Chu Correspondences

Hideo Mori
(Received February 5, 2007)

Abstract

The concept of Chu correspondences between formal contexts is introduced. The construction of formal concepts induces a functor Gal from the category of Chu correspondences to the category of sup-preserving maps between complete lattices. It turns out that the category of Chu correspondences has a $*$-autonomous category structure and the functor Gal is shown to preserve the *-autonomous category structure.

Key words: Chu space, formal concept analysis, *-autonomous category.

Introduction

In spite of the extensional philosophy behind modern mathematics as is expressed by the adoption of set theory as the foundation, quite a few mathematical structures carry certain dualism, in the sense that their structures are described by relationships between two entities quite different in nature. For example, in classical geometry, the "structure" of a plane is described by the incidence relation between points and lines.

In modern geometry, a space has its "locus" and its "function algebra" and the structure is often encoded either in the evaluation map.

Most of these "dualism" are captured by the mathematical structure called formal contexts (A, X, R), where

$$
R: A \times X \rightarrow V
$$

is a map. A formal concept (A, X, R) is called binary if $V=\{0,1\}$. A binary formal context is give by a relation $R \subset A \times X$ defined by $R=1$.

For classical plane geometry, A is the set of points and X is the set of lines and $R(a, x)=1$ means the point a is on the line x. For modern geometry, A is the set of points of a manifold and X is the set of admissible functions on A and $R(x, a)=x(a)$. A topological space is a formal context (A, \mathcal{A}, R), where \mathcal{A} is the set of closed subsets and $R(a, F)=1$ iff $a \in F$. For the model theory of a first order theory T, A is a model of T and X is

[^0]the set of first order formula with one free variable and $a \models \varphi$ means $\varphi(a)$ is true on A (See $\S \mathrm{A}$).

The homomorphisms between mathematical structures with formal context descriptions $\left(A_{i}, X_{i}, \models_{i}\right)(i=1,2)$, usually induce Chu maps, namely a pair of maps

$$
\ell: A_{1} \rightarrow A_{2} \quad r: X_{2} \rightarrow X_{1}
$$

satisfying the relation

$$
R\left(\ell\left(a_{1}\right), x_{2}\right)=R\left(a_{1}, r\left(x_{2}\right)\right),
$$

for $a_{1} \in A_{1}$ and $x_{2} \in X_{2}$.
For example, a continuous map between topological spaces $\left(A_{i}, X_{i}, \models_{i}\right.$) $(i=1,2)$, is a map $\ell: A_{1} \rightarrow A_{2}$ satisfying $\ell^{-1}\left(X_{2}\right) \subset X_{1}$ so that (ℓ, r) with $r:=\ell^{-1}: X_{2} \rightarrow X_{1}$ is a Chu map. Conversely, a Chu map (ℓ, r) from $\left(X_{1}, A_{1}, \models_{1}\right)$ to ($X_{2}, A_{2}, \models_{2}$) comes from a continuous map ℓ.

For many mathematical structures, hence, the category of structure preserving maps is also described as the subcategory of Chu maps where the objects are restricted to those formal contexts arising from them. The category of Chu maps has rich methods of construction of objects and for example is a $*$-autonomous category. Although, for example, the dual (\mathcal{A}, A) of the formal context (A, \mathcal{A}) of a topological space is not a topological space in the usual sense, we can extend the second factor A of (\mathcal{A}, A) in a natural way to a topological structure on the huge set \mathcal{A}.

The mechanism which enables the formal context to describe mathematical structure concisely is the formal concept lattice construction.

The formal concept lattice of a binary formal context (A, X, R) is the intersection closed family $\mathcal{A} \subset \operatorname{pow}(A)$ generated by the polar sets

$$
x^{*}:=\{a \in A \mid R(a, x)=1\},
$$

which is a complete lattice. This lattice is anti-isomorphic to the intersection closed family $\mathcal{X} \subset \operatorname{pow}(X)$ generated by the polar sets

$$
a^{*}:=\{x \in X \mid R(a, x)=1\} .
$$

More generally, if the value space V is a Heyting algebra, then the formal concept lattice is defined.

The formal concept lattice of the binary formal context (V, V^{*}, R), where V is a linear space and $R(v, \phi)=1 \mathrm{iff} \phi(v)=0$ is the space of
linear subspaces of V, which is the disjoint union of various Grassmann manifolds. The meet is the set theoretical intersection and the join is the sum of linear subspaces. The formal concept lattice of the binary formal context (A, \mathcal{A}, R) of a topological space is anti-isomorphic to \mathcal{A}.

In fact, we have a functor, called Galois functor [13], from the category of Chu maps to the category of join preserving maps between complete lattices, which preserve the *-autonomous category.

The Galois functor is neither faithful nor full in general. For example, if $\mathbf{C}_{i}=\left(V_{i}, V_{i}^{*}, \models\right)(i=1,2)$ are formal contexts of linear spaces, the Chu $\operatorname{map}\left(f, f^{*}\right)$ which corresponds to a linear map $f: V_{1} \rightarrow V_{2}$ corresponds to the same join preserving map as the Chu map $\left(c f,(c f)^{*}\right)$ does if $c \neq 0$. Hence the Galois functor is not faithful. On the other hand, suppose $V_{2}=$ $V_{1} \times W$ and consider the join preserving map

$$
\kappa: \operatorname{Gal}\left(\mathbf{C}_{1}\right) \rightarrow \operatorname{Gal}\left(\mathbf{C}_{2}\right)
$$

which maps a subspace $U \subset V_{1}$ to $U \times W \subset V_{2}$. Then κ corresponds to no linear maps from V_{1} to V_{2}, whence the Galois functor is not full.

The Chu correspondences fill the gaps between Chu maps and the join preserving map. In fact, the "Galois functor" is defined also on the category of Chu correspondences and turns out to be full and faithful.

The definition of Chu correspondences is as follows. Let $\mathbf{C}_{i}=\left(A_{i}, X_{i}, R_{i}\right)$ ($i=1,2$) be binary formal contexts. A Chu correspondence from \mathbf{C}_{1} to \mathbf{C}_{2} in the weak sense is a pair of maps $L: A_{1} \rightarrow \operatorname{pow}\left(A_{2}\right)$ and $R: X_{2} \rightarrow$ pow $\left(X_{1}\right)$ satisfying

$$
R_{2}\left(L a_{1}, x_{2}\right)=R_{1}\left(a_{1}, R x_{2}\right)
$$

where

$$
R: \operatorname{pow}(A) \times \operatorname{pow}(X) \rightarrow\{0,1\}
$$

is defined by

$$
R(B, Y)=\inf _{b \in B, y \in Y} R(b, y)
$$

Hence $R(B, Y)=1$ iff $R(b, y)=1$ for all $b \in B$ and $y \in Y$.
A Chu correspondence (L, R) is a Chu correspondence in the weak sense satisfying the condition that $L x_{1} \subset X_{2}$ and $R a_{2} \subset A_{1}$ are closed for all $x_{1} \in X_{1}$ and $a_{2} \in A_{2}$.

The category of Chu correspondences is equivalent to the category of join preserving maps. Not only the concept of formal contexts gives us a method of describing concisely complete lattices, but also the concept of Chu correspondence often enables us to describe concisely join preserving maps, whose description generally tends to be complicated in finite mathematics.

There are natural operations such as tensor products, internal homs, duals in the category of Chu correspondences, which corresponds to those in the category of join preserving maps.

In fact, we show that the category of Chu correspondences has a structure of *-autonomous category, for which the Galois functor is a *-autonomous functor.

In Section one, we recall a few facts from lattice theory and formal concept analysis to fix terminologies and notations. In Section two, we define the concept of Chu correspondence and study its basic properties and give basic bijection between Chu correspondences and bonds (Theorem 38). Section three gives examples of Chu correspondences, both concrete and conceptual. Most examples show there are much more Chu correspondences than Chu maps between formal contexts in general. In Section four, we introduce the category ChuCors of Chu correspondences and define the Galois functor Gal from ChuCors to the category Slat of join preserving maps between complete lattices. It turns out that the functor Gal is full and faithfull (Theorem 65) and in fact is an equivalence of categories (Theorem 73). In Section Five, we give an explicit description (Theorem 98) of the structure of the $*$-autonomous category of ChuCors induced from that of Slat via the equivalence functor Gal. In the appendex A, we apply the concept of Chu correspondences to model theory which we hope shows its potential usefulness.

By the paper [8] we notice that some of our results are already obtained in the works of W. Xia [16], Ganter and Wille[9]. However our article has intention and scope which differ considerably from them and seems to put the theme in more appropriate context and we hope that it widens its applicability to other domains of researches.

1. Preliminaries

1.1. Galois pairs

We recall briefly basic facts on Galois pairs between complete lattices. The proofs of propositions are mostly omitted since they are more or less well-known. For details, see $[4,6]$ for example.

Let L, M be posets. A Galois pair from L to M is a pair

$$
\varphi=\left(\varphi_{*}: L \rightarrow M, \varphi^{*}: M \rightarrow L\right)
$$

of maps satisfying

$$
\varphi_{*} \ell \leq m \Longleftrightarrow \ell \leq \varphi^{*} m
$$

for $\ell \in L, m \in M$.
Proposition 1 Let φ be a Galois pair. Then
(i) φ_{*} preserves the join and φ^{*} the meet, whence if L and M are lattices both are order preserving.
(ii) The operator $C_{\varphi}:=\varphi^{*} \varphi_{*}: L \rightarrow L$ is order increasing, namely, $C_{\varphi} \ell \geq$ ℓ for $\ell \in L$ and the operator $C^{\varphi}:=\varphi_{*} \varphi^{*}: M \rightarrow M$ is order decreasing.

Example 1 Let $L_{i}=$ pow $A_{i}(i=1,2)$ and $f: A_{1} \rightarrow A_{2}$ be a map. Then, for $M_{i} \subset A_{i}(i=1,2)$,

$$
f\left(M_{1}\right) \subset M_{2} \Longleftrightarrow M_{1} \subset f^{-1} M_{2}
$$

whence $\left(f, f^{-1}\right)$ is a Galois pair. We have in fact

$$
f\left(\bigcup_{i} M_{i}\right)=\bigcup_{i} f\left(M_{i}\right), \quad f^{-1}\left(\bigcap_{i} M_{i}\right)=\bigcap_{i} f^{-1}\left(M_{i}\right)
$$

Note that f^{-1} preserves also the join because it has also right adjoint (See (3)).
$f^{-1} f\left(M_{1}\right)$ is the saturation of M_{1} with respect to the equivalence relation $a \sim b \stackrel{\text { def }}{\Longleftrightarrow} f(a)=f(b)$ and $f f^{-1} M_{2}=M_{2} \bigcap \operatorname{Im}(f)$.

Proposition 2 If $L_{i}(i=1,2)$ are complete, then the components φ_{*} and φ^{*} of the Galois pair φ determine each other by

$$
\begin{equation*}
\varphi^{*} m=\bigvee_{\varphi_{*} \ell \leq m} \ell \tag{1}
\end{equation*}
$$

and

$$
\varphi_{*} \ell=\bigwedge_{\ell \leq \varphi^{*} m} m
$$

Proposition 3 Every join preserving map $\varphi_{*}: L \rightarrow M$ defines a unique Galois pair $\varphi=\left(\varphi_{*}, \varphi^{*}\right)$, where the second component is defined by (1).

Proposition 4 If a join preserving map φ_{*} is bijective, then it is an order isomorphism and

$$
\varphi^{*}=\left(\varphi_{*}\right)^{-1} .
$$

Proposition 5 For $m \in M$ and $\ell \in L$,

$$
\begin{aligned}
& \varphi_{*} \varphi^{*} \varphi_{*} \ell=\varphi_{*} \ell \\
& \varphi^{*} \varphi_{*} \varphi^{*} m=\varphi^{*} m
\end{aligned}
$$

Proposition $6 C_{\varphi}$ is a closure operator in the sense that it is order preserving, increasing and idempotent.
C^{φ} is a coclosure operator in the sense that it is order preserving, decreasing and idempotent.

Let C be a closure operator on a complete lattice L and let L^{C} be the set of all the closed sets, namely, the set of C-fixed subsets.

Lemma 7 (i) The subset $L^{C} \subset L$ is meet-closed and hence a complete lattice with the join of $N \subset L^{C}$ is given by

$$
C\left(\bigvee_{x \in N} x\right)
$$

(ii) Let $\iota: L^{C} \subset L$ be the inclusion. Then the pair (C, ι) is a Galois pair from L to L^{C}, namely,

$$
\ell \leq \iota m \Leftrightarrow C \ell \leq m
$$

for $\ell \in L$ and $m \in L^{C}$.
(iii) In particular, $\varphi: L \rightarrow L^{\varphi}$ is join-preserving and for $N \subset L$

$$
C(\bigvee N)=C\left(\bigvee_{x \in N} C x\right)
$$

(iv) $A \operatorname{map} f: X \rightarrow L$ is uniquely extended to a join-preserving map

$$
f_{*}: \operatorname{pow}(X) \rightarrow L^{C}
$$

by

$$
f_{*}(N)=C\left(\bigvee_{n \in N} f(n)\right)
$$

Proof. (i). Let $\ell_{i} \in L^{C}(i \in I)$. From $\bigwedge_{j} \ell_{j} \leq \ell_{i}$, it follows $C \bigwedge_{j} \ell_{j} \leq$ $C \ell_{i}=\ell_{i}$ for all $i \in I$, whence

$$
C \bigwedge_{j} \ell_{j} \leq \bigwedge_{i} \ell_{i}
$$

On the other hand, since C is increasing,

$$
C \bigwedge_{j} \ell_{j} \geq \bigwedge_{i} \ell_{i}
$$

Hence $\bigwedge_{i} \ell_{i} \in L^{C}$.
(ii). Let $m \in L^{C}$ and $\ell \in L$. If $\ell \leq \iota m$, then $C \ell \leq C m=m$. On the other hand, if $C \ell \leq m$, then $\ell \leq C \ell \leq m=\iota m$.
(iii). Obvious since, in L^{C}, the join of $C N$ is given by the right hand side.

Hence we have
Proposition 8 The fixed point set $L_{\varphi}:=\left\{\ell \in L \mid C_{\varphi} \ell=\ell\right\}$ is meet closed and $M^{\varphi}:=\left\{m \in L \mid C^{\varphi} m=m\right\}$ is join closed.

The correspondence φ_{*} induces an isomorphism

$$
L_{\varphi} \stackrel{\cong}{\rightrightarrows} M^{\varphi}
$$

whose inverse is φ^{*}.
Let $G_{\varphi}:=\left\{(\ell, m) \mid \varphi_{*} \ell=m\right.$ and $\left.\varphi^{*} m=\ell\right\}$ with the product order. The order is defined $\left(\ell_{1}, m_{1}\right) \leq\left(\ell_{2}, m_{2}\right)$ if and only if $\ell_{1} \leq \ell_{2}$. In fact $\ell_{1} \leq \ell_{2}$ implies $m_{1}=\varphi_{*} \ell_{1} \leq \varphi_{*} \ell_{2}=m_{2}$.

Proposition 9 The poset G_{φ} is a complete lattice with

$$
\bigwedge_{i}\left(\ell_{i}, m_{i}\right)=\left(\bigwedge_{i} \ell_{i}, \varphi_{*} \bigwedge_{i} \ell_{i}\right)
$$

$$
\bigvee_{i}\left(\ell_{i}, m_{i}\right)=\left(\varphi^{*} \bigvee_{i} m_{i}, \bigvee_{i} m_{i}\right)
$$

Proof. For $\ell \in C_{\varphi}$,

$$
\begin{aligned}
& \left(\ell, \varphi_{*} \ell\right) \leq\left(\ell_{i}, m_{i}\right) \text { for all } i \in I \\
\Longleftrightarrow & \ell \leq \ell_{i} \text { for all } i \in I \\
\Longleftrightarrow & \ell \leq \bigwedge_{i \in I} \ell_{i} \\
\Longleftrightarrow & \left(\ell, \varphi_{*} \ell\right) \leq\left(\bigwedge_{i \in I} \ell_{i}, \varphi_{*} \bigwedge_{i \in I} \ell_{i}\right)
\end{aligned}
$$

Define $\pi_{L}: G_{\varphi} \rightarrow L$ and $\pi_{M}: G_{\varphi} \rightarrow M$ respectively by $\pi_{L}(\ell, m)=\ell$ and $\pi_{M}(\ell, m)=m$. Then π_{L} is meet preserving injection with the image L_{φ} and π_{M} is join preserving injection with the image M^{φ}.

1.2. The category Slat of join preserving maps

We recall briefly the $*$-autonomous category Slat of join preserving maps between complete lattices, which is briefly touched in [1, 10]. See for the detail in $[13]$. See $[11,2]$ for basic terminologies of category theory and $[7,1,2,5]$ for basic facts on autonomous categories and $*$-autonomous categories.

The complete lattice $\mathbf{2}=\{0,1\}$ with $0<1$ is the unit object with $\mathcal{S l a t}(\mathbf{2}, L) \simeq L$. The tensor $L_{1} \otimes L_{2}$ is defined to be the set of its bi-ideals, namely, the down-closed subsets $T \subset L_{1} \times L_{2}$ which and join-biclosed, in the sense that, for $A_{i} \subset L_{i}$ and $\ell_{i} \in L_{i}(i=1,2)$

$$
A_{1} \times\left\{\ell_{2}\right\} \subset T \text { implies }\left(\bigvee A_{1}, \ell_{2}\right) \in T
$$

and

$$
\left\{\ell_{1}\right\} \times A_{2} \subset T \text { implies }\left(\ell_{1}, \bigvee A_{2}\right) \in T
$$

The bi-ideals $\ell_{1} \otimes \ell_{2}\left(\ell_{i} \in L_{i}\right)$ which is the smallest bi-ideal containing $\left(\ell_{1}, \ell_{2}\right)$ forms a dense subset of $L_{1} \otimes L_{2}$. The tensor bifunctor $L_{1}, L_{2} \mapsto$ $L_{1} \otimes L_{2}$ and natural isomorphisms

- $a\left(L_{1}, L_{2}, L_{3}\right):\left(L_{1} \otimes L_{2}\right) \otimes L_{3} \rightarrow L_{1} \otimes\left(L_{2} \otimes L_{3}\right)$,
- $\ell_{L}: \mathbf{2} \otimes L \rightarrow L$,
- $r_{L}: L \otimes \mathbf{2} \rightarrow L$,
- $s\left(L_{1}, L_{2}\right): L_{1} \otimes L_{2} \rightarrow L_{2} \otimes L_{1}$
give the category Slat a symmetric monoidal category structure [13], [10].
Moreover this category is closed. In fact, if we denote by $L_{1} \multimap L_{2}$ the homset $\operatorname{Slat}\left(L_{1}, L_{2}\right)$ regarded as a complete lattice by the partial order defined pointwise, then the functor $L \multimap(-)$ is a right adjoint to $(-) \otimes L$, namely, there are natural isomorphisms for $A, B \in \mathcal{S l a t}$,

$$
\operatorname{Slat}(A \otimes L, B) \simeq \operatorname{Slat}(A, L \multimap B)
$$

If we put $A=\mathbf{2}$, since $\operatorname{Slat}(\mathbf{2}, L) \simeq L$, we have in particular a natural isomorphism

$$
\mathcal{S l a t}(\mathbf{2}, L \multimap B) \simeq \mathcal{S l a t}(\mathbf{2} \otimes L, B) \simeq \operatorname{Slat}(L, B)
$$

and the category $\mathcal{S l a t}$ is enriched over itself, namely, there are composition arrows

$$
c\left(L_{1}, L_{2}, L_{3}\right):\left(L_{2} \multimap L_{3}\right) \otimes\left(L_{1} \multimap L_{3}\right) \rightarrow\left(L_{1} \multimap L_{3}\right)
$$

which give the compositions of Slat. See [13], [5].
The category Slat is in fact a $*$-autonomous category. First, it is selfdual, namely, there is an isomorphic functor

$$
(-)^{*}: \text { Slat } \rightarrow \text { Slat }{ }^{\mathrm{op}}
$$

which maps L to the dual L^{*} and $\varphi_{*}: L_{1} \rightarrow L_{2}$ to $\varphi^{*}: L_{2} \rightarrow L_{1}$, which is meet preserving and hence join preserving from L_{2}^{*} to L_{1}^{*}. In particular, there are natural isomorphisms

$$
\begin{equation*}
\operatorname{Slat}\left(L_{1}, L_{2}\right) \simeq \operatorname{Slat}\left(L_{2}^{*}, L_{1}^{*}\right) \tag{2}
\end{equation*}
$$

Moreover 2 is a dualizing object of $\mathcal{S l a t}$. In fact, putting $L_{1}=L, L_{2}=\mathbf{2}$ in (2),

$$
\operatorname{Slat}(L, \mathbf{2}) \simeq \operatorname{Slat}\left(\mathbf{2}^{*}, L^{*}\right) \simeq \operatorname{Slat}\left(\mathbf{2}, L^{*}\right) \simeq L^{*}
$$

since $\mathbf{2}$ is self-dual. Hence $\mathbf{2}$ is a dualizing object in $\mathcal{S l a t}$.
Finally, the tensors and the internal homomorphisms are related by the isomorphism

$$
L_{1} \otimes L_{2} \simeq\left(L_{1} \multimap L_{2}^{*}\right)^{*}
$$

where $\ell_{1} \otimes \ell_{2}$ is mapped to $f_{\ell_{1} \otimes \ell_{2}}: L_{1} \rightarrow L_{2}^{*}$, which maps \perp to $\top,\left(\ell_{1} \downarrow\right) \backslash\{\perp\}$ to ℓ_{2} and other elements to \perp [13].

