$C^{l}-\mathcal{G}_{V}$-determinacy of weighted homogeneous function germs on weighted homogeneous analytic varieties

Hengxing LiU and Dun-mu Zhang

(Received October 10, 2006; Revised June 15, 2007)

Abstract

We provide estimates on the degree of $C^{l}-\mathcal{G}_{V}$-determinacy (\mathcal{G} is one of Mather's groups \mathcal{R} or \mathcal{K}) of weighted homogeneous function germs which are defined on weighted homogeneous analytic variety V and satisfies a convenient Lojasiewicz condition. The result gives an explicit order such that the C^{l}-geometrical structure of a weighted homogeneous polynomial function germ is preserved after higher order perturbations, which generalize the result on $C^{l}-\mathcal{K}$-determinacy of weighted homogeneous functions germs given by M.A.S. Ruas.

Key words: $C^{l}-\mathcal{R}_{V}$-determinacy, $C^{l}-\mathcal{K}_{V}$-determinacy, weighted homogeneous polynomial function germs, controlled vector field, weighted homogeneous control functions.

1. Introduction

In singularity theory of smooth functions and maps, a fundamental question is raised for a given equivalence relation: when is a map germ equivalent to a finite part of its Tayor expansion?

It is concerned with determinacy of map-germs and trivialization for families of map-germs.

There is an extensive literature related to trivialization and determinacy for families of map-germs. In C^{l}-determinacy theory ($l \geq 0$), the question of determining the degree of $C^{0}-\mathcal{G}$-determinacy of weighted homogeneous map germs has been considered by several authors (e.g. ref. [4], [6], [8], [5]). Estimates for the degree of $C^{l}-\mathcal{G}$-determinacy of weighted homogeneous map-germs have been studied by M.A.S. Ruas and M.J. Saia (ref. [10]). Recently, the sufficient conditions for the topological triviality of families of germs of functions defined on an analytic variety V are provided by M.A.S. Ruas and J.N. Tomazella (ref. [11]). But these results do not include estimates for the degree of $C^{l}-\mathcal{G}_{V}$-determinacy of function germs defined

[^0]on real analytic varieties.
In this paper, when $(V, 0)$ is a weighted homogeneous analytic variety, we construct a $C^{l}-\mathcal{G}_{V^{-}}(\mathcal{G}$ is one of Mather's groups \mathcal{R} or $\mathcal{K})$ trivialization for a one parameter family $f_{t}=f+t \theta$ of a weighted homogeneous polynomial function germ f, defined on a class of weighted homogeneous real analytic varieties V satisfying a convenient Lojasiewicz condition, and give an explicit order for the filtration of a map-germ $\theta:\left(\mathbf{R}^{n}, 0\right) \longrightarrow(\mathbf{R}, 0)$ such that the C^{l}-geometrical structure of f (consistent with V) is preserved after higher order perturbations. So a weighted homogeneous polynomial function germ f (consistent with V) after higher order perturbations is finite determined. Our method is concretely offering a controlled vector field whose integration gives a $C^{l}-\mathcal{G}_{V}$-trivialization.

An application of our result to free arrangement is also presented.

2. Preliminaries

In this paper, we assume that germs are in real analytic category.
Let \mathcal{O}_{n} be the ring of germs of analytic functions $h:\left(\mathbf{R}^{n}, 0\right) \longrightarrow(\mathbf{R}, 0)$. This is a local ring with maximal ideal \mathcal{M}_{n}, consisting of these $h \in \mathcal{O}_{n}$ such that $h(0)=0$. We denote by $J^{k}(n, p)$ the set of k-jets of elements of \mathcal{O}_{n}.

A germ of a subset $(V, 0) \subset\left(\mathbf{R}^{n}, 0\right)$ is the germ of a real analytic variety if there exist germs of real analytic functions f_{1}, \ldots, f_{r} such that $V=\left\{x: f_{1}(x)=\cdots=f_{r}(x)=0\right\}$.
Definition 2.1 Let \mathcal{R} be the group of germs of diffeomorphisms of $\left(\mathbf{R}^{n}, 0\right)$, and $\mathcal{R}_{V}=\{\phi \in \mathcal{R}: \phi(V)=V\}$, i.e. \mathcal{R}_{V} be the group of germs of diffeomorphisms preserving $(V, 0)$. Also, let $C^{l}-\mathcal{R}_{V}(l>0)$ denote the group of germs of C^{l}-diffeomorphisms preserving $(V, 0)$.
$\mathcal{R}_{V}\left(C^{l}-\mathcal{R}_{V}\right)$ acting on germ $h_{0}:\left(\mathbf{R}^{n}, 0\right) \longrightarrow(\mathbf{R}, 0)$ is given by composition on the right.

Two germs h_{1} and $h_{0}:\left(\mathbf{R}^{n}, 0\right) \longrightarrow(\mathbf{R}, 0)$ are $C^{l}-\mathcal{R}_{V}$-equivalent iff there exists a germ of C^{l}-diffeomorphism $\phi:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ with $\phi(V)=$ V and $h_{1} \circ \phi=h_{2}$.

A one-parameter deformation $h:\left(\mathbf{R}^{n} \times \mathbf{R}, 0\right) \longrightarrow(\mathbf{R}, 0)$ of $h_{0}:\left(\mathbf{R}^{n}, 0\right)$ $\longrightarrow(\mathbf{R}, 0)$ is $C^{l}-\mathcal{R}_{V}$-trivial if there exists C^{l}-diffeomorphism

$$
\varphi:\left(\mathbf{R}^{n} \times \mathbf{R}, 0\right) \longrightarrow\left(\mathbf{R}^{n} \times \mathbf{R}, 0\right), \quad \varphi(x, t)=(\bar{\varphi}(x, t), t)
$$

such that $h \circ \varphi(x, t)=h_{0}(x)$ and $\varphi(V \times \mathbf{R})=V \times \mathbf{R}$.

We denote by θ_{n} the set of germs of tangent vector fields in $\left(\mathbf{R}^{n}, 0\right)$. Then θ_{n} is a free \mathcal{O}_{n}-module of rank n.

Let $I(V)$ be the ideal in \mathcal{O}_{n} consisting of germs of real analytic function vanishing on V. We denote by

$$
\Theta_{V}=\left\{\eta \in \theta_{n} ; \eta(I(V)) \subset I(V)\right\},
$$

the submodule of germs of vector fields tangent to $V . \Theta_{V}$ is a finitely generated \mathcal{O}_{n}-module for it is a submodule of θ_{n} which is Noetherian since \mathcal{O}_{n} is.

Since $I(V) \cdot\left\{\partial / \partial x_{i}\right\} \subset \Theta_{V}$, it follows in the real analytic case that

$$
\Theta_{V}=\mathcal{O}_{n}\left\{\zeta_{j}\right\}_{1 \leq j \leq p}+I(V) \mathcal{O}_{n}\left\{\frac{\partial}{\partial x_{i}}\right\}
$$

where $\left\{\zeta_{j}\right\}_{1 \leq j \leq p}$ together with $I(V) \cdot\left\{\partial / \partial x_{i}\right\}$ generate the \mathcal{O}_{n}-module of vector fields tangent to V.

In the real analytic category, let

$$
\begin{aligned}
T \mathcal{R}_{V, e}=\left\{\left.\frac{\partial \bar{\varphi}(x, t)}{\partial t}\right|_{t=0}\right. & : \varphi(x, t)=(\bar{\varphi}(x, t), t) \\
& :\left(\mathbf{R}^{n} \times \mathbf{R}, 0 \longrightarrow \mathbf{R}^{n} \times \mathbf{R}, 0\right), \\
& \text { with } \bar{\varphi}(x, 0)=\text { id and } \varphi(V \times \mathbf{R})=V \times \mathbf{R}\} .
\end{aligned}
$$

Then

$$
T \mathcal{R}_{V, e}=\Theta_{V}=\mathcal{O}_{n}\left\{\zeta_{j}\right\}_{1 \leq j \leq p}+I(V) \mathcal{O}_{n}\left\{\frac{\partial}{\partial x_{i}}\right\}, \quad \text { (p. } 59 \text { of ref. [1]) }
$$

Moreover the tangent space of \mathcal{R}_{V}

$$
T \mathcal{R}_{V}=\mathcal{M}_{n}\left\{\zeta_{j}\right\}_{1 \leq j \leq p}+I(V) \mathcal{O}_{n}\left\{\frac{\partial}{\partial x_{i}}\right\}=\Theta_{V}^{\circ}
$$

is computed by taking families of germs in \mathcal{R}_{V}.
The tangent space of the orbit of h under the action of the group is $T \mathcal{R}_{V}(h)$ $=d h\left(\Theta_{V}^{\circ}\right)$. ([11])

