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Abstract. It is shown that, for each inclusion of ergodic discrete measured equivalence

relations, the commensurability can be characterized in terms of measure theoretical ar-

guments. As an application, we also include a measure theoretical proof concerning a

property of the commensurability groupoid which determines the commensurability in

terms of operator algebras. It is proven that a family of typical elements in the commen-

surability groupoid is closed under the product operation. This proof supplements a gap

in the proof of [2, Lemma 7.5].

Key words: measured equivalence relation, commensurablility subrelation, choice func-

tions, Cartan subalgebra.

1. Introduction

Let S ⊆ R be an inclusion of ergodic discrete measured equivalence
relations on a standard probability space (X, µ). As applications of the
group theory, we can consider two notions for this inclusion–the normality
and the commensurability.

The normality of equivalence relations is defined by the index cocycles
([3, Definition 2.1]). It is known that the normality of S in R is equivalent to
the existence of a 1-cocycle on R to a countable group whose kernel coincides
with S ([3, Theorem 2.2]). In [2], the author and T. Yamanouchi succeeded
in characterizing this property in terms of operator algebras. They showed
that the subrelation S is normal in R if and only if the corresponding factor
W ∗(R) is generated by the normalizing groupoid of the subfactor W ∗(S) in
W ∗(R) ([2, Theorem 5.11]).

On the other hand, to determine the commensurability, they further
defined the commensurability groupoid for each inclusion of factors. They
say that the subrelation S is commensurable in R if W ∗(R) is generated
by the commensurability groupoid of W ∗(S) in W ∗(R) ([2, Theorem 7.11]).
This means that their definition of the commensurability depends on the
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theory of operator algebras.
So it is natural to seek a characterization of the commensurability in

terms of measure theoretical arguments. Our aim of this paper is to give
such a characterization (Theorem 3.7).

The idea for our characterization is to count the number of orbits for
each inclusion of equivalent classes S(x) := {y ∈ X : (x, y) ∈ S} ⊆ R(x) :=
{y ∈ X : (x, y) ∈ R} of x ∈ X. In fact, we define the index Φ(ρ) for each
measurable nonsingular map ρ whose graph is contained in R. Roughly,
the index Φ(ρ) is the number of S-equivalent classes in S(ρ(S(x))) :=∪

y∈S(x)∩Dom(ρ) S(ρ(y)) (Lemma 3.3). We will show that the index Φ(ρ) is
determined by the corresponding projection with an operator valued weight
(Proposition 3.4). It follows that the commensurability subrelation is con-
structed by countable elements in Φ−1(N).

Moreover, as an application of our arguments, we shall give a measure
theoretical proof of [2, Lemma 7.5] (Corollary 3.6). We note that although
their claim is valid, there exists a gap in their proof. So our complete proof
will justify all the rest of arguments in [2].

We also develop the theory of choice functions. We will show that the
commensurability coincides with the existence of choice functions which
have remarkable properties (Theorem 3.8). This result is a generalization
of a characterization of normality by choice functions in [3, Theorem 2.2].

The author would like to thank Professor Takehiko Yamanouchi for
many helpful discussions. He is also grateful to the referee for many useful
comments about earlier versions of the paper.

2. Preparation

In this section, we summarize basic facts about the theory of measured
equivalence relations with the corresponding von Neumann algebras. Fur-
ther details for these matters can be found in [1], [2], [3] and [4].

Let R be a discrete measured equivalence relation on a standard prob-
ability space (X, µ) with a normalized 2-cocycle ω, the left-hand projection
πl, the left counting measure ν and the Radon-Nikodym derivative δ. A
measurable map ϕ on X is called nonsingular if ϕ−1(E) is a null set for
each null set E in X. We denote by [R]∗ the groupoid of R. Namely,
each ϕ ∈ [R]∗ is a bimeasurable nonsingular map from a measurable subset
Dom(ϕ) of X onto a measurable subset Im(ϕ) of X such that the graph
Γ(ϕ) := {(x, ϕ(x)) : x ∈ Dom(ρ)} is contained in R up to a null set. We
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denote the equivalent class {y ∈ X : (x, y) ∈ R} by R(x) for each x ∈ X.
Since R is discrete, each R(x) is a countable set.

For each suitable function f on R, we can consider a bounded operator
Lω(f) on L2(R, ν) which is defined by the following:

Lω(f)ξ(x, z) :=
∑

y∈R(x)

f(x, y)ξ(y, z)ω(x, y, z), (ξ ∈ L2(R, ν)).

We denote the set of all such bounded operators by W ∗(R, ω). It is
known that ξ0 := χD is a cyclic and separating vector for W ∗(R, ω) in
L2(R, ν), where D := {(x, x) : x ∈ X} and χS is in general the character-
istic function of a set S. For each discrete measured equivalence subrela-
tion S of R, the subset {Lω(f) ∈ W ∗(R, ω) : supp(f) ⊆ S} of W ∗(R, ω)
is denoted by W ∗(S, ω). It is known that W ∗(S, ω) is a von Neumann
subalgebra of W ∗(R, ω). In particular, the diagonal algebra W ∗(X) :=
{L(g) : g ∈ L∞(X)} is called a Cartan subalgebra of W ∗(R, ω), where
L(g) ∈ W ∗(R, ω) acts on L2(R, ν) by the following:

L(g)ξ(x, z) := g(x)ξ(x, z), (ξ ∈ L2(R, ν)).