1.3. Operators induced from correspondences

We recall basic facts on correspondences between sets mainly to fix notations. A correspondence from a set A to B is a map

$$
L: A \rightarrow \operatorname{pow}(B)
$$

and will be denoted as

$$
L: A \leadsto B
$$

Its graph $[L] \subset A \times B$ is defined by

$$
[L]=\{(a, b) \mid b \in L a\}
$$

and its transpose

$$
{ }^{t} L: B \rightarrow \operatorname{pow}(A)
$$

is defined by

$$
{ }^{t} L b=\{a \mid b \in L a\}
$$

We identify a map $f: A \rightarrow B$ with the correspondence from A to B which maps a to the singleton set $\{f(a)\}$.

Denote by $\operatorname{Cors}(A, B)$ the poset of all the correspondences from A to
B, with $L_{1} \leq L_{2}$ be defined by

$$
L_{1} a \subset L_{2} a \text { for all } a \in A
$$

Define

$$
\left(L_{1} \bigcap L_{2}\right) a=L_{1} a \bigcap L_{2} a
$$

Then, we have obviously
Proposition 10 The correspondences $L \leftrightarrow[L] \leftrightarrow{ }^{t} L$ define poset isomorphisms:

$$
\operatorname{Cors}(A, B) \simeq \operatorname{pow}(A \times B) \simeq \operatorname{Cors}(B, A)
$$

Moreover

$$
\begin{aligned}
& {\left[L_{1} \bigcap L_{2}\right]=\left[L_{1}\right] \bigcap\left[L_{2}\right]} \\
& { }^{t}\left(L_{1} \bigcap L_{2}\right)={ }^{t} L_{1} \bigcap{ }^{t} L_{2}
\end{aligned}
$$

Identifying $a_{1} \in A_{1}$ with the singleton $\left\{a_{1}\right\}$, the complete lattice pow $\left(A_{1}\right)$ is a free sup-lattice generated by A_{1}. Hence a map $L: A_{1} \rightarrow \operatorname{pow}\left(A_{2}\right)$ induces two join preserving maps

$$
L_{*}: \operatorname{pow}\left(A_{1}\right) \rightarrow \operatorname{pow}\left(A_{2}\right)
$$

and

$$
L_{\circ}: \operatorname{pow}\left(A_{1}\right) \rightarrow \operatorname{pow}\left(A_{2}\right)^{\mathrm{op}}
$$

which are defined respectively by

$$
L_{*} K_{1}=\bigcup_{a \in K_{1}} L a
$$

and

$$
L_{\circ} K_{1}=\bigcap_{a \in K_{1}} L a
$$

for $K_{1} \subset A_{1}$.
The adjoint $L^{*}: \operatorname{pow}\left(A_{2}\right) \rightarrow \operatorname{pow}\left(A_{1}\right)$ of L_{*} is characterized by

$$
L_{*} K_{1} \subset K_{2} \Longleftrightarrow K_{1} \subset L^{*} K_{2}
$$

whence

$$
L^{*} K_{2}=\bigcup_{L_{*} K_{1} \subset K_{2}} K_{1}=\left\{a_{1} \in A_{1} \mid L a_{1} \subset K_{2}\right\},
$$

for $K_{2} \subset A_{2}$.
Similarly, the adjoint $L^{\circ}: \operatorname{pow}\left(A_{2}\right)^{\mathrm{op}} \rightarrow \operatorname{pow}\left(A_{1}\right)$ of L_{\circ} is characterized by

$$
L_{\circ} K_{1} \supset K_{2} \Longleftrightarrow K_{1} \subset L^{\circ} K_{2}
$$

From this we have
Proposition 11 (i) For $a_{2} \in A_{2}$ and $K_{1} \subset A_{1}$,

$$
a_{2} \in L_{\circ} K_{1} \Longleftrightarrow K_{1} \subset{ }^{t} L a_{2}
$$

(ii) For $K_{i} \subset A_{i}(i=1,2)$,

$$
L_{\circ} K_{1} \supset K_{2} \Longleftrightarrow K_{1} \times K_{2} \subset[L] \Longleftrightarrow L^{\circ} K_{2} \supset K_{1}
$$

(iii)

$$
L^{\circ}=\left({ }^{t} L\right)_{\circ} .
$$

Proof. The first assertion follows from the following equivalence.

$$
\begin{aligned}
a_{2} \in L_{\circ} K_{1} & \Leftrightarrow a_{2} \in L a_{1} \text { for all } a_{1} \in K_{1} \\
& \Leftrightarrow a_{1} \in{ }^{t} L a_{2} \text { for all } a_{1} \in K_{1} \\
& \Leftrightarrow K_{1} \subset{ }^{t} L a_{2} .
\end{aligned}
$$

The second follows from the following.

$$
\begin{aligned}
K_{1} \times K_{2} \subset[L] & \Leftrightarrow K_{1} \times\left\{a_{2}\right\} \subset[L] \quad \text { for all } a_{2} \in K_{2} \\
& \Leftrightarrow K_{1} \subset{ }^{t} L a_{2} \quad \text { for all } a_{2} \in K_{2} \\
& \Leftrightarrow a_{2} \in L_{0} K_{1} \quad \text { for all } a_{2} \in K_{2} \\
& \Leftrightarrow K_{2} \subset L_{0} K_{1} .
\end{aligned}
$$

Since L° is join preserving when regarded as a map from $\operatorname{pow}\left(A_{2}\right)$ to $\operatorname{pow}\left(A_{1}\right)^{\mathrm{op}}$ it suffices to show $L^{\circ}\left\{a_{2}\right\}={ }^{t} L a_{2}$, which follows from

$$
\begin{aligned}
a_{1} \in L^{\circ}\left\{a_{2}\right\} & \Leftrightarrow a_{2} \in L_{\circ}\left\{a_{1}\right\}=L a_{1} \\
& \Leftrightarrow a_{1} \in{ }^{t} L a_{2},
\end{aligned}
$$

for $a_{1} \in A_{1}$.

Proposition 12 The pairs $\left(L_{*}, L^{*}\right)$ and $\left(L_{\circ}, L^{\circ}\right)$ are Galois pairs respectively from pow A_{1} to pow A_{2} and from pow A_{1} to pow A_{2}^{op}.

By Proposition 1, we have
Corollary 13 The operator L_{*} preserves the unions and L^{*} the intersections. The operators L_{\circ} and L° convert unions to intersections.

Remark If a map $f: A_{1} \rightarrow A_{2}$ is considered as a correspondence L_{f} by $L_{f} a=\{f a\}$, then for $K_{i} \subset A_{i}(i=1,2)$

$$
\begin{aligned}
& \left(L_{f}\right)_{*} K_{1}=f\left(K_{1}\right) \\
& \left(L_{f}\right)^{*} K_{2}=f^{-1} K_{2}=\left({ }^{t} L_{f}\right)_{*} K_{2}, \\
& \left({ }^{t} L_{f}\right)^{*} K_{1}=f_{!}\left(K_{1}\right):=\left\{a_{2} \in A_{2} \mid f^{-1} a_{2} \subset K_{1}\right\} .
\end{aligned}
$$

In this case,

$$
\begin{equation*}
L_{f *} \dashv L_{f}^{*}=\left({ }^{t} L_{f}\right)_{*} \dashv\left({ }^{t} L_{f}\right)^{*}, \tag{3}
\end{equation*}
$$

whence $\left(L_{f}\right)_{*}$ preserves the union, $\left({ }^{t} L_{f}\right)^{*}$ the intersection, and $\left({ }^{t} L_{f}\right)_{*}=$ $\left(L_{f}\right)^{*}$ both.

In the rest of this section, we prove a few properties of L^{*}.
We have the following expression for L^{*}.
Proposition $14 L^{*} K=\left(\left({ }^{t} L\right)_{*} K^{c}\right)^{c}$.

Proof. Define $R: \operatorname{pow}\left(A_{2}\right) \rightarrow \operatorname{pow}\left(A_{1}\right)$ by

$$
R K_{2}=\left(L^{*} K_{2}^{c}\right)^{c} .
$$

Since $(-)^{c}$ converts joins to meets, L^{*} meets to meets, and $(-)^{c}$ meets to joints, it follows that both R and $\left({ }^{t} L\right)^{*}$ preserves the joins. Hence it suffices to prove $R\left\{a_{2}\right\}={ }^{t} L a_{2}$, which is seen as follows.

$$
\begin{aligned}
a_{1} \in R\left\{a_{2}\right\} & \Longleftrightarrow a_{1} \notin\left(L^{*}\right)\left\{a_{2}\right\}^{c} \\
& \Longleftrightarrow L a_{1} \not \subset\left\{a_{2}\right\}^{c} \\
& \Longleftrightarrow a_{2} \in L a_{1} \\
& \Longleftrightarrow a_{1} \in{ }^{t} L a_{2} .
\end{aligned}
$$

Corollary 15 The correspondence $L \rightarrow L^{*}$ reverses the order.
The correspondences form a category with the usual composition definted as follows. The composition $L_{2} \circ L_{1}$ of $L_{i}: A_{i} \rightarrow A_{i+1}(i=1,2)$ is defined by

$$
\left[L_{2} \circ L_{1}\right]:=\left\{\left(a_{1}, a_{3}\right) \in A_{1} \times A_{3} \mid L_{1} a_{1} \bigcap^{t} L_{2} a_{3} \neq \emptyset\right\} .
$$

Obviously the correspondence $L \mapsto L^{*}$ is functorial. Namely we have
Proposition 16 Let $L_{i}: A_{i} \rightarrow A_{i+1}(i=1,2)$ be correspondences. Then

$$
\begin{aligned}
& \left(L_{2} \circ L_{1}\right)_{*}=\left(L_{2}\right)_{*} \circ\left(L_{1}\right)_{*} . \\
& \left(L_{2} \circ L_{1}\right)^{*}=\left(L_{1}\right)^{*} \circ\left(L_{2}\right)^{*} .
\end{aligned}
$$

Proof. The former assertion is obvious, since both sides preserve joins and maps $a_{1} \in A_{1}$ to $\left(L_{2}\right)_{*} L_{1} a_{1}$.

The latter assertion follows from the former since, for $K_{i} \subset A_{i}(i=1,3)$

$$
\begin{aligned}
K_{1} \leq\left(L_{1}\right)^{*}\left(L_{2}\right)^{*} K_{3} & \Longleftrightarrow\left(L_{1}\right)_{*} K_{1} \leq\left(L_{2}\right)^{*} K_{3} \\
& \Longleftrightarrow\left(L_{2}\right)_{*}\left(L_{1}\right)_{*} K_{1} \leq K_{3} \\
& \Longleftrightarrow\left(L_{2} \circ L_{1}\right)_{*} K_{1} \leq K_{3} \\
& \Longleftrightarrow K_{1} \leq\left(L_{2} \circ L_{1}\right)^{*} K_{3} .
\end{aligned}
$$

1.4. Basic concepts of formal concept analysis

We recall basic framework of formal concept analysis. See $[9,6]$ for the detail.

A formal context is a triple (A, X, P) where P is a correspondence from a set A to a set X. When P is clear from the context, we write $x \in P a$ as $a \models x$ and denote the formal context simply as (A, X, \models). The transpose $\left(X, A,{ }^{t} P\right)$ will be denoted by $(A, X, P)^{*}$ and called the dual of (A, X, P).

The correspondence induces join preserving maps, called the polar maps,

$$
P_{\circ}: \operatorname{pow}(A) \rightarrow \operatorname{pow}(X)^{\mathrm{op}}
$$

and

$$
P^{\circ}: \operatorname{pow}(X) \rightarrow \operatorname{pow}(A)^{\mathrm{op}}
$$

A formal context is called extensional and intentional when P° and P_{\circ} are injective respectively.

By Proposition 11,

$$
N \subset P_{\circ} M \leftrightarrow M \times N \subset P \leftrightarrow M \subset P^{\circ} N
$$

Since the pair $\left(P_{\circ}, P^{\circ}\right)$ is a Galois pair from pow A to $(\mathbf{p o w} B)^{\mathrm{op}}$,

$$
C_{P}:=P^{\circ} P_{\circ}
$$

is a closure operator of the complete lattice pow A and

$$
C^{P}:=P_{\circ} P^{\circ}
$$

is a coclosure operator of the complete lattice $(\mathbf{p o w} B)^{\mathrm{op}}$ and hence is a closure operator of pow B.

The fixed points of C_{P} forms the intersection closed sublattice which is anti-isomorphic to the fixed points sets of C^{P}.

We give the following specific terminologies and notations for this special case. When P is clear from the context, we write $M^{\prime}=P_{\circ} M$ and $N^{\prime}=$ $P^{\circ} N$. For a subset M of A, the subset $M^{\prime \prime}$, also written as \bar{M}, is called the closure of M. When $M^{\prime \prime}=M$, the subset M is called closed. We use similar terminologies for subsets of X. The set of all the closed subsets of A and X are denoted respectively by $\mathcal{A}(\mathbf{C})$ and $\mathcal{X}(\mathbf{C})$.

A formal concept of \mathbf{C} is a pair $(M, N) \in$ pow $A \times$ pow X satisfying $M=N^{\prime}$ and $N=M^{\prime}$. A formal concept is usually written either as $\left(M, M^{\prime}\right)$ or as $\left(N^{\prime}, N\right)$, with closed M and N.

The set of all formal concepts is denoted by $\operatorname{Gal}(\mathbf{C})$ with the order

$$
\left(M_{1}, N_{1}\right) \leq\left(M_{2}, N_{2}\right) \stackrel{\text { def }}{\Longleftrightarrow} M_{1} \subset M_{2}
$$

which is equivalent to $N_{1} \supset N_{2}$ since the polar map is order reversing.
By Section 1.1, the polar map defines isomorphisms.

$$
\begin{equation*}
\mathcal{A}(\mathbf{C}) \simeq \mathcal{X}(\mathbf{C})^{\mathrm{op}} \simeq G a l(\mathbf{C}) \tag{4}
\end{equation*}
$$

and the join and meet of $\left(M_{i}, N_{i}\right)_{i \in I}$ are given respectively by

$$
\bigvee_{i}\left(M_{i}, N_{i}\right)=\left(\left(\bigcap_{i} N_{i}\right)^{\prime}, \bigcap_{i} N_{i}\right)=\left(\overline{\bigcup_{i} M_{i}},\left(\bigcup_{i} M_{i}\right)^{\prime}\right)
$$

and

$$
\bigwedge_{i}\left(M_{i}, N_{i}\right)=\left(\bigcap_{i} M_{i},\left(\bigcap_{i} M_{i}\right)^{\prime}\right)=\left(\left(\bigcup_{i} N_{i}\right)^{\prime}, \overline{\bigcup_{i} N_{i}}\right)
$$

Note that each $a \in A$ defines a formal concept (\bar{a}, a^{\prime}) called a tokenbased concept. Similarly, each $x \in X$ defines a formal concept $\left(x^{\prime}, \bar{x}\right)$ called a type-based concept.

Since every concept (E, F) is written either as the join

$$
(E, F)=\bigvee_{a \in E}\left(\bar{a}, a^{\prime}\right)
$$

and as the meet

$$
(E, F)=\bigwedge_{x \in F}\left(x^{\prime}, \bar{x}\right)
$$

we have the following theorem.
Theorem 17 The token-based concepts are \bigvee-dense in $\operatorname{Gal}(\mathbf{C})$ and the type-based ones are \bigwedge-dense in $\operatorname{Gal}(\mathbf{C})$.

Example 2 A set A defines a formal context $\mathbf{P}(A):=(A, \operatorname{pow}(A), \in)$, called the power context of the set A. Then

$$
G a l(\mathbf{P}(A))=\operatorname{pow}(A) .
$$

Example 3 Let $\top=\mathbf{P}(\{*\})$. Then

$$
\operatorname{Gal}(\top) \simeq \operatorname{pow}(\{*\}) \simeq \mathbf{2} .
$$

Similarly $\perp=T^{*}$ has the concept lattice pow $(\{*\})^{\mathrm{op}} \simeq \mathbf{2}^{*} \simeq \mathbf{2}$.
From a formal context $\mathbf{C}=(A, X, \models)$, we define anthor one

$$
\operatorname{pow} \mathbf{C}:=(\operatorname{pow} A, \operatorname{pow} X, \models)
$$

by

$$
M \models N \stackrel{\text { def }}{\Longleftrightarrow} m \models n \quad \text { for all } m \in M \text { and } n \in N .
$$

The following obvious lemma will be used frequently.
Lemma 18 For $M \subset A$ and $N \subset X$,

$$
M \models N \Longleftrightarrow \bar{M} \models N \Longleftrightarrow M \models \bar{N}
$$

Proof.

$$
M \models N \Longleftrightarrow M \subset N^{\prime} \Longleftrightarrow \bar{M} \subset N^{\prime} \Longleftrightarrow \bar{M} \models N .
$$

The other equivalence is proved similarly.
Proposition 19 The map $(M, N) \mapsto($ pow M, pow $N)$ induces a bijection:

$$
\iota: G a l(\mathbf{C}) \xrightarrow{\approx} G a l(\text { pow } \mathbf{C}) .
$$

Proof. Let $M \subset A$. Denote by M^{*} the polar of $M \in$ pow M with respect to the context pow \mathbf{C}. Then $N \in M^{*}$ means $M \models N$ which is equivalent to $N \subset M^{\prime}$. Thus

$$
M^{*}=\operatorname{pow}\left(M^{\prime}\right)
$$

Suppose now $\mathcal{M}=\left\{M_{i} \mid i \in I\right\} \subset \operatorname{pow} A$. Then

$$
\mathcal{M}^{*}=\bigcap_{i \in I} M_{i}^{*}=\bigcap_{i \in I} \operatorname{pow}\left(M_{i}^{\prime}\right)=\operatorname{pow}\left(\bigcup_{i \in I} M_{i}\right)^{\prime}
$$

This proves $\mathcal{M}^{*}=\operatorname{pow}(\bigcup \mathcal{M})^{\prime}$. Suppose $(\mathcal{M}, \mathcal{N})$ is a formal concept of powC. Then

$$
\mathcal{M}=\mathcal{M}^{* *}=\operatorname{pow}(\overline{\bigcup \mathcal{M}})=\operatorname{pow}(M)
$$

where $M=\overline{\bigcup \mathcal{M}}$. Similarly

$$
\mathcal{N}=\operatorname{pow}(N)
$$

with $N=\overline{\bigcup \mathcal{N}}$. Moreover, pow $(M)=\operatorname{pow}\left(N^{\prime}\right)$ implies $M=N^{\prime}$. Similarly $N=M^{\prime}$ holds. Hence (M, N) is a formal concept for the context K and $\iota(M, N)=(\mathcal{M}, \mathcal{N})$.

Let \mathcal{A} be an intersection closed family of subsets of A.

Proposition 20

$$
\begin{aligned}
& \operatorname{Gal}(A, \mathcal{A}, \in) \simeq \mathcal{A} \\
& \operatorname{Gal}(\mathcal{A}, A, \ni) \simeq \mathcal{A}^{\mathrm{op}}
\end{aligned}
$$

Proof. Denote $A_{1}=A$ and $X_{1}=\mathcal{A}$. The polar of $x \in X_{1}=\mathcal{A}$ is $x \in$ $\operatorname{pow}(A)$ itself and since \mathcal{A} is intersection closed, the polar of $F \subset \mathcal{A}$ is written as $\bigcap F \in \mathcal{A}$, whence the set of closed sets of A coincides with \mathcal{A}. Hence the formal concept can be written as $(E, E \uparrow)(E \in \mathcal{A})$, where $E \uparrow=$ $\{F \in \mathcal{A} \mid E \subset F\}$.

The second follows from the first one, since the formal concepts are $(E \uparrow, E)(E \in \mathcal{A})$.

1.5. Chu maps

A Chu map from a formal context $\mathbf{C}_{1}=\left(A_{1}, X_{1}, \mid=\right)$ to $\mathbf{C}_{2}=\left(A_{2}, X_{2}, \mid=\right)$ is a pair of maps $\left(f: A_{1} \rightarrow A_{2}, g: X_{2} \rightarrow X_{1}\right)$ satisfying, for all $\left(a_{1}, x_{2}\right) \in$
$A_{1} \times X_{2}$,

$$
f\left(a_{1}\right) \models x_{2} \Longleftrightarrow a_{1} \models g\left(x_{2}\right) .
$$

Usually the concept of Chu maps is considered to be the correct concept of morphism between formal concepts [1].