Definition 2.2 ([11])
(a) We assign weights $w_{1}, w_{2}, \ldots, w_{n}, w_{i} \in \mathbf{Q}^{+}, i=1, \ldots, n$ to a given coordinate system x_{1}, \ldots, x_{n} in \mathbf{R}^{n}. The filtration of a monomial $x^{\beta}=$ $x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}}$ with respect to this set of weights is defined by $\operatorname{fil}\left(x^{\beta}\right)=$ $\sum_{i=1}^{n} \beta_{i} w_{i}$.
(b) We define a filtration in the ring \mathcal{O}_{n} via the function defined by

$$
\operatorname{fil}(f)=\inf _{|\beta|}\left\{\operatorname{fil}\left(x^{\beta}\right): \frac{\partial^{|\beta|} f}{\partial x^{\beta}}(0) \neq 0\right\}, \quad|\beta|=\beta_{1}+\cdots+\beta_{n}
$$

for any germ f in \mathcal{O}_{n}. This definition can be extended to \mathcal{O}_{n+r}, the ring of r-parameter families of germs in n-variables, by defining fil $\left(x^{\alpha} t^{\beta}\right)=$ fil $\left(x^{\alpha}\right)$. For any map germ $f=\left(f_{1}, \ldots, f_{p}\right):\left(\mathbf{R}^{n}, 0\right) \longrightarrow\left(\mathbf{R}^{p}, 0\right)$ we $\operatorname{call} \operatorname{fil}(f)=\left(d_{1}, \ldots, d_{p}\right)$, where $d_{i}=\operatorname{fil}\left(f_{i}\right)$ for each $i=1, \ldots, p$.
(c) We extend the filtration to Θ_{V}, defining fil $\left(\partial / \partial x_{i}\right)=-w_{i}$ for all $i=1, \ldots, n$, so that given $\xi=\sum_{j=1}^{n} \xi_{j}\left(\partial / \partial x_{j}\right) \in \Theta_{V}$, then $\operatorname{fil}(\xi)$ $=\inf _{j}\left\{\operatorname{fil}\left(\xi_{j}\right)-w_{j}\right\}$.
(d) For given $\left(w_{1}, \ldots, w_{p}: d_{1}, \ldots, d_{p}\right), w_{i}, d_{j} \in \mathbf{Q}^{+}$, a map germ $f:\left(\mathbf{R}^{n}, 0\right)$ $\longrightarrow\left(\mathbf{R}^{p}, 0\right)$ is weighted homogeneous of type $\left(w_{1}, \ldots, w_{n}: d_{1}, \ldots, d_{p}\right)$ if for all $\lambda \in \mathbf{R}-\{0\}$,

$$
f\left(\lambda^{w_{1}} x_{1}, \lambda^{w_{2}} x_{2}, \ldots, \lambda^{w_{n}} x_{n}\right)=\left(\lambda^{d_{1}} f_{1}(x), \lambda^{d_{2}} f_{2}(x), \ldots, \lambda^{d_{p}} f_{p}(x)\right) .
$$

Definition 2.3 ([10]) Let $\left(w_{1}, \ldots, w_{n}: 2 k\right)$ be fixed. We define the standard control function $\rho_{k}(x)$ by $\rho_{k}(x)=x_{1}^{2 \alpha_{1}}+x_{2}^{2 \alpha_{2}}+\cdots+x_{n}^{2 \alpha_{n}}$, where the α_{i} are chosen in such way that the function ρ_{k} is weighted homogeneous of type $\left(w_{1}, \ldots, w_{n}: 2 k\right)$.
Remark ([10]) We observe that ρ_{k} satisfies a Lojasiewicz condition $\rho_{k} \geq$ $c|x|^{2 \alpha}$ for some constants c and α.
Lemma 2.4 (Lemma 1 of [10]) Let $h(x)$ be a weighted homogeneous polynomial of type $\left(w_{1}, \ldots, w_{n}: 2 k\right)$ and $h_{t}(x), t \in[0,1]$ a deformation of h, which is weighted homogeneous of the same type as h. Then:
(a) There exists a constant c_{1} such that $\left|h_{t}(x)\right| \leq c_{1} \rho_{k}(x)$.
(b) If there exist constants c and α such that $\left|h_{t}(x)\right| \geq c|x|^{\alpha}$, then $\left|h_{t}(x)\right| \geq$ $c_{2} \rho_{k}(x)$ for some constant c_{2}.

Lemma 2.5 (Lemma 2 of [10]) Let $h(x)$ be a weighted homogeneous polynomial of type $\left(w_{1}, \ldots, w_{n}: 2 k\right)$, with $w_{1} \leq w_{2} \leq \cdots \leq w_{n}, \rho(x)$ the standard control function of same type as h and $h_{t}(x)$ a deformation of h such that

$$
\operatorname{fil}\left(h_{t}\right) \geq 2 k+l w_{n}+1, \quad t \in[0,1], l \geq 1 .
$$

Then the function $\nu(x)=h_{t}(x) / \rho(x)$ is differentiable of class C^{l}.

Definition 2.6 ([11]) The germ of an analytic variety $(V, 0) \subseteq\left(\mathbf{R}^{n}, 0\right)$ is weighted homogeneous if it is defined by a weighted homogeneous map germ $f:\left(\mathbf{R}^{n}, 0\right) \longrightarrow\left(\mathbf{R}^{p}, 0\right)$.

A set of generators $\left\{\gamma_{1} \cdots \gamma_{m}\right\}$ of Θ_{V} is called weighted homogeneous of type $\left(w_{1}, \ldots, w_{n}: d_{1}, \ldots, d_{m}\right)$ if $\gamma_{i}=\sum_{j=1}^{n} \gamma_{i j}\left(\partial / \partial x_{j}\right)$ and $\gamma_{i j}(i=$ $1, \ldots, m ; j=1, \ldots, n$) are weighted homogeneous polynomials of type $\left(w_{1}, \ldots, w_{n}: d_{i}+w_{j}\right)$ whenever $\gamma_{i j} \neq 0$.

When V is a weighted homogeneous variety, we can always choose weighted homogeneous generators for Θ_{V}. (see [2] or [11])

Definition 2.7 ([11]) Let V be defined by weighted homogeneous polynomials. We say that h is weighted homogeneous consistent with V if h is weighted homogeneous with respect to the same set of weights assigned to V.

3. Estimates for the degree of $C^{l}-\mathcal{R}_{V}$-determinacy of weighted homogeneous function germs on a class of weighted homogeneous real analytic varieties

Theorem 3.1 Let V be a weighted homogeneous subvariety of $\left(\mathbf{R}^{n}, 0\right)$, and let there exist a system $\left\{\gamma_{1} \cdots \gamma_{m}\right\}$ of weighted homogeneous generators of type $\left(w_{1}, \ldots, w_{n} ; d_{1}, \ldots, d_{m}\right)$ for Θ_{V}^{0}, where $w_{1} \leq w_{2} \leq \cdots \leq w_{n}$ and $w_{i} \in \mathbf{Z}^{+}$and $\gamma_{j}=\sum_{i=1}^{n} \gamma_{j i}\left(\partial / \partial x_{i}\right) ;$
If
(a) $f:\left(\mathbf{R}^{n}, 0\right) \longrightarrow(\mathbf{R}, 0)$ is a weighted homogeneous function-germ of type $\left(w_{1}, \ldots, w_{n} ; d\right)$, which is consistent with V;
(b) f satisfies a Lojasiewicz condition

$$
N_{\mathcal{R}_{V}} f(x)=\left(d f\left(\gamma_{j}\right)\right)^{2}=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \gamma_{j i}\right)^{2} \geq c|x|^{\alpha}
$$

for some constants c and α.
Then deformations of f defined by

$$
f_{t}(x)=f(x)+t \theta(x), \quad t \in[0,1],
$$

with $\operatorname{fil}(\theta) \geq d+l w_{n}-w_{1}$, for all $t \in[0,1]$ and $l>1$ are $C^{l}-\mathcal{R}_{V}$-trivial.

Remark We discuss the case $l=1$ in another paper. Actually, when $l=1, f_{t}$ is V-bilipschitz triviality.