For each ρ ∈ [R]∗, we define an element vρ in W ∗(R, ω) by the following:

vρ := Lω(fρ), fρ(x, y) := δ(x, y)−1/2χΓ(ρ)(x, y).

A direct calculation shows that each vρ belongs to the normalizing groupoid
GN (W ∗(X)) of W ∗(X) in W ∗(R, ω). We recall that, for an inclusion of
von Neumann algebras B ⊆ A, the normalizing groupoid GN (B) of B in A

is defined by the following:

GN (B) := {v ∈ A : v is a partial isometry,

vv∗, v∗v ∈ B, vBv∗ = vv∗Bvv∗}.

It is known that W ∗(R, ω) is generated by GN (W ∗(X)). Moreover, for each
v ∈ W ∗(R, ω), v is in GN (W ∗(X)) if and only if v is of the form L(g)vρ,
where ρ ∈ [R]∗ and g is a measurable function on Dom(ρ) of absolute value
one.

Suppose that S is an equivalence subrelation of an ergodic discrete
measured equivalence relation R. A countable functions {ϕi}i∈I are called
choice functions if R(x) is a disjoint union of S-equivalent classes {S(ϕi(x))}i∈I

for a.e. x ∈ X. For each choice functions {ϕi}i∈I , we define a 1-cocycle σ
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from R to the permutation group ΣI of I by the following rule:

σ(x, y)(i) = j if (ϕj(x), ϕi(y)) ∈ S.

We call σ the index cocycle determined by {ϕi}i∈I . The equivalence sub-
relation S is called normal in R if the restriction of the index cocycle σ to
S cobounds. It is known that S is normal in R if and only if there exist
choice functions {ϕi}i∈I with the index cocycle σ such that S coincides with
Ker(σ), i.e., (ϕi(x), ϕi(y)) is in S for each i ∈ I and a.e. (x, y) ∈ S ([3,
Theorem 2.2]).

In the rest of this section, we assume that S is ergodic. Set (D ⊆
B ⊆ A) := (W ∗(X) ⊆ W ∗(S, ω) ⊆ W ∗(R, ω)). By [2, Theorem 5.16],
there exists the largest intermediate subrelation NR(S) of S ⊆ R such that
S is normal in NR(S). We call NR(S) the normalizer of S in R. It is
known that the normalizing groupoid GN (B) of B in A is contained in the
intermediate subfactor W ∗(NR(S), ω), and W ∗(NR(S), ω) is generated by
GN (B) ∩ GN (D).

Furthermore, we denote the unique faithful normal conditional expec-
tation from A onto B by EB with the Jones projection eB and the basic
extension A1 := A ∨ {eB}. The inclusion B ⊆ A is called discrete if the
map ÊB|A1∩B′ is semifinite, where ÊB is the operator valued weight dual
to EB. It is known that the inclusion B ⊆ A is discrete if and only if there
exist minimal projections {en}∞n=1 in A1 ∩ B′ which satisfies

∑∞
n=1 en = 1

and ÊB(en) < ∞ for all n ∈ N (see [4]).
For each Lω(f)∈A, the projection zLω(f) from L2(R,ν) onto [BLω(f)Bξ0]

belongs to A1 ∩ B′, where [S] in general stands for the closed subspace
spanned by a set S. For each measurable nonsingular map ρ satisfying
Γ(ρ) ⊆ R up to a null set, we define a projection zρ in A1 ∩ B′ by the
following:

zρ :=
∨

{zvθ
: θ ∈ [R]∗, Γ(θ) ⊆ Γ(ρ)}.

We note that zρ coincides with zvρ if ρ is in [R]∗. Moreover, we get the
following

Proposition 2.1 Let the notations be as above. For each Lω(f) ∈ A, the
projection zLω(f) is equal to

∨
{zρ : ρ ∈ [R]∗, Γ(ρ) ⊆ supp(f)}. In particular,

zLω(f) is equal to χEf
, where

Ef := {(x, y) : ∃ρ ∈ [R]∗ s.t. Γ(ρ) ⊆ supp(f) and y ∈ S(ρ(S(x)))}.
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Proof. Put p :=
∨
{zρ : ρ ∈ [R]∗, Γ(ρ) ⊆ supp(f)}. A direct computation

shows that zLω(f) contains χsupp(f1∗f∗f2) if both Lω(f1) and Lω(f2) belong
to B. In particular, zLω(f) contains χΓ(ρ) if Γ(ρ) ⊆ supp(f). So we obtain
zρ ≤ zLω(f), and p ≤ zLω(f).