The set of Chu maps from \mathbf{C}_{1} to \mathbf{C}_{2} is denoted by $\operatorname{ChuMaps}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$.
Example 4 A map $f: A_{1} \rightarrow A_{2}$ induces a Chu map

$$
\left(f, f^{-1}\right):\left(A_{1}, \operatorname{pow}\left(A_{1}\right), \in\right) \rightarrow\left(A_{2}, \operatorname{pow}\left(A_{2}\right), \in\right),
$$

since

$$
f\left(a_{1}\right) \in B \Leftrightarrow a_{1} \in f^{-1} B,
$$

by the definition of f^{-1}.
In fact, we have the following.
Proposition 21 The correspondence

$$
\operatorname{Map}\left(A_{1}, A_{2}\right) \ni f \mapsto\left(f, f^{-1}\right) \in \operatorname{ChuMaps}\left(\mathbf{P}\left(A_{1}\right), \mathbf{P}\left(A_{2}\right)\right)
$$

is a bijection.
Proof. If

$$
(f, g):\left(A_{1}, \operatorname{pow}\left(A_{1}\right), \in\right) \rightarrow\left(A_{2}, \operatorname{pow}\left(A_{2}\right), \in\right)
$$

is a Chu map, then $g=f^{-1}$, since the condition

$$
a_{1} \in g(B) \Leftrightarrow f\left(a_{1}\right) \in B
$$

implies $g(B)=f^{-1} B$.
For a Chu map $\gamma=(f, g)$, define $\gamma_{*}: \operatorname{Gal}\left(\mathbf{C}_{1}\right) \rightarrow \operatorname{Gal}\left(\mathbf{C}_{2}\right)$ by

$$
\gamma_{*}\left(M, M^{\prime}\right)=\left(\overline{f(M)}, f(M)^{\prime}\right)
$$

and

$$
\gamma^{*}: \operatorname{Gal}\left(\mathbf{C}_{2}\right) \rightarrow \operatorname{Gal}\left(\mathbf{C}_{1}\right)
$$

by

$$
\gamma^{*}\left(L^{\prime}, L\right)=\left(g(L)^{\prime}, \overline{g(L)}\right)
$$

Then we have

$$
\begin{equation*}
\gamma_{*}\left(M, M^{\prime}\right) \leq\left(L^{\prime}, L\right) \Longleftrightarrow\left(M, M^{\prime}\right) \leq \gamma^{*}\left(L^{\prime}, L\right) \tag{5}
\end{equation*}
$$

from which it follows that γ_{*} preserves the join and γ^{*} the meet.
Not that the equivalence (5) is rewritten as

$$
f(M)^{\prime} \supset L \Longleftrightarrow M \subset g(L)^{\prime}
$$

which is equivalent to

$$
f(M) \models L \Longleftrightarrow M \models g(L)
$$

which follows directly from the defining property of the Chu maps.
We have other expressions of γ_{*} and γ^{*}.

Proposition 22

$$
\begin{aligned}
& \gamma_{*}\left(\left(N^{\prime}, N\right)\right)=\left(\left(g^{-1} N\right)^{\prime}, g^{-1} N\right) \\
& \gamma^{*}\left(\left(K, K^{\prime}\right)\right)=\left(f^{-1} K,\left(f^{-1} K\right)^{\prime}\right)
\end{aligned}
$$

Proof. It suffices to show that $f\left(N^{\prime}\right)^{\prime}=g^{-1} N$, which follows from

$$
\begin{aligned}
y \in f\left(N^{\prime}\right)^{\prime} & \Longleftrightarrow f\left(N^{\prime}\right) \models y \\
& \Longleftrightarrow N^{\prime} \models g(y) \\
& \Longleftrightarrow g(y) \in \bar{N}=N \\
& \Longleftrightarrow y \in g^{-1} N
\end{aligned}
$$

The other equality follows similarly.

2. Chu correspondence

There may be no Chu maps between formal contexts although there are many join preserving maps between their Galois lattices. We extend the concept of Chu maps to Chu correspondences which provide us rich relations between formal contexts.

2.1. Definition

Let $\mathbf{C}_{i}=\left(A_{i}, X_{i}, P_{i}\right)(i=1,2)$ be formal contexts. A pair $\varphi=$ $\left(L_{\varphi}, R_{\varphi}\right)$ is called a correspondence from \mathbf{C}_{1} to \mathbf{C}_{2} if L_{φ} and R_{φ} are correspondences respectively from A_{1} to A_{2} and from X_{2} to $X_{1} . L_{\varphi}$ and R_{φ} are called the extent and the intent parts of φ respectively.

We use the notational conventions introduced for correspondences in §1.3. For example, $L_{\varphi *}$ denotes the unique extension of L_{φ} to the join preserving map from $\operatorname{pow}\left(A_{1}\right)$ to $\operatorname{pow}\left(A_{2}\right)$.

Definition 1 A correspondence φ from \mathbf{C}_{1} to \mathbf{C}_{2} is called a Chu correspondence in the weak sense if for every $a_{1} \in A_{1}$ and $x_{2} \in X_{2}$

$$
L_{\varphi} a_{1} \models x_{2} \Leftrightarrow a_{1} \models R_{\varphi} x_{2} .
$$

Definition 2 A Chu correspondence φ in the weak sense from \mathbf{C}_{1} to \mathbf{C}_{2} is called simply a Chu correspondence if both $L_{\varphi} a_{1} \subset A_{1}$ and $R_{\varphi} x_{2} \subset X_{1}$ are closed for every $a_{1} \in A_{1}$ and $x_{2} \in X_{2}$.

Proposition 23 Let φ be a Chu correspondence in the weak sense from \mathbf{C}_{1} to \mathbf{C}_{2}. Define a correspondence $\bar{\varphi}$ from \mathbf{C}_{1} to \mathbf{C}_{2} by

$$
L_{\bar{\varphi}} a_{1}=\overline{L_{\varphi} a_{1}}
$$

and

$$
R_{\bar{\varphi}} x_{2}=\overline{R_{\varphi} x_{2}} .
$$

Then $\bar{\varphi}$ is a Chu correspondence.
Proof. Let $a_{1} \in A_{1}$ and $x_{2} \in X_{2}$. Then

$$
\begin{aligned}
L_{\bar{\varphi}} a_{1} \models x_{2} & \Longleftrightarrow \overline{L_{\varphi} a_{1}} \models x_{2} \\
& \Longleftrightarrow L_{\varphi} a_{1} \models x_{2} \Longleftrightarrow a_{1} \models R_{\varphi} x_{2} \\
& \Longleftrightarrow a_{1} \models \overline{R_{\varphi} x_{2}}
\end{aligned} \Longleftrightarrow a_{1} \models R_{\bar{\varphi}} x_{2} .
$$

A Chu correspondence φ : $\mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ is called a strong isomorphism if there are bijections

$$
f: A_{1} \rightarrow A_{2}, \quad g: X_{2} \rightarrow X_{2}
$$

satisfying

$$
L_{\varphi} a_{1}=\overline{\left\{f\left(a_{1}\right)\right\}}, \quad R_{\varphi} x_{2}=\overline{\left\{g\left(x_{2}\right)\right\}}
$$

for $a_{1} \in A_{1}$ and $x_{2} \in X_{2} .(f, g)$ is called a generator of the the strong isomorphism φ. We note that there may be generally many generators of a Chu correspondence φ.

Example 5 Let $\mathbf{C}_{1}=\mathbf{C}_{2}=\left(V, V^{*}, \perp\right)$, where V is a finite-dimensional linear space over a field k and $v \perp w$ means $w(v)=0$. Then the Chu correspondences

$$
\left(a \operatorname{id}_{V}, b \operatorname{id}_{V^{*}}\right) \quad a, b \in k \backslash\{0\}
$$

in the weak sense have the same closures.
Lemma 24 Let (f, g) be a generator of a strong isomorphism φ. Then $\left(f^{-1}, g^{-1}\right)$ is a Chu correspondence in the weak sense and its closure is a strong isomorphism.

2.2. Basic properties of Chu correspondences

Proposition 25 Let φ be a Chu correspondence. Then for $N_{1} \subset A_{1}$ and $M_{2} \subset X_{2}$,

$$
\begin{aligned}
& \left(L_{\varphi *} N_{1}\right)^{\prime}=R_{\varphi}^{*} N_{1}^{\prime} \\
& \left(R_{\varphi *} M_{2}\right)^{\prime}=L_{\varphi}^{*} M_{2}^{\prime}
\end{aligned}
$$

In other words, the following diagrams commute:

Proof. Write $L=L_{\varphi}$ and $R=R_{\varphi}$ for brevity. Then $x_{2} \in\left(L_{*} N_{1}\right)^{\prime}$ if and only if $L_{*} N_{1} \models x_{2}$ if and only if $N_{1} \models R x_{2}$ if and only if $R x_{2} \subset N_{1}^{\prime}$ if and only if $x_{2} \in R^{*} N_{1}^{\prime}$.

The other assertion is proved similarly.
Conversely, we have
Proposition 26 A correspondence φ is a Chu correspondence if

$$
\left(L_{\varphi *} N_{1}\right)^{\prime}=R_{\varphi}^{*} N_{1}^{\prime} \quad \text { for every } N_{1} \subset A_{1}
$$

Similarly, φ is a Chu correspondence if

$$
\left(R_{\varphi *} M_{2}\right)^{\prime}=L_{\varphi}^{*} M_{2}^{\prime} \quad \text { for every } M_{2} \subset X_{2}
$$

Proof. Let $a_{1} \in A_{1}$ and $x_{2} \in X_{2}$.

$$
\begin{aligned}
L_{\varphi} a_{1}=x_{2} & \Longleftrightarrow x_{2} \in\left(L_{\varphi} a_{1}\right)^{\prime}=R_{\varphi}^{*}\left(a_{1}^{\prime}\right) \\
& \Longleftrightarrow R_{\varphi} x_{2} \subset a_{1}^{\prime} \\
& \Longleftrightarrow a_{1} \models R_{\varphi} x_{2},
\end{aligned}
$$

Hence φ is a Chu correspondence and the first assertion holds.
The latter can be proved similarly.
Hence we have the following propositions.
Proposition 27 A correspondence φ is a Chu correspondence in the weak sense if and only if

$$
\left(L_{\varphi} a_{1}\right)^{\prime}=R_{\varphi}^{*} a_{1}^{\prime} \quad \text { for all } a_{1} \in A_{1}
$$

if and only if

$$
\left(R_{\varphi} x_{2}\right)^{\prime}=L_{\varphi}^{*}\left(x_{2}^{\prime}\right) \quad \text { for all } x_{2} \in X_{2}
$$

Proposition 28 If φ is a Chu correspondence from \mathbf{C}_{1} to \mathbf{C}_{2}, then for $a_{1} \in A_{1}$

$$
L_{\varphi} a_{1}=\left(R_{\varphi}^{*} a_{1}^{\prime}\right)^{\prime}
$$

and for $x_{2} \in X_{2}$

$$
R_{\varphi} x_{2}=\left(L_{\varphi}^{*} x_{2}^{\prime}\right)^{\prime}
$$

In particular, L_{φ} and R_{φ} determine each other.
Note that $L_{\varphi *} N_{1}$ might not be closed even if φ is a Chu correspondence and $N_{1} \subset A_{1}$ is closed.

The following property of the join-preserving operator

$$
L_{\varphi *}: \operatorname{pow}\left(A_{1}\right) \rightarrow \operatorname{pow}\left(A_{2}\right)
$$

will be used frequently.
Proposition 29 If φ is a Chu correspondence in the weak sense from \mathbf{C}_{1} to \mathbf{C}_{2}, then

$$
\overline{L_{\varphi *} \overline{N_{1}}}=\overline{L_{\varphi *} N_{1}}
$$

for $N_{1} \subset A_{1}$. In particular

$$
\overline{L_{\varphi *} \overline{a_{1}}}=\overline{L_{\varphi} a_{1}}
$$

for $a_{1} \in A_{1}$. Hence if φ is a Chu correspondence then

$$
\overline{L_{\varphi *} \overline{a_{1}}}=L_{\varphi} a_{1} .
$$

Proof. Suffices to show

$$
\left(L_{\varphi *} \overline{N_{1}}\right)^{\prime}=\left(L_{\varphi *} N_{1}\right)^{\prime}
$$

Let $x_{1} \in X_{1}$. Then

$$
\begin{aligned}
x_{1} \in\left(L_{\varphi *} \overline{N_{1}}\right)^{\prime} & \Longleftrightarrow L_{\varphi *} \overline{N_{1}}=x_{1} \\
& \Longleftrightarrow \overline{N_{1}}=R_{\varphi} x_{1} \\
& \Longleftrightarrow N_{1}=R_{\varphi} x_{1} \\
& \Longleftrightarrow L_{\varphi *} N_{1}=x_{1} \Longleftrightarrow x_{1} \in\left(L_{\varphi *} N_{1}\right)^{\prime} .
\end{aligned}
$$

The right adjoint

$$
L_{\varphi}{ }^{*}: \operatorname{pow}\left(A_{1}\right) \rightarrow \operatorname{pow}\left(A_{2}\right)
$$

has the following basic properties.
Proposition 30 (i) If $N_{2} \subset A_{2}$ is closed then $L_{\varphi}{ }^{*} N_{2} \subset A_{1}$ is closed.
(ii) The operator $L_{\varphi}{ }^{*}$ preserves intersection.
(iii) For $E \subset A_{2}$,

$$
\overline{L_{\varphi}{ }^{*} E} \subset L_{\varphi}{ }^{*} \bar{E}
$$

Proof. Let $M_{2}=\left(N_{2}\right)^{\prime}$ so that $N_{2}=M_{2}^{\prime}$. Then by Proposition 25

$$
L_{\varphi}^{*} N_{2}=L_{\varphi}^{*}\left(M_{2}\right)^{\prime}=\left(R_{\varphi *} M_{2}\right)^{\prime}
$$

whence $L_{\varphi}{ }^{*} N_{2}$ is closed, whence the assertion (i).
The assertion (ii) holds by basic properties Corollary 13 of Galois pairs.
Since $L_{\varphi}{ }^{*} \bar{E}$ is closed and includes $L_{\varphi}{ }^{*} E$, we have the assertion (iii).

Definition 3 Let $\mathbf{C}_{i}(i=1,2)$ be formal contexts. A correspondence $L: A_{1} \rightarrow$ pow A_{2} is called a continuous extent correspondence from \mathbf{C}_{1} to
C_{2} if

$$
L^{*}: \text { pow } A_{2} \rightarrow \text { pow } A_{1}
$$

preserves the closed sets.
Similarly $R: X_{2} \rightarrow \operatorname{pow}\left(X_{1}\right)$ is called a continuous intent correspondence from \mathbf{C}_{1} to \mathbf{C}_{2} if R^{*} preserves the closed sets.

If φ is a Chu correspondence, L_{φ} is a continuous extent relation and R_{φ} is a continuous intent relation from \mathbf{C}_{1} to \mathbf{C}_{2}. In fact the converse holds.

Theorem 31 Suppose $L: A_{1} \rightarrow$ pow A_{2} is a continuous extent relation from \mathbf{C}_{1} to \mathbf{C}_{2}. Then there is a correspondence $R: X_{2} \rightarrow$ pow X_{2} with (L, R) being a Chu correspondence from \mathbf{C}_{1} to \mathbf{C}_{2}.

Proof. Define R by

$$
R x_{2}=\left(L^{*} x_{2}^{\prime}\right)^{\prime} \quad \text { for } x_{2} \in X_{2}
$$

Then, for $a_{1} \in A_{1}$ and $x_{2} \in X_{2}$,

$$
\begin{aligned}
a_{1} \models R x_{2} & \Longleftrightarrow a_{1} \in\left(R x_{2}\right)^{\prime}=\overline{L^{*} x_{2}^{\prime}}=L^{*} x_{2}^{\prime} \\
& \Longleftrightarrow L a_{1} \subset x_{2}^{\prime} \Longleftrightarrow L a_{1} \models x_{2},
\end{aligned}
$$

whence (L, R) is a Chu correspondence.
Similarly, we have the following:
Theorem 32 Suppose $R: X_{2} \rightarrow$ pow X_{1} is a continuous intent correspondence from \mathbf{C}_{1} to \mathbf{C}_{2}. Then there is a correspondence $L: A_{1} \rightarrow \operatorname{pow} A_{2}$ with (L, R) being a Chu correspondence from \mathbf{C}_{1} to \mathbf{C}_{2}.

2.3. Description by Bonds

Chu correspondences are described by bonds introduced by Ganter and Wille [9]. Let $\mathbf{C}_{i}=\left(A_{i}, X_{i}, \models\right)(i=1,2)$ be formal contexts.

Definition 4 A bond from \mathbf{C}_{1} to \mathbf{C}_{2} is a correspondence Z from A_{1} to X_{2} satisfying the condition that both $Z a_{1}$ and ${ }^{t} Z x_{2}$ be closed for $x_{2} \in X_{2}$ and $a_{1} \in A_{1}$.

Example 6 If (f, g) is a Chu map from \mathbf{C}_{1} to \mathbf{C}_{2}, then the correspondence Z from A_{1} to X_{2} defined by $Z a_{1}:=f\left(a_{1}\right)^{\prime}$, which is also determined by ${ }^{t} Z x_{2}=g\left(x_{2}\right)^{\prime}$ is a bond.

Example 7 If $E_{1} \subset A_{1}$ and $F_{2} \subset X_{2}$, the subset $Z=E_{1} \times F_{2} \subset A_{1} \times X_{2}$ is a bond if and only if E_{1} and F_{2} are closed.

Example 8 If $\mathbf{C}=(A, X, P)$ is a formal context, then $P \subset A \times X$ is obviously a bond from \mathbf{C} to \mathbf{C}, called the tautological bond.

We denote by $\operatorname{Bond}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$ the set of all the bonds from \mathbf{C}_{1} to \mathbf{C}_{2}, equipped with the partial order $Z_{1} \leq Z_{2}$ defined by $\left[Z_{1}\right] \subset\left[Z_{2}\right]$. (See Section 1.3)

Proposition $33 \operatorname{Bond}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$ is the intersection closed subset of $\operatorname{pow}\left(A_{1} \times X_{2}\right)$. In particular, it is a complete lattice with the meet operation given by the intersection.

Proof. Suppose $B_{i}(i \in I)$ are bonds from \mathbf{C}_{1} to \mathbf{C}_{2}. Then $B:=\bigcap_{i \in I} B_{i}$ defined by

$$
B a_{1}=\bigcap_{i \in I} B_{i} a_{1}
$$

for $a_{1} \in A_{1}$ is also a Bond. In fact $B a_{1}$ is closed and by Proposition 10

$$
{ }^{t} B x_{2}=\bigcap_{i \in I}{ }^{t} B_{i} x_{2}
$$

is also closed.
We show that there is an anti-isomorphic correspondence between the complete lattice of Chu correspondences and that of bonds.
2.3.1. Bonds defines Chu correspondences First we show that bonds define Chu correspondences.

Proposition 34 Let $Z: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ be a bond. Define a correspondence $\varphi_{Z}: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ by

$$
\left(L_{\varphi_{Z}}\right) a_{1}=\left(Z a_{1}\right)^{\prime} \subset A_{2} \quad \text { for } a_{1} \in A_{1}
$$

and

$$
\left(R_{\varphi_{Z}}\right) x_{2}=\left({ }^{t} Z x_{2}\right)^{\prime} \subset X_{1} \quad \text { for } x_{2} \in X_{2}
$$

Then φ_{Z} is a Chu correspondence from \mathbf{C}_{1} to \mathbf{C}_{2}.

Proof. Let $\left(a_{1}, x_{2}\right) \in A_{1} \times X_{2}$. Then

$$
\begin{aligned}
L_{\varphi} a_{1}=x_{2} & \Leftrightarrow\left(Z a_{1}\right)^{\prime} \models x_{2} \\
& \Leftrightarrow x_{2} \in \overline{Z a_{1}}=Z a_{1} \\
& \Leftrightarrow a_{1} \in{ }^{t} Z x_{2}=\overline{Z x_{2}} \\
& \Leftrightarrow a_{1} \models\left(Z x_{2}\right)^{\prime}=R_{\varphi} x_{2} .
\end{aligned}
$$

Hence φ is a Chu correspondence.
Example 9 Suppose $E_{1} \subset A_{1}$ and $F_{2} \subset X_{2}$ are closed. The Chu correspondence φ corresponding to the bond $E_{1} \times F_{2}$ satisfies

$$
L_{\varphi} a_{1}= \begin{cases}F_{2}^{\prime} & \text { if } a_{1} \in E_{1} \\ A_{2} & \text { otherwise }\end{cases}
$$

whence

$$
\left[L_{\varphi}\right]=E_{1} \times F_{2}^{\prime} \bigcup\left(E_{1}\right)^{c} \times A_{2} .
$$

Similarly

$$
\left[R_{\varphi}\right]=E_{1}^{\prime} \times F_{2} \bigcup\left(A_{1}\right) \times\left(A_{2}\right)^{c} .
$$

Example 10 The tautological bond defines the identity Chu correspondence.
2.3.2. Bonds defined by Chu correspondences Conversely let φ be a Chu correspondence from \mathbf{C}_{1} to \mathbf{C}_{2}. Define a correspondence Z_{φ} from A_{1} to X_{2} by

$$
Z_{\varphi} a_{1}:=\left(L_{\varphi} a_{1}\right)^{\prime} .
$$

Example 11 The identity Chu correspondence defines the tautological bond.