Firstly we observe $d f\left(\gamma_{j}\right)$. Because

$$
d f\left(\gamma_{j}\right)=d f\left(\sum_{i=1}^{n} \gamma_{j i} \frac{\partial}{\partial x_{i}}\right)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \gamma_{j i},
$$

it follow that

$$
\begin{aligned}
\operatorname{fil}\left(d f\left(\gamma_{j}\right)\right) & =\inf _{1 \leq i \leq n}\left\{\operatorname{fil}\left(\frac{\partial f}{\partial x_{i}} \gamma_{j i}\right)\right\} \\
& =\inf _{1 \leq i \leq n}\left\{\operatorname{fil}(f)-w_{i}+\left(d_{j}+w_{i}\right)\right\} \\
& =\operatorname{fil}(f)+d_{j} .
\end{aligned}
$$

Let $s_{j}=\operatorname{fil}(f)+d_{j}$ and $N_{\mathcal{R}_{V}}^{*} f$ be defined by $N_{\mathcal{R}_{V}}^{*} f=\sum_{j=1}^{m}\left(d f\left(\gamma_{j}\right)\right)^{2 \alpha_{j}}$, where $\alpha_{j}=k / s_{j}, k=$ l.c.m. $\left(s_{j}\right)$. Then $N_{\mathcal{R}_{V}}^{*} f$ is a weighted homogeneous control function of type $\left(w_{1}, \ldots, w_{n} ; 2 k\right)$. By Remark of Definition 2.3, $N_{\mathcal{R}_{V}}^{*} f \geq c_{1}\left(N_{\mathcal{R}_{V}} f\right)^{\beta}$ for some constants c_{1} and β.

For a deformation f_{t} of f, let $N_{\mathcal{R}_{V}}^{*} f_{t}$ by $\left.N_{\mathcal{R}_{V}}^{*} f_{t}=\sum_{j=1}^{m}\left(d f_{t}\right)_{x}\left(\gamma_{j}\right)\right)^{2 \alpha_{j}}$, where $\left(d f_{t}\right)_{x}=\sum_{i=1}^{n}\left(\partial f_{t} / \partial x_{i}\right) d x_{i}$, and α_{j} are same as above. If f_{t} is weighted homogeneous of same type as f, then $N_{\mathcal{R}_{V}}^{*} f_{t}$ is weighted homogeneous of type $\left(w_{1}, \ldots, w_{n} ; 2 k\right)$ for all t. If $f_{t}(x)=f(x)+t \theta(x)$ and $f i l(\theta) \geq$ d, it follows that $\operatorname{fil}\left(N_{\mathcal{R}_{V}}^{*} f_{t}\right) \geq \operatorname{fil}\left(N_{\mathcal{R}_{V}}^{*} f\right)$.
Lemma 3.2 Let f and f_{t} satisfy the condition of the above theorem. Then, there exist positive constants a_{1} and a_{2} such that

$$
a_{2} \rho_{k}(x) \leq N_{\mathcal{R}_{V}}^{*} f_{t} \leq a_{1} \rho_{k}(x)
$$

Proof. When f_{t} is weighted homogeneous of the same type as f, the result follows from Lojasiewicz condition and Lemma 2.4.

If fil $\left(f_{t}\right)>\operatorname{fil}(f)$, we write $N_{\mathcal{R}_{V}}^{*} f_{t}=N_{\mathcal{R}_{V}}^{*} f+t R(x, t)$ where $R(x, t)$ is a polynomial with $\operatorname{fil}(R(x, t))>\operatorname{fil}\left(N_{\mathcal{R}_{V}}^{*} f\right)$.

Then $N_{\mathcal{R}_{V}}^{*} f \leq N_{\mathcal{R}_{V}}^{*} f_{t}+\left|R_{t}(x)\right|$, for $0 \leq t \leq 1$. Because $N_{\mathcal{R}_{V}}^{*} f \geq$ $c_{1}\left(N_{\mathcal{R}_{V}} f\right)^{\beta}$ for some constants c_{1} and β, we have $N_{\mathcal{R}_{V}}^{*} f \geq c c_{1}|x|^{\alpha \beta}$ by condition (b). So by Lemma 2.4, there exists a constant a_{2} such that

$$
a_{2} \rho_{k}(x) \leq N_{\mathcal{R}_{V}}^{*} f \leq N_{\mathcal{R}_{V}}^{*} f_{t}+\left|R_{t}(x)\right| .
$$

Again since $\operatorname{fil}\left(R_{t}(x)\right)>\operatorname{fil}\left(N_{\mathcal{R}_{V}}^{*} f\right)$, it follows that $\lim _{x \rightarrow 0}\left|R_{t}(x)\right| / \rho_{k}(x)=$

0 . Thus $a_{2} \rho_{k}(x) \leq N_{\mathcal{R}}^{*} f_{t}$.
It is easy to see that there exists a constant a_{1} such that $N_{\mathcal{R}_{V}}^{*} f_{t} \leq$ $a_{1} \rho_{k}(x)$ for small t.

Lemma 3.3 Let $\rho(x)$ be the standard control function of same type $\left(w_{1}, \ldots, w_{n}: 2 k\right)$, with $w_{1} \leq w_{2} \leq \cdots \leq w_{n}, h_{t}(x)$ an analytic deformation of a analytic function $h:\left(\mathbf{R}^{n}, 0\right) \longrightarrow(\mathbf{R}, 0)$ such that

$$
\operatorname{fil}\left(h_{t}\right) \geq 2 k+l w_{n}+1, \quad t \in[0,1], l \geq 1 .
$$

And $Z(x)$ is differentiable and satisfies

$$
a_{2} \rho_{k}(x) \leq Z(x) \leq a_{1} \rho_{k}(x) .
$$

Then the function $\lambda(x)=h_{t}(x) / Z(x)$ is differentiable of class C^{l}.
Proof. We will proceed by induction on the class of differentiability (similar to the proof of Lemma 2 of ref. [10]).

In fact, $\lambda(x)=h_{t}(x) / Z(x)$ is C^{l} if $x \neq 0$. It is sufficient to prove that $\lambda(x)=h_{t}(x) / Z(x)$ is C^{l} when $x=0$.

Firstly we consider $l=1$. The gradient of $\lambda(x)=h_{t}(x) / Z(x)$ is

$$
\nabla \lambda=\frac{\nabla h_{t}(x)}{Z(x)}-\frac{\nabla Z(x) \cdot h(x)}{(Z(x))^{2}}
$$

because

$$
a_{2} \rho_{k}(x) \leq Z(x) \leq a_{1} \rho_{k}(x),
$$

So

$$
\begin{aligned}
\frac{\nabla h_{t}(x)}{a_{1} \rho(x)}-\frac{\nabla(Z(x)) \cdot h_{t}(x)}{\left(a_{2} \rho(x)\right)^{2}} & \leq \frac{\nabla h_{t}(x)}{Z(x)}-\frac{\nabla Z(x) \cdot h_{t}(x)}{\left(N_{\mathcal{R}_{V}}^{*} f_{t}\right)^{2}} \\
& \leq \frac{\nabla h_{t}(x)}{a_{2} \rho(x)}-\frac{\nabla(Z(x)) \cdot h_{t}(x)}{\left(a_{1} \rho(x)\right)^{2}}
\end{aligned}
$$

with

$$
\inf _{i}\left\{\operatorname{fil}\left(\frac{\partial Z(x)}{\partial x_{i}}(x)\right)\right\} \geq 2 k-w_{n}
$$

and

$$
\operatorname{fil}\left(h_{t}(x)\right) \geq 2 k+w_{n}+1,
$$

then

$$
\operatorname{fil}\left(\left|\nabla(Z(x)) \cdot h_{t}(x)\right|\right) \geq 4 k+1
$$

Each term of

$$
\frac{\nabla h_{t}(x)}{a_{1} \rho(x)}-\frac{\nabla(Z(x)) \cdot h_{t}(x)}{\left(a_{2} \rho(x)\right)^{2}}
$$

and

$$
\frac{\nabla h_{t}(x)}{a_{2} \rho(x)}-\frac{\nabla(Z(x)) \cdot h_{t}(x)}{\left(a_{1} \rho(x)\right)^{2}}
$$

is of form $g(x) \cdot m(x) / \rho(x)$, where $m(x)$ is weighted homogeneous of type $\left(w_{1}, \ldots, w_{n} ; 2 k\right)$ and $\lim _{x \rightarrow 0} g(x)=0$. It follows from Lemma 2.4 that $m(x) / \rho(x)$ is bounded, hence $\nabla \lambda$ is continuous.

Let us assume by induction that for all function $\lambda(x)=h_{t}(x) / Z(x)$ with $\operatorname{fil}\left(h_{t}\right) \geq 2 k+(l-1) w_{n}+1, \lambda$ is of class C^{l-1}.

Let $\lambda(x)=h_{t}(x) / Z(x)$ with fil $\left(h_{t}\right) \geq 2 k+l w_{n}+1$. Then $\nabla \lambda(x)=$ $H(x) / Z(x)$ with $\operatorname{fil}(H) \geq 2 k+(l-1) w_{n}+1$ is of class C^{l-1}, and $\lambda(x)$ is of class C^{l}.