If zLω(f) − p > 0, then there exists ψ ∈ [R]∗ such that 0 < χΓ(ψ) ≤
zLω(f) − p. Since χΓ(ψ) is contained in zLω(f), there exist Lω(f1), Lω(f2) ∈
B such that supp(f1 ∗ f ∗ f2) ∩ Γ(ψ) is not a null set. Since A is generated
by GN (D), there exists a sequence {f0,n}∞n=1 in the linear span of GN (D)
such that Lω(f1 ∗ f0,n ∗ f2) converges to Lω(f1 ∗ f ∗ f2) in the sense of the
strong operator topology. This means that there exists ρ ∈ [R]∗ such that
supp(f1 ∗ fρ ∗ f2) ∩ Γ(ψ) is not a null set. Moreover, since GN (D) ∩ B

generates B, by using the same arguments, there exist θ1, θ2 ∈ [S]∗ such
that supp(fθ1 ∗ fρ ∗ fθ2) ∩ Γ(ψ) is not a null set. Hence there exists a
measurable non-null subset F of Dom(ψ) such that Γ(ψ|F ) is contained in
supp(fθ1 ∗ fρ ∗ fθ2) = Γ(θ2 ◦ ρ ◦ θ1). It follows that zρ|Im(θ1)

contains χΓ(ψ|F ).
This contradicts the assumption pχΓ(ψ) = 0. So we conclude that zLω(f) is
equal to p.

The last assertion follows from the fact that zρ is equal to χEρ for each
ρ ∈ [R]∗, where Eρ := {(x, y) : x ∈ X, y ∈ S(ρ(S(x)))}. Indeed, there ex-
ists a countable subset {θn}∞n=1 of [S]∗ such that

∪∞
n=1 Γ(θn) is equal to S up

to a null set. Since the orbit S(ρ(S(x))) is equal to
∪∞

n1,n2=1 θn2(ρ(θn1(x)))
for a.e. x ∈ X, we have that Eρ coincides with a union of {Γ(θn2 ◦ ρ ◦
θn1)}∞n1,n2=1 up to a null set. In particular, Eρ is measurable. Moreover, for
each θn1 , θn2 ∈ [S]∗, we have

Γ(θn2 ◦ ρ ◦ θn1) = supp(fθn1
∗ fρ ∗ fθn2

) ⊆ [BvρBξ0].

This yields χEρ ≤ zρ. The converse inequality holds because Γ(ρ) is con-
tained in Eρ and χEρ belongs to A1 ∩ (GN (D) ∩ B)′ = A1 ∩ B′.

Therefore we get the conclusion. ¤

We define the commensurability groupoid CG(B) of B in A by the
following:

CG(B) := {v ∈ A : v is a partial isometry,

vv∗, v∗v ∈ B, ÊB(zv), ÊB(zv∗) < ∞}.

By [1, Corollary 3.5], there exists an intermediate subrelation CommR(S)
of S ⊆ R such that CG(B) generates W ∗(CommR(S), ω). The subrelation
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CommR(S) is called the commensurability subrelation of S in R. The
subrelation S is called commensurable in R if CommR(S) is equal to R.

By [2, Theorem 7.9] and [2, Theorem 7.11], we have that W ∗(CommR(S),
ω) is generated by CG(B) ∩ GN (D), and the inclusion B ⊆ A is discrete if
and only if S is commensurable in R.

3. Characterizations of the commensurability

For our purpose, we first introduce a notion of index for each measurable
nonsingular map whose graph is contained in the equivalence relation.

Let R be an ergodic discrete measured equivalence relation on (X, µ)
and S be an equivalence subrelation of R with choice functions {ϕi}i∈I . For
each measurable nonsingular map ρ satisfying µ(Dom(ρ)) > 0 and Γ(ρ) ⊆
R up to a null set, we define a function Φρ from Dom(ρ) to N ∪ {∞} by
the following:

Φρ(x) := |{i ∈ I : ρ(S(x)) ∩ S(ϕi(ρ(x))) 6= ∅}|,

where |S| in general stands for the cardinality of a set S.
We note that the function Φρ does not depend on the choice of {ϕi}i∈I .

Moreover, we get the following

Lemma 3.1 Under the above setting, Φρ is a measurable SDom(ρ)-invariant
function, where SDom(ρ) := S ∩ Dom(ρ) × Dom(ρ).

Proof. By [1, Lemma 2.3], there exists a countable subset {θn}∞n=1 of [S]∗
such that S is equal to a disjoint union of {Γ(θn)}∞n=1 up to a null set. For
each n ∈ N, we have

Φ−1
ρ ({k ∈ N : k ≥ n})

=
∪

i1, ..., in∈I
il 6=im(l 6=m)

n∩
k=1

∞∪
p,q=1

πl

(
Γ(ρ ◦ θp) ∩ Γ(θq ◦ ϕik ◦ ρ)

)
.

Since each Γ(ρ ◦ θp)∩ Γ(θq ◦ ϕik ◦ ρ) is a measurable subset of R, Φ−1
ρ ({k ∈

N : k ≥ n}) is also measurable, i.e., Φρ is a measurable function.
Moreover, for a.e. (x, y) ∈ SDom(ρ), we have ρ(S(x)) = ρ(S(y)) and

S(ϕi(ρ(x))) = S(ϕσ(ρ(y), ρ(x))(i)(ρ(y))) for each i ∈ I. This yields Φρ(x) =
Φρ(y).

So we complete the proof. ¤
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Hence, under the condition that the subrelation S is ergodic, for each
such measurable map ρ, the function Φρ is constant on Dom(ρ) up to a null
set. Namely, we have the following

Definition 3.2 Suppose that S is an ergodic equivalence subrelation of
R. For each measurable nonsingular map ρ satisfying µ(Dom(ρ)) > 0 and
Γ(ρ) ⊆ R up to a null set, there exists a unique number n in N∪{∞} such
that Φ−1

ρ ({n}) is conull in Dom(ρ). The number n is called the index of ρ

in S and denoted by Φ(ρ).