Proposition $35 \quad Z_{\varphi}$ is a bond from \mathbf{C}_{1} to \mathbf{C}_{2}.
Proof. Put $Z=Z_{\varphi}$ for brevity. Then for $a_{1} \in A_{1}, Z_{\varphi} a_{1}$ is obviously closed by definition.

For $x_{2} \in X_{2}$,

$$
{ }^{t} Z x_{2}=\left\{a_{1} \mid x_{2} \in Z a_{1}\right\}=\left\{a_{1} \mid x_{2} \in\left(L_{\varphi} a_{1}\right)^{\prime}\right\} .
$$

Since

$$
x_{2} \in\left(L_{\varphi} a_{1}\right)^{\prime} \Longleftrightarrow L_{\varphi} a_{1} \models x_{2} \Longleftrightarrow a_{1} \models R_{\varphi} x_{2}, \Longleftrightarrow a_{1} \in\left(R_{\varphi} x_{2}\right)^{\prime},
$$

we have

$$
{ }^{t} Z x_{2}=\left(R_{\varphi} x_{2}\right)^{\prime},
$$

which implies ${ }^{t} Z x_{2}$ is closed.
Proposition 36 The correspondences $\varphi \mapsto Z_{\varphi}$ and $Z \mapsto \varphi_{Z}$ are inverse to each other.

Proof. Let Z be a bond. Since $Z_{\varphi_{Z}} a_{1}=\left(L_{\varphi_{Z}} a_{1}\right)^{\prime}=\overline{Z a_{1}}=Z a_{1}$, we have $Z_{\varphi_{Z}}=Z$.

On the other hand, let φ be a Chu correspondence. Then

$$
L_{\varphi_{Z_{\varphi}}} a_{1}=\left(Z_{\varphi} a_{1}\right)^{\prime}=\overline{L_{\varphi} a_{1}}=L_{\varphi} a_{1}
$$

whence $L_{\varphi_{Z_{\varphi}}}=L_{\varphi}$, which implies $\varphi_{Z_{\varphi}}=\varphi$.
Proposition 37 Let $\mathbf{C}_{i}=\left(A_{i}, X_{i}, \models\right)(i=1,2)$ be formal contexts and $Z: A_{1} \rightarrow X_{2}$ be a bond from \mathbf{C}_{1} and \mathbf{C}_{2}.
(i) For $N_{1} \subset A_{1}$,

$$
\left(\left(L_{\varphi}\right)_{*} N_{1}\right)^{\prime}=Z_{\circ} N_{1} .
$$

(ii) The subset $Z_{\circ} N_{1} \subset X_{2}$ is closed for $N_{1} \subset A_{1}$ and $Z^{\circ} M_{2} \subset A_{1}$ is also closed for $M_{2} \subset X_{2}$.

Proof.

$$
\begin{aligned}
\left.\left(\left(L_{\varphi}\right)_{*} N_{1}\right)\right)^{\prime} & =\bigcap_{m \in\left(L_{\varphi}\right) * N_{1}} m^{\prime} \\
& =\bigcap_{n \in N_{1}} \bigcap_{m \in L_{\varphi} n} m^{\prime} \\
& =\bigcap_{n \in N_{1}}\left(L_{\varphi} n\right)^{\prime} \\
& =\bigcap_{n \in N_{1}} Z n \\
& =Z_{\circ} N_{1} .
\end{aligned}
$$

The assertion (ii) follows from (i). It is however obvious since $Z_{\circ} N=$ $\bigcap_{n \in N} Z n$ and $Z n$'s are closed by definition.

2.4. The complete lattice of Chu correspondences

Let $\mathbf{C}_{i}=\left(A_{i}, X_{i}, \not \models\right)((i=1,2))$ be formal contexts. Let $\operatorname{Chu} \operatorname{Cors}\left(\mathbf{C}_{1}\right.$, \mathbf{C}_{2}) denotes the set of Chu correspondences from \mathbf{C}_{1} to \mathbf{C}_{2} with the order defined by $\varphi_{1} \leq \varphi_{2}$ if and only if $L_{\varphi_{1}} \subset L_{\varphi_{2}}$. Note that by Proposition 28 and Corollary 15, this is equivalent to $R_{\varphi_{1}} \subset R_{\varphi_{2}}$.

By Proposition 36, we have
Theorem 38 The correspondence which assigns to each Chu correspondence φ the bond Z_{φ} is a bijection between $\operatorname{ChuCors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$ to $\operatorname{Bond}\left(\mathbf{C}_{1}\right.$, \mathbf{C}_{2}). In fact, as complete lattices, we have

$$
\operatorname{ChuCors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right) \simeq \operatorname{Bond}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)^{*}
$$

Proof. It remains to check that the bijection reverse the order. Suppose $\alpha \leq \beta$ as Chu correspondences. Then, for $a_{1} \in A_{1}$,

$$
Z_{\alpha} a_{1}=\left(L_{\alpha} a_{1}\right)^{\prime} \supset\left(L_{\beta} a_{1}\right)^{\prime}=Z_{\beta} a_{1}
$$

Hence $Z_{\alpha} \geq Z_{\beta}$.
We write

$$
\begin{equation*}
\mathbf{C}_{1} \bowtie \mathbf{C}_{2}:=\left\{[Z] \mid Z \in \operatorname{Bond}\left(\mathbf{C}_{1}, \mathbf{C}_{2}^{*}\right)\right\} \tag{6}
\end{equation*}
$$

which consists of the graph of correspondences $Z: A_{1} \rightarrow A_{2}$ for which both $Z a_{1}$ and ${ }^{t} Z a_{2}$ are closed for $a_{i} \in A_{i}(i=1,2)$.

From Theorem 38 and Proposition 33
Proposition 39 The poset ChuCors $\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$ is complete.
For a Chu correspondence φ from \mathbf{C}_{1} to \mathbf{C}_{2}, define a Chu correspondence φ^{*} from \mathbf{C}_{2}^{*} to \mathbf{C}_{1}^{*} by

$$
L_{\varphi^{*}}=R_{\varphi}, \quad R_{\varphi^{*}}=L_{\varphi}
$$

Obviously we have
Proposition 40 The correspondence $\varphi \mapsto \varphi^{*}$ defines a poset isomorphism

$$
\operatorname{Chu} \operatorname{Cors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right) \simeq \operatorname{Chu} \operatorname{Cors}\left(\mathbf{C}_{2}^{*}, \mathbf{C}_{1}^{*}\right)
$$

Proposition 41

$$
\begin{aligned}
& \operatorname{Chu} \operatorname{Cors}(\mathbf{C}, \perp) \simeq \mathcal{A}(\mathbf{C}) \\
& \operatorname{Chu} \operatorname{Cors}(\top, \mathbf{C}) \simeq \mathcal{X}(\mathbf{C})
\end{aligned}
$$

Proof. By Theorem 38, it suffices to show

$$
\operatorname{Bond}(\mathbf{C}, \perp) \simeq \mathcal{A}(\mathbf{C})
$$

A bond Z from \mathbf{C} to \perp is a subset of $A \times\{*\}$, which corresponds to a closed subset of A, whence the former assertion. The latter is proved similarly.

We see that the above isomorphisms are natural.
Proposition 42 If $\varphi: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ is a Chu correspondence, then the following diagram commutes:

Proof. Describe \perp as $(\{0,1\},\{*\},\{(1, *)\})$. Let $\psi: \mathbf{C}_{2} \rightarrow \perp$. The bond Z_{ψ} is given by

$$
Z_{\psi}=\left\{\left(a_{2}, *\right)\left|a_{2} \in A_{2}, L_{\psi} a_{2}\right|=*\right\}
$$

which correspondes to $L_{\psi}{ }^{*}\{1\} \subset A_{2}$.
On the other hand,

$$
Z_{\psi \circ \varphi}=\left\{\left(a_{1}, *\right) \mid a_{1} \in A_{1}, L_{\psi \circ \varphi} a_{1} \models *\right\}
$$

Since

$$
\begin{aligned}
L_{\psi \circ \varphi} a_{1} \models * & \Leftrightarrow L_{\psi \circ \varphi} a_{1} \subset\{1\} \\
& \Leftrightarrow a_{1} \in L_{\psi \circ \varphi}{ }^{*}\{1\}=\left(L_{\psi} L_{\varphi}\right)^{*}\{1\}=L_{\varphi}^{*} L_{\psi}^{*}\{1\}
\end{aligned}
$$

The last equality follows from Proposition 16. This proves the commutativity of the left diagram. The comutativity of the right diagram can be proved similarly.

3. Examples of Chu correspondences

3.1. Simple examples

Let $\mathbf{C}=\left(B_{1}, B_{2}, \leq\right)$, where $B_{1}=B_{2}=\mathbf{B}=\{0,1\}$. Then the set of closed sets of B_{1} and B_{2} are respectively $\{0,01\}$ and $\{1,01\}$. In particular
there are four correspondences $L_{i}(1 \leq i \leq 4)$ from B_{1} to B_{1} whose images are closed sets, namely,

L	$L 0$	$L 1$
L_{1}	0	0
L_{2}	0	\mathbf{B}
L_{3}	\mathbf{B}	0
L_{4}	\mathbf{B}	\mathbf{B}

To check if L is a continuous intent map, we compute $L^{*} K$ for closed $K=$ 0,01 .

L	$L^{*} 0$	$L^{*} \mathbf{B}$
L_{1}	\mathbf{B}	\mathbf{B}
L_{2}	0	\mathbf{B}
L_{3}	1	\mathbf{B}
L_{4}	\emptyset	\mathbf{B}

whence only L_{1} and L_{2} are the extent parts of Chu correspondences. By Proposition 28, the intent parts are computed for example as follows:

$$
R_{2} 0=\left(L_{2}{ }^{*} 0^{\prime}\right)^{\prime}=\left(L_{2}{ }^{*} 0\right)^{\prime}=0^{\prime}=\mathbf{B}
$$

and

$$
R_{2} 1=\left(L_{2}{ }^{*} 1^{\prime}\right)^{\prime}=\left(L_{2}^{*} \mathbf{B}\right)^{\prime}=(\mathbf{B})^{\prime}=1
$$

By similar calculation, we have

R	$R 0$	$R 1$
R_{1}	1	1
R_{2}	\mathbf{B}	1

The bonds corresponding to the Chu correspondences $\varphi_{i}=\left(L_{i}, R_{i}\right)(i=$ $1,2)$ is described as follows:

$$
Z_{\varphi_{1}}: \begin{array}{l|ll}
& 0 & 1 \\
\hline 0 & 1 & 1 \\
1 & 1 & 1
\end{array} \quad Z_{\varphi_{2}}: \begin{array}{l|ll}
& & 0 \\
\hline
\end{array} .
$$

3.2. Chu correspondences which are not Chu maps

We give an example of a formal context with Chu auto correspondences which are not Chu maps.

Let $\mathbf{C}=(A, X, R)$ with $A=\{1,2,3\}, X=\{a, b, c\}$ and R is given by the following table:

	a	a	c
1	1	0	0
2	0	1	1
3	0	0	1

The Galois lattice of \mathbf{C} is described as follows:
There are 43 Chu correspondences given as follows, where a correspondence φ is described by the triple $\left(\left(L_{\varphi} 1\right)^{\prime},\left(L_{\varphi} 2\right)^{\prime},\left(L_{\varphi} 3\right)^{\prime}\right):(0,0,0)$, $(0,0, c),(0,0, b c),(0,0, a),(0,0, a b c),(0, c, c),(0, c, b c),(0, c, a b c)$, $(0, b c, b c),(0, b c, a b c),(0, a, a),(0, a, a b c),(0, a b c, a b c),(c, 0,0),(c, 0, a)$, $(c, c, c),(c, c, b c),(c, c, a b c),(c, b c, b c),(c, b c, a b c),(c, a, a),(c, a b c, a b c)$, $(b c, 0,0),(b c, 0, a),(b c, c, c),(b c, b c, b c),(b c, b c, a b c),(b c, a, a)$,
$(b c, a b c, a b c),(a, 0,0),(a, 0, c),(a, 0, b c),(a, c, c),(a, c, b c),(a, b c, b c)$, $(a, a, a),(a, a, a b c),(a, a b c, a b c),(a b c, 0,0),(a b c, c, c),(a b c, b c, b c)$, $(a b c, a, a),(a b c, a b c, a b c)$.

Among these Chu correspondences, only the three $(a, b c, b c),(a, c, b c)$, ($b c, a, a$) come from Chu maps.

3.3. Chu maps as Chu correspondences

Proposition 43 Let $\mathbf{C}_{i}=\left(A_{i}, X_{i}, \mid=\right)(i=1,2)$ be formal contexts and (f, g) be a pair of maps $f: A_{1} \rightarrow A_{2}$ and $g: X_{2} \rightarrow X_{2}$. Then (f, g) is a Chu map if only if (f, g) is a Chu correspondence in the weak sense when

regarded as a correspondence from \mathbf{C}_{1} to \mathbf{C}_{2}. In particular, its closure φ defined by

$$
L_{\varphi}\left(a_{1}\right)=\overline{f\left(a_{1}\right)} \quad R_{\varphi}\left(x_{2}\right)=\overline{g\left(x_{2}\right)}
$$

is a Chu correspondence.
Proof. Suppose (f, g) is a Chu map. Let $a_{1} \in A_{1}$ and $x_{2} \in X_{2}$. Then

$$
a_{1} \models\left\{g\left(x_{2}\right)\right\} \Leftrightarrow a_{1} \models g\left(x_{2}\right) \Leftrightarrow f\left(a_{1}\right) \models x_{2} \Leftrightarrow\left\{f\left(a_{1}\right)\right\} \models x_{2},
$$

whence (f, g) is a Chu correspondence in the weak sense.
Conversely if (f, g) is a Chu correspondence in the weak sense, then

$$
a_{1} \models g\left(x_{2}\right) \Leftrightarrow a_{1} \models\left\{g x_{2}\right\} \Leftrightarrow\left\{f\left(a_{1}\right)\right\} \models x_{2} \Leftrightarrow f\left(a_{1}\right) \models x_{2},
$$

whence (f, g) is a Chu map.
Remark The following example shows that Chu maps are very few compared with Chu correspondences. Let

$$
\mathbf{C}=(\{1,2,3\},\{1,2,3\}, P)
$$

where P is defined by $P(i, j)=1-\delta_{i j}$, where δ is the Kronecker's symbol.
Then $\operatorname{Gal}(\mathbf{C})=\left\{\left(A, A^{c}\right) \mid A \subset\{1,2,3\}\right\} \simeq \operatorname{pow}(\{1,2,3\})$.
Since every subset of $\{1,2,3\}$ is closed, any relation $L \subset\{1,2,3\}^{2}$ is continuous extent relation from \mathbf{C} to itself and hence there are $2^{9} \mathrm{Chu}$ correspondences. On the other hand there are only 6 Chu endomaps of \mathbf{C}.

In fact, suppose (f, g) be a Chu map. Suppose f is not a bijection. Then there is a $k \notin \operatorname{Im}(f)$. This k satisfies $f(i) \models k$ for all i, whence $i \models$ $g(k)$ for all i, which is impossible. Hence f must be a bijection. Conversely, suppose we have a bijection f from $\{1,2,3\}$ to itself. Define $g(k)$ to be the unique element of the polar set of $\{j \mid f(j) \neq k\}$ which consists of two elements. Then obviously (f, g) is a Chu map. Hence the set of Chu maps is bijective to the set of bijective auto-maps of $\{1,2,3\}$.

However, between the formal contexts associated with complete lattices, all Chu correspondences are induced from Chu maps. Consider the formal contexts

$$
\mathbf{C}_{i}=\left(L_{i}, L_{i}, \leq\right)
$$

where L_{i} are complete lattices $(i=1,2)$. Then a Chu map (f, g) from \mathbf{C}_{1} to \mathbf{C}_{2} is precisely a Galois pair $f: L_{1} \rightarrow L_{2}$ and $g: L_{2} \rightarrow L_{1}$ satisfying

$$
f(a) \leq b \Longleftrightarrow a \leq g(b)
$$

When this Chu map is regarded as a Chu correspondence in the weak sense, then its closure φ is given by

$$
L_{\varphi} a_{1}=f\left(a_{1}\right) \downarrow \quad \text { and } \quad R_{\varphi} a_{2}=g\left(a_{2}\right) \uparrow
$$

for $a_{i} \in A_{i}(i=1,2)$. Conversely, suppose φ is a Chu correspondence from \mathbf{C}_{1} to \mathbf{C}_{2}. Define

$$
f\left(a_{1}\right)=\bigvee L_{\varphi} a_{1} \quad \text { and } \quad g\left(a_{2}\right)=\bigvee R_{\varphi} a_{2}
$$

Then (f, g) is a Chu map. Hence Chu correspondences and Chu maps from \mathbf{C}_{1} to \mathbf{C}_{2} corresponds one to the other bijectively.

3.4. Chu correspondences between powercontexts

Let $A_{i}(i=1,2)$ be sets and

$$
\mathbf{P}\left(A_{i}\right)=\left(A_{i}, \text { pow } A_{i}, \in\right)
$$

$(i=1,2)$ be their power contexts. Recall that there is a bijection

$$
\operatorname{Map}\left(A_{1}, A_{2}\right) \stackrel{\simeq}{\rightarrow} C h u M a p s\left(\mathbf{P}\left(A_{1}\right), \mathbf{P}\left(A_{2}\right)\right)
$$

for sets $A_{i}(i=1,2)$, by Proposition 21.
We show that set theoretical correspondences induce Chu correspondences between power contexts.

Proposition 44 Let $T: A_{1} \rightarrow$ pow A_{2} be a correspondence. Define

$$
L_{T}=T
$$

and

$$
R_{T}: \text { pow } A_{2} \rightarrow \text { powpow } A_{1}
$$

by

$$
R_{T} N_{2}=\left\{N_{1} \subset X_{1} \mid L^{*} N_{2} \subset N_{1}\right\}=L^{*} N_{2} \uparrow
$$

where $B \uparrow$ denotes the family of subsets including B. Then $\widetilde{T}=\left(L_{T}, R_{T}\right)$ is a Chu correspondence from $\mathbf{P}\left(A_{1}\right)$ to $\mathbf{P}\left(A_{2}\right)$.

Proof. We write $R=R_{T}, L=L_{T}$ for brevity. Let $a_{1} \in A_{1}$ and $N_{2} \subset A_{2}$. We show

$$
L a_{1} \models N_{2} \Longleftrightarrow a_{1} \models R N_{2}
$$

First note that

$$
L a_{1} \models N_{2} \Longleftrightarrow a_{1} \in L^{*} N_{2}
$$

since

$$
L a_{1} \models N_{2} \Leftrightarrow L a_{1} \subset N_{2} \Leftrightarrow a_{1} \in L^{*} N_{2} .
$$

Note also that

$$
a_{1} \models R N_{2} \Longleftrightarrow a_{1} \in \bigcap R N_{2}
$$

since $a_{1} \models R N_{2}$ means $a_{1} \in N_{1}$ for all N_{1} with $N_{1} \in R N_{2}$.
Since $R N_{2}=L^{*} N_{2} \uparrow$,

$$
\bigcap R N_{2}=L^{*} N_{2}
$$

Hence $L a_{1} \models N_{2}$ if and only if $a_{1} \in L^{*} N_{2}$ if and only if $a_{1} \in \bigcap R N_{2}$ if and only if $a_{1} \models R N_{2}$. Hence, (L, R) is a Chu correspondence.

Corollary 45 Let

$$
\varphi: \mathbf{P}\left(A_{1}\right) \rightarrow \mathbf{P}\left(A_{2}\right)
$$

be a Chu correspondence. Then

$$
\varphi=\widetilde{L_{\varphi}}
$$

In particular, the correspondence T to \widetilde{T} defines a bijection

$$
\operatorname{Cor}\left(A_{1}, A_{1}\right) \simeq \operatorname{ChuCors}\left(\mathbf{P}\left(A_{1}\right), \mathbf{P}\left(A_{2}\right)\right)
$$

Proposition 46 Let $f: A_{1} \rightarrow A_{2}$ be a map considered as a correspondence. Then

$$
\left[R_{f}\right]=\left\{\left(N_{1}, N_{2}\right) \mid f^{-1} N_{2} \subset N_{1}\right\} \subset \operatorname{pow}\left(A_{1}\right) \times \operatorname{pow}\left(A_{2}\right)
$$

Proof. Put $L=f$. It suffices to show that $L^{*} N_{2}=f^{-1} N_{2}$, which follows directly from

$$
L^{*} N_{2}=\left\{a_{1} \mid L a_{1} \subset N_{2}\right\}=\left\{a_{1} \mid f\left(a_{1}\right) \in N_{2}\right\}=f^{-1} N_{2}
$$

Remark Hence there are much more Chu correspondences from $\mathbf{P}\left(A_{1}\right)$ to $\mathbf{P}\left(A_{2}\right)$ than Chu maps. In fact, if $n_{i}=\left|A_{i}\right|(i=1,2)$, then there are $2^{n_{1} \times n_{2}}=\left(2^{n_{2}}\right)^{n_{1}}$ Chu correspondences and $n_{2}^{n_{1}}$ Chu maps. As n_{2} increases, the ratio of the number of Chu correspondences against that of Chu maps increases rapidly.