Proof of Theorem 3.1. Because

$$
\frac{\partial f_{t}}{\partial t}\left(\left[\left(d f_{t}\right)_{x}\left(\gamma_{j}\right)\right]^{2 \alpha_{j}}\right)=\left(d f_{t}\right)_{x}\left(\frac{\partial f_{t}}{\partial t}\left(\left(\left(d f_{t}\right)_{x}\left(\gamma_{j}\right)\right)^{2 \alpha_{j}-1} \gamma_{j}\right)\right)
$$

and

$$
N_{\mathcal{R}_{V}}^{*} f_{t}=\sum_{j=1}^{m}\left(\left[\left(d f_{t}\right)_{x}\left(\gamma_{j}\right)\right]^{2 \alpha_{j}}\right)
$$

then

$$
\frac{\partial f_{t}}{\partial t} N_{\mathcal{R}_{V}}^{*} f_{t}=\left(d f_{t}\right)_{x}\left(W_{\mathcal{R}_{V}}\right)
$$

where

$$
W_{\mathcal{R}_{V}}=\sum_{j=1}^{m} W_{j} \gamma_{j} \quad \text { and } \quad W_{j}=\frac{\partial f_{t}}{\partial t}\left(\left(d f_{t}\right)_{x}\left(\gamma_{j}\right)\right)^{2 \alpha_{j}-1}
$$

Now we compute $\operatorname{fil}\left(W_{j}\right)$.
Because $\gamma_{j}=\sum_{i=1}^{n} \gamma_{j i}\left(\partial / \partial x_{i}\right)$, where $\gamma_{j i}$ are weighted homogeneous
polynomials of type $\left(w_{1}, \ldots, w_{n}: d_{j}+w_{i}\right)$,

$$
\begin{aligned}
& \begin{aligned}
\operatorname{fil}\left(\left(d f_{t}\right)_{x}\left(\gamma_{j}\right)\right) & =\operatorname{fil}\left(\sum_{i=1}^{n} \gamma_{j i} \frac{\partial f_{t}}{\partial x_{i}}\right) \\
& =\inf _{i=1, \ldots, n}\left\{\operatorname{fil}\left(f_{t}\right)-w_{i}+\left(d_{j}+w_{i}\right)\right\} \\
& =\operatorname{fil}\left(f_{t}\right)+d_{j} \\
& =\operatorname{fil}(f)+d_{j} \\
& =d+d_{j}
\end{aligned} \\
& \begin{aligned}
& \operatorname{fil}\left(W_{j}\right)= \operatorname{fil}\left(\frac{\partial f_{t}}{\partial t}\right)+\left(2 \alpha_{j}-1\right) \operatorname{fil}\left(d f_{t}\left(\gamma_{j}\right)\right) \\
& \geq\left(d+l w_{n}-w_{1}\right)+\left(2 \alpha_{j}-1\right)\left(d+d_{j}\right) \\
&=\left.d+l w_{n}-w_{1}\right)+\left(2 \alpha_{j}-1\right) s_{j} \\
&= d+l w_{n}-w_{1}+2 k-d-d_{j} \\
&= 2 k+l w_{n}-w_{1}-d_{j}
\end{aligned}
\end{aligned}
$$

Again because $\gamma_{j} W_{j}=\sum_{1 \leq i \leq n} \gamma_{j i} W_{j}\left(\partial / \partial x_{i}\right)$, then

$$
\begin{align*}
\operatorname{fil}\left(\gamma_{j i} W_{j}\right) & \geq d_{j}+w_{i}+2 k+l w_{n}-w_{1}-d_{j} \tag{*}\\
& =2 k+l w_{n}+w_{i}-w_{1} \\
& \geq 2 k+(l-1) w_{n}+1 .
\end{align*}
$$

Now from equation $\left(\partial f_{t} / \partial t\right)(x, t)=\left(d f_{t}\right)_{x}\left(W_{\mathcal{R}_{V}} / N_{\mathcal{R}_{V}}^{*} f_{t}\right)$, we obtain

$$
\frac{\partial f_{t}}{\partial t}(x, t)-\left(d f_{t}\right)_{x}\left(\frac{W_{\mathcal{R}_{V}}}{N_{\mathcal{R}_{V}}^{*} f_{t}}\right)=0 .
$$

Let $\nu:\left(\mathbf{R}^{n} \times \mathbf{R}, 0\right) \rightarrow\left(\mathbf{R}^{n} \times \mathbf{R}, 0\right)$ be the stratified vector field

$$
\nu(x)= \begin{cases}\frac{W_{\mathcal{R}_{V}}}{N_{\mathcal{R}_{V}}^{*} f_{t}}+\frac{\partial}{\partial t}, & x \neq 0 \\ \frac{\partial}{\partial t}, & x=0\end{cases}
$$

where $W_{\mathcal{R}_{V}} / N_{\mathcal{R}_{V}}^{*} f_{t} \in T \mathcal{R}_{V}=\Theta_{V}^{0}$.
Again let $W_{\mathcal{R}_{V}} / N_{\mathcal{R}_{V}}^{*} f_{t}=\sum_{i=1}^{n} \nu_{i}(x, t)\left(\partial / \partial x_{i}\right)$, where

$$
\nu_{i}(x, t)=\sum_{j=1}^{m} \frac{\gamma_{j i} W_{j}}{N_{\mathcal{R}}^{*} f_{t}}, \quad i=1, \ldots, n
$$

and it denotes the $i-$ th component of ν. Owning to $(*)$ and Lemma 3.2, it follows from Lemma 3.3 that $\gamma_{j i} W_{j} / N_{\mathcal{R}_{V}}^{*} f_{t}(1 \leq i \leq n ; 1 \leq j \leq m)$ are differentiable of class C^{l-1}. So ν is of class C^{l-1}, where $l>1$.

Moreover the orbits of a vector field ν on $\mathbf{R} \times \mathbf{R}^{\mathbf{n}}$ are the integral curves (i.e., the graphs of solutions) of the first order system of differential equations:

$$
\left\{\begin{aligned}
\frac{d x_{0}}{d t} & =1 \\
\frac{d x_{i}}{d t} & =\nu_{i}(x, t), \quad i=1, \ldots, n
\end{aligned}\right.
$$

By hypothesis, $\mathbf{R} \times 0$ is an orbit of ν. Designate by $t \rightarrow(t, \phi(t, x))$ the solutions of the above system of differential equations corresponding to the initial condition $\phi(0, x)=x$. By the fundamental theorems of first order differential equations and Lemma 3.5 of [11], the mapping $\phi_{t}: x \rightarrow \phi(t, x)$ is a diffeomorphism. Again because $W_{\mathcal{R}_{V}} / N_{\mathcal{R}_{V}}^{*} f_{t}=\sum_{i=1}^{n} \nu_{i}(x, t)\left(\partial / \partial x_{i}\right) \in$ $T \mathcal{R}_{V}$, it follows that $\phi_{t} \in \mathcal{R}_{V}$. Now equation

$$
\frac{\partial f_{t}}{\partial t}(x, t)-\left(d f_{t}\right)_{x}\left(\sum_{i=1}^{n} \nu_{i}(x, t) \frac{\partial}{\partial x_{i}}\right)=0
$$

implies $d\left(f_{t} \circ \phi\right)=0$ and this equation implies the $C^{l}-\mathcal{R}_{V}$-triviality of family $f_{t}(x)$ in a neighborhood of $t=0$. Since the same argument is true in a neighborhood of $t=\bar{t}$, for all $\bar{t} \in[0,1]$, the proof is complete.

Example (Example 3.12 of [11]) Let $V=\phi^{-1}(0)$ where $\phi(x, y, z)=$ $2 x^{2} y^{2}+y^{3}-z^{2}+x^{4} y$. We have ϕ is weighted homogeneous with respect to the weights $w_{1}=1, w_{2}=2, w_{3}=3$. Let $f(x, y, z)=x^{12}+y^{6}+z^{4}$. Then f is a weighted homogeneous function-germ of type $(1,2,3 ; 12)$ and consistent with V.

The module Θ_{V}° is generated by

$$
\begin{aligned}
& \alpha_{1}=(2 x, 4 y, 6 z) \\
& \alpha_{2}=\left(0,2 z, x^{4}+4 x^{2} y+3 y^{2}\right), \\
& \alpha_{3}=\left(x^{2}+3 y,-4 x y, 0\right) \\
& \alpha_{4}=\left(z, 0,2 x^{3} y+2 x y^{2}\right)
\end{aligned}
$$

$\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ is weighted homogeneous of type $(1,2,3 ; 0,1,1,2)$. More-
over

$$
d f=\left(12 x^{11}, 6 y^{5}, 4 z^{3}\right), \quad d f\left(\alpha_{1}\right)=24 x^{12}+24 y^{6}+24 z^{4}
$$

then

$$
\sum_{i=1}^{4}\left(d f\left(\alpha_{i}\right)\right)^{2} \geq 24 x^{12}+24 y^{6}+24 z^{4}
$$

But $24 x^{12}+24 y^{6}+24 z^{4}$ is weighted homogeneous function of type $(1,2,3)$. So that there are some constants c and α such that

$$
24 x^{12}+24 y^{6}+24 z^{4} \geq c\left(x^{2}+y^{2}+z^{2}\right)^{\alpha}
$$

Therefore the example satisfies condition of Theorem 3.1. If we let

$$
f_{t}(x, y, z)=f(x, y, z)+t\left(a x^{20}+b y^{10}+c x^{2} z^{6}\right)
$$

where

$$
\theta(x)=a x^{20}+b y^{10}+c x^{2} z^{6}
$$

Moreover

$$
\mathrm{fil}(\theta)=20 \geq 12+3 \times 3-1=12+9-1=20
$$

where $l=3$. Then deformation f_{t} of f is $C^{3}-\mathcal{R}_{V}$-trivial by Theorem 3.1.
Now we present a application of Theorem 3.1 to free arrangement.
Let \mathbf{R} be the real field and $V_{\mathbf{R}}$ a vector space of dimension l. A hyperplane H in $V_{\mathbf{R}}$ is an affine subspace of dimension $l-1$.