We note that, by using Lemma 3.1, Φ(ρ ◦ θ) is equal to Φ(ρ) for each
measurable nonsingular map θ satisfying Im(θ) = Dom(ρ) and Γ(θ) ⊆ S up
to null sets. Moreover, the index Φ(ρ) is, in a sense, equal to the number of
S-equivalent classes. Namely, we have the following

Lemma 3.3 Under the above situation, the following are equivalent:
(1) The index Φ(ρ) is equal to n ∈ N.
(2) There exist a measurable non-null subset E of Dom(ρ) and n elements

{ik}n
k=1 in I which satisfy the following for all x ∈ E:

ρ(S(x)) ∩ S((ϕik ◦ ρ)(x)) 6= ∅ (k = 1, . . . , n),

ρ(S(x)) ⊆
n∪

k=1

S((ϕik ◦ ρ)(x)).

(3) There exist a measurable non-null subset E of Dom(ρ) and measurable
nonsingular maps {ρk}n

k=1 on E which satisfy the following for all x ∈
E:

Γ(ρk) ⊆ R (k = 1, . . . , n),

(ρk1(x), ρk2(x)) 6∈ S (k1 6= k2),

S(ρ(S(x))) =
n∪

k=1

S(ρk(x)).

Proof. (1) ⇒ (2): Since the set of finite subsets of I is countable, there
exists a measurable non-null subset E0 of Dom(ρ) and n elements {ik}n

k=1

in I such that ρ(S(x)) ∩ S(ϕik(ρ(x))) is not empty for each x ∈ E0 and
k = 1, . . . , n. Put E1 := {x ∈ E0 : ρ(S(x)) 6⊆

∪n
k=1 S(ϕik(ρ(x))}. It is easy

to check that E1 is measurable. We claim that E1 is a null set. Indeed,
if E1 were non-null, then, by the definition of the choice functions {ϕi}i∈I ,
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there exist i0 ∈ I \ {ik}n
k=1 and a measurable non-null subset F of E1 such

that ρ(S(x))∩S(ϕi0(ρ(x))) is not empty for each x ∈ F . This yields Φ(ρ) ≥
n + 1, a contradiction. Hence E := E0 \ E1 and {ik}n

k=1 satisfy the desired
properties.
(2) ⇒ (3): By the definition of the choice functions, there exist a measur-
able non-null subset E′ of E and a subset {i′k}n

k=1 of I such that ((ϕik ◦
ρ)(x), ϕi′k

(x)) belongs to S for each k = 1, . . . , n and x ∈ E′. It follows
that ρ(S(x)) is contained in

∪n
k=1 S(ϕi′k

(x)), and ρ(S(x))∩S(ϕi′k
(x)) is not

empty for each x ∈ E′. So we conclude that S(ρ(S(x))) is equal to a disjoint
union of {S(ϕi′k

(x))}n
k=1 for each x ∈ E′. Hence E′ and {ϕi′k

}n
k=1 satisfy

the desired properties.
(3) ⇒ (1): By using the same arguments, there exist a measurable non-
null subset E′ of E and a subset {ik}n

k=1 of I such that ((ϕik ◦ ρ)(x), ρk(x))
belongs to S for each k = 1, . . . , n and x ∈ E′. It follows that ρ(S(x)) is
contained in

∪n
k=1 S((ϕik ◦ρ)(x)) and ρ(S(x))∩S((ϕik ◦ρ)(x)) is not empty

for each x ∈ E′. This means that the index Φ(ρ) is equal to n.
So we get the conclusion. ¤

In what follows, we assume that S is an ergodic equivalence subrela-
tion of R and ω is a 2-cocycle on R. Set (D ⊆ B ⊆ A) := (W ∗(X) ⊆
W ∗(S, ω) ⊆ W ∗(R, ω)). We will characterize the index Φ(ρ) in terms of
operator algebras.

Proposition 3.4 For each measurable nonsingular map ρ satisfying
µ(Dom(ρ)) > 0 and Γ(ρ) ⊆ R up to a null set, the index Φ(ρ) of ρ co-
incides with ÊB(zρ). Moreover, if Φ(ρ) is finite, then there exists a finite
number of measurable non-null subsets {Fk}m

k=1 of Dom(ρ) which satisfy
ρ|Fk

∈ [R]∗ (k = 1, . . . , m), zρ =
∑m

k=1 zρ|Fk
and Φ(ρ) =

∑m
k=1 Φ(ρ|Fk

).

Proof. We first prove when Φ(ρ) is finite. Put n := Φ(ρ). Since S is ergodic,
by a standard maximal argument, there exists a measurable nonsingular
map θ0 on X \ Dom(ρ) such that Γ(θ0) ⊆ S and Im(θ0) ⊆ Dom(ρ) up to a
null set. We define a measurable nonsingular map θ on X by the following:

θ(x) =

{
x x ∈ Dom(ρ),

θ0(x) x ∈ X \ Dom(ρ).