3.5. Chu correspondences as Chu maps

Chu correspondences correspond to Chu maps between the power contexts.

Lemma 47 A correspondence φ from \mathbf{C}_{1} to \mathbf{C}_{2} is a Chu correspondence if and only if

$$
L_{\varphi *} N_{1} \models M_{2} \Longleftrightarrow N_{1} \models R_{\varphi *} M_{2}
$$

for all $N_{1} \subset A_{1}$ and $M_{2} \subset X_{2}$.
Proof. $\quad L_{\varphi *} N_{1} \models M_{2}$ if and only if $L_{\varphi} n_{1} \models m_{2}$ for all $n_{1} \in N_{1}$ and $m_{2} \in$ M_{2} if and only if $n_{1} \models R_{\varphi} m_{2}$ for all $n_{1} \in N_{1}$ and $m_{2} \in M_{2}$ if and only if $N_{1} \models R_{\varphi *} M_{2}$.

Conversely, suppose the latter condition holds. Then taking $N_{1}=\left\{a_{1}\right\}$ and $M_{2}=\left\{x_{2}\right\}$, we have

$$
L_{\varphi} a_{1} \models x_{2} \Longleftrightarrow a_{1} \models R_{\varphi} x_{2}
$$

This can be rephrased as follows:

Theorem 48 A correspondence φ from \mathbf{C}_{1} to \mathbf{C}_{2} is a Chu correspondence if and only if $\left(L_{\varphi *}, R_{\varphi *}\right)$ is a Chu map from $\operatorname{pow}\left(\mathbf{C}_{1}\right)$ to $\operatorname{pow}\left(\mathbf{C}_{2}\right)$.

3.6. Chu relation in the sense of Pratt

V. Pratt introduced a concept called "Chu relation" [15]. A correspondence (L, R) is called a "Chu relation" if for all $a_{i} \in A_{i}$ and $x_{i} \in X_{i}(i=$ $1,2)$, the condition $\left(a_{1}, a_{2}\right) \in[L]$ and $\left(x_{1}, x_{2}\right) \in[R]$ imply the equivalence of the conditions $a_{1} \models x_{1}$ and $a_{2} \models x_{2}$.

If (L, R) is a "Chu relation" in the sense of Pratt, then it is a Chu correspondence in our sense. In fact, for $a_{1} \in A_{1}$ and $x_{2} \in X_{2}$, for all $a_{2} \in$ $L a_{1}$ and $x_{1} \in R x_{2}$, we have $x_{1} \models a_{1}$ iff $a_{2} \models x_{2}$. Hence $L a_{1} \models x_{2}$ implies $a_{2} \vDash x_{2}$ for all $a_{2} \in L a_{1}$, which implies $a_{1} \models x_{1}$ for all $x_{1} \in R x_{2}$, namely, $a_{1} \models R x_{2}$. The other implication is proved similarly, whence (L, R) is a Chu correspondence in our sense. Note that the above arguments also show that if a correspondence (L, R) from \mathbf{C}_{1} to \mathbf{C}_{2} is a "Chu relation" (L, R) in the sense of Pratt, the correspondence $\left({ }^{t} L,{ }^{t} R\right)$ form \mathbf{C}_{2} to \mathbf{C}_{1} is also a Chu correspondence since it satisfies also the condition ${ }^{t} L a_{2} \models x_{1}$ iff $a_{2} \models{ }^{t} R x_{1}$ for $x_{1} \in X_{1}$ and $a_{2} \in A_{2}$.

For the following formal concepts $\mathbf{C}_{i}(i=1,2)$, there are 569 Chu correspondences from \mathbf{C}_{1} to \mathbf{C}_{2} and 578 ones from \mathbf{C}_{2} to \mathbf{C}_{1}, which means that our Chu correspondence is strictly more general than the one defined by Pratt.

$$
\mathbf{C}_{1}=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right) \quad \mathbf{C}_{2}=\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

The Galois lattices are as follows.

4. Category of Chu correspondences

The Chu correspondences form a category by a natural composition.

4.1. Definition

Let ChuCors be the category whose objects are extensional and intensional formal contexts and whose arrows are Chu correspondences.

The identity Chu correspondence of a formal context \mathbf{C} is the closure of the identity Chu map of \mathbf{C} considered as a Chu correspondence in the

galois($\left.C_{1}\right)$

galois(C)
weak sense as in Section 3.3.
The composition is defined as follows. If φ and ϕ are Chu correspondences respectively from \mathbf{C}_{1} to \mathbf{C}_{2} and \mathbf{C}_{2} to \mathbf{C}_{3}, their composition $\phi \circ \varphi$ is defined by

$$
L_{\phi \circ \varphi} a_{1}=\overline{L_{\phi *}\left(L_{\varphi} a_{1}\right)}
$$

for $a_{1} \in A_{1}$ and

$$
R_{\phi \circ \varphi} x_{3}=\overline{R_{\varphi *}\left(R_{\phi} x_{3}\right)}
$$

for $x_{3} \in X_{3}$.
Proposition 49 The correspondence $\phi \circ \varphi$ from \mathbf{C}_{1} to \mathbf{C}_{3} is a Chu correspondence.

Proof. Let $a_{1} \in A_{1}, x_{3} \in X_{3}$. Then

$$
\begin{aligned}
\overline{L_{\phi *}\left(L_{\varphi} a_{1}\right)} \models x_{3} & \Longleftrightarrow L_{\phi *}\left(L_{\varphi} a_{1}\right) \models x_{3} \quad \text { by Lemma } 18 \\
& \Longleftrightarrow L_{\varphi} a_{1} \models R_{\phi} x_{3} \\
& \Longleftrightarrow a_{1} \models R_{\varphi *}\left(R_{\phi} x_{3}\right) \quad \text { by Lemma } 47 \\
& \Longleftrightarrow a_{1} \models \overline{R_{\varphi *} R_{\phi} x_{3}} .
\end{aligned}
$$

This proves that $\phi \circ \varphi$ is a Chu correspondence.
The identity axiom follows from the following.

Proposition 50 For a Chu correspondence φ from \mathbf{C}_{1} to \mathbf{C}_{2}, the following equalities hold.

$$
\begin{aligned}
\overline{L_{\varphi *}\left(L_{\mathrm{id}} a_{1}\right)} & =L_{\varphi} a_{1} \\
\overline{R_{\text {id } *}\left(R_{\varphi} x_{2}\right)} & =R_{\varphi} x_{2} \\
\overline{L_{\mathrm{id} *}\left(L_{\varphi} a_{1}\right)} & =L_{\varphi} a_{1} \\
\overline{R_{\varphi *}\left(R_{\text {id }} x_{2}\right)} & =R_{\varphi} x_{2}
\end{aligned}
$$

Proof. We prove the first and the third equalities. The others are proved similarly.

Let $a_{1} \in A_{1}$.

$$
\begin{aligned}
\overline{L_{\mathrm{id} *}\left(L_{\varphi} a_{1}\right)} & =\overline{\bigcup_{a_{2} \in L_{\varphi} a_{1}} \overline{a_{2}}} \\
& =\overline{\bigcup_{a_{2} \in L_{\varphi} a_{1}} a_{2}} \text { by Lemma } 7 \\
& =\overline{L_{\varphi} a_{1}}=L_{\varphi} a_{1} .
\end{aligned}
$$

Let $a_{1} \in A_{1}$. Then by Proposition 29

$$
\overline{L_{\varphi *} L_{\mathrm{id}} a_{1}}=\overline{L_{\varphi *} \overline{a_{1}}}=L_{\varphi} a_{1},
$$

by whence $L_{\varphi \text { oid }}=L_{\varphi}$.
To show the the associativity, we need the following lemma.
Lemma 51 For $N_{1} \subset A_{1}$,

$$
\overline{L_{\phi \circ \varphi} N_{1}}=\overline{L_{\phi *} L_{\varphi *} N_{1}} .
$$

Proof.

$$
\begin{aligned}
\overline{L_{\phi \circ \varphi} N_{1}} & =\overline{\bigcup_{x \in N_{1}} L_{\phi \circ \varphi} x} \\
& =\overline{\bigcup_{x \in N_{1}} \overline{L_{\phi *} L_{\varphi} x}} \\
& =\overline{\bigcup_{x \in N_{1}} L_{\phi *} L_{\varphi} x} \quad \text { by Lemma } 7 \\
& =\overline{L_{\phi *} L_{\varphi *} N_{1}} .
\end{aligned}
$$

The following proposition shows the associativity of the composition.
Proposition 52 Let $\varphi_{i}: \mathbf{C}_{i} \rightarrow \mathbf{C}_{i+1}(i=1,2,3)$ be Chu correspondences. Then, for $a_{1} \in A_{1}$,

$$
\overline{L_{\left(\varphi_{1} \circ \varphi_{2}\right) \circ \varphi_{3}} a_{1}}=\overline{L_{\varphi_{1} \circ\left(\varphi_{2} \circ \varphi_{3}\right)} a_{1}} .
$$

Proof.

$$
\begin{aligned}
\overline{L_{\left(\varphi_{1} \circ \varphi_{2}\right) \circ \varphi_{3}} a_{1}} & =\overline{L_{\left(\varphi_{1} \circ \varphi_{2}\right) *} L_{\varphi_{3}} a_{1}} \\
& =\overline{L_{\varphi_{1} *} L_{\varphi_{2} *} L_{\varphi_{3}} a_{1}} \quad \text { by Proposition } 52 .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\overline{L_{\varphi_{1} \circ\left(\varphi_{2} \circ \varphi_{3}\right)} a_{1}} & =\overline{L_{\varphi_{1} *} L_{\varphi_{2} \circ \varphi_{3}} a_{1}} \\
& =\overline{L_{\varphi_{1} *} \overline{L_{\varphi_{2} *} L_{\varphi_{3}} a_{1}}} \quad \text { by Proposition } 52 \\
& =\overline{L_{\varphi_{1} *} L_{\varphi_{2} *} L_{\varphi_{3}} a_{1}} \quad \text { by Proposition } 29 .
\end{aligned}
$$

By Proposition 39, the homset $\operatorname{Chu} \operatorname{Cors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$ is a complete lattice. We note that the category ChuCors has a structure of Slat-enriched category.

4.2. Functor from the category of Chu maps

Let ChuMaps be the category whose arrows are Chu maps. Define the functor

$$
\iota: \text { ChuMaps } \rightarrow \text { ChuCors }
$$

which is identity on objects and for a Chu map $(f, g), \iota(f, g)$ is the closure of (f, g) regarded as a Chu correspondence in the weak sense by Proposition 43.

Proposition 53ι is a functor.
Proof. By definition $\iota\left(\mathrm{id}_{\mathbf{C}}\right)$ is the identity Chu correspondence of the formal context \mathbf{C}.

Let $\left(f_{i}, g_{i}\right)$ be Chu maps from \mathbf{C}_{i} to $\mathbf{C}_{i+1}(i=1,2)$ and Put $\varphi_{i}:=$ $\iota\left(f_{i}, g_{i}\right)(i=1,2)$. Define $(f, g)=\left(f_{2}, g_{2}\right) \circ\left(f_{1}, g_{1}\right)=\left(f_{2} \circ f_{1}, g_{1} \circ g_{2}\right)$ and $\varphi=\iota(f, g)$. Then

$$
L_{\varphi_{2} \circ \varphi_{1}} a_{1}=\overline{L_{\varphi_{2} *} L_{\varphi_{1}} a_{1}}
$$

$$
\begin{aligned}
& =\overline{L_{\varphi_{2} *} \overline{f_{1}\left(a_{1}\right)}} \\
& =\overline{L_{\varphi_{2} *} f_{1}\left(a_{1}\right)} \\
& =\overline{\overline{f_{2}\left(f_{1}\left(a_{1}\right)\right)}}=\overline{f\left(a_{1}\right)}=L_{\varphi} a_{1} .
\end{aligned}
$$

Hence $\varphi=\varphi_{2} \circ \varphi_{1}$.
The strong isomorphisms are exactly the image of Chu isomorphisms, whence

Proposition 54 Let $\varphi: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ be a strong isomorphism with a generator: (f, g). Then it is an isomorphism whose inverse is the closure of $\left(f^{-1}, g^{-1}\right)$.

We write $\mathbf{C}_{1} \cong \mathbf{C}_{2}$ if there is a Chu isomorphism from \mathbf{C}_{1} to \mathbf{C}_{2}.

4.3. Galois functor

We have defined the complete lattice $\operatorname{Gal}(\mathbf{C})$ of formal concepts of a formal context \mathbf{C}. This induces the Galois functor

$$
\text { Gal : ChuCors } \rightarrow \text { Slat }
$$

in the following way.
Let $\mathbf{C}_{i}=\left(A_{i}, X_{i}, \neq\right)(i=1,2)$ be formal contexts and

$$
\varphi: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}
$$

be a Chu correspondence.
Define $\varphi_{*}: \operatorname{Gal}\left(\mathbf{C}_{1}\right) \rightarrow \operatorname{Gal}\left(\mathbf{C}_{2}\right)$ by

$$
\begin{equation*}
\varphi_{*}\left(M_{1}, M_{1}^{\prime}\right)=\left(\overline{L_{\varphi *} M_{1}},\left(L_{\varphi *} M_{1}\right)^{\prime}\right) \tag{7}
\end{equation*}
$$

and $\varphi^{*}: \operatorname{Gal}\left(\mathbf{C}_{2}\right) \rightarrow \operatorname{Gal}\left(\mathbf{C}_{1}\right)$ by

$$
\begin{equation*}
\varphi^{*}\left(N_{2}^{\prime}, N_{2}\right)=\left(\left(R_{\varphi *} N_{2}\right)^{\prime}, \overline{R_{\varphi *} N_{2}}\right) \tag{8}
\end{equation*}
$$

Proposition 55 The pair $\left(\varphi_{*}, \varphi^{*}\right)$ is a galois pair, namely, for closed $M_{1} \subset A_{1}$ and $N_{2} \subset X_{2}$,

$$
\begin{equation*}
\varphi_{*}\left(M_{1}, M_{1}^{\prime}\right) \leq\left(N_{2}^{\prime}, N_{2}\right) \Longleftrightarrow\left(M_{1}, M_{1}^{\prime}\right) \leq \varphi^{*}\left(N_{2}^{\prime}, N_{2}\right) \tag{9}
\end{equation*}
$$

Proof. The condition (9) is equivalent to

$$
\left(L_{\varphi *} M_{1}\right)^{\prime} \supset N_{2} \Longleftrightarrow M_{1} \subset\left(R_{\varphi *} N_{2}\right)^{\prime}
$$

i.e. to

$$
L_{\varphi *} M_{1} \models N_{2} \Longleftrightarrow M_{1} \models R_{\varphi *} N_{2},
$$

which holds by Lemma 47.
Corollary $56 \varphi_{*}$ preserves the joins and φ^{*} preserves the meets.
We define

$$
\operatorname{Gal}(\varphi):=\varphi_{*}: \operatorname{Gal}\left(\mathbf{C}_{1}\right) \rightarrow \operatorname{Gal}\left(\mathbf{C}_{2}\right)
$$

Proposition 57 Gal is a functor from ChuCors to Slat.
Proof. First $\operatorname{Gal}\left(\mathrm{id}_{\mathbf{C}}\right)=\mathrm{id}_{\operatorname{Gal}(\mathbf{C})}$ follows from

$$
\overline{L_{\mathrm{id}} M}=\overline{\bigcup_{a \in M} \bar{a}}=\bar{M}=M
$$

for closed $M \subset A$.
Let $\varphi_{1}: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ and $\varphi_{2}: \mathbf{C}_{2} \rightarrow \mathbf{C}_{3}$ be Chu correspondences.
Since $\operatorname{Gal}\left(\mathbf{C}_{1}\right)$ is \bigvee-generated by $\left(\overline{a_{1}}, a_{1}^{\prime}\right)\left(a_{1} \in A_{1}\right)$, it suffices to show

$$
\left(\varphi_{2} \circ \varphi_{1}\right)_{*}\left(\overline{a_{1}}, a_{1}^{\prime}\right)=\varphi_{2 *}\left(\varphi_{1 *}\left(\overline{a_{1}}, a_{1}^{\prime}\right)\right)
$$

The first component of the left hand side is

$$
\begin{aligned}
L_{\varphi_{2} \circ \varphi_{1}} a_{1} & =\overline{L_{\varphi_{2} *} L_{\varphi_{1}} a_{1}} \\
& =\overline{L_{\varphi_{2} *} \overline{L_{\varphi_{1}} a_{1}}} \quad \text { by Proposition } 29 \\
& =\overline{L_{\varphi_{2} *} \overline{L_{\varphi_{1} *} \overline{a_{1}}}} \quad \text { by Proposition } 29
\end{aligned}
$$

which is the first component of the right hand side.
By Proposition 25, the map φ_{*} can be described also as follows.

Proposition 58

$$
\varphi_{*}\left(N_{1}^{\prime}, N_{1}\right)=\left(\left(R_{\varphi}^{*} N_{1}\right)^{\prime}, R_{\varphi}^{*} N_{1}\right)
$$

Proof. By Proposition 26,

$$
\left(L_{\varphi *} N_{1}^{\prime}\right)^{\prime}=R_{\varphi}^{*} \overline{N_{1}}=R_{\varphi}^{*} N_{1}
$$

for closed $N_{1} \subset X_{1}$, whence

$$
\varphi_{*}\left(N_{1}^{\prime}, N_{1}\right)=\left(\overline{L_{\varphi *} N_{1}^{\prime}},\left(L_{\varphi *} N_{1}^{\prime}\right)^{\prime}\right)
$$

$$
=\left(\left(R_{\varphi}{ }^{*} \overline{N_{1}}\right)^{\prime}, R_{\varphi}{ }^{*} \overline{N_{1}}\right)=\left(\left(R_{\varphi}{ }^{*} N_{1}\right)^{\prime}, R_{\varphi}{ }^{*} N_{1}\right)
$$

Note that this proposition also proves that φ_{*} preserves the join, since the second component of the join is the set theoretical intersection and $R_{\varphi}{ }^{*}$ preserves the intersection by Corollary 13.

Note that the correspondences $\mathbf{C} \mapsto \mathcal{A}(\mathbf{C}), \mathcal{X}(\mathbf{C})$ of $\S 1.4$ are functors from ChuCors to Slat and Slat $^{\text {op }}$ respectively if we define

$$
\begin{aligned}
& \mathcal{A}(\varphi): \mathcal{A}\left(\mathbf{C}_{1}\right) \rightarrow \mathcal{A}\left(\mathbf{C}_{2}\right) \\
& \mathcal{X}(\varphi): \mathcal{X}\left(\mathbf{C}_{2}\right) \rightarrow \mathcal{X}\left(\mathbf{C}_{1}\right)
\end{aligned}
$$

for φ : $\mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ by

$$
\mathcal{A}(\varphi)\left(N_{1}\right)=\overline{L_{\varphi *} N_{1}},
$$

for $N_{1} \subset A_{1}$ and

$$
\mathcal{X}(\varphi)\left(M_{2}\right)=\overline{R_{\varphi *} M_{2}},
$$

for $M_{2} \subset X_{2}$ respectively.
The following proposition follows directly from the definition.
Proposition 59 There are natural isomorphisms among functors:

$$
\mathcal{A} \simeq \mathcal{X}^{\mathrm{op}} \simeq G a l .
$$

Recall that the Chu maps induce join preserving maps between the complete lattices of formal concepts [13]. The following shows that they coincide with those induced when the Chu maps are considered as Chu correspondences.

Proposition 60 If $(f, g): \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ is a Chu map. Then $\operatorname{Gal}(\iota(f, g))$ maps $\left(M_{1}, M_{1}^{\prime}\right)$ to $\left(\overline{f\left(M_{1}\right)}, f\left(M_{1}\right)^{\prime}\right)$. In particular, the following diagram of functors commutes.

Proof. Let $\varphi=\iota(f, g)$. Then

$$
\varphi_{*}\left(M_{1}, M_{1}^{\prime}\right)=\left(\overline{L_{\varphi *} M_{1}},\left(L_{\varphi *} M_{1}\right)^{\prime}\right)
$$

The assertion follows from

$$
\overline{L_{\varphi *} M_{1}}=\overline{\bigcup_{a \in M_{1}} L_{\varphi} a}=\overline{\bigcup_{a \in M_{1}} \overline{f(a)}}=\overline{\bigcup_{a \in M_{1}} f(a)}=\overline{f\left(M_{1}\right)},
$$

where the third equality follows from Lemma 7.
The action of the functor Gal on Chu correspondences has the following alternative descriptions, either by bonds or by powercontexts.