A hyperplane arrangement $\mathcal{A}_{\mathbf{R}}$ is a finite set of hyperplanes in $V_{\mathbf{R}}$. Each hyperplane $H \in \mathcal{A}$ is the kernel of a polynomial α_{H} of degree 1. The product $Q(\mathcal{A})=\prod_{H \in \mathcal{A}} \alpha_{H}$ is called a defining polynomial of \mathcal{A}. Let

$$
\begin{aligned}
\Theta_{\mathcal{A}}=\left\{\eta \in \theta_{l}: \eta(Q(\mathcal{A})) \in\right. & (Q(\mathcal{A})) \\
& :(Q(\mathcal{A})) \text { is ideal generated by } Q(\mathcal{A})\}
\end{aligned}
$$

$\Theta_{\mathcal{A}}^{\circ}$ is the submodule of $\Theta_{\mathcal{A}}$ given by the vector fields that are zero at zero.
If each $H \in \mathcal{A}$ contains the origin, we call \mathcal{A} a central arrangement. Then $V_{\mathcal{A}}=\bigcup_{H \in \mathcal{A}} H$ is defined by homogeneous polynomial $Q(\mathcal{A}) . \Theta_{V_{\mathcal{A}}}=$ $\Theta_{\mathcal{A}}$ and $\Theta_{V_{\mathcal{A}}}^{\circ}=\Theta_{\mathcal{A}}^{\circ}$. Moreover we always choose homogeneous generators for $\Theta_{\mathcal{A}}$ and $\Theta_{\mathcal{A}}^{\circ}$ by Lemma 3.2 of [2].

Corollary 3.4 Let

(a) \mathcal{A} be a central arrangement, $\Theta_{\mathcal{A}}^{\circ}$ has a system of generators consisting of l homogeneous elements $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{l}\right\}$;
(b) $f:\left(\mathbf{R}^{n}, 0\right) \longrightarrow(\mathbf{R}, 0)$ be a homogeneous function;
(c)

$$
N_{\mathcal{R}_{V_{\mathcal{A}}}} f(x)=\sum_{i=1}^{l}\left(d f\left(\zeta_{i}\right)\right)^{2} \geq c|x|^{\alpha}
$$

for some constants c and α.
Then deformations of f defined by

$$
f_{t}(x)=f(x)+t \Theta(x),
$$

with $\operatorname{degree}(\Theta) \geq \operatorname{degree}(f)+p$, for all $t \in[0,1]$ and $p>1$, are $C^{p}-$ $\mathcal{R}_{V_{\mathcal{A}}}$-trivial.

This proof is obvious.
4. Estimates for the degree of $C^{l}-\mathcal{K}_{V}$-determinacy of weighted homogeneous function germs on a class of weighted homogeneous real analytic varieties

First we give some basic notations. (see [3]) The contact group \mathcal{K} consists of pair of germs of diffeomorphisms (H, h) with $H:\left(\mathbf{R}^{n+p}, 0\right) \rightarrow$ $\left(\mathbf{R}^{n+p}, 0\right)$ and $h:\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{n}, 0\right)$ such that
(1) $H \circ i=i \circ h$ for $i(x)=(x, 0)$ and
(2) $\pi \circ H=h \circ \pi$ for $\pi(x, y)=x$.
such an H acts on $\mathcal{O}_{n, p}$ by $(h(x), H \cdot f(x))=H(x, f(x))($ i.e. grap $(H \cdot f)=$ $H(\operatorname{grap}(f)))$

Let $(V, 0)$ be the germ of a real subvariety of \mathbf{R}^{p} defined by a finitely generated ideal I of \mathcal{O}_{p}. The group \mathcal{K}_{V} is the subgroup of \mathcal{K} consisting of elements $(H, h) \in \mathcal{K}$ such that $H\left(\mathbf{R}^{n} \times V\right)=\mathbf{R}^{n} \times V$. It is a geometric subgroup of \mathcal{K} in the sense of ref. [11]. In particular, if $V=\{0\}$ then this is just contact equivalence.

We say that f and g are \mathcal{K}_{V}-equivalent if there is an element $(H, h) \in$ \mathcal{K}_{V} such that $(H, h) \cdot f=g$, where the action is that of contact equivalence.

The function $h:\left(\mathbf{R}^{n} \times \mathbf{R}, 0\right) \longrightarrow(\mathbf{R}, 0)$ is $k-C^{l}-\mathcal{K}_{V^{-}}$-determined iff for all $g:\left(\mathbf{R}^{n} \times \mathbf{R}, 0\right) \longrightarrow(\mathbf{R}, 0)$ with the same k-jet as h the germs h and g are $C^{l}-\mathcal{K}_{V}$-equivalent.

In the real analytic case,

$$
\begin{equation*}
T \mathcal{K}_{V, e}=\theta_{n} \oplus \mathcal{O}_{x, y}\left\{\zeta_{i}\right\} \tag{3}
\end{equation*}
$$

where $\left\{\zeta_{i}\right\}$ a set of generators for Θ_{V}.

$$
\left.T \mathcal{K}_{V}=\mathcal{M}_{x} \cdot \theta_{n} \oplus \mathcal{O}_{x, y}\left\{\zeta_{i}\right\}\right)
$$

Moreover

$$
\begin{aligned}
& T \mathcal{K}_{V, e} \cdot f=\mathcal{O}_{x}\left\{\frac{\partial f}{\partial x_{i}}\right\}+\mathcal{O}_{x}\left\{\zeta_{i} \circ f\right\} \\
& T \mathcal{K}_{V} \cdot f=\mathcal{M}_{x}\left\{\frac{\partial f}{\partial x_{i}}\right\}+\mathcal{O}_{x}\left\{\zeta_{i} \circ f\right\}
\end{aligned}
$$

Definition 4.1 Θ_{V} is called free if Θ_{V} is a free module over \mathcal{O}_{y}.
Lemma 4.2 Let $(V, 0)$ be the germ of an real subvariety of \mathbf{R}^{p} defined by a weighted homogeneous polynomial g. If Θ_{V} be free, then it has a basis consisting of p weighted homogeneous elements.
Proof. We can always choose weighted homogeneous generators $\left\{\zeta_{i}\right\}$ for Θ_{V} (see [2] or [11]).

Let r be the rank of the free \mathcal{O}_{y}-module Θ_{V}. Note that

$$
g \theta_{p} \subset \Theta_{V} \subset \theta_{p}
$$

Since θ_{p} contains the p linearly independent elements $\partial / \partial y_{1}, \ldots, \partial / \partial y_{p}$, and $g \theta_{p}$ contains the p linearly independent elements $g\left(\partial / \partial y_{1}\right), \ldots, g\left(\partial / \partial y_{p}\right)$, it follows from Proposition A, 3(1) of ref. [7] that $p \leq r \leq p$.
Definition 4.3 If $\zeta \in \theta_{p}$, then $\zeta=\sum_{j=1}^{p} \zeta_{j}(y)\left(\partial / \partial y_{j}\right)$. Given vector fields $\zeta_{1}, \ldots, \zeta_{p} \in \theta_{p}$, define the coefficient matrix $M\left(\zeta_{1}, \ldots, \zeta_{p}\right)=\left(\zeta_{i j}(y)\right)$.

If $f:\left(\mathbf{R}^{n}, 0\right) \longrightarrow\left(\mathbf{R}^{p}, 0\right)$ is a weighted homogeneous polynomial map germ of type $\left(r_{1}, \ldots, r_{n} ; w_{1}, \ldots, w_{p}\right)$, we define

$$
N_{\mathcal{C}, V} f=\sum_{i=1}^{p}\left(\sum_{j=1}^{p}\left(\zeta_{i j} \circ f\right)^{2}\right)
$$

and define $N_{\mathcal{R}} f=\sum_{I} M_{I}^{2}$, where each M_{I} is a $p \times p$ minor of the Jacobean matrix of $f, I=\left(i_{1}, \ldots, i_{p}\right) \subset(1, \ldots, n)$.