We can easily check that θ satisfies Γ(θ) ⊆ S and Im(θ) = Dom(ρ) up to
null sets. This yields Φ(ρ ◦ θ) = Φ(ρ) = n.
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We claim that there exists a measurable function g from X×{1, . . . , n}
to I which satisfies ρ(S(x)) ⊆

∪n
k=1 S(ϕg(x,k)((ρ ◦ θ)(x))) and ρ(S(x)) ∩

S(ϕg(x,k)((ρ ◦ θ)(x))) 6= ∅ for a.e. x ∈ X. Indeed, by renumbering, we may
and do assume that I is equal to {m ∈ N : m < M} for some M ∈ N∪{∞}.
For each x ∈ X and k = 1, . . . , n, we define an element g(x, k) in I by the
following:

g(x, k)

:= min
{
m ∈ I : |{i ≤ m : ρ(S(x))∩S(ϕi((ρ◦θ)(x))) 6= ∅}| = k

}
.

A direct computation shows that the function g has the desired properties.
Put ρk(x) := ϕg(x,k)(ρ ◦ θ(x)) for each k = 1, . . . , n and x ∈ X. It is

easy to check that {ρk}n
k=1 are measurable and satisfy the following for a.e.

x ∈ X:

(x, ρk(x))∈Eρ, (3.1)

(ρk1(x), ρk2(x)) 6∈ S (k1 6= k2). (3.2)

On the other hand, for each k = 1, . . . , n, there exists a measurable parti-
tion {Fk,m}∞m=1 of X such that each ρk|Fk,m

belongs to [R]∗. Put vk,m :=
vρk|Fk,m

. By (3.1), we have that vk,meBv∗k,m is a projection onto [vk,mBξ0]
and majorized by zρ = χEρ for each k = 1, . . . , n and m ∈ N. We claim
that {vk,meBv∗k,m}k,m are mutually orthogonal projections. Indeed, by using
(3.2), we have

vk1,m1eBv∗k1,m1
vk2,m2eBv∗k2,m2

= vk1,m1EB(v∗k1,m1
vk2,m2)eBv∗k2,m2

= 0,

for k1 6= k2. On the other hand, for each k = 1, . . . , n, we have v∗k,m1
vk,m2 =

0 if m1 6= m2. Thus our claim has been proven. Put

p :=
n∑

k=1

∞∑
m=1

vk,meBvk,m.

It is easy to check that p is a projection which satisfies the following:

p ≤ zρ, ÊB(p) =
n∑

k=1

∞∑
m=1

vk,mv∗k,m = n. (3.3)

We claim that p is equal to zρ. Indeed, if zρ−p is not equal to 0, then there
exists ψ ∈ [R]∗ such that 0 < χΓ(ψ) ≤ zρ − p. It follows that there exists a
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subset {ik}n
k=1 of I such that F ′ := {x ∈ X : g(x, k) = ik (k = 1, . . . , n)} ∩

Dom(ψ) is not a null set. This means that the equation ρk(x) = ϕik((ρ ◦
θ)(x)) holds for each x ∈ F ′ and k = 1, . . . , n. On the other hand, since
ψ(x) is in S((ρ ◦ θ)(S(x))) for each x ∈ F ′, we have that there exists a
measurable non-null subset F of F ′ and k ∈ {1, . . . , n} such that ψ(x)
belongs to S(ρk(x)) for each x ∈ F . So we get pχΓ(ψ) ≥ zρk|F χΓ(ψ) > 0, a
contradiction. Hence we conclude that ÊB(zρ) is equal to n.

Moreover, by using the same arguments as in the proof of Proposi-
tion 2.1, for each measurable non-null subsets F1, F2 of Dom(ρ), the follow-
ing equation holds up to a null set:

Eρ|F1∪F2
=

∞∪
n1,n2=1

Γ(θn2 ◦ ρ|F1∪F2 ◦ θn1)

=
∪

j=1,2

∞∪
n1,n2=1

Γ(θn2 ◦ ρ|Fj ◦ θn1) = Eρ|F1
∪ Eρ|F2

,

where {θn}∞n=1 ⊆ [S]∗ satisfies S =
∪∞

n=1 Γ(θn) up to a null set. It follows
that, for each measurable non-null subset F of Dom(ρ) such that Eρ\Eρ|F is
a non-null set, there exists a measurable non-null subset F ′ of Dom(ρ) such
that Eρ|F ′ does not intersect Eρ|F up to a null set. Since ÊB(χEρ) = n < ∞
and ÊB(χEρ|F

) ∈ N for each measurable non-null subset F of Dom(ρ), we
conclude that there exist a finite number of measurable non-null subsets
{Fk}m

k=1 of Dom(ρ) which satisfy ρ|Fk
∈ [R]∗ and Eρ is a disjoint union of

{Eρ|Fk
}m

k=1 up to a null set. It follows that zρ is equal to
∑m

k=1 zρ|Ek
. This

yields

Φ(ρ) = ÊB(χEρ) =
m∑

k=1

ÊB(zρ|Ek
) =

m∑
k=1

Φ(ρ|Ek
).

So the second half assertion follows.
Secondly, suppose that Φ(ρ) is equal to ∞. By using the same argu-

ments, we have that there exists a projection p which satisfies (3.3) for each
n ∈ N. This means that ÊB(zρ) is also equal to ∞.

