A note on hemivariational inequalities

S. NANDA

(Received April 17, 2006)

Abstract

The purpose of this note is to establish some uniqueness results for hemivariational inequality.

Key words: hemivariational inequality, nonlinear operators, strongly monotone, Lipschitz.

1. Introduction

Verma [2] considered the following problem:
Let C be a closed subset of a reflexive Banach space X which is star-shaped with respect to a ball $B\left(u_{0} \rho\right)$. Let $g \in X^{*}, A, B: X \rightarrow X^{*}$ be nonlinear operators. Then the problem is to find $u \in C$ such that

CNHVI: $\quad[(A-B) u-g, \vartheta] \geq 0 \quad \forall \vartheta \in T_{c}(u)$, where $T_{c}(u)$ is the Clarke's tangent cone at u of C.

$$
\begin{aligned}
& T_{c}(x)=\left\{\vartheta \in X:\left\lfloor\vartheta, z^{*}\right\rfloor \leq 0 \quad \forall z^{*} \in N_{c}(x)\right\} \\
& N_{c}(x)=\left\{x^{*} \in X^{*}:\left\lfloor x, x^{*}\right\rfloor \leq 0\right\} .
\end{aligned}
$$

Verma proved (see Verma [2]: Theorem 4.1) that CNHVI has at least one solution under certain conditions which include the operator A strongly monotone and B strongly Lipschitz.

2. Results

We observe
Theorem 1 CNHVI has at most one solution if A is strongly monotone with constant $a>0$ and B strongly Lipschitz with constant $c \geq 0$.

In other words under the conditions of Theorem 4.1 of Verma [2], CNHVI has unique solution.

[^0]Proof. Assume to the contrary that u_{1} and u_{2} are two solutions. Then we have

$$
\begin{array}{ll}
{\left[(A-B) u_{1}-g, \vartheta\right] \geq 0} & \forall \vartheta \in T_{c}\left(u_{1}\right) \\
{\left[(A-B) u_{2}-g, \vartheta\right] \geq 0} & \forall \vartheta \in T_{c}\left(u_{2}\right) \tag{2}
\end{array}
$$

Taking $\vartheta=u_{1}$ in (2) and $\vartheta=u_{2}$ in (1)

$$
\begin{aligned}
& {\left[(A-B) u_{1}-g, u_{2}\right] \geq 0} \\
& {\left[(A-B) u_{2}-g, u_{1}\right] \geq 0}
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\left[(A-B) u_{1}-(A-B) u_{2}, u_{1}-u_{2}\right] \leq 0 \tag{3}
\end{equation*}
$$

since A is strongly monotone and B is strongly Lipschitz, we have $A-B$ is strongly monotone and

$$
\begin{equation*}
\left[(A-B) u_{1}-(A-B) u_{2}, u_{1}-u_{2}\right] \geq(a+c)\left\|u_{1}-u_{2}\right\|^{2} \tag{4}
\end{equation*}
$$

Now (3) cannot happen because of (4) and hence the result follows.
We now state another inequality as follows:

$$
\begin{equation*}
[(A-B) u-g, u] \geq(a+c)\|u-\vartheta\|^{2} \quad \forall \vartheta \in T_{c}(u) \tag{5}
\end{equation*}
$$

We have
Theorem 2 If A is strongly monotone and B is strongly Lipschitz, then u satisfies CNHVI iff u satisfies (5).

Proof. Given that A is strongly monotone with constant $a>0$ and B is strongly Lipschitz with constant $c \geq 0$. Therefore

$$
[(A-B) u-(A-B) \vartheta, u-\vartheta] \geq(a+c)\|u-\vartheta\|^{2}
$$

Therfore

$$
\begin{aligned}
{[(A-B) \vartheta, u-\vartheta]+(a+c)\|u-\vartheta\|^{2} } & \leq[(A-B) u, u-\vartheta] \\
& \leq[g, u-\vartheta] \quad \text { by CHNVI. }
\end{aligned}
$$

Now changing the role of u and ϑ

$$
\begin{aligned}
& {[(A-B) u, \vartheta-u]+(a+c)\|u-\vartheta\|^{2} \leq[g, \vartheta-u] } \\
\Rightarrow & {[(A-B) u-g, \vartheta-u]+(a+c)\|u-\vartheta\|^{2} \leq 0 }
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow[(A-B) u-g, u] & \geq[(A-B) u-g, \vartheta]+(a+c)\|u-\vartheta\|^{2} \\
& \geq(a+c)\|u-\vartheta\|^{2}
\end{aligned}
$$