We observe that for each $p \times p$ minor M_{I}, there is an s_{I} such that M_{I} is weighted homogeneous of type $\left(r_{1}, \ldots, r_{n} ; s_{I}\right)$.

Let $N_{\mathcal{R}}^{*} f$ be defined by $N_{\mathcal{R}}^{*} f=\sum_{I} M_{I}^{2 \beta_{I}}$, where $\beta_{I}=k / s_{I}, k=$ l.c.m. $\left(s_{I}\right)$. Then $N_{\mathcal{R}}^{*} f$ is a weighted homogeneous control function of type $\left(r_{1}, \ldots, r_{n} ; 2 k\right)$.

For deformations f_{t} of f defined by $f_{t}(x)=f(x)+t \Theta(x), \Theta=\left(\Theta_{1}, \ldots\right.$, Θ_{p}), we define the control $N_{\mathcal{R}}^{*} f_{t}$ by $N_{\mathcal{R}}^{*} f_{t}=\sum_{I} M_{t_{I}}^{2 \beta_{I}}$, where $M_{t_{I}}$ are the $p \times p$ minors of Jacobean matrix $J_{f_{t}}$ of f_{t} and β_{I} are same as above. If f_{t} is weighted homogeneous of same type as f, then $N_{\mathcal{R}}^{*} f_{t}$ is weighted homogeneous of type $\left(r_{1}, \ldots, r_{n} ; 2 k\right)$ for all t. If $f_{t}(x)=f(x)+t \Theta(x)$ and $f i l\left(\Theta_{i}\right) \geq d_{i}$, it follows that $\operatorname{fil}\left(N_{\mathcal{R}}^{*} f_{t}\right) \geq \operatorname{fil}\left(N_{\mathcal{R}}^{*} f\right)$.

Theorem 4.4 Let
(a) V be a weighted homogeneous subvariety of $\left(\mathbf{R}^{p}, 0\right)$, which is defined by a weighted homogeneous polynomial g;
(b) Θ_{V} a free \mathcal{O}_{y}-module, $\zeta_{1}, \ldots, \zeta_{p}$ be a basis of weighted homogeneous of type $\left(w_{1}, \ldots, w_{p} ; d_{1}, \ldots, d_{p}\right)$, with $d_{1} \leq d_{2} \leq \cdots \leq d_{p}$, for Θ_{V}, where

$$
\zeta_{i}=\sum_{j=1}^{p} \zeta_{i j}(y) \frac{\partial}{\partial y_{j}}=\sum_{j=1}^{p} \zeta_{i j} \frac{\partial}{\partial y_{j}}
$$

and $\zeta_{i j}$ are weighted homogeneous polynomials of type $\left(w_{1}, \cdots, w_{p} ; d_{i}+\right.$ $\left.w_{j}\right)$;
(c) $f:\left(\mathbf{R}^{n}, 0\right) \longrightarrow\left(\mathbf{R}^{p}, 0\right)$ a weighted homogeneous polynomial map germ of type $\left(r_{1}, \ldots, r_{n} ; w_{1}, \ldots, w_{p}\right)$ with $r_{1} \leq r_{2} \leq \cdots \leq r_{n}, w_{1} \leq w_{2} \leq$ $\cdots \leq w_{p} ;$
(d) $N_{\mathcal{K}, V} f=N_{\mathcal{C}, V} f+N_{\mathcal{R}} f \geq c|x|^{\alpha}$, for some constants c and α.

Then deformations of f defined by

$$
f_{t}(x)=f(x)+t \Theta(x), \quad \Theta=\left(\Theta_{1}, \ldots, \Theta_{p}\right)
$$

with $\operatorname{fil}\left(\Theta_{i}\right) \geq d_{i}+w_{p}+l r_{n}+1$, for all $i, t \in[0,1]$ and $l>1$ are $C^{l}-$ \mathcal{K}_{V}-trivial.

Remark Condition (b) is satisfied by Lemma 4.2.
Proof. We firstly define vector fields ν_{1} and W_{R} in following (1) and (2). (1) Let

$$
N_{\mathcal{C}, V}^{*} f=\sum_{i=1}^{p}\left(\sum_{j=1}^{p}\left(\zeta_{i j} \circ f\right)^{2 \beta_{i j}}\right)
$$

where $\zeta_{i j} \circ f$ is a weighted homogeneous polynomial of type $\left(r_{1}, \ldots, r_{n} ; d_{i}+\right.$
$\left.w_{j}\right), \beta_{i j}=k_{1} /\left(d_{i}+w_{j}\right)$ and $k_{1}=$ l.c.m. $\left\{d_{i}+w_{j} \mid 1 \leq i \leq p, 1 \leq i \leq p\right\}$.
Let

$$
N_{\mathcal{C}, V}^{*} f_{t}=\sum_{i=1}^{p}\left(\sum_{j=1}^{p}\left(\zeta_{i j} \circ f_{t}\right)^{2 \beta_{i j}}\right)
$$

where each $\beta_{i j}$ is the same as above. Now

$$
\begin{aligned}
N_{\mathcal{C}, V}^{*} f_{t} \cdot \frac{\partial f_{t}}{\partial t} & =\sum_{i=1}^{p}\left(\sum_{j=1}^{p}\left(\zeta_{i j} \circ f_{t}\right)^{2 \beta_{i j}-1} \cdot \frac{\partial f_{t}}{\partial t} \cdot \zeta_{i j} \circ f_{t}\right) \\
& =\sum_{i=1}^{p}\left(\sum_{j=1}^{p}\left(\zeta_{i j} \circ f_{t}\right)^{2 \beta_{i j}-1} \cdot \frac{\partial f_{t}}{\partial t} \cdot f_{t}^{*}\left(\zeta_{i j}\right)\right)
\end{aligned}
$$

We define

$$
W_{i j}(x, t)=\left(\zeta_{i j} \circ f_{t}\right)^{2 \beta_{i j}-1} \cdot \frac{\partial f_{t}}{\partial t},
$$

then we have

$$
N_{\mathcal{C}, V}^{*} f_{t} \frac{\partial f_{t}}{\partial t}=\sum_{i=1}^{p}\left(\sum_{j=1}^{p} W_{i j}(x, t) \cdot f_{t}^{*}\left(\zeta_{i j}\right)\right)
$$

and

$$
\begin{aligned}
\operatorname{fil}\left(W_{i j}(x, t)\right) & =\operatorname{fil}\left(\left(\zeta_{i j} \circ f_{t}\right)^{2 \beta_{i j}-1} \cdot \frac{\partial f_{t}}{\partial t}\right) \\
& \geq\left(d_{i}+w_{j}\right)\left(2 \beta_{i j}-1\right)+d_{i}+w_{p}+l r_{n}+1 \\
& =2 k_{1}-d_{i}-w_{j}+d_{i}+w_{p}+l r_{n}+1 \\
& \geq 2 k_{1}+l r_{n}+1
\end{aligned}
$$

Let

$$
\nu_{1}:\left(\mathbf{R}^{n} \times \mathbf{R}^{p} \times \mathbf{R}, 0\right) \longrightarrow\left(\mathbf{R}^{n} \times \mathbf{R}^{p} \times \mathbf{R}, 0\right)
$$

be the vector field defined by $\left(0, V_{p}, 0\right)$, where $V_{p}=\sum_{i=1}^{p} \sum_{j=1}^{p} W_{i j} \zeta_{i j}$.
We can show ν_{1} belong to $T \mathcal{K}_{V}$ when $y \neq 0$. Since

$$
\begin{aligned}
& \left(\zeta_{i j} \circ f_{t}\right)^{2 \beta_{i j}-1} \cdot \frac{\partial f_{t}}{\partial t} \cdot \zeta_{i j} \\
& =\left(\left(\zeta_{i j} \circ f_{t}\right)^{2 \beta_{i j}-1} \cdot\left(\frac{\partial f_{t}}{\partial t}\right)_{1} \cdot \zeta_{i j}, \ldots,\left(\zeta_{i j} \circ f_{t}\right)^{2 \beta_{i j}-1} \cdot\left(\frac{\partial f_{t}}{\partial t}\right)_{p} \cdot \zeta_{i j}\right)
\end{aligned}
$$

Let

$$
\left\{\begin{array}{c}
\left(\zeta_{i j} \circ f_{t}\right)^{2 \beta_{i j}-1} \cdot\left(\frac{\partial f_{t}}{\partial t}\right)_{1} \cdot \zeta_{i j}=b_{1} \zeta_{11}(y)+b_{2} \zeta_{21}(y)+\cdots+b_{p} \zeta_{p 1}(y) \\
\vdots \\
\vdots \\
\left(\zeta_{i j} \circ f_{t}\right)^{2 \beta_{i j}-1} \cdot\left(\frac{\partial f_{t}}{\partial t}\right)_{p} \cdot \zeta_{i j}=b_{1} \zeta_{1 p}(y)+b_{1} \zeta_{2 p}(y)+\cdots+b_{1} \zeta_{p p}(y)
\end{array}\right.
$$

