function γ such that f = 1/(1+eγ) and g =
1/(1+e−γ), which is the possibility (III) for s = 1, p = 1. Also N(r, 0; f |≤
1) ≡ 0, N(r, ∞; f |≤ 1) = T (r, f) + O(1), m(r, 1; g) = T (r, f) + O(1) and
so (3.20) is satisfied for p = 1.

If (f −1)(g−1) ≡ 1 then 1, ∞ are Picard exceptional values of f and g.
Hence there exists a nonconstant entire function γ such that f = 1+eγ and
g = 1+e−γ , which is the possibility (II) for s = 1, p = 1. Since N(r, 0; f |≤
1) = T (r, f) + O(1), N(r, ∞; f |≤ 1) ≡ 0 and m(r, 1; g) = T (r, f) + O(1),
we see that (3.20) is satisfied for p = 1.

If fg ≡ 1 then 0, ∞ are Picard exceptional values of f and g. Hence
there exists a nonconstant entire function γ such that f = −eγ and g =
−e−γ , which is the possibility (I) for s = 1, p = 1. Also N(r, 0; f |≤ 1) ≡ 0,
N(r, ∞; f |≤ 1) ≡ 0, m(r, 1; g) ≡ 0 and so (3.20) is satisfied for p = 1.

Case II: Let f be not a bilinear transformation of g. By Lemma 2.8(ii)
and the given condition we get

T (r, f) + T (r, g)

= N(r, 0;f |≤ 1) + N(r, 1;f |≤ 1) + N(r, ∞;f |≤ 1) + N0(r) + S(r)

≤ λT (r, f) + N(r, 1; g) + m(r, 1; g) + N0(r) + S(r)
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i.e.,

(1 − λ)T (r, f) ≤ N0(r) + S(r) ≤ N(r) + S(r)

and so N(r) 6= S(r). Hence by Theorem 3.1 we see that N(r) ≤ (1/2)T (r, f)
+S(r). Therefore by Theorem 3.3 for a nonconstant entire function γ f and
g assume one of the following forms:

f =
esγ − 1

e(p+1)γ − 1
, g =

e−sγ − 1
e−(p+1)γ − 1

which is the possibility (III);

f =
e(p+1)γ − 1

e(p+1−s)γ − 1
, g =

e−(p+1)γ − 1
e−(p+1−s)γ − 1

which reduces to the possibility (II) if we rename p + 1 − s as s;

f =
esγ − 1

e−(p+1−s)γ − 1
, g =

e−sγ − 1
e(p+1−s)γ − 1

which is the possibility (I).
Now from above we see that f , g share 0, 1,∞ CM and so by Lemma 2.9

we get

N(r, 1; f |≤ 1) = N(r, 1; g |≤ 1) = N(r, 1; g) + S(r).

Since N(r) ≤ (1/2)T (r, f) + S(r), by Theorem 3.3 we get N(r) =
(1/p)T (r, f) + S(r). Since by Lemma 2.8(iii) N(r) = N0(r) + N1(r) =
N0(r) + S(r), we get by Lemma 2.8(i)

T (r, f)+T (r, g)

=N(r, 0;f |≤ 1)+N(r, ∞;f |≤ 1)+N(r, 1;f |≤ 1)+N0(r)+S(r)

=N(r, 0;f |≤ 1)+N(r, ∞;f |≤ 1)+N(r, 1;g)+
1
p
T (r, f)+S(r, f)

and so

N(r, 0; f |≤ 1) + N(r, ∞; f |≤ 1) − m(r, 1; g)

=
(
1 − 1

p

)
T (r, f) + S(r, f),

which is (3.20). This proves the theorem. ¤

Following theorem improves Theorem J.
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Theorem 3.6 Let f and g be two distinct nonconstant meromorphic func-
tions sharing (0, 1), (1, m) and (∞, k), where (m− 1)(mk− 1) > (1+m)2.
If

N(r, 0; f |≤ 1) + N(r, ∞; f |≤ 1) ≤ λT (r, f) + S(r, f)

for some λ (0 < λ < 1) then f and g assume the following form:

f =
esγ − 1

e−(p+1−s)γ − 1
, g =

e−sγ − 1
e(p+1−s)γ − 1

,

where s, p are positive integers with 1 ≤ s ≤ p, and s, p + 1 are relatively
prime and γ is a nonconstant entire function. Also

N(r, ∞; f |≤ 1) + N(r, 0; f |≤ 1) =
(
1 − 1

p

)
T (r, f) + S(r, f).

Proof. By Theorem 3.5 f and g satisfy one of the possibilities (I), (II) and
(III).

If f and g satisfy the possibility (II) then N(r, 0; f |≤ 1) = pT (r, eγ) +
S(r), N(r, ∞; f |≤ 1) = (s − 1)T (r, eγ) + S(r) and T (r, f) = pT (r, eγ) +
S(r), which contradicts the given condition.

Again if f and g satisfy the possibility (III) then N(r, 0; f |≤ 1) =
(s − 1)T (r, eγ) + S(r), N(r, ∞; f |≤ 1) = pT (r, eγ) + S(r) and T (r, f) =
pT (r, eγ) + S(r), which also contradicts the given condition.

Therefore f and g satisfy the possibility (I) of Theorem 3.5. In this
case we see that N(r, 1; g) = pT (r, eγ) + S(r) = T (r, g) + S(r) and so
m(r, 1; g) = S(r). Hence by (3.20) we get

N(r, 0; f |≤ 1) + N(r, ∞; f |≤ 1) =
(
1 − 1

p

)
T (r, f) + S(r, f).

This proves the theorem. ¤

Remark 3.5 Considering f = e2z + ez + 1 and g = e−2z + e−z + 1 we see
that the condition λ < 1 in Theorem 3.6 is essential.
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