Hence (5) holds.
We observe that
Theorem 3 The problem in Lemma 7.11 in Naniewiez and Panagistopoulos [1] has unique solution. The formal statement is as follows:
Let A be strongly monotone with constant $m>0, f: V=\operatorname{dom} A \rightarrow R a$ locally Lipschitz function which satisfies relaxed monotonicity condition

$$
\left(u^{*}-\vartheta^{*}, v-\vartheta\right) \geq-a\|u-\vartheta\|^{2}, \forall u, \vartheta \in V
$$

for $u^{*} \epsilon f(u), \vartheta \in f(\vartheta)$ with $a>0, a<m$. Then the problem: find $\vartheta \epsilon V$ st

$$
(A u-g, \vartheta-u)+f^{0}(u, \vartheta-u) \geq 0 \quad \forall \vartheta \epsilon V
$$

has a unique solution.
Proof. Existence was proved by Naniewicz and Panagietopoulos [1] in Lemma 7.11. We only prove the uniqueness.
Suppose u_{1} and u_{2} are two solutions. then

$$
\begin{aligned}
& \left(A u_{1}-g, \vartheta-u_{1}\right)+f^{0}\left(u_{1}, \vartheta-u_{1}\right) \geq 0 \\
& \left(A u_{2}-g, \vartheta-u_{2}\right)+f^{0}\left(u_{2}, \vartheta-u_{2}\right) \geq 0
\end{aligned}
$$

Putting $\vartheta=u_{2}$ and $\vartheta=u_{1}$ successively, we get

$$
\begin{align*}
& \left(A u_{1}-g, u_{2}-u_{1}\right)+f^{0}\left(u_{1}, u_{2}-u_{1}\right) \geq 0 \tag{6}\\
& \left(A u_{2}-g, u_{1}-u_{2}\right)+f^{0}\left(u_{2}, u_{1}-u_{2}\right) \geq 0
\end{align*}
$$

i.e.

$$
\begin{equation*}
\left(-A u_{2}+g, u_{2}-u_{1}\right)+f^{0}\left(-u_{2}, u_{2}-u_{1}\right) \geq 0 \tag{7}
\end{equation*}
$$

Adding (6) and (7) we get

$$
\left(A u_{1}-A u_{2}, u_{2}-u_{1}\right)+f^{0}\left(u_{1}, u_{2}, u_{2}-u_{1}\right) \geq 0
$$

\Rightarrow

$$
\left(A u_{2}-A u_{1}, u_{2}-u_{1}\right)+f^{0}\left(u_{2}, u_{1}, u_{2}-u_{1}\right) \leq 0
$$

This constant m, f is relaxed monotone with constant a and $a<m$. This completes the proof.

Theorem 4 Under the conditions of Theorem 3, the HVI

$$
(A u-g, \vartheta-u) \geq(m-a)\|u-\vartheta\|^{2}
$$

Proof. Suppose

$$
(A u-g, \vartheta-u)+f^{0}(u, \vartheta-u) \geq 0
$$

By the hypothesis,

$$
(A u-A \vartheta, u-\vartheta) \geq m\|u-\vartheta\|^{2}
$$

and

$$
f^{0}(u-\vartheta, u-\vartheta) \geq-a\|u-\vartheta\|^{2}
$$

Therefore,

$$
\begin{aligned}
& (m-a)\|u-\vartheta\|^{2} \\
\leq & (A u-A \vartheta, u-\vartheta)+f^{0}(u-\vartheta, u-\vartheta) \\
= & (A u-g, u-\vartheta)+f^{0}(u, u-\vartheta)-(A \vartheta-g, u-\vartheta)-f^{0}(\vartheta, u-\vartheta) \\
= & -(A u-g, \vartheta-u)+f^{0}(\vartheta, \vartheta-u) \\
& +(A \vartheta-g, \vartheta-u)-f^{0}(u, \vartheta-u) \\
\Rightarrow & (A \vartheta-g, \vartheta-u)+f^{0}(\vartheta, \vartheta-u) \\
\geq & (A u-g, \vartheta-u)+f^{0}(u, \vartheta-u)+(m-a)\|u-\vartheta\|^{2} \\
\geq & (m-a)\|u-\vartheta\|^{2}
\end{aligned}
$$

References

[1] Naniewciz Z. and Panagistopoulos P.D., Mathematical theory of Hemi Variational Inequalities. Mercel Dekker.
[2] Verma R.U., Nonlinear Variational and constained Hemivariational Inequalities Involving Relaxed operators. ZAMM. (5) 77 (1997), 387-391.

Department of Mathematics Indian Institute of Technology
Kharagpur-721302
E-mail: snanda@maths.iitkgp.ernet.in

[^0]: 2000 Mathematics Subject Classification : 90C30.