Because Θ_{V} is free, it implies $\operatorname{det} M\left(\zeta_{1}, \ldots, \zeta_{p}\right) \neq 0$ over the $\operatorname{ring} \mathcal{O}_{y}$, where

$$
M\left(\zeta_{1}, \ldots, \zeta_{p}\right)=\left(\begin{array}{cccc}
\zeta_{11}(y) & \cdots & \cdots & \zeta_{p 1}(y) \\
\vdots & & & \vdots \\
\zeta_{1 p}(y) & \cdots & \cdots & \zeta_{p p}(y)
\end{array}\right)
$$

By Crammer's rule, that

$$
(\operatorname{Det} M) b_{k} \in\left(\mathcal{O}_{y}\left(\frac{\partial f_{t}}{\partial t}\right)_{1}+\cdots+\mathcal{O}_{y}\left(\frac{\partial f_{t}}{\partial t}\right)_{p}\right)\left(\zeta_{i j} \circ f_{t}\right)^{2 \beta_{i j}-1} \cdot \zeta_{i j}
$$

Therefore if $y \neq 0$, then $b_{k} \in \mathcal{O}_{x, y},(k=1, \ldots, p)$ so that $\nu_{1} \in T \mathcal{K}_{V}$.
(2) We construct the vector field $W_{R}:\left(\mathbf{R}^{n}, 0\right) \longrightarrow\left(\mathbf{R}^{n}, 0\right)$ as in the proof of the Proposition 2.2. of [10] ([9] for more details)

We observe that for each $p \times p$ minor M_{I} of the Jacobean matrix J_{f} of $f, I=\left(i_{1}, i_{2}, \ldots, i_{p}\right) \subset(1,2, \ldots, n)$, there is an s_{I} such that M_{I} is weighted homogeneous of type $\left(r_{1}, \ldots, r_{n} ; s_{I}\right)$.
Let $N_{\mathcal{R}}^{*} f$ be defined by $N_{\mathcal{R}}^{*} f=\sum_{I} M_{I}^{2 \alpha_{I}}$, where $2 \alpha_{I}=k / s_{I}$ and $k=$ l.c.m. $\left(s_{I}\right)$. Then, $N_{\mathcal{R}}^{*} f$ is a weighted homogeneous control function of type $\left(r_{1}, r_{2}, \ldots, r_{n} ; 2 k\right)$.

For deformations f_{t} of f, we define the control $N_{\mathcal{R}}^{*} f_{t}$ by $N_{\mathcal{R}}^{*} f=\sum_{I} M_{t_{I}}^{2 \alpha_{I}}$, where $M_{t_{I}}$ are the $p \times p$ minor of $J_{f_{t}}$, and the α_{I} are the same as above.

Now there exists a vector field W_{I} associated to $M_{t_{I}}$, such that $\left(\partial f_{t} / \partial t\right) M_{t_{I}}=d f_{t}\left(W_{I}\right)$, where

$$
W_{I}=\sum_{i=1}^{n} u_{i} \frac{\partial}{\partial x_{i}}, \text { with: } \begin{cases}u_{i}=0, & i \bar{\epsilon} I \\ u_{i_{m}}=\sum_{j=1}^{p} N_{j i_{m}}\left(\frac{\partial f_{t}}{\partial t}\right)_{j}, & i_{m} \in I\end{cases}
$$

and $N_{j i_{m}}$ is the $(p-1) \times(p-1)$ minor cofactor of $\partial f_{t j} / \partial x_{i_{m}}$ in $\left(d f_{t}\right)_{x}$.

Then

$$
\begin{equation*}
\frac{\partial f_{t}}{\partial t} N_{\mathcal{R}}^{*} f_{t}=\left(d f_{t}\right)_{x}\left(W_{R}\right), \tag{*}
\end{equation*}
$$

where $W_{R}=\left(\sum_{I} M_{t_{I}}^{2 \alpha_{I}-1}\right) u_{i}\left(\partial / \partial x_{i}\right)$.
(3) To find a $C^{l}-\mathcal{K}_{V}$-equivalence between f and f_{t}, we consider the following unfolding of the graph of f

$$
\begin{aligned}
F:\left(\mathbf{R}^{n} \times \mathbf{R}, 0\right) & \longrightarrow\left(\mathbf{R}^{n} \times \mathbf{R}^{p} \times \mathbf{R}, 0\right) \\
(x, t) & \longmapsto\left(x, f_{t}(x), t\right), \quad t \in[0,1] .
\end{aligned}
$$

We aim to find C^{l} retractions h and k of $\mathrm{id}_{\mathbf{R}^{n} \times 0}$ and $\operatorname{id}_{\mathbf{R}^{n} \times \mathbf{R}^{p} \times 0}$ respectively, such that the following diagram commutes:

where

$$
\begin{aligned}
k\left(\mathbf{R}^{n} \times V \times \mathbf{R}\right) & =\mathbf{R}^{n} \times V \\
& ; \pi_{\mathbf{R}^{n} \times \mathbf{R}} \text { and } \pi_{\mathbf{R}^{n}} \text { are the canonical projections. }
\end{aligned}
$$

If we can do so, then

$$
\begin{aligned}
& h_{1}:\left(\mathbf{R}^{n}, 0\right) \longrightarrow\left(\mathbf{R}^{n}, 0\right) \text { defined by } h_{1}=h(x, 1) \text { and } \\
& k_{1}:\left(\mathbf{R}^{n} \times \mathbf{R}^{p} \times 0\right) \longrightarrow\left(\mathbf{R}^{n} \times \mathbf{R}^{p} \times 0\right) \\
& \quad \text { defined by } k_{1}(x, y)=k(x, y, 1),
\end{aligned}
$$

will give a $C^{l}-\mathcal{K}_{V}$-equivalence between f and f_{t}.
We shall construct h and k in neighborhood of $t=0$ as follows:
Firstly we need to define the control function $N_{\mathcal{K}, V}^{*} f$ by $N_{\mathcal{K}, V}^{*} f=$ $\left(N_{\mathcal{R}}^{*} f\right)^{\lambda}+\left(N_{\mathcal{C}, V}^{*} f\right)^{\mu}$ where λ and μ are constants such that $N_{\mathcal{K}, V}^{*} f$ is weighted homogeneous.

For deformations f_{t} of f, we define the control $N_{\mathcal{K}, V}^{*} f_{t}$ by $N_{\mathcal{K}, V}^{*} f_{t}=$ $N_{\mathcal{R}}^{*} f_{t}^{\lambda}+N_{\mathcal{C}, V}^{*} f_{t}^{\mu}$ where λ and μ are the same as above. By condition (d), there exist some constants a, c and β such that

$$
N_{\mathcal{K}, V}^{*} f \geq a\left(N_{\mathcal{K}, V} f\right)^{\beta} \geq a c|x|^{\alpha \beta} .
$$

From Lemma 2.4, similarly to the proof of Lemma 3.2, we obtain that there exist constants c_{3} and c_{4} such that:

$$
c_{3} \rho_{k}(x, y) \leq N_{\mathcal{K}, V}^{*} f_{t} \leq c_{4} \rho_{k}(x, y)
$$

where k is the weight of $N_{\mathcal{K}, V}^{*} f_{t}$.
Now

$$
N_{\mathcal{K}, V}^{*} f_{t} \frac{\partial f_{t}}{\partial t}=\left(\left(N_{\mathcal{R}}^{*} f_{t}\right)^{\lambda}+\left(N_{\mathcal{C}, V}^{*} f_{t}\right)^{\mu}\right) \frac{\partial f_{t}}{\partial t}
$$

By (*),

$$
\left(N_{\mathcal{R}}^{*} f_{t}\right)^{\lambda} \frac{\partial f_{t}}{\partial t}=d f_{t}\left(\left(N_{\mathcal{R}}^{*} f_{t}\right)^{\lambda-1} W_{R}\right)
$$

By (\diamond)

$$
\left(N_{\mathcal{C}, V}^{*} f_{t}\right)^{\mu} \frac{\partial f_{t}}{\partial t}=\sum_{i=1}^{p}\left(\sum_{j=1}^{p}\left(N_{\mathcal{C}, V}^{*} f_{t}\right)^{\mu-1} W_{i j}(x, t) \cdot f_{t}^{*}\left(\zeta_{i j}\right)\right)
$$

So we obtain

$$
\begin{aligned}
\frac{\partial f_{t}}{\partial t}= & d f_{t}\left[\frac{\left(N_{\mathcal{R}}\right)^{*} f_{t}^{\lambda-1} W_{R}}{N_{\mathcal{K}, V}^{*} f_{t}}\right] \\
& +\left[\frac{\sum_{i=1}^{p}\left(\sum_{j=1}^{p}\left(N_{\mathcal{C}, V}^{*} f_{t}\right)^{\mu-1} W_{i j}(x, t) \cdot f_{t}^{*}\left(\zeta_{i j}\right)\right)}{N_{\mathcal{K}, V}^{*} f_{t}}\right] \quad(\star \star \star)
\end{aligned}
$$