So we complete the proof. ¤

We shall next show that the set Φ−1(N) is closed under the composition.
We note that this claim is equivalent to [2, Lemma 7.5]. But their proof
contains a gap. So we will give a complete proof for the claim. We emphasize



A remark on the commensurability 555

that the gap in the proof of [2, Lemma 7.5] do not influence any other
arguments in [2].

Proposition 3.5 Suppose that ρ1 and ρ2 are measurable nonsingular
maps satisfying Γ(ρk) ⊆ R up to a null set for k = 1, 2, and µ(Im(ρ2) ∩
Dom(ρ1)) > 0. Then the inequality Φ(ρ1 ◦ ρ2) ≤ Φ(ρ1)Φ(ρ2) holds.

Proof. It suffices to show when both Φ(ρ1) and Φ(ρ2) are finite and Im(ρ2)
is contained in Dom(ρ1). Put nk := Φ(ρk) for k = 1, 2. By using Lemma 3.3,
for k = 1, 2, there exist a measurable non-null subset Ek of Dom(ρk) and a
subset {ik,p}nk

p=1 of I such that the following inclusion holds for each x ∈ Ek:

ρk

(
S(x)

)
⊆

nk∪
p=1

S
(
(ϕik,p

◦ ρk)(x)
)
.

On the other hand, since S is ergodic, for each q = 1, . . . , n2, there ex-
ists a measurable nonsingular map θq which satisfies Dom(θq) ⊇ Im(ϕi2,q),
Im(θq) ⊆ E1 and Γ(θq) ⊆ S up to null sets. Hence we have the following
inclusion for a.e. x ∈ E2:

(ρ1 ◦ ρ2)
(
S(x)

)
⊆ ρ1

( n2∪
q=1

S(θq(ϕi2,q(ρ2(x))))
)

⊆
n1∪

p=1

n2∪
q=1

S
(
(ϕi1,p ◦ ρ1 ◦ θq ◦ ϕi2,q ◦ ρ2)(x)

)
.

Moreover, by the definition of the choice functions, for each i1,p, i2,q ∈ I

and a.e. x ∈ E2, there exists a unique element i in I such that
(
(ϕi1,p ◦ ρ1 ◦

θq ◦ϕi2,q ◦ρ2)(x), (ϕi ◦ρ1 ◦ρ2)(x)
)

is in S. Since both ϕi1,p ◦ρ1 ◦θq ◦ϕi2,q ◦ρ2

and ϕi ◦ ρ1 ◦ ρ2 are measurable and I is countable, there exist a measurable
non-null subset E3 of E2 with a subset {ik}n1n2

k=1 of I such that (ρ1◦ρ2)(S(x))
is contained in

∪n1n2
k=1 S

(
(ϕik ◦ ρ1 ◦ ρ2)(x)

)
for each x ∈ E3. Now, we define

a natural number n3 by the following:

n3 := |{k : (ρ1 ◦ ρ2)(S(x)) ∩ S((ϕik ◦ ρ1 ◦ ρ2)(x)) 6= ∅
(for a.e. x ∈ E3)}|.

By using Lemma 3.3 again, we obtain Φ(ρ1◦ρ2) = n3 ≤ n1n2 = Φ(ρ1)Φ(ρ2).
Thus we are done. ¤
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Corollary 3.6 ([2, Lemma 7.5]) The subset CG(B) ∩ GN (D) is closed
under the product operation.

Proof. Suppose that vi is in CG(B)∩GN (D) for i = 1, 2. We may and do
assume that v1v2 is not equal to 0. By assumption, for i = 1, 2, there exists
ρi ∈ [R]∗ such that vi is equal to L(gi)vρi , where gi is a measurable function
on Dom(ρi) of absolute value one. This means that the equations zvi = zvρi

(i = 1, 2) and zv1v2 = zρ2◦ρ1 hold. By Proposition 3.4 and Proposition 3.5,
we get

ÊB(zv1v2) = ÊB(zρ2◦ρ1) = Φ(ρ2 ◦ ρ1) ≤ Φ(ρ2)Φ(ρ1)

= ÊB(zv2)ÊB(zv1) < ∞.

By using the same argument, we also get ÊB(z(v1v2)∗) ≤ ÊB(zv∗
1
)ÊB(zv∗

2
) <

∞. So we conclude that v1v2 also belongs to CG(B) ∩ GN (D). ¤

We are now in a position to prove our main theorem.

Theorem 3.7 Suppose that S ⊆ R is an inclusion of ergodic discrete mea-
sured equivalence relations. Fix a countable subset {ρn}∞n=1 of [R]∗ satisfying
R =

∪∞
n=1 Γ(ρn) up to a null set. Then there exists countable measurable

subsets {En,m}∞n,m=1 and {Fn,m}∞n,m=1 of X such that the two intermedi-
ate subrelations–the normalizer and the commensurability subrelation–are
expressed as follows up to null sets:

NR(S) =
∞∪

n,m=1

Γ(ρn|En,m), Φ(ρn|En,m) = Φ((ρn|En,m)−1) = 1,

CommR(S) =
∞∪

n,m=1

Γ(ρn|Fn,m), Φ(ρn|Fn,m), Φ((ρn|Fn,m)−1) < ∞.