First we describe the Galois functor by bonds.
Proposition 61 Suppose a bond $Z \in \operatorname{Bond}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$ corresponds to a Chu correspondence φ. Then $\operatorname{Gal}(\varphi)$ maps $\left(N, N^{\prime}\right)$ to $\left(\left(Z_{\circ} N\right)^{\prime}, Z_{\circ} N\right)$.
Proof. By definition, $\left(N, N^{\prime}\right)$ corresponds to $\left.\left(\overline{\left(L_{\varphi}\right)_{*} N},\left(\left(L_{\varphi}\right)_{*} N\right)\right)^{\prime}\right)$. By Proposition 37,

$$
\left.\left(\left(L_{\varphi}\right)_{*} N\right)\right)^{\prime}=Z_{\circ} N
$$

Now we describe the Galois functor by powercontexts. Let $\mathbf{C}_{i}=\left(A_{i}, X_{i}\right.$, $\equiv)(i=1,2)$ be formal contexts and $\varphi: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ be a Chu correspondence. Let $T: \operatorname{pow}\left(\mathbf{C}_{1}\right) \rightarrow \operatorname{pow}\left(\mathbf{C}_{2}\right)$ be the Chu map associated with it defined in Section 3.5.

Proposition 62 The composition κ_{T}

$$
\operatorname{Gal}\left(\mathbf{C}_{1}\right) \stackrel{\simeq}{\rightrightarrows} \operatorname{Gal}\left(\mathbf{p o w} \mathbf{C}_{1}\right) \xrightarrow{\operatorname{Gal}(T)} \operatorname{Gal}\left(\mathbf{p o w} \mathbf{C}_{2}\right) \xrightarrow{\simeq} \operatorname{Gal}\left(\mathbf{C}_{2}\right)
$$

is given by

$$
\left.\kappa_{T}\left(N^{\prime}, N\right)=\left(\left(R_{\varphi}\right)^{*} N\right)^{\prime},\left(R_{\varphi}\right)^{*} N\right)
$$

and hence

$$
\kappa_{T}=\operatorname{Gal}(\varphi)
$$

Proof. By definition, the second component K of $\kappa_{T}\left(N^{\prime}, N\right)$ is characterized by the property

$$
\left(R_{\varphi *}\right)^{-1} \operatorname{pow}(N)=\operatorname{pow}(K)
$$

Suppose $L \subset X_{2}$ does not satisfy $R_{\varphi *}(L) \in \operatorname{pow}(N)$, i.e. $R_{\varphi *}(L) \not \subset N$. This is equivalent to

$$
R_{\varphi *}(L) \bigcap N^{c} \neq \emptyset
$$

to $\left(N^{c} \times L\right) \bigcap R \neq \emptyset$ and hence to $L \bigcap R_{*} N^{c} \neq \emptyset$. Hence

$$
R_{\varphi *}(L) \subset N \Longleftrightarrow L \subset\left(R_{\varphi}\right)^{*} N
$$

Hence $K=\left(R_{\varphi}\right)^{*} N$.
By Propositions 41, 42, 59, we see that \top represents the functor Gal.
Proposition 63 There are natural isomorphisms:

$$
\begin{aligned}
& \operatorname{Chu} \operatorname{Cors}(\mathbf{C}, \perp) \simeq \operatorname{Gal}(\mathbf{C})^{*} \\
& \operatorname{Chu} \operatorname{Cors}(\top, \mathbf{C}) \simeq \operatorname{Gal}(\mathbf{C})
\end{aligned}
$$

Proof. The former isomorphism is the composition of that of Proposition 41 and the isomorphism $\mathcal{A}^{\mathrm{op}} \simeq \operatorname{Gal}(\mathbf{C})^{*}$.

The latter is proved similarly.

4.4. Bifunctor of bonds

There is a bifunctor

$$
\text { ChuCors }{ }^{\mathrm{op}} \times \text { ChuCors } \rightarrow \text { Slat }
$$

which maps $\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$ to $\operatorname{Bond}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$. The action of arrows is defined as follows. Let $\psi_{1}: \mathbf{D}_{1} \rightarrow \mathbf{C}_{1}$ and $\psi_{2}: \mathbf{C}_{2} \rightarrow \mathbf{D}_{2}$ be Chu correspondences. Let $Z \in \operatorname{Bond}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$. Define a correspondence

$$
\psi_{2} \circ Z \circ \psi_{1}: B_{1} \leadsto Y_{2}
$$

by its graph

$$
\left[\psi_{2} \circ Z \circ \psi_{1}\right]=\left\{\left(b_{1}, y_{2}\right) \in B_{1} \times Y_{2} \mid L_{\psi_{1}} b_{1} \times R_{\psi_{2}} y_{2} \subset Z\right\}
$$

where $\mathbf{D}_{i}=\left\{B_{i}, Y_{i}, \models_{i}\right\}(i=1,2)$
Lemma 64 The correspondence $\psi_{2} \circ Z \circ \psi_{1}: B_{1} \leadsto Y_{2}$ is a bond.
Proof. Let $b_{1} \in B_{1}$ and $y_{2} \in Y_{2}$. It suffices to show that both

$$
\left\{y \in Y_{2} \mid L_{\psi_{1}} b_{1} \times R_{\psi_{2}} y \subset Z\right\} \subset Y_{2}
$$

and

$$
\left\{b \in B_{1} \mid L_{\psi_{1}} b \times R_{\psi_{2}} y_{2} \subset Z\right\} \subset B_{1}
$$

are closed. The condition $L_{\psi_{1}} b_{1} \times R_{\psi_{2}} y \subset Z$ is equivalent to

$$
R_{\psi_{2}} y \subset Z_{\circ} L_{\psi_{1}} b_{1}
$$

and to

$$
y \in R_{\psi_{2}}^{*} Z_{\circ} L_{\psi_{1}} b_{1}
$$

The right hand side is closed By Propositions 30 and 37 , since $L_{\psi_{1}} b_{1}$ is closed.

The latter assertion is proved similarly.
These data define a bifunctor:

$$
\text { Bond }(-,-): \text { ChuCors }^{\mathrm{op}} \times \text { ChuCors } \rightarrow \text { Slat. }
$$

4.5. Fullness and faithfullness of Gal

Theorem 65 The functor Gal is full and faithful, namely,

$$
G a l: \operatorname{ChuCors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right) \rightarrow \operatorname{Slat}\left(\operatorname{Gal}\left(\mathbf{C}_{1}\right), \operatorname{Gal}\left(\mathbf{C}_{2}\right)\right)
$$

is a bijection.
We prove the theorem by showing that the map

$$
\lambda: \operatorname{Slat}\left(\operatorname{Gal}\left(\mathbf{C}_{1}\right), \operatorname{Gal}\left(\mathbf{C}_{2}\right)\right) \rightarrow \operatorname{ChuCors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)
$$

defined below is the inverse map of Gal. Let

$$
\phi: \operatorname{Gal}\left(\mathbf{C}_{1}\right) \rightarrow \operatorname{Gal}\left(\mathbf{C}_{2}\right)
$$

be a join preserving map and ϕ^{*} be its order adjoint. Define a correspondence (L, R) from \mathbf{C}_{1} to \mathbf{C}_{2} as follows. For $a_{1} \in A_{1}$, define $L a_{1} \subset A_{2}$ to be the first component of the formal concept $\phi\left(\overline{a_{1}}, a_{1}^{\prime}\right)$, and for $x_{2} \in X_{2}$, define $R x_{2} \subset X_{1}$ to be the second component of $\phi^{*}\left(x_{2}^{\prime}, \overline{x_{2}}\right)$. Then

Lemma 66

$$
\lambda(\phi):=(L, R)
$$

is a Chu correspondence from \mathbf{C}_{1} to \mathbf{C}_{2}.

Proof. In fact, for $a_{1} \in A_{1}$ and $x_{2} \in X_{2}$,

$$
\begin{aligned}
L a_{1} \models x_{2} & \Longleftrightarrow L a_{1} \subset x_{2}^{\prime} \\
& \Longleftrightarrow\left(L a_{1},\left(L a_{1}\right)^{\prime}\right) \leq\left(x_{2}^{\prime}, \overline{x_{2}}\right) \\
& \Longleftrightarrow \phi\left(\overline{a_{1}}, a_{1}^{\prime}\right) \leq\left(x_{2}^{\prime}, \overline{x_{2}}\right) \\
& \Longleftrightarrow\left(\overline{a_{1}}, a_{1}^{\prime}\right) \leq \phi^{*}\left(x_{2}^{\prime}, \overline{x_{2}}\right)=\left(\left(R x_{2}\right)^{\prime}, R x_{2}\right) \\
& \Longleftrightarrow a_{1}^{\prime} \supset R x_{2} \\
& \Longleftrightarrow a_{1} \models R x_{2} .
\end{aligned}
$$

Lemma 67

$$
\lambda \circ G a l=\mathrm{id}
$$

Proof. Let $\varphi: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ be a Galois correspondence and put $\psi=\lambda\left(\varphi_{*}\right)$. The subset

$$
L_{\psi} a_{1} \subset A_{2}
$$

is the first component of $\varphi_{*}\left(\overline{a_{1}}, a_{1}^{\prime}\right)$, namely the closure of $L_{\varphi *} \overline{a_{1}}$, which is $L_{\varphi} a_{1}$ by Proposition 29. Hence $L_{\psi}=L_{\varphi}$.
Lemma 68 For $\varphi: \operatorname{Gal}\left(\mathbf{C}_{1}\right) \rightarrow \operatorname{Gal}\left(\mathbf{C}_{2}\right)$,

$$
G a l(\lambda(\varphi))=\varphi
$$

Proof. Put $\psi=\lambda(\varphi)$. By definition,

$$
\psi_{*}\left(\left(\overline{a_{1}}, a_{1}^{\prime}\right)\right)=\left(\overline{L_{\psi *} \overline{a_{1}}},\left(L_{\psi *} \overline{a_{1}}\right)^{\prime}\right)
$$

By Proposition 29, $\left(L_{\psi *} \overline{a_{1}}\right)^{\prime}=\left(L_{\psi} a_{1}\right)^{\prime}$, whence

$$
\psi_{*}\left(\left(\overline{a_{1}}, a_{1}^{\prime}\right)\right)=\left(\overline{L_{\psi} a_{1}},\left(L_{\psi} a_{1}\right)^{\prime}\right)=\left(L_{\psi} a_{1},\left(L_{\psi} a_{1}\right)^{\prime}\right)=\varphi\left(\overline{a_{1}}, a_{1}^{\prime}\right)
$$

since $L_{\psi} a_{1}$ is the first component of $\varphi\left(\overline{a_{1}}, a_{1}^{\prime}\right)$ by definition.
Since $\operatorname{Gal}\left(\mathbf{C}_{1}\right)$ is join generated by $\left\{\left(\overline{a_{1}}, a_{1}^{\prime}\right) \mid a_{1} \in A_{1}\right\}$, it follows

$$
\psi_{*}=\varphi
$$

Hence we have proved that λ is the inverse of Gal and the proof of Theorem 65 is completed.

Corollary 69 A Chu correspondence φ is an isomorphism if $\operatorname{Gal}(\varphi)$ is bijective.

We use often the following proposition which follows from Corollary 69.
Proposition $70 \operatorname{Let}(f, g): \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ be a Chu map. Suppose $f: A_{1} \rightarrow$ A_{2} is a bijection and preserves the closure operators in the sense that $f(\bar{B})=$ $\overline{f(B)}$ for $B \subset A_{1}$. Then $\iota(f, g)$ is an isomorphism.

Proof. It suffices to show that $F:=\operatorname{Gal}(\iota(f, g))$ is an isomorphism by Corollary 69. By Proposition 60,

$$
F\left(\left(M_{1}, M_{1}^{\prime}\right)\right)=\left(\overline{f\left(M_{1}\right)}, f\left(M_{1}\right)^{\prime}\right)=\left(f\left(M_{1}\right), f\left(M_{1}\right)^{\prime}\right)
$$

Since $M_{1} \mapsto f\left(M_{1}\right)$ is a bijection from \mathcal{A}_{1} to \mathcal{A}_{2}, we conclude F is an isomorphism. Here \mathcal{A}_{i} is the set of closed subsets of $A_{i}(i=1,2)$.

4.6. Equivalence of ChuCors and Slat

We show that the functor Gal is in fact an equivalence of categories between ChuCors and Slat.

Recall that a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence of categories if there is a functor $G: \mathcal{D} \rightarrow \mathcal{C}$ with natural isomorphisms

$$
1_{\mathcal{C}} \simeq G \circ F \quad 1_{\mathcal{D}} \simeq F \circ G
$$

A functor G satisfying these conditions is called a weak inverse of F.
Define a functor $r: \mathcal{S l a t} \rightarrow$ ChuCors by

$$
r(L)=(L, L, \leq)
$$

and for each join preserving map

$$
\phi: L_{1} \rightarrow L_{2}
$$

the pair $\left(\phi, \phi^{*}\right)$ is a Chu map from $r\left(L_{1}\right)$ to $r\left(L_{2}\right)$, where ϕ^{*} is the order adjoint of ϕ. We denote this Chu map regarded as a Chu correspondence by $r(\phi)$.

In the following we show that r is a weak inverse of the functor Gal.
Lemma 71 The maps

$$
\iota_{K}: K \rightarrow \operatorname{Gal}(r(K))
$$

defined, for each complete lattice K, by

$$
\iota(k)=(k \downarrow, k \uparrow)
$$

define natural isomorphisms.
Proof. Obvious, since the formal concepts of the context (K, K, \leq) are written uniquely as $(k \downarrow, k \uparrow)$ with $k \in K$.

Lemma 72 For formal contexts \mathbf{C}, there are natural isomorphisms

$$
\varpi_{\mathbf{C}}: \mathbf{C} \stackrel{\simeq}{\rightrightarrows} r(\operatorname{Gal}(\mathbf{C})) .
$$

Proof. By Theorem 65, there is a unique isomorphism $\varpi_{\mathbf{C}}$ in ChuCors, which corresponds under the Galois functor to the isomorphism

$$
\iota_{G a l(\mathbf{C})}: G a l(\mathbf{C}) \rightarrow G a l(r G a l(\mathbf{C}))
$$

of Lemma 71. Then using the faithfullness of Gal, it is easy to see that $\varpi_{\mathbf{C}}$'s form a natural transformation.

Hence we have proved the equivalence of categories.
Theorem 73 The Galois functor is an equivalence between the category of the Chu correspondences and the category of join preserving maps.

Remark The isomorphism $\varpi_{C}: \mathbf{C} \rightarrow r G a l(\mathbf{C})$ of Lemma 72 is described explicitely as follows.

The formal context $r \operatorname{Gal}(\mathbf{C})=(\operatorname{Gal}(\mathbf{C}), \operatorname{Gal}(\mathbf{C}), \leq)$ is described also as $(\mathcal{A}(\mathbf{C}), \mathcal{X}(\mathbf{C}), \models)$ since

$$
\left(E_{1}, F_{1}\right) \leq\left(E_{2}, F_{2}\right) \Longleftrightarrow E_{1} \subset E_{2}=\left(F_{2}\right)^{\prime} \Longleftrightarrow E_{1} \models F_{2}
$$

Define a correspondence φ from \mathbf{C} to $\operatorname{rGal}(\mathbf{C})$ by by

$$
L_{\varphi} a=\bar{a} \downarrow:=\{M \in \mathcal{A}(\mathbf{C}) \mid M \subset \bar{a}\}
$$

for $a \in A$ and

$$
R_{\varphi *} F=F
$$

for closed $F \subset X$. Then it is a Chu correspondence and is in fact an isomorphism.

Remark The Theorem 73 follows from Corrollary 112 of [9] and Proposition 36.

4.7. Completeness and cocompleteness of ChuCors

The category ChuCors is complete, since it is equivalent to the complete category Slat. Being selfdual, ChuCors is also cocomplete.

We give explicitly products and equalizers.
For formal contexts $\mathbf{C}_{i}=\left(A_{i}, X_{i}, \models_{i}\right)(i=1,2)$ define a formal context

$$
\mathbf{C}_{1} \times \mathbf{C}_{2}:=\left(A_{1} \times A_{2}, X_{1} \coprod X_{2}, \models\right)
$$

by $\left(a_{1}, a_{2}\right) \models x$ if and only if $a_{i} \models_{i} x$ when $x \in X_{i}(i=1,2)$.
Define a Chu correspondence, for $i=1,2$,

$$
\pi_{i}: \mathbf{C}_{1} \times \mathbf{C}_{2} \rightarrow \mathbf{C}_{i}
$$

which corresponds to the Chu map $\left(L_{i}, R_{i}\right)$ with the standard projection

$$
L_{i}: A_{1} \times A_{2} \rightarrow A_{i}
$$

and the standard inclusion

$$
R_{i}: X_{i} \rightarrow X_{1} \coprod X_{2}
$$

It is straightforward to show the following.
Proposition 74 The diagram

$$
\mathbf{C}_{1} \stackrel{\pi_{1}}{\longleftrightarrow} \mathbf{C}_{1} \times \mathbf{C}_{2} \xrightarrow{\pi_{2}} \mathbf{C}_{2}
$$

is a product of $\mathbf{C}_{i}(i=1,2)$. The dual of this product diagram for the duals $\mathbf{C}_{i}^{*}(i=1,2)$, namely,

$$
\mathbf{C}_{1} \rightarrow\left(\mathbf{C}_{1}^{*} \times \mathbf{C}_{2}^{*}\right)^{*} \leftarrow \mathbf{C}_{2}
$$

is a coproduct of $\mathbf{C}_{i}(i=1,2)$.
Now we describe the equalizer. Let $\kappa_{i}: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}(i=1,2)$ be Chu correspondences. Put $L_{i}=L_{\kappa_{i}}$ and $R_{i}=R_{\kappa_{i}}(i=1,2)$ for brevity. Define a set A and a correspondence $L: A \rightarrow \mathcal{A}\left(\mathbf{C}_{1}\right) \subset \operatorname{pow}\left(A_{1}\right)$ by the equalizer diagram

$$
A \xrightarrow[\longrightarrow]{L} \mathcal{A}\left(\mathbf{C}_{1}\right) \xrightarrow[\left(L_{2}\right)_{*}]{\stackrel{\left(L_{1}\right)_{*}}{\longrightarrow}} \mathcal{A}\left(\mathbf{C}_{2}\right)
$$

in the category of sets and maps. Define a correspondence $R: X_{1} \rightarrow X$ by
$R x_{1}=F\left(\overline{x_{1}}\right)$ where

$$
X \Longleftarrow \stackrel{F}{\longleftarrow} \mathcal{X}\left(\mathbf{C}_{1}\right) \underset{\left(R_{2}\right)_{*}}{\stackrel{\left(R_{1}\right)_{*}}{\Longleftarrow}} \mathcal{X}\left(\mathbf{C}_{2}\right)
$$

is a coequalizer in the category of sets and maps. For $a \in A$ and $N_{1} \in$ $\mathcal{X}\left(\mathbf{C}_{1}\right)$, Define $a \models F\left(N_{1}\right)$ by $L a \vDash N_{1}$. It is easily seen that this is welldefined and we put

$$
\mathbf{C}=(A, X, \models)
$$

Then $\kappa=(L, R)$ is a Chu correspondence from \mathbf{C} to \mathbf{C}_{1}. It is straightforward to show the following.

Proposition 75 The following diagram is an equalizer in ChuCors.

$$
\mathbf{C} \xrightarrow{\kappa} \mathbf{C}_{1} \xrightarrow[\kappa_{2}]{\stackrel{\kappa_{1}}{\longrightarrow}} \mathbf{C}_{2}
$$

Note that the equalizer diagram

$$
\mathbf{C}_{1}^{*} \underset{\kappa_{1}^{*}}{\stackrel{\kappa_{2}^{*}}{\leftarrow}} \mathbf{C}_{2}^{*} \leftarrow{ }_{\lambda} \mathbf{K}
$$

goes to a coequalizer diagram

$$
\mathbf{C}_{1} \xrightarrow[\kappa_{2}]{\stackrel{\kappa_{1}}{\longrightarrow}} \mathbf{C}_{2} \xrightarrow{\lambda^{*}} \mathbf{K}^{*}
$$

4.8. Canonical forms of formal contexts

In the category of ChuCors, a formal context \mathbf{C} is canonically isomorphic to

$$
c f(\mathbf{C}):=(A, \mathcal{A}, \in)
$$

where \mathcal{A} is the family of closed subsets of A.
In fact, define a correspondence

$$
\lambda(\mathbf{C}): \mathbf{C} \rightarrow c f(\mathbf{C})
$$

by

$$
L_{\lambda} a=\bar{a}, \quad R_{\lambda} B=B^{\prime}
$$

for $a \in A$ and $B \in \mathcal{A}$. Then λ is a Chu correspondence since

$$
\begin{aligned}
L_{\lambda} a \models B & \Longleftrightarrow \bar{a} \models B \\
& \Longleftrightarrow \bar{a} \subset B^{\prime}=R_{\lambda} B \\
& \Longleftrightarrow a \in R_{\lambda} B \Longleftrightarrow a \models R_{\lambda} B
\end{aligned}
$$

Note that $c f$ is an endo functor by defining

$$
c f(\varphi): c f\left(\mathbf{C}_{1}\right) \rightarrow c f\left(\mathbf{C}_{2}\right)
$$

for a Chu correspondence $\varphi: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ by

$$
L_{c f(\varphi)}=L_{\varphi}, \quad R_{c f(\varphi)}=L_{\varphi}^{*}
$$

Proposition 76 The Chu correspondences $\lambda(-)$ is a natural isomorphism from the indentity functor of ChuCors to the functor $c f$.