To complete the proof, it remains to find germs of C^{l} vector fields

$$
\xi:\left(\mathbf{R}^{n} \times \mathbf{R}, 0\right) \longrightarrow\left(\mathbf{R}^{n} \times \mathbf{R}, 0\right) \quad \pi_{\mathbf{R}} \circ \xi=\frac{\partial}{\partial t}, \pi_{\mathbf{R}^{n}} \circ \xi(0, t)=0
$$

and

$$
\eta:\left(\mathbf{R}^{n} \times \mathbf{R}^{p} \times \mathbf{R}, 0\right) \longrightarrow\left(\mathbf{R}^{n} \times \mathbf{R}^{p} \times \mathbf{R}, 0\right)
$$

such that ξ is a lift for η over F, that is $d F(\xi)=\eta \circ F$.
So let

$$
\xi(x, t)=-\frac{\left(N_{\mathcal{R}}^{*} f_{t}\right)^{\lambda-1} W_{R}}{N_{\mathcal{K}, V}^{*} f_{t}}+\frac{\partial}{\partial t}
$$

and

$$
\eta(x, y, t)=\frac{\left(N_{\mathcal{R}}^{*} f_{t}\right)^{\lambda-1} W_{R}}{N_{\mathcal{K}, V}^{*} f_{t}}+\frac{\left(N_{\mathcal{C}, V}^{*} f_{t}\right)^{\mu-1} \nu_{1}}{N_{\mathcal{K}, V}^{*} f_{t}}+\frac{\partial}{\partial t}
$$

Then

$$
d F(\xi)=\left(-\frac{\left(N_{\mathcal{R}}^{*} f_{t}\right)^{\lambda-1} W_{R}}{N_{\mathcal{K}, V}^{*} f_{t}}, d f_{t}\left(-\frac{\left(N_{\mathcal{R}}^{*} f_{t}\right)^{\lambda-1} W_{R}}{N_{\mathcal{K}, V}^{*} f_{t}}\right)+\frac{\partial f_{t}}{\partial t}, \frac{\partial}{\partial t}\right) .
$$

From equation $(\star \star \star)$, it follows that $d F(\xi)=\eta \circ F$.
By ($\left(\star\right.$) and Lemma 2.5, ξ and η are class C^{l}.
Moreover

$$
-\frac{\left(N_{\mathcal{R}}^{*} f_{t}\right)^{\lambda-1} W_{R}}{N_{\mathcal{K}, V}^{*} f_{t}} \in \theta_{n} \subset T \mathcal{K}_{V}
$$

and

$$
\frac{\left(N_{\mathcal{R}}^{*} f_{t}\right)^{\lambda-1} W_{R}}{N_{\mathcal{K}, V}^{*} f_{t}}+\frac{\left(N_{\mathcal{C}, V}^{*} f_{t}\right)^{\mu-1} \nu_{1}}{N_{\mathcal{K}, V}^{*} f_{t}} \in T \mathcal{K}_{V}
$$

The vector fields $\xi(x, t)$ and $\eta(x, y, t)$ are clearly integrable, hence they determine C^{l}-diffeomorphisms H and K in $\left(\mathbf{R}^{n} \times \mathbf{R}, 0\right)$ and $\left(\mathbf{R}^{n} \times \mathbf{R}^{p} \times\right.$ $\mathbf{R}, 0)$ respectively.

The properties of $\xi(x, t)$ and $\eta(x, y, t)$ imply that $\pi_{\mathbf{R}^{n}} \circ H=h$ and $\pi_{\mathbf{R}^{n} \times \mathbf{R}^{p}} \circ K=k$ are the desired retractions. It implies the $C^{l}-\mathcal{K}$-triviality of the family f_{t} in a neighborhood of $t=0$. Since the same argument in a neighborhood of $t=\bar{t}$, for $t \in[0,1]$, the proof is complete.

Remark This Theorem generalizes a result of M.A.S. Ruas and M.J. Saia (Proposition 2.5 of [10]).

Corollary 4.5 (Proposition 2.5 of [10]) Let
(a) $f:\left(\mathbf{R}^{n}, 0\right) \longrightarrow\left(\mathbf{R}^{p}, 0\right)$ be a weighted homogeneous polynomial map germ of type $\left(r_{1}, \ldots, r_{n} ; w_{1}, \ldots, w_{p}\right)$ with $r_{1} \leq r_{2} \leq \cdots \leq r_{n}, w_{1} \leq$ $w_{2} \leq \cdots \leq w_{p} ;$
(b) $V=\{0\}$ be a weighted homogeneous subvariety which is defined by the ideal \mathcal{M}_{p};
(c) Θ_{V} be free \mathcal{O}_{y}-module, $\left(y_{1} \cdot\left(\partial / \partial y_{1}\right), \ldots, y_{p} \cdot\left(\partial / \partial y_{p}\right)\right)$ be a basis of weighted homogeneous of type $\left(w_{1}, \ldots, w_{p} ; 0, \ldots, 0\right)$ for Θ_{V};
(d)

$$
N_{\mathcal{K},\{0\}} f=N_{\mathcal{C},\{0\}} f+N_{\mathcal{R}} f=N_{\mathcal{C}} f+N_{\mathcal{R}} f \geq c|x|^{\alpha},
$$

for constants c and α.

Then deformations of f defined by

$$
f_{t}(x)=f(x)+t \Theta(x), \quad \Theta=\left(\Theta_{1}, \ldots, \Theta_{p}\right)
$$

with $\operatorname{fil}\left(\Theta_{i}\right) \geq w_{p}+l r_{n}+1$, for all $i, t \in[0,1]$ and $l>1$ are $C^{l}-$ trivial.
Proof. Since $V=\{0\}, \Theta_{V}=\mathcal{O}_{y}\left\{y_{i}\left(\partial / \partial y_{i}\right)\right\}$ and it is free. $\left\{y_{i}\left(\partial / \partial y_{i}\right)\right\}$ is a basis for Θ_{V} so that

$$
N_{\mathcal{C},\{0\}}^{*} f=\sum_{i=1}^{p} f_{i}^{2 \beta_{i}},
$$

where $\beta_{i}=k / w_{i}$ and $k=$ l.c.m. $\left(w_{i}\right)$. By Theorem 4.4, the proof is complete.

Acknowledgment The authors thanks the referee for his/her careful reading and very useful comments which improved the final version of this paper.

References

[1] Damon J., The unfolding and determinacy theorems for subgroups of \mathcal{A} and \mathcal{K}. Proceedings of Sym. in Pure Math. vol. 40, (1983), Part 1.
[2] Damon J., On the freeness of equisingular deformations of plane curve singularities. Topology and its Application 118 (2002), 31-43.
[3] Damon J., Deformations of sections of singularities and Gorenstein surface singularities. Amer. Jour. of Math. 109 (1987), 695-722.
[4] Damon J., Topological invariants of μ-constant deformations of complete intersection singularities. Oxford Quart. Jour. 158 (19), 139-160.
[5] Damon J., Topological triviality and versality for subgroups of \mathcal{A} and \mathcal{K}. Memoirs Amer. Math. Soc. vol. 75, no. 389, (1988).
[6] Damon J. and Gaffney T., Topological triviality of deformations of functions and Newton filtrations. Inv. Math. 72 (1983), 335-358.
[7] Orlik P. and Terao H., Arrangement of hyperplanes. Spring-Verlag, Berlin Heidelberg, 1992.
[8] Paunescu L., A weighted version of the Kuiper-Kuo-Bochnack-Lojasiewics Theorem. J. Algebraic Geometry 2 (1993), 66-79.
[9] Ruas M.A.S., On the degree of C^{l}-determinacy. Math. Scand. 59 (1986), 59-70.
[10] Ruas M.A.S. and Saia M.J., C^{l}-determinacy of weighted homogeneous germs. Hokkaido Math. J. 26 (1997), 89-99.
[11] Ruas M.A.S. and Tomazella J.N., Topological triviality of families of functions on analytic varieties. Nagoya Math. J. 175 (2004), 39-50.
H. Liu

School of Mathematics and Statistics
Wuhan University
Wuhan, 430072. P.R. of China
E-mail: jwluan@whu.edu.cn
D. Zhang

School of Mathematics and Statistics Wuhan University
Wuhan, 430072. P.R. of China
E-mail: zhangdm@whu.edu.cn

[^0]: 2000 Mathematics Subject Classification : 58A35.
 This work was supported by the National Nature Science Foundation of China under grant, No. 10671009, No. 60534080.