Proof. By using a standard maximal argument, for each n ∈ N, there exist
countable disjoint measurable subsets {F ′

n,m}∞m=1 of Dom(ρn) which satisfy
the following:
• Φ(ρn|F ′

n,m
) < ∞ for all m ∈ N.

• If a measurable subset F of Dom(ρn) satisfies Φ(ρn|F ) < ∞, then F is
contained in

∪∞
m=1 F ′

n,m up to a null set.
By the construction of {F ′

n,m}∞n,m=1, we have that, if ρ ∈ [R]∗ satisfies
Φ(ρ) < ∞, then Γ(ρ) is contained in

∪∞
n,m=1 Γ(ρn|F ′

n,m
) up to a null set.

In particular,
∪∞

n,m=1 Γ(ρn|F ′
n,m

) contains the diagonal set D up to a null
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set. By using the same argument, for each n, m ∈ N, there exist countable
disjoint measurable subsets {Fn,m,l}∞l=1 of F ′

n,m which satisfy the following:
• Φ((ρn|Fn,m,l

)−1) < ∞ for all l ∈ N.
• If a measurable subset F of F ′

n,m satisfies Φ((ρn|F )−1) < ∞, then F is
contained in

∪∞
l=1 Fn,m,l up to a null set.

By renumbering, we may and do assume that {Fn,m,l}∞m,l=1 is equal to
{Fn,m}∞m=1 for each n ∈ N. Set P :=

∪∞
n,m=1 Γ(ρn|Fn,m). By the con-

struction of {Fn,m}∞n,m=1, we have that both Φ(ρn|Fn,m) and Φ((ρn|Fn,m)−1)
are finite for each n, m ∈ N, and the following equation holds up to a null
set:

∞∪
m=1

Γ(ρn|Fn,m) =
∞∪

m=1

Γ(ρn|F ′
n,m

) ∩
∞∪

n,m=1

Γ((ρn|F ′
n,m

)−1).

It follows that the equation

P =
∞∪

n,m=1

Γ(ρn|F ′
n,m

) ∩
∞∪

n,m=1

Γ((ρn|F ′
n,m

)−1)

holds up to a null set. On the other hand, by Proposition 3.5,
∞∪

n,m=1

Γ(ρn|F ′
n,m

)

satisfies the transitivity up to a null set. Hence P is an equivalence subre-
lation of R. Moreover, by Proposition 3.4, we have that each vρn|Fn,m

is in
CG(B). So P is contained in CommS(R) up to a null set. Conversely, by the
definition of {F ′

n,m}∞n,m=1 we have that, for each ρ ∈ [R]∗ satisfying Φ(ρ),
Φ(ρ−1) < ∞, Γ(ρ) is contained in P up to a null set. By Proposition 3.4
again, it follows that W ∗(P, ω) contains CG(B) ∩ GN (D). So we conclude
that W ∗(P, ω) contains W ∗(CommR(S), ω) and P is equal to CommR(S)
up to a null set.

By using the same arguments, for each n, m ∈ N, there exist a mea-
surable subsets {E′

n,m}∞n,m=1 and {En,m}∞n,m=1 which satisfy the following:
• Φ(ρn|E′

n,m
) = 1 for all n, m ∈ N.

• If ρ∈ [R]∗ satisfies Φ(ρ)=1, then Γ(ρ) is contained in
∪∞

n,m=1Γ(ρn|E′
n,m

)
up to a null set.

• Φ(ρn|En,m) = Φ((ρn|En,m)−1) = 1 for all n, m ∈ N.
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• The equation
∞∪

n,m=1

Γ(ρn|En,m) =
∞∪

n,m=1

Γ(ρn|E′
n,m

) ∩
∞∪

n,m=1

Γ((ρn|E′
n,m

)−1)

holds up to a null set.
By Proposition 3.5 again, the subset

T :=
∞∪

n,m=1

Γ(ρn|E′
n,m

) ∩
∞∪

n,m=1

Γ((ρn|E′
n,m

)−1)

is an equivalence subrelation of R. By the definition of Φ, for each ρ ∈ [R]∗,
the equation Φ(ρ) = 1 holds if and only if ρ(S(x)) is contained in S(ρ(x)) for
a.e. x ∈ Dom(ρ). So we have that each vρn|En,m

is in GN (B) and W ∗(T , ω)
contains GN (B) ∩ GN (D). It follows that the normalizer NR(S) is equal
to

∪∞
n,m=1 Γ(ρn|En,m) up to a null set.
Therefore we get the conclusion. ¤

We conclude this paper with a characterization of commensurability by
choice functions.

Theorem 3.8 Let S ⊆ R be an inclusion of ergodic discrete measured
equivalence relation–subrelation on (X, µ) with a 2-cocycle ω. Put (B ⊆
A) := (W ∗(S, ω) ⊆ W ∗(R, ω)). Then S is commensurable in R if and
only if there exist choice functions {ϕi}i∈I for S ⊆ R which satisfies the
following:
(1) There exist a countable set J and natural numbers {nj}j∈J such that

the index set I is equal to {(j, n) : j ∈ J, n = 1, . . . , nj}.
(2) The index Φ(ϕj,n) is equal to nj for each (j, n) ∈ I.
(3) For each (j, n) ∈ I and a measurable non-null subset F of X,

S(ϕj,n(S(x))) is equal to S(ϕj,n|F (S(x))) for a.e. x ∈ X. Namely,
each zϕj,n is a minimal projection in A1 ∩ B′.