Proof. We show that $\operatorname{Gal}(\lambda)$ is an isomorphism. Let $\left(M, M^{\prime}\right) \in \operatorname{Gal}(\mathbf{C})$, where $M \subset A$ is closed. Since the closure operator on A corresponding to \mathbf{C} is the same as that corresponding to (A, \mathcal{A}, \in), we have

$$
\lambda_{*}\left(M, M^{\prime}\right)=\left(\overline{L_{\lambda} M},\left(L_{\lambda} M\right)^{\prime}\right)
$$

But, using Lemma 7,

$$
\overline{L_{\lambda} M}=\overline{\bigcup_{a \in M} \bar{a}}=\overline{\bigcup_{a \in M} a}=\bar{M}=M
$$

whence λ_{*} is an isomorphism.
Since the extent part of λ is the closure of the identity, the naturality follows immediately.

5. Structures in ChuCors

5.1. Internal hom functor

Let $\mathbf{C}_{i}(i=1,2)$ be formal contexts. Define a new formal context $\mathbf{C}_{1} \bullet \mathbf{C}_{2}$ by

$$
\mathbf{C}_{1} \bullet \mathbf{C}_{2}:=\left(\operatorname{Chu} \operatorname{Cors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right), A_{1} \times X_{2}, \models\right)
$$

where

$$
\varphi \models\left(a_{1}, x_{2}\right) \stackrel{\text { def }}{\Longleftrightarrow} L_{\varphi} a_{1} \models x_{2}
$$

Note that since φ is a Chu correspondence, the condition of the right hand side is equivalent to $a_{1} \models R_{\varphi} x_{2}$.

Lemma 77 Let $\varphi \in \operatorname{ChuCors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$. Then

$$
\varphi^{\prime}=\left[Z_{\varphi}\right] .
$$

Proof. Let $a_{1} \in A_{1}$ and $x_{2} \in X_{2}$. Then

$$
\begin{aligned}
\varphi \models\left(a_{1}, x_{2}\right) & \Leftrightarrow L_{\varphi} a_{1} \models x_{2} \\
& \Leftrightarrow x_{2} \in\left(L_{\varphi} a_{1}\right)^{\prime}=Z_{\varphi} a_{1} \\
& \Leftrightarrow\left(a_{1}, x_{2}\right) \in\left[Z_{\varphi}\right] .
\end{aligned}
$$

From this, we obtain the following isomorphism.
Theorem 78 The formal concepts of the formal context $\mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ are written uniquely as

$$
\left(\varphi \downarrow,\left[Z_{\varphi}\right]\right),
$$

with a Chu correspondence φ. In particular, We have isomorphisms

$$
\mu\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right): \operatorname{Gal}\left(\mathbf{C}_{1} \longrightarrow \mathbf{C}_{2}\right) \simeq \operatorname{Gal}\left(\mathbf{C}_{1}\right) \multimap \operatorname{Gal}\left(\mathbf{C}_{2}\right) .
$$

Proof. Since $\operatorname{Bond}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right) \subset \operatorname{pow}\left(A_{1} \times X_{2}\right)$ is intersection closed family by Proposition 33, and the polar $\varphi \mapsto\left[Z_{\varphi}\right]$ is bijective by Proposition 36, we have

$$
\operatorname{Gal}\left(\mathbf{C}_{1} \bullet \mathbf{C}_{2}\right)=\left\{\left(\varphi \downarrow,\left[Z_{\varphi}\right]\right) \mid \varphi \in \operatorname{ChuCors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)\right\} .
$$

Hence we have an isomorphism

$$
\operatorname{Gal}\left(\mathbf{C}_{1} \bullet \mathbf{C}_{2}\right) \simeq \operatorname{Chu} \operatorname{Cors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right) .
$$

By Theorem 65,

$$
\begin{aligned}
\operatorname{Chu} \operatorname{Cors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right) & \simeq \operatorname{Satat}\left(\operatorname{Gal}\left(\mathbf{C}_{1}\right), \operatorname{Gal}\left(\mathbf{C}_{2}\right)\right) \\
& \simeq \operatorname{Gal}\left(\mathbf{C}_{1}\right) \multimap \operatorname{Gal}\left(\mathbf{C}_{2}\right) .
\end{aligned}
$$

The composition of these isomorphism define the isomorphism

$$
\mu\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right): \operatorname{Gal}\left(\mathbf{C}_{1} \longrightarrow \mathbf{C}_{2}\right) \rightarrow \operatorname{Gal}\left(\mathbf{C}_{1}\right) \multimap \operatorname{Gal}\left(\mathbf{C}_{2}\right)
$$

By definition,

$$
\mu\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)\left(\left(\varphi \downarrow,\left[Z_{\varphi}\right]\right)\right)=\operatorname{Gal}(\varphi)
$$

To define the bi-functor

$$
(-) \bullet(-): \text { ChuCors }{ }^{\mathrm{op}} \times \text { ChuCors } \rightarrow \text { ChuCors }
$$

let $\psi_{2}: \mathbf{C}_{2} \rightarrow \mathbf{D}_{2}$ and $\psi_{1}: \mathbf{D}_{1} \rightarrow \mathbf{C}_{1}$ be Chu correspondences. Let

$$
\mathbf{C}_{i}=\left(A_{i}, X_{i}, \models\right), \quad \mathbf{D}_{i}=\left(B_{i}, Y_{i}, \models\right)
$$

$(i=1,2)$. Then

$$
\operatorname{ChuCors}\left(\psi_{1}, \psi_{2}\right):\left(\mathbf{C}_{1} \longrightarrow \mathbf{C}_{2}\right) \rightarrow\left(\mathbf{D}_{1} \rightarrow \mathbf{D}_{2}\right)
$$

is given by (L, R), where

$$
L \varphi=\left(\psi_{2} \circ \varphi \circ \psi_{1}\right) \downarrow
$$

and

$$
R\left(b_{1}, y_{2}\right)=L_{\psi_{1}} b_{1} \times R_{\psi_{2}} y_{2}
$$

Then (L, R) is in fact a Chu correspondence. To see this, let

$$
\varphi \in \operatorname{Chu} \operatorname{Cors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right) \quad \text { and } \quad b_{1} \in B_{1} \quad \text { and } \quad y_{2} \in Y_{2}
$$

Then

$$
\begin{aligned}
L \varphi \models\left(b_{1}, y_{2}\right) & \Longleftrightarrow\left(\psi_{2} \circ \varphi \circ \psi_{1}\right) \downarrow \models\left(b_{1}, y_{2}\right) \\
& \Longleftrightarrow \psi_{2} \circ \varphi \circ \psi_{1} \models\left(b_{1}, y_{2}\right) \\
& \Longleftrightarrow b_{1} \models R_{\psi_{2} \circ \varphi \circ \psi_{1} y_{2}} \\
& \Longleftrightarrow b_{1} \models R_{\psi_{1}} R_{\varphi} R_{\psi_{2}} y_{2} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\varphi \models R\left(b_{1}, y_{2}\right) & \Longleftrightarrow \varphi=L_{\psi_{1}} b_{1} \times R_{\psi_{2}} y_{2} \\
& \Longleftrightarrow L_{\varphi} L_{\psi_{1}} b_{1} \models R_{\psi_{2}} y_{2} \\
& \Longleftrightarrow b_{1} \models R_{\psi_{1}} R_{\varphi} R_{\psi_{2}} y_{2}
\end{aligned}
$$

whence (L, R) is a Chu correspondence.

Proposition 79 Let $\mathbf{C}_{i}, \mathbf{D}_{i}(i=1,2)$ be formal contexts and let $\psi_{2}: \mathbf{C}_{2} \rightarrow$ \mathbf{D}_{2} and $\psi_{1}: \mathbf{D}_{1} \rightarrow \mathbf{C}_{1}$ be Chu correspondences. Then the following diagram commutes.

Proof. Let $\xi=\left(\varphi \downarrow,\left[Z_{\varphi}\right]\right) \in \operatorname{Gal}\left(\mathbf{C}_{1} \bullet \mathbf{C}_{2}\right)$. Then

$$
\begin{aligned}
\left(\operatorname{Gal}\left(\psi_{2}\right) \multimap \operatorname{Gal}\left(\psi_{1}\right)\right) \mu(\xi) & =\left(\operatorname{Gal}\left(\psi_{2}\right) \multimap \operatorname{Gal}\left(\psi_{1}\right)\right) \operatorname{Gal}(\varphi) \\
& =\operatorname{Gal}\left(\psi_{2}\right) \circ \operatorname{Gal}(\varphi) \circ \operatorname{Gal}\left(\psi_{1}\right) \\
& =\operatorname{Gal}\left(\psi_{2} \circ \varphi \circ \psi_{1}\right) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\mu\left(\operatorname{Gal}\left(\psi_{2} \bullet \psi_{1}\right) \xi\right) & =\mu\left(\psi_{2} \circ \varphi \circ \psi_{1} \downarrow,\left[Z_{\left.\psi_{2} \circ \varphi \circ \psi_{1}\right]}\right]\right. \\
& =\operatorname{Gal}\left(\psi_{2} \circ \varphi \circ \psi_{1}\right) .
\end{aligned}
$$

Proposition 80 There are natural strong isomorphisms:

$$
\mathbf{C}_{1} \longrightarrow \mathbf{C}_{2}^{*} \cong \mathbf{C}_{2} \bullet \mathbf{C}_{1}^{*} .
$$

Proof. Note that

$$
\left.\mathbf{C}_{1} \bullet \mathbf{C}_{2}^{*}=\left(\operatorname{ChuCors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}^{*}\right), A_{1} \times A_{2}\right)\right),
$$

and

$$
\left.\mathbf{C}_{2} \bullet \mathbf{C}_{1}^{*}=\left(\operatorname{Chu} \operatorname{Cors}\left(\mathbf{C}_{2}, \mathbf{C}_{1}^{*}\right), A_{2} \times A_{1}\right)\right) .
$$

Let L be the bijection

$$
L: \operatorname{Chu} \operatorname{Cors}\left(\mathbf{C}_{1}, \mathbf{C}_{2}^{*}\right) \rightarrow \operatorname{ChuCors}\left(\mathbf{C}_{2}, \mathbf{C}_{1}^{*}\right)
$$

of Proposition 40 regarded as a correspondence and R the transpose bijection $A_{2} \times A_{1} \rightarrow A_{1} \times A_{2}$ regarded as a correspondence. Then the closure of the Chu correspondence (L, R) is an isomorphism.

The isomorphisms of Theorem 38 between Chu correspondences and the bonds give natural isomorphism.

Proposition 81 The bifunctors $\operatorname{ChuCors}(-,-)$ and $\operatorname{Bond}(-,-)$ are naturally isomorphic by the map $\varphi \mapsto Z_{\varphi}$.
Proof. Let \mathbf{C}_{i} and $\mathbf{D}_{i}(i=1,2)$ be formal contexts and $\psi_{1}: \mathbf{D}_{1} \rightarrow \mathbf{C}_{1}$ and $\psi_{2}: \mathbf{C}_{2} \rightarrow \mathbf{D}_{2}$ be Chu correspondences. Let $\varphi: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ be a Chu correspondence. Then

$$
\operatorname{ChuCors}\left(\psi_{1}, \psi_{2}\right) \varphi=\psi_{2} \circ \varphi \circ \psi_{1}
$$

whereas

$$
\operatorname{Bond}\left(\psi_{1}, \psi_{2}\right) Z_{\varphi}=\psi_{2} \circ Z_{\varphi} \circ \psi_{1}
$$

It suffices to show that

$$
Z_{\psi_{2} \circ \varphi \circ \psi_{1}}=\psi_{2} \circ Z_{\varphi} \circ \psi_{1}
$$

Let $\left(b_{1}, y_{2}\right) \in B_{1} \times Y_{2}$. Then

$$
\begin{aligned}
\left(b_{1}, y_{2}\right) \in\left[Z_{\psi_{2} \circ \varphi \circ \psi_{1}}\right] & \Leftrightarrow y_{2} \in\left(L_{\psi_{2} \circ \varphi \circ \psi_{1}} b_{1}\right)^{\prime} \\
& \Leftrightarrow y_{2} \in\left(\left(L_{\psi_{2}}\right)_{*} L_{\varphi \circ \psi_{1}} b_{1}\right)^{\prime} \\
& \Leftrightarrow y_{2} \in R_{\psi_{2}}^{*}\left(L_{\varphi \circ \psi_{1}} b_{1}\right)^{\prime} \\
& \Leftrightarrow R_{\psi_{2}} y_{2} \subset\left(L_{\varphi \circ \psi_{1}} b_{1}\right)^{\prime}=\left(Z_{\varphi}\right)_{\circ}\left(L_{\psi_{1}} b_{1}\right) \\
& \Leftrightarrow L_{\psi_{1}} b_{1} \times R_{\psi_{2}} y_{2} \subset\left[Z_{\varphi}\right] \\
& \Leftrightarrow\left(b_{1}, y_{2}\right) \in\left[\psi_{2} \circ Z_{\varphi} \circ \psi_{1}\right]
\end{aligned}
$$

Similar natural isomorphisms exists for bifunctors for the ChuCorsvalued bifunctors. Define a formal context by

$$
\mathbf{C}_{1} \multimap \mathbf{C}_{2}=\left(\operatorname{Bond}\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right), A_{1} \times X_{2}, \ni\right)
$$

By the proof of Lemma 77, the isomorphism L of Theorem 38 and the identity map of $A_{1} \times X_{2}$ induce the following strong isomorphism

Proposition 82 We have natural isomorphisms

$$
\mathbf{C}_{1} \multimap \mathbf{C}_{2} \cong \mathbf{C}_{1} \multimap \mathbf{C}_{2}
$$

5.2. Self-duality

The category ChuCors is self-dual with the dualizing functor defined by $\mathbf{C} \mapsto \mathbf{C}^{*}$ and for a Chu correspondence φ from \mathbf{C}_{1} to $\mathbf{C}_{2}, \varphi^{*}$ from \mathbf{C}_{2}^{*} to \mathbf{C}_{1}^{*} as is defined in Section 2.

Theorem 83 There are natural strong isomorphisms:

$$
\delta_{\mathbf{C}}: \operatorname{Gal}\left(\mathbf{C}^{*}\right) \cong \operatorname{Gal}(\mathbf{C})^{*} .
$$

Proof. Define

$$
\delta_{\mathbf{C}}(E, F)=(F, E),
$$

which is obviously a bijective order reversing correspondence.
To show the naturality, let $\varphi: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}$ be a Chu correspondence. Then

$$
\varphi^{*}: \mathbf{C}_{2} \rightarrow \mathbf{C}_{1}
$$

is defined by $L_{\varphi^{*}}=R_{\varphi}$ and $R_{\varphi^{*}}=L_{\varphi}$. We show the commutativity of the following diagram

For $\left(N_{2}, N_{2}^{\prime}\right) \in \operatorname{Gal}\left(\mathbf{C}_{2}^{*}\right)$ with $N_{2} \subset X_{2}$ closed, we have by (7),

$$
\begin{aligned}
\delta_{\mathbf{C}_{1}} \operatorname{Gal}\left(\varphi^{*}\right)\left(N_{2}, N_{2}^{\prime}\right) & =\delta_{\mathbf{C}_{1}}\left(\overline{L_{\varphi^{*}} N_{2}},\left(L_{\varphi^{*}} N_{2}\right)^{\prime}\right) \\
& =\delta_{\mathbf{C}_{1}}\left(\overline{R_{\varphi} N_{2}},\left(R_{\varphi} N_{2}\right)^{\prime}\right) \\
& =\left(\left(R_{\varphi} N_{2}\right)^{\prime}, \overline{R_{\varphi} N_{2}}\right)
\end{aligned}
$$

On the other hand, by (8),

$$
\operatorname{Gal}(\varphi)^{*} \delta_{\mathbf{C}_{2}}\left(N_{2}, N_{2}^{\prime}\right)=\operatorname{Gal}(\varphi)^{*}\left(N_{2}^{\prime}, N_{2}\right)=\left(\left(R_{\varphi} N_{2}\right)^{\prime}, \overline{R_{\varphi} N_{2}}\right)
$$

In the category of Chu maps, the formal context \perp of Example 3 is a dualizing object [13] in the sense that

$$
\mathbf{C} \multimap \perp \simeq \mathbf{C}^{*}
$$

In fact \perp is a dualizing object also in the category of Chu correspondences.
Theorem 84 We have natural isomorphisms

$$
d(\mathbf{C}): \mathbf{C} \bullet \perp \simeq \mathbf{C}^{*}
$$

Proof. By Theorem 38, Proposition 41, the self duality of ChuCors and Proposition 76, there are isomorphisms:

$$
\begin{aligned}
\mathbf{C} \bullet \perp & \cong(\operatorname{Bond}(\mathbf{C}, \perp), A \times\{*\}, \in) \\
& \cong(\mathcal{A}(\mathbf{C}), A, \in) \\
& \cong c f(\mathbf{C})^{*} \\
& \simeq \mathbf{C}^{*}
\end{aligned}
$$

where the first three ones are strong isomorphisms. Here $c f(\mathbf{C})$ is the canonical form of \mathbf{C} (§4.8).

Since the first components of the formal contexts appearing above are all bijective to A and, under these bijections, the intent parts of the isomorphisms corresponds to the closures of the identity of A, the above isomorphisms are natural.

It is straightforward to prove the following.
Proposition 85 The following diagram commutes.

where ν is the composition of the isomorphisms

$$
G a l(\mathbf{C} \multimap \perp) \simeq(\operatorname{Gal}(\mathbf{C}) \multimap G a l(\perp)) \simeq(\operatorname{Gal}(\mathbf{C}) \multimap \mathbf{2})
$$

5.3. Tensor

In the $*$-autonomous category,

$$
A \otimes B \simeq\left(A \multimap B^{*}\right)^{*}
$$

Since we have already the internal hom-functor and the self duality, we define

$$
\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}:=\left(\mathbf{C}_{1} \bullet \mathbf{C}_{2}^{*}\right)^{*}=\left(A_{1} \times A_{2}, \text { ChuCors }\left(\mathbf{C}_{1}, \mathbf{C}_{2}^{*}\right)\right) .
$$

Proposition $86 \quad \mathbf{C}_{1} \boxtimes \mathbf{C}_{2}=\left(\mathbf{C}_{1} \bullet \mathbf{C}_{2}^{*}\right)^{*}$.
The structure of the bifunctor $(-) \boxtimes(-)$ is described explicitly using the Slat-valued bifunctor $(-) \bowtie(-)$ defined in Section 4.8 as follows. Define

$$
\mathbf{C}_{1} \otimes \mathbf{C}_{2}:=\left(A_{1} \times A_{2}, \mathbf{C}_{1} \bowtie \mathbf{C}_{2}, \in\right)
$$

and make $(-) \otimes(-)$ a bifunctor as follows. Let $\psi_{i}: \mathbf{C}_{i} \rightarrow \mathbf{D}_{i}(i=1,2)$ be Chu correspondences and define

$$
\psi_{1} \otimes \psi_{2}: \mathbf{C}_{1} \otimes \mathbf{C}_{2} \rightarrow \mathbf{D}_{1} \otimes \mathbf{D}_{2}
$$

to be (L, R), where

$$
L: A_{1} \times A_{2} \rightarrow \operatorname{pow}\left(B_{1} \times B_{2}\right)
$$

is defined by

$$
L\left(a_{1}, a_{2}\right):=\overline{L_{\psi_{1}} a_{1} \times L_{\psi_{2}} a_{2}}
$$

for $a_{i} \in A_{i}(i=1,2)$, and

$$
R: \mathbf{D}_{1} \bowtie \mathbf{D}_{2} \rightarrow \operatorname{pow}\left(\mathbf{C}_{1} \bowtie \mathbf{C}_{2}\right)
$$

by

$$
R Z=\left\{\left(a_{1}, a_{2}\right) \mid L_{\psi_{1}} a_{1} \times L_{\psi_{2}} a_{2} \subset Z\right\} \downarrow .
$$

Then we have
Theorem 87 There are natural strong isomorphisms:

$$
\mathbf{C}_{1} \boxtimes \mathbf{C}_{2} \cong \mathbf{C}_{1} \bowtie \mathbf{C}_{2} .
$$

By Theorem 78 and Proposition 83, we obtain
Theorem 88 There are natural isomorphisms

$$
\kappa\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right): \operatorname{Gal}\left(\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}\right) \simeq \operatorname{Gal}\left(\mathbf{C}_{1}\right) \otimes \operatorname{Gal}\left(\mathbf{C}_{2}\right) .
$$

If $\mathbf{C}_{i}=\left(A_{i}, X_{i}, \models_{i}\right)(i=1,2)$ and $G a l\left(\mathbf{C}_{i}\right)$ is identified with the family \mathcal{A}_{i}
of closed subsets of $A_{i}(i=1,2)$, then $\kappa\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right)$ maps $E_{1} \times E_{2}$ to $E_{1} \otimes E_{2}$, where $E_{i} \in \mathcal{A}_{i}(i=1,2)$.
Proof. By Theorem $87, \mathbf{C}_{1} \boxtimes \mathbf{C}_{2}$ is naturally and strongly isomorphic to

$$
\mathbf{C}_{1} \otimes \mathbf{C}_{2}=\left(A_{1} \times A_{2}, \operatorname{Bond}\left(\mathbf{C}_{1}, \mathbf{C}_{2}^{*}\right), \in\right)
$$

By Example 9, the bond $E_{1} \times E_{2} \subset A_{1} \times A_{2}$ correspondes to the Chu correspondence $\varphi: \mathbf{C}_{1} \rightarrow \mathbf{C}_{2}^{*}$ defined by

$$
L_{\varphi}\left(a_{1}\right)= \begin{cases}E_{2}^{\prime}, & \text { if } a_{1} \in E_{1} \\ X_{2}, & \text { otherwise }\end{cases}
$$

This correspondes to the join preserving map $f_{E_{1}, E_{2}}(c f$. Section 1.2)

$$
\operatorname{Gal}\left(\mathbf{C}_{1}\right) \rightarrow \operatorname{Gal}\left(\mathbf{C}_{2}\right)^{*}
$$

where E_{i} are regarded as in $\operatorname{Gal}\left(\mathbf{C}_{i}\right)(i=1,2)$, which correspondes to $E_{1} \otimes$ E_{2} of $\operatorname{Gal}\left(\mathbf{C}_{1}\right) \otimes \operatorname{Gal}\left(\mathbf{C}_{2}\right)$.