(4) For each j ∈ J and n, m ∈ {1, . . . , nj}, S(ϕj,n(S(x))) is equal to
S(ϕj,m(S(x))) for a.e. x ∈ X. Namely, zϕj,n coincides with zϕj,m.

(5) If j1 6= j2, then S(ϕj1, m1(S(x))) and S(ϕj2, m2(S(x))) are disjoint for
a.e. x ∈ X. Namely, zϕj1,m1

zϕj2,m2
is equal to 0.

Proof. Suppose that there exist choice functions {ϕi}i∈I which satisfy the
above properties. Since R(x) is equal to a disjoint union of {S(ϕj,1(x))}j∈J

for a.e. x ∈ X, we have that {zϕj,1}j∈J are the partition of the unity satis-
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fying ÊB(zϕj,1) = nj < ∞. It follows that the inclusion B ⊆ A is discrete,
and S is commensurable in R.

Conversely, if S is commensurable in R, then there exists a count-
able partition {Rj}j∈J of R such that {χRj}j∈J are minimal projections
in A1 ∩ B′ with ÊB(χRj ) < ∞ for all j ∈ J . Put nj := ÊB(χRj ) and
I := {(j, n) : j ∈ J, n = 1, . . . , nj}. For each j ∈ J , there exists ρj ∈ [R]∗
which satisfies µ(Dom(ρj)) > 0 and Γ(ρj) ⊆ Rj . Since χRj is minimal, we
have that zρj coincides with χRj . By Proposition 3.4, it follows that the
index Φ(ρj) is equal to nj for each j ∈ J .

Choose choice functions {ψi}i∈I0 for S ⊆ R. By Lemma 3.3, for each
j ∈ J , there exist a measurable non-null subset E′

j of Dom(ρj) and nj

elements {i′j,n}
nj

n=1 in I0 which satisfy ρj(S(x)) ∩ S(ψi′j,n
(ρj(x))) 6= ∅ for

all x ∈ E′
j and n = 1, . . . , nj . By using the property of choice functions,

for each j ∈ J , there exists a measurable non-null subset Ej of E′
j and

nj elements {ij,n}
nj

n=1 in I0 which satisfy ψi′j,n
(ρj(x)) ∈ S(ψij,n(x)) for all

x ∈ Ej and n = 1, . . . , nj . On the other hand, since S is ergodic, there
exist measurable nonsingular maps {θj}j∈J on X satisfying Γ(θj) ⊆ S and
Im(θj) ⊆ Ej for each j ∈ J up to null sets. Put ϕj,n := ψij,n ◦ θj for each
(j, n) ∈ I. Since Γ(ϕj,n) is contained in Rj and χRj is minimal, we have
that zϕj,n is equal to χRj . By Proposition 2.1 and Proposition 3.4, we get
S(ϕj,n(S(x))) = Rj(x) := {y ∈ X : (x, y) ∈ Rj} and Φ(ϕj,n) = ÊB(zϕj,n) =
ÊB(χRj ) = nj for each (j, n) ∈ I and a.e. x ∈ X. In particular, we have
that S(ϕj,1(S(x))) contains

∪nj

n=1 S(ϕj,n(x)) for each j ∈ J and a.e. x ∈ X.
On the other hand, by using the property of choice functions {ψi}i∈I0 for the
equivalent class R(θj(x)), S(ϕj,1(S(x))) is contained in

∪
i∈I0

S(ψi(θj(x)))
for a.e. x ∈ X. Since Φ(ϕj,1) is equal to nj and S(θj(x)) coincides with S(x),
by using the condition of Lemma 3.3 (3), we have the following inequality:

|{i ∈ I0 : S(ϕj,1(S(x))) ∩ S(ψi(θj(x))) 6= ∅ for a.e. x ∈ X}| ≤ nj .

It means that S(ψi(θj(x))) does not intersect S(ϕj,1(S(x))) for each i ∈ I0 \
{ij,n}

nj

n=1 and a.e. x∈X. So S(ϕj,1(S(x))) is actually equal to
∪nj

n=1S(ϕj,n(x))
for each j ∈ J and a.e. x ∈ X. This means that Rj(x) is equal to the disjoint
union of {S(ϕj,n(x))}nj

n=1 for each j ∈ J and a.e. x ∈ X. Hence we conclude
that {ϕj,n}(j,n)∈I are choice functions for S ⊆ R which satisfy the desired
properties.

Therefore we get the conclusion. ¤



560 H. Aoi

Remark Under the above setting, we have the following:
(1) ϕj,n(S(y)) is contained in a disjoint union of {S(ϕj,m(y))}nj

m=1 for each
(j, n) ∈ J and a.e. y ∈ X. This means that, for a.e. (x, y) ∈ S
and (j, n) ∈ I, there exists a unique m ∈ {1, . . . , nj} which satisfies
(ϕj,n(x), ϕj,m(y)) ∈ S.

(2) S is normal in R if and only if nj is equal to 1 for all j ∈ J . Hence
our result is a generalization of a characterization of normality in [3,
Theorem 2.2] when the subrelation is ergodic.
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