The tensor is associative.
Theorem 89 For formal contexts $\mathbf{C}_{i}(i=1,2,3)$, there are strong isomorphisms

$$
a\left(\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{C}_{3}\right):\left(\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}\right) \boxtimes \mathbf{C}_{3} \rightarrow \mathbf{C}_{1} \boxtimes\left(\mathbf{C}_{2} \boxtimes \mathbf{C}_{3}\right),
$$

whose extent part is given by the bijection

$$
\left(\left(a_{1}, a_{2}\right), a_{3}\right) \mapsto \overline{\left(a_{1},\left(a_{2}, a_{3}\right)\right)}
$$

Proof. The assertion follows from the observation that both $\left(\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}\right) \boxtimes$ \mathbf{C}_{3} and $\mathbf{C}_{1} \boxtimes\left(\mathbf{C}_{2} \boxtimes \mathbf{C}_{3}\right)$ are strongly isomorphic to

$$
\left(A_{1} \times A_{2} \times A_{3}, W\right)
$$

where W is the set of subsets $Z \subset A_{1} \times A_{2} \times A_{2}$, which satisfies the condition that for each $a_{i} \in A_{i}(i=1,2,3)$ the subsets $Z\left(a_{1}, a_{2},-\right) \subset A_{3}$, $Z\left(a_{1},-, a_{3}\right) \subset A_{2}$, and $Z\left(-, a_{2}, a_{3}\right) \subset A_{1}$ are closed. Here

$$
Z\left(a_{1}, a_{2},-\right):=\left\{a_{3} \in A_{3} \mid\left(a_{1}, a_{2}, a_{3}\right) \in Z\right\}
$$

etc..

Proposition 90 The following diagram commutes.

$$
a_{1}=\operatorname{Gal}\left(a\left(\mathbf{C}_{1}, \mathbf{C}_{2}, \mathbf{C}_{3}\right)\right)
$$

and

$$
a_{2}=a\left(\operatorname{Gal}\left(\mathbf{C}_{1}\right), \operatorname{Gal}\left(\mathbf{C}_{2}\right), \operatorname{Gal}\left(\mathbf{C}_{3}\right)\right),
$$

and u_{1} is the composition of the isomorphisms

$$
\begin{aligned}
& \operatorname{Gal}\left(\left(\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}\right) \boxtimes \mathbf{C}_{3}\right) \stackrel{\kappa}{\sim} \operatorname{Gal}\left(\left(\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}\right)\right) \otimes \operatorname{Gal}\left(\mathbf{C}_{3}\right) \\
& \stackrel{\kappa \otimes 1}{\sim}\left(\operatorname{Gal}\left(\mathbf{C}_{1}\right) \otimes \operatorname{Gal}\left(\mathbf{C}_{2}\right)\right) \otimes \operatorname{Gal}\left(\mathbf{C}_{3}\right),
\end{aligned}
$$

and the isomorphism u_{2} is defined similarly.
Proof. Let $a_{i} \in A_{i}(i=1,2,3)$. Since $\operatorname{Gal}\left(\left(\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}\right) \boxtimes \mathbf{C}_{3}\right)$ is join generated by $\left(\overline{\left(\left(a_{1}, a_{2}\right), a_{3}\right)},\left(\left(a_{1}, a_{2}\right), a_{3}\right)^{\prime}\right)$, it suffices to show that these go to the same elements of

$$
\operatorname{Gal}\left(\mathbf{C}_{1}\right) \otimes\left(\operatorname{Gal}\left(\mathbf{C}_{2}\right) \otimes \operatorname{Gal}\left(\mathbf{C}_{3}\right)\right) .
$$

It is easily seen that $\left(\overline{\left(\left(a_{1}, a_{2}\right), a_{3}\right)},\left(\left(a_{1}, a_{2}\right), a_{3}\right)^{\prime}\right)$ goes to

$$
\left(\overline{a_{1}}, a_{1}^{\prime}\right) \otimes\left(\left(\overline{a_{2}}, a_{2}^{\prime}\right) \otimes\left(\overline{a_{3}}, a_{3}^{\prime}\right)\right)
$$

in either way.
Obviously the tensor $(-) \boxtimes(-)$ is symmetric.
Theorem 91 There is a strong isomorphism

$$
s\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right): \mathbf{C}_{1} \boxtimes \mathbf{C}_{2} \cong \mathbf{C}_{2} \boxtimes \mathbf{C}_{1},
$$

whose extent part maps $\left(a_{1}, a_{2}\right)$ to $\overline{\left(a_{2}, a_{1}\right)}$.

Proposition 92 The following diagram commutes.

Finally, we note that the functor $\mathbf{C} \bullet(-)$ is right adjoint to the functor $(-) \boxtimes \mathbf{C}$.

Theorem 93

$$
C h u \operatorname{Cors}\left(\mathbf{C}_{1} \boxtimes \mathbf{C}, \mathbf{C}_{2}\right) \simeq \operatorname{Chu} \operatorname{Cors}\left(\mathbf{C}_{1}, \mathbf{C} \rightarrow \mathbf{C}_{2}\right)
$$

This follows from Proposition 41 and the following
Theorem 94 There are natural strong isomorphisms

$$
\left(\mathbf{C}_{1} \boxtimes \mathbf{C}\right) \bullet \mathbf{C}_{2} \cong \mathbf{C}_{1} \bullet\left(\mathbf{C} \bullet \mathbf{C}_{2}\right)
$$

Proof. We have the following strong natural isomorphisms.

$$
\begin{aligned}
\left(\mathbf{C}_{1} \boxtimes \mathbf{C}\right) \bullet \mathbf{C}_{2} & \cong\left(\left(\mathbf{C}_{1} \boxtimes \mathbf{C}\right) \boxtimes \mathbf{C}_{2}^{*}\right)^{*} \\
& \cong\left(\mathbf{C}_{1} \boxtimes\left(\mathbf{C} \boxtimes \mathbf{C}_{2}^{*}\right)\right)^{*} \\
& \cong\left(\mathbf{C}_{1} \boxtimes\left(\mathbf{C} \bullet \mathbf{C}_{2}\right) *\right)^{*} \\
& \cong \mathbf{C}_{1} \bullet\left(\mathbf{C} \bullet \mathbf{C}_{2}\right) .
\end{aligned}
$$

5.4. Structure of $*$-autonomous category

We have introduced in ChuCors the ingredients of a $*$-autonomous category [7], [5], namely, the unit object "丁", the tensor bifunctor " \boxtimes ", the internal hom functor $-\bullet$, the selfduality $\mathbf{C}^{\text {op }} \simeq \mathbf{C}$ and the dualizing object \perp 。

The Galois functor preserves these operators in the following sense. By Example 3 and Propositions 88, 78, 83,

Proposition 95 There are following natural isomorphisms:

$$
\kappa\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right): \operatorname{Gal}\left(\mathbf{C}_{1} \boxtimes \mathbf{C}_{2}\right) \simeq \operatorname{Gal}\left(\mathbf{C}_{1}\right) \otimes \operatorname{Gal}\left(\mathbf{C}_{2}\right)
$$

$$
\begin{aligned}
& \mu\left(\mathbf{C}_{1}, \mathbf{C}_{2}\right): \operatorname{Gal}\left(\mathbf{C}_{1} \longrightarrow \mathbf{C}_{2}\right) \simeq \operatorname{Gal}\left(\mathbf{C}_{1}\right) \multimap \operatorname{Gal}\left(\mathbf{C}_{2}\right), \\
& \operatorname{Gal}(\mathrm{T}) \simeq \mathbf{2}, \\
& \delta \mathbf{C}: \operatorname{Gal}\left(\mathbf{C}^{*}\right) \simeq \operatorname{Gal}(\mathbf{C})^{*} .
\end{aligned}
$$

We define the structural natural isomorphisms as follows.
By Theorem 87,
$\mathrm{\top} \boxtimes \mathbf{C} \cong(\{*\} \times A,\{B \subset\{*\} \times A \mid B$ is closed in $A\}, \in)$
whence there is a strong isomorphism

$$
T \boxtimes \mathbf{C} \cong c f(\mathbf{C}) .
$$

Since $c f(\mathbf{C}) \simeq \mathbf{C}$ by Proposition 76, we have natural isomorphisms

$$
\ell_{\mathbf{C}}: \top \boxtimes \mathbf{C} \simeq \mathbf{C} .
$$

Similarly, we define

$$
r_{\mathbf{C}}: \mathbf{C} \boxtimes \top \simeq \mathbf{C} .
$$

Proposition 96 The following diagram commutes

where v_{1} is the isomorphism defined by the composition of

$$
G a l(\top \boxtimes \mathbf{C}) \stackrel{\kappa}{\approx} G a l(\top) \otimes G a l(\mathbf{C}) \simeq \mathbf{2} \otimes G a l(\mathbf{C})
$$

and the isomorphism v_{2} is the similar composition.
Proof. Since $\operatorname{Gal}(\mathbf{\top} \times \mathbf{C})$ is join-generated by $(\bar{*} \times \bar{a},(*, a))$, it suffices to show the commutativity of the right triangle that they go to the same element by either way.

By Theorem 88 , $(\bar{*} \times \bar{a},(*, a))$ is mapped to $1 \otimes\left(\bar{a}, a^{\prime}\right) \in \mathbf{2} \times \operatorname{Gal}(\mathbf{C})$ and then to (\bar{a}, a^{\prime}) in the left round way.

On the other hand, it is mapped by $\operatorname{Gal}\left(\ell_{\mathbf{C}}\right)$ to $\left(\bar{a}, a^{\prime}\right)$.
In the same way, it can be shown that the right triangle commutes.

Proposition 97 The coherence conditions hold.
Proof. The coherence conditions of the $*$-autonomous category Slat and Propositions 96, 90, 85, 92 implies the corresponding coherence conditions of ChuCors. For example, the coherence condition of commutativity of

follows from the following commutative diagram.

In fact

$$
\begin{aligned}
h \circ G a l(1 \boxtimes \ell) & \circ G a l(a) \\
& =(1 \otimes \operatorname{Gal}(\ell)) \circ g_{1} \circ G a l(a) \quad \text { by naturality of } \kappa \\
& =(1 \otimes \ell) \circ g_{2} \circ g_{1} \circ G a l(a) \quad \text { by definition of } \ell \\
& =(1 \otimes \operatorname{Gal}(\ell)) \circ a \circ f_{2} \circ f_{1} \quad \text { by definition of } a \\
& =(r \otimes 1) \circ f_{2} \circ f_{1} \\
& =(G a l(r) \otimes 1) \circ f_{1} \\
& =h \circ(G a l(r \boxtimes 1)) .
\end{aligned}
$$

In short, we have proved
Theorem 98 The category ChuCors has a structure of *-autonomous category with the unit \top, the tensor $(-) \boxtimes(-)$, the internalhom $(-) \bullet(-)$, the the dualizing object \perp, and the natural isomorphisms r, ℓ, a, s, δ, which makes the Galois functor $a *$-autonomous functor.

Concluding Remarks

Chu maps and Chu correspondences The concept of formal contexts appear in quite a few contexts under various terminologies such as Chu space [14], classification [3], etc. besides the formal concept analysis [9]. When the framework of category theory is used, the Chu maps are usually adopted as arrows. However there can generally be few Chu maps between two formal contexts, which seems to make the category theory rather uninteresting in some field of research.

In contrast, there are abundant Chu correspondences between two formal contexts and give justification of the usage of the category theoretical machinery in studying formal concepts.

The concpet of bonds The *-autonomous category structure of ChuCors is described combinatorially and is defined more straightforward way than that of the category Slat owing especially to the beautiful concept of bonds introduced in [9]. In fact, we could as well have developed the category of bonds, which is isomorphic to our ChuCors.

Heyting valued contexts We can define the concept of Chu correspondence when $\{0,1\}$ is replaced by a Heyting algebra as in [13]. Although the Galois functor does not seem full and faithful in general, most of our results seem to hold. In particular the $*$-autonomous category structure of ChuCors is defined similarly.

Chu construction It seems that the procedure of constructing $*$-autonomous category from a complete closed category given by Chu [1], when applied to the category Rel of correspondences between sets, gives us most of the structures of ChuCors described in this paper. However, since Rel is not complete, the verification of Chu [1] does not apply to our category and operators directly.

Application Since our theory allow us to introduce "natural" correspondence in the topics where objects have dualism description mentioned in the introduction, we expect that our theory has theoretical applications.

As an example, we explain a usage of Chu correspondence in model theory in Section A of the appendix.

A. Application to model theory

For basic terminologies, see [12].
Let $T=(L, \Phi)$ be a first order theory, where L is a first order language and Φ is its axiom which is an arbitrary set of L-sentences. Let F_{x}^{L} be the set of L-formulas with one free variable x. A subset of F_{x}^{L} is called a 1-type. Let M be a model of T. Then we have the following formal context

$$
\mathbf{C}(M):=\left(M, F_{x}^{L}, I\right)
$$

with

$$
\left.m I \varphi \stackrel{\text { def }}{\Longrightarrow} M \models \varphi\right|_{x=m},
$$

for $m \in M$ and $\varphi \in F_{x}^{L}$. The polar of $m \in M$, denoted by $F_{x}(m)$ is the 1-type defined by m. The polar of $\varphi \in F_{x}^{L}$ is the set $M(\varphi)$ of $m \in M$ satisfying φ, namely, $\left.M \models \varphi\right|_{x=m}$. A subset of M is closed if there is a 1-type $N \subset F_{x}^{L}$ with $N^{\prime}=M$. A 1-type $Q \subset F_{x}^{L}$ is closed if there is a subset $P \subset M$ whose polar is Q, namely, Q is the set of formulas $\varphi \in F_{x}^{L}$ which are satisfied by all the elements of N.

The closure operator on F_{x}^{L} is the semantic implication in the model M. Namely, for $Q \subset F_{x}^{L}$ and $\varphi \in F_{x}^{L}, \varphi \in \bar{Q}$ if, for every $m \in M$, the condition $m I \psi$ for all $\psi \in Q$ implies $m I \varphi$.

Suppose M_{1} and M_{2} are two models of T. Define a correspondence

$$
L: M_{1} \rightarrow M_{2}
$$

by

$$
m_{2} \in L m_{1} \stackrel{\text { def }}{\Longleftrightarrow} m_{2} I F_{x}\left(m_{1}\right) .
$$

Proposition 99 (L, id) is a Chu correspondence from $\mathbf{C}\left(M_{1}\right)$ to $\mathbf{C}\left(M_{2}\right)$ in the weak sense, whence defines a Chu correspondence

$$
\gamma\left(M_{1}, M_{2}\right): \mathbf{C}\left(M_{1}\right) \rightarrow \mathbf{C}\left(M_{2}\right) .
$$

Proof. For $\varphi \in F_{x}^{L}$,

$$
L m_{1} I \varphi \Leftrightarrow m_{1} I \varphi
$$

In fact, by definition, $m_{1} I \varphi$ implies $L m_{1} I \varphi$. Suppose $L m_{1} I \varphi$. If $m_{1} I \varphi$ does not hold, then $m_{1} I \neg \varphi$. Hence $L m_{1} I \neg \varphi$, which contradicts the assumption. Hence we have $m_{1} I \varphi$.

Two models $M_{i}(i=1,2)$ are called elementarily equivalent if $M_{1} \models \phi$ iff $M_{2}=\phi$ for all L-sentences ϕ.

Proposition 100 Models M_{1} and M_{2} are elementarily equivalent if and only if

$$
\begin{equation*}
\overline{L_{\gamma\left(M_{1}, M_{2}\right) *} M_{1}}=M_{2} . \tag{10}
\end{equation*}
$$

Proof. Note that for $\varphi \in F_{x}^{L}$ and a model M, the condition $M \models \forall x \varphi$ means $M I \varphi$, i.e., $\varphi \in M^{\prime}$.

Suppose M_{1} and M_{2} are elementarily equivalent. Then $M_{1}^{\prime}=M_{2}^{*} \subset$ F_{x}^{L}, where $(-)^{*}$ denotes the polar operator of $\mathbf{C}\left(M_{2}\right)$, whence (10) holds.

Conversely suppose (10) holds. Let ϕ be an L-sentence. Then there is a $\varphi \in F_{x}^{L}$, possibly without x, such that ϕ is logically equivalent to either $\forall x \varphi$ or $\exists x \varphi$.

Suppose $\phi \equiv \forall x \varphi$. Then

$$
\begin{aligned}
M_{2}=\phi & \Leftrightarrow M_{2} I \varphi \\
& \Leftrightarrow \overline{L_{*} M_{1}} I \varphi \\
& \Leftrightarrow M_{1} I \varphi \\
& \Leftrightarrow M_{1} \models \phi .
\end{aligned}
$$

If $\phi \equiv \exists x \varphi$, then $\neg \phi \equiv \forall x \neg \varphi$, whence

$$
M_{2} \models \neg \phi \Leftrightarrow M_{1} \models \neg \phi
$$

and we conclude

$$
M_{2} \models \phi \Leftrightarrow M_{1} \models \phi .
$$

These samples seem to suggest that the Chu correspondences between the formal contexts $\mathbf{C}(M)$ might be useful tool as well as significant objects to study in the theory of model theories.

References

[1] Barr M., *-Autonomous Categories. vol. 752, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1979.
[2] Barr M. and Wells C., Category Theory for Computing Science. Prentice Hall, second edition, 1995.
[3] Barwise J. and Seligman J., Information flow: the logic of distributed systems. Cambridge University Press, New York, NY, USA, 1997.
[4] Birkhoff G., Lattice theory. Amer. Math. Soc. Colloquium Publications, 1948.
[5] Bourceux F., Handbook of Categorical Algebra 2, Categories and Structures. vol. 51, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1994.
[6] Davey B.A. and Priestley H.A., Introduction to Lattices and Order. Cambridge University Press, 1990.
[7] Eilenberg S. and Kelly G.M., Closed categories. Proceedings of the conference on Categorical Algebra at La Jolla 1965, Springer, 1966, pp. 421-562.
[8] Ganter B., Relational galois connections. preprint.
[9] Ganter B. and Wille R., Formal Concept Analysis. Springer, 1999.
[10] Joyal A. and Tierney M., An extention of the Galois theory of Grothendieck. vol. 309, Mem. of AMS. Amer. Math. Soc., 1984.
[11] Maclane S., Categories for the Working Mathematicians. no. 5, Graduate Texts in Mathematics, Springer, 1998.
[12] Marker D., Model Theory: An Introduction. vol. 217, Graduate Texts in Mathematics, Springer, Berlin, (2002) ISBN: 0-387-98760-6.
[13] Mori H., Functorial properties of the concept lattices. preprint.
[14] Pratt V., Chu spaces as a semantic bridge between linear logic and mathematics. 1998.
[15] Pratt V.R., Chu spaces. July 1999.
[16] Xia W., Morphismen als formale Begriffe-Darstellung und Erzeugung. Verlag Shaker, 1993.

Hokkaido University
School of Mathematics
Sapporo 060-0810, Japan
E-mail: morih@math.sci.hokudai.ac.jp

[^0]: 2000 Mathematics Subject Classification : 06B99, 18B99